Exercise Sheet, Geometry of numbers and lattices, Fall 2024

Notations and assumptions. Unless stated otherwise, all measures on a topological space are regular Borel Radon measures. 'lcsc' stands for locally compact second countable Hausdorff. A *topological* group G is a group endowed with a topology for which the operations $G \times G \to G, (g_1, g_2) \mapsto g_1g_2$ and $G \to G, g \mapsto g^{-1}$ are both continuous.

- **1.** Let $L \subset \mathbb{R}^n$. Prove that the following are equivalent.
 - L is a lattice.
 - L is a discrete additive subgroup and contains n vectors which are linearly independent over \mathbb{R} .
 - L is a discrete additive subgroup and there is a compact $K \subset \mathbb{R}^n$ such that $\mathbb{R}^n = L + K$.
 - L is a discrete additive subgroup and there is a nonzero finite measure on the quotient group $\mathbf{T} = \mathbb{R}^n/L$ which is *invariant* under group translations, i.e., satisfies $\mu(x + A) = \mu(A)$ for any Borel $A \subset \mathbf{T}$ and any $x \in \mathbf{T}$. Here + denotes the group operation on \mathbf{T} .

2. Suppose $n \ge 2$, $L \subset \mathbb{R}^n$ is a lattice and $H \subset \mathbb{R}^n$ is a discrete subgroup. Prove:

- If $H \subset L$ and $[L:H] < \infty$ then H is a lattice, and $covol(H) = [L:H] \cdot covol(L)$.
- If $L \subset H$ then H is a lattice and $[H:L] < \infty$.
- Let p be a prime. What is the number $N_{p,n}$ of different groups H containing L as a subgroup of index p, and what is the number $N'_{p,n}$ of different groups H contained in L as a subgroup of index p? If $L = g\mathbb{Z}^n$ for $g \in \operatorname{GL}_n(\mathbb{R})$, write all these groups in the form $H = gM_i\mathbb{Z}^n$ and $H = gM'_j\mathbb{Z}^n$, for matrices M_i, M'_j , where i ranges over $1, \ldots, N_{p,n}$ and j ranges over $1, \ldots, N'_{p,n}$.

3. An lcsc topological group G is called *unimodular* there is a measure on G which is both left-invariant and right-invariant.

- Prove that if there is a discrete subgroup $\Gamma \subset G$ such that there is a finite G-invariant measure on G/Γ , then G is unimodular.
- Let Aff(R) denote the group of invertible affine transformations on the real line, i.e., maps of the form

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = ax + b, \quad \text{where } a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R}.$$

Show that $Aff(\mathbb{R})$ is isomorphic to the group

$$\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{R} \setminus \{0\}, \ b \in \mathbb{R} \right\},\$$

with matrix multiplication.

- Show that there is no measure on $Aff(\mathbb{R})$ which is both left-invariant and right-invariant.
- Show that Aff(R) acts transitively on R but there is no Aff(R)-invariant Radon measure on R.

4. Suppose $L \subset \mathbb{R}^3$ is a lattice, and $v_1, v_2, v_3 \in L$ are chosen by the 'greedy algorithm'. Namely, for $i = 1, 2, 3, v_i$ is the shortest (w.r.t. the Euclidean norm) vector in $L \setminus \operatorname{span}_{\mathbb{R}}(v_j : j < i)$. Prove that $L = \operatorname{span}_{\mathbb{Z}}(v_1, v_2, v_3)$.

5. Let $\|\cdot\|$ be a norm on \mathbb{R}^n , let $L \subset \mathbb{R}^n$ be a lattice, let B(0,1) be the unit ball in \mathbb{R}^n with respect to $\|\cdot\|$, and let $\lambda_i(L)$ denote the Minkowski successive minima with respect to $\|\cdot\|$. Prove that

$$\frac{2^n}{n!} \frac{1}{\operatorname{Vol}(B(0,1))} \le \frac{\lambda_1(L) \cdots \lambda_n(L)}{\operatorname{covol}(L)}$$

(this is one of the two inequalities in Minkowski's second theorem).

