
Exercise Sheet, Geometry of numbers and lattices, Fall 2024

Notations and assumptions. Unless stated otherwise, all mea-
sures on a topological space are regular Borel Radon measures. ‘lcsc’
stands for locally compact second countable Hausdorff. A topological
group G is a group endowed with a topology for which the operations
G×G → G, (g1, g2) 7→ g1g2 and G → G, g 7→ g−1 are both continuous.

1. Let L ⊂ Rn. Prove that the following are equivalent.

• L is a lattice.
• L is a discrete additive subgroup and contains n vectors which
are linearly independent over R.

• L is a discrete additive subgroup and there is a compactK ⊂ Rn

such that Rn = L+K.
• L is a discrete additive subgroup and there is a nonzero finite
measure on the quotient group T = Rn/L which is invariant
under group translations, i.e., satisfies µ(x + A) = µ(A) for
any Borel A ⊂ T and any x ∈ T. Here + denotes the group
operation on T.

2. Suppose n ≥ 2, L ⊂ Rn is a lattice and H ⊂ Rn is a discrete
subgroup. Prove:

• If H ⊂ L and [L : H] < ∞ then H is a lattice, and covol(H) =
[L : H] · covol(L).

• If L ⊂ H then H is a lattice and [H : L] < ∞.
• Let p be a prime. What is the numberNp,n of different groupsH
containing L as a subgroup of index p, and what is the number
N ′

p,n of different groups H contained in L as a subgroup of index
p? If L = gZn for g ∈ GLn(R), write all these groups in the
form H = gMiZn and H = gM ′

jZn, for matrices Mi,M
′
j, where

i ranges over 1, . . . , Np,n and j ranges over 1, . . . , N ′
p,n.

3. An lcsc topological group G is called unimodular there is a mea-
sure on G which is both left-invariant and right-invariant.

• Prove that if there is a discrete subgroup Γ ⊂ G such that there
is a finite G-invariant measure on G/Γ, then G is unimodular.

• Let Aff(R) denote the group of invertible affine transformations
on the real line, i.e., maps of the form

f : R → R, f(x) = ax+ b, where a ∈ R∖ {0}, b ∈ R.
Show that Aff(R) is isomorphic to the group{(

a b
0 1

)
: a ∈ R∖ {0}, b ∈ R

}
,
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with matrix multiplication.
• Show that there is no measure on Aff(R) which is both left-
invariant and right-invariant.

• Show that Aff(R) acts transitively on R but there is no Aff(R)-
invariant Radon measure on R.

4. Suppose L ⊂ R3 is a lattice, and v1, v2, v3 ∈ L are chosen by
the ‘greedy algorithm’. Namely, for i = 1, 2, 3, vi is the shortest (w.r.t.
the Euclidean norm) vector in L ∖ spanR(vj : j < i). Prove that L =
spanZ(v1, v2, v3).

5. Let ∥ · ∥ be a norm on Rn, let L ⊂ Rn be a lattice, let B(0, 1)
be the unit ball in Rn with respect to ∥ · |, and let λi(L) denote the
Minkowski successive minima with respect to ∥ · ∥. Prove that

2n

n!

1

Vol(B(0, 1))
≤ λ1(L) · · ·λn(L)

covol(L)

(this is one of the two inequalities in Minkowski’s second theorem).

6. Let L ⊂ Rn be a lattice. Define the following quantities:

• αi(L) is the minimal volume of a fundamental domain of spanR(L
′)/L′,

where L′ ⊂ L is an additive subgroup of rank i.
• β1(L) is the Euclidean length of the shortest nonzero vector
vector in L, and supposing β1(L) = ∥v1∥, . . . , βk(L) = ∥vk∥
have been chosen, with v1, . . . , vk a primitive k-tuple in L, vk+1

is the shortest vector for which v1, . . . , vk+1 is a primitive k+1-
tuple in L, and βk+1(L) = ∥vk+1∥ (with some tie-breaking rule).

• κi(L) = ∥ui∥ where u1, . . . , un is the basis of L obtained by the
Korkine-Zolotarev reduction scheme (with some tie-breaking
rule).

If A and B are quantities depending on an index i and a lattice L ⊂ Rn,
write A ≍ B if there is a constant C, independent of i and L but
depending on n, such that A

C
≤ B ≤ CA. Prove that

βi(L) ≍ κi(L) ≍ λi(L) and αi(L) ≍ λ1(L) · · ·λi(L).

7. Let L ⊂ Rn be a lattice and let x1, . . . , x2n−1 be the non-identity
elements in the quotient group 1

2
L/L. Let V = Vor(L) be the Voronoi

cell of L. Prove that each xi has a representative in the boundary ∂V ,
and no xi has a representative in the interior V ◦. Prove that V has at
most 2(2n − 1) boundary faces, and that this bound is sharp. Prove
that the map

Cl(Rd) → Cl(Rd), L 7→ Vor(L)

is continuous with respect the Chabauty-Fell metric.
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8. Prove that if G1, G2, . . . is a sequence of closed subgroups of Rn

and Gi → X∞, with respect to the Chabauty-Fell metric on Cl(Rn),
then X∞ is also a closed subgroup.

9. Prove that the topology on Xn obtained by restricting the Chabauty-
Fell metric from Cl(Rn), coincides with the quotient topology on Xn =
SLn(R)/ SLn(Z), where the topology on SLn(R) is the one induced from
its inclusion in the matrices Mn(R) with their usual topology as a space

isomorphic to Rn2
.

10. In this exercise and the next one, lengths of vectors are defined
using the Euclidean norm. A lattice L ⊂ Rn is called well-rounded if

its shortest nonzero vectors span Rn. Let O def
= SOn(R) and let Sn =

O\ SLn(R)/ SLn(Z) denote the space of shapes of