6. Let $L \subset \mathbb{R}^n$ be a lattice. Define the following quantities:

- $\alpha_i(L)$ is the minimal volume of a fundamental domain of $\operatorname{span}_{\mathbb{R}}(L')/L'$, where $L' \subset L$ is an additive subgroup of rank *i*.
- $\beta_1(L)$ is the Euclidean length of the shortest nonzero vector vector in L, and supposing $\beta_1(L) = ||v_1||, \ldots, \beta_k(L) = ||v_k||$ have been chosen, with v_1, \ldots, v_k a primitive k-tuple in L, v_{k+1} is the shortest vector for which v_1, \ldots, v_{k+1} is a primitive k+1tuple in L, and $\beta_{k+1}(L) = ||v_{k+1}||$ (with some tie-breaking rule).
- $\kappa_i(L) = ||u_i||$ where u_1, \ldots, u_n is the basis of L obtained by the Korkine-Zolotarev reduction scheme (with some tie-breaking rule).

If A and B are quantities depending on an index i and a lattice $L \subset \mathbb{R}^n$, write $A \simeq B$ if there is a constant C, independent of i and L but depending on n, such that $\frac{A}{C} \leq B \leq CA$. Prove that

$$\beta_i(L) \asymp \kappa_i(L) \asymp \lambda_i(L)$$
 and $\alpha_i(L) \asymp \lambda_1(L) \cdots \lambda_i(L)$.

7. Let $L \subset \mathbb{R}^n$ be a lattice and let $x_1, \ldots, x_{2^{n-1}}$ be the non-identity elements in the quotient group $\frac{1}{2}L/L$. Let $V = \operatorname{Vor}(L)$ be the Voronoi cell of L. Prove that each x_i has a representative in the boundary ∂V , and no x_i has a representative in the interior V° . Prove that V has at most $2(2^n - 1)$ boundary faces, and that this bound is sharp. Prove that the map

 $\operatorname{Cl}(\mathbb{R}^d) \to \operatorname{Cl}(\mathbb{R}^d), \quad L \mapsto \operatorname{Vor}(L)$

is continuous with respect the Chabauty-Fell metric.

8. Prove that if G_1, G_2, \ldots is a sequence of closed subgroups of \mathbb{R}^n and $G_i \to X_\infty$, with respect to the Chabauty-Fell metric on $\operatorname{Cl}(\mathbb{R}^n)$, then X_∞ is also a closed subgroup.

9. Prove that the topology on \mathscr{X}_n obtained by restricting the Chabauty-Fell metric from $\operatorname{Cl}(\mathbb{R}^n)$, coincides with the quotient topology on $\mathscr{X}_n = \operatorname{SL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{Z})$, where the topology on $\operatorname{SL}_n(\mathbb{R})$ is the one induced from its inclusion in the matrices $M_n(\mathbb{R})$ with their usual topology as a space isomorphic to \mathbb{R}^{n^2} .

10. In this exercise and the next one, lengths of vectors are defined using the Euclidean norm. A lattice $L \subset \mathbb{R}^n$ is called *well-rounded* if its shortest nonzero vectors span \mathbb{R}^n . Let $\mathcal{O} \stackrel{\text{def}}{=} \operatorname{SO}_n(\mathbb{R})$ and let $\mathcal{S}_n = \mathcal{O} \setminus \operatorname{SL}_n(\mathbb{R}) / \operatorname{SL}_n(\mathbb{Z})$ denote the space of *shapes of lattices*. An element of \mathcal{S}_n is an orbit of a lattice in \mathscr{X}_n under \mathcal{O} . We denote the orbit $\mathcal{O}L$ by [L]. We define

 $d: \mathcal{S}_n \times \mathcal{S}_n \to [0, \infty), \ d([L_1], [L_2]) \stackrel{\text{def}}{=} \inf \left\{ d_{CF}(O_1L_1, O_2L_2) : O_1, O_2 \in \mathcal{O} \right\},$ where d_{CF} denotes the Chabauty-Fell metric.

(1) Show that d is a metric, the inf in the definition is actually a minimum, and can be written as

$$d([L_1], [L_2]) = \min \{ d_{CF}(L_1, OL_2) : O \in \mathcal{O} \}.$$

- (2) Show that the functions $[L] \mapsto \lambda_i(L)$ are well-defined on \mathcal{S}_n , and the set $\mathcal{WR}_n \stackrel{\text{def}}{=} \{[L] \in \mathcal{S}_n : L \text{ is well-rounded}\}$ is well-defined.
- (3) Show that \mathcal{WR}_n is compact in \mathcal{S}_n .
- (4) Define a map

$$\mathcal{S}_n \to \mathcal{S}_n, \quad [L] \mapsto [L']$$

as follows. Given $[L] \in S_n$, let v_1, \ldots, v_n be vectors in L realizing the successive minima (that is $\lambda_i(L) = ||v_i||$ for $i = 1, \ldots, n$). Let $\tilde{v_1}, \ldots, \tilde{v_n}$ be the orthogonal basis obtained by the Gram-Schmidt procedure and let $\bar{T} : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation which sends \tilde{v}_i to $\frac{1}{\lambda_i(L)}\tilde{v}_i$ for $i = 1, \ldots, n$. Finally let $L' \stackrel{\text{def}}{=} c\bar{T}(L)$, where c is the unique positive constant for which

L = cI(L), where c is the unique positive constant for which covol(L') = 1. Show that this map is well-defined (independent of the choice of the representative L and of the vectors v_1, \ldots, v_n) and continuous.

- (5) Show that \mathcal{WR}_n is the set of fixed points for T.
- (6) Prove or disprove: $\lambda_1([L]) \leq \lambda_1([L'])$.
- (7) Prove or disprove: if $L_1, L_2 \in \mathscr{X}_n$ are not well-rounded and $d([L_1], [L_2]) \in (0, 1)$, then $d([L'_1], [L'_2]) < d([L_1], [L_2])$.

11. Define the *covering radius* of L to be

$$\operatorname{covrad}(L) \stackrel{\text{def}}{=} \inf\{r > 0 : L + B(0, r) = \mathbb{R}^n\},\$$

where balls are taken with respect to the Euclidean norm.

• Show that for all n, \mathbb{Z}^n is well-rounded and satisfies

$$\operatorname{covol}(\mathbb{Z}^n) = 1, \quad \operatorname{covrad}(\mathbb{Z}^n) = \frac{\sqrt{n}}{2}.$$

• Show that for n = 2, 3, if L is well-rounded and satisfies covol(L) = 1 then

$$\operatorname{covrad}(L) \le \frac{\sqrt{n}}{2},$$
 (0.1)

and this bound is sharp.

• For i = 1, 2 let $L_i \subset \mathbb{R}^{n_i}$ be a well-rounded lattice with $\operatorname{covol}(L_i) = 1$. Let $n = n_1 + n_2$ and let $\mathbf{0}_k$ denote the zero vector in \mathbb{R}^k . For I = 1, 2, we consider L_i as a discrete subgroup of \mathbb{R}^n via the natural isomorphisms

$$\mathbb{R}^{n_1} \cong \mathbb{R}^{n_1} \oplus \{\mathbf{0}_{n_2}\} \quad \text{and} \quad \mathbb{R}^{n_2} \cong \{\mathbf{0}_{n_1}\} \oplus \mathbb{R}^{n_2}.$$

Show that there is a unique choice of positive α_1, α_2 such that the lattice

$$\alpha_1 L_1 \oplus \alpha_2 L_2 \stackrel{\text{def}}{=} \{ \alpha_1 \ell_1 + \alpha_2 \ell_2 : \ell_1 \in L_1, \ell_2 \in L_2 \}$$

has covolume one and is well-rounded. Give a formula for $\operatorname{covrad}(\alpha_1 L_1 \oplus \alpha_2 L_2)$ in terms of α_i and $\operatorname{covrad}(L_i)$.

• Show that for all n sufficiently large there is a lattice $L \subset \mathbb{R}^n$ of the form $\alpha_1 L_1 \oplus \alpha_2 L_2$ as above, which does not satisfy the bound (0.1).

12. Show that for every $n \in \mathbb{N}$, every $\varepsilon > 0$ and every c > 1, there is C > 0 so that the following holds. Let $L \in K_{\varepsilon}$, where K_{ε} is the subset of \mathscr{X}_n consisting of lattices whose shortest nonzero vector has length at least ε (with respect to the Euclidean norm). Let μ be a Radon measure on \mathbb{R}^n which is invariant under translation by any element of L, and such that its restriction to a fundamental domain for L is a probability measure. Let B be a centrally symmetric convex set such that there is $r \geq 1$ for which $B_r \subset B \subset B_{cr}$, where B_{ρ} is the Euclidean ball around the origin of radius ρ . Then

$$|\mu(B) - \operatorname{Vol}(B)| < C\operatorname{Vol}(B)^{1 - \frac{1}{n}}.$$

Give examples showing that in this statement, the dependence of C on ε and c cannot be avoided.

Deduce that for any lattice $L \subset \mathbb{R}_n$ and any $K \subset \mathbb{R}^n$ for which (K, L) is a packing,

$$\frac{\operatorname{Vol}(K)}{\operatorname{covol}(L)} = \lim_{\rho \to \infty} \frac{\operatorname{Vol}\left(B_{\rho} \cap \bigcup_{\ell \in L} (K+\ell)\right)}{\operatorname{Vol}(B_{\rho})}$$

13. Prove that for any $L \in \mathscr{X}_n$, any $x \in \mathbb{R}^n$, and any $B \subset \mathbb{R}^n$ such that B is bounded, $\operatorname{Vol}(B) > 0$ and $\operatorname{Vol}(\partial B) = 0$, we have

$$\lim_{t \to \infty} \frac{|(L+x) \cap tB|}{\operatorname{Vol}(tB)} = 1.$$

Here tB is defined as in Question 12.

14. Let $\langle \cdot, \cdot \rangle$ denote the standard inner product, and let λ_i be the successive minima defined using the Euclidean norm. Given a lattice $L \subset \mathbb{R}^n$, let

$$L^* \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^n : \forall u \in L, \langle x, u \rangle \in \mathbb{Z} \}$$

(the dual lattice). Show that $\operatorname{covol}(L) = 1/\operatorname{covol}(L^*)$. Deduce that $(L^*)^* = L$ and that the mapping $\Psi(L) = L^*$ restricts to a mapping $\Psi: \mathscr{X}_n \to \mathscr{X}_n$. Show that $\Psi_* m_{\mathscr{X}_n} = m_{\mathscr{X}_n}$. A lattice L is called *self-dual* if $L = L^*$. Show that for any orthogonal matrix $O \in \operatorname{SL}_n(\mathbb{R})$, the lattice $O\mathbb{Z}^n$ is self-dual. Show that if $L \in \mathscr{X}_n$ and $\langle x, x \rangle$ is an even integer for any $x \in L$, then L is self-dual. Show that for any $i \in \{1, \ldots, n\}$ and any $L \in \mathscr{X}_n$ we have

$$\lambda_i(L)\lambda_{n+1-i}(L^*) \ge 1.$$

15. Fix $n \geq 2$ an integer. Let ν and ν_j be Borel probability measures on \mathscr{X}_n and let \mathcal{A} be a collection of Borel functions. We say that ν_j converges to ν with respect to test functions in \mathcal{A} if for any $f \in \mathcal{A}$, fis integrable w.r.t. ν_j for all j and w.r.t. ν , and

$$\int_{\mathscr{X}_n} f \, d\nu_j \longrightarrow_{j \to \infty} \int_{\mathscr{X}_n} f \, d\nu. \tag{0.2}$$

Fix a sequence p_j of primes, $p_j \to \infty$. For each prime p let

$$\mathscr{F}_{p,n} \stackrel{\text{def}}{=} \{ p^{1/n} \cdot L : L \subset \mathbb{R}^n \text{ is a lattice}, \mathbb{Z}^n \subset L, [L : \mathbb{Z}^n] = p \}.$$

Prove that the uniform measures defined by

$$\nu_{p_j} \stackrel{\text{def}}{=} \frac{1}{F_{p,n_j}} \sum_{L \in \mathscr{F}_{p_j,n}} \delta_L, \quad \text{where } F_{p,n_j} \stackrel{\text{def}}{=} \# \mathscr{F}_{p_j,n}$$

satisfy:

(1) ν_j converges to $m_{\mathscr{X}_n}$ as $j \to \infty$ with respect to the collection

$$\{\hat{f}: f \in C_c(\mathbb{R}^n \smallsetminus \{0\})\}, \quad \text{where } \hat{f}(L) = \sum_{x \in L \smallsetminus \{0\}} f(x).$$

(2) ν_j converges to $m_{\mathscr{X}_n}$ as $j \to \infty$ with respect to the collection $\check{C}_{c}(\mathscr{X}_{n}).$

16. Let $L \in \mathscr{X}_n$ be a lattice, let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^n , let V be the Voronoi cell of L, let $\lambda_1(L)$ be the first successive minimum, let $\rho(x) \stackrel{\text{def}}{=} e^{-\pi ||x||^2}$, and let $\operatorname{covrad}(L)$ be the covering radius of L.

$$\eta_1 \stackrel{\text{def}}{=} \int_V \|x\| \, d\text{Vol}(x), \quad \eta_2 \stackrel{\text{def}}{=} \int_V \|x\|^2 \, d\text{Vol}(x), \quad \eta_3 \stackrel{\text{def}}{=} \int_V \rho(x) \, d\text{Vol}(x).$$

Show the following:

- $\lambda_1(L) = 2 \sup\{r > 0 : B(0,r) \subset V\}.$
- $\operatorname{covrad}(L) = \inf\{r > 0 : B(0, r) \supset V\}.$
- $\eta_1(L) \leq \operatorname{covrad}(L) \leq 2\eta_1(L) \leq 2\sqrt{\eta_2(L)}$.
- $\eta_3 \sum_{x \in L} \rho(x) \le 1.$ $\inf_{L \in \mathscr{X}_n} \frac{\eta_1(L)}{\operatorname{covrad}(L)} = \frac{1}{2}, \qquad \inf_{L \in \mathscr{X}_n} \frac{\eta_2(L)}{\operatorname{covrad}(L)^2} \in \left[\frac{1}{4}, \frac{1}{3}\right].$

17. Let d, m be positive integers, let n = d + m and let $\mathbb{R}^n = \mathbb{R}^d \oplus \mathbb{R}^m$ be the standard direct sum decomposition where the projections π_1 : $\mathbb{R}^n \to \mathbb{R}^d, \, \pi_2 : \mathbb{R}^n \to \mathbb{R}^m$ are given by

$$\pi_1(x) = (x_1, \dots, x_d), \ \pi_2(x) = (x_{d+1}, \dots, x_n), \ (x = (x_1, \dots, x_n)).$$

Let $W \subset \mathbb{R}^m$ be a bounded open set and let $L \subset \mathbb{R}^n$ be a lattice. Suppose that

$$\pi_2(L)$$
 is dense in \mathbb{R}^m and $\pi_1|_L$ is injective. (0.3)

Let $\Lambda = \Lambda(L, W) \stackrel{\text{def}}{=} \pi_1(L \cap \pi_2^{-1}(W))$ (such sets Λ are called *cut-andproject sets*). Show that

- There are 0 < r < R such that the balls $\{B(x,r) : x \in \Lambda\}$ are disjoint and the balls $\{B(x, R) : x \in \Lambda\}$ cover \mathbb{R}^d .
- The limiting density

$$D(\Lambda) = \lim_{T \to \infty} \frac{\#\Lambda \cap B(0,T)}{\operatorname{Vol}_d(B(0,T))}$$

exists and is equal to $\frac{\operatorname{Vol}_m(W)}{\operatorname{covol}(L)}$ (here Vol_k is Lebesgue measure on \mathbb{R}^k).

• For $m_{\mathscr{X}_n}$ -a.e. L, (0.3) holds.

• For fixed W there is $\delta > 0$ such that for almost every choice of L (with respect to $m_{\mathscr{L}_n}$), we have an error estimate

 $|\#\Lambda \cap B(0,T) - D(\Lambda) \operatorname{Vol}_d(B(0,T))| = O\left(T^{d-\delta}\right).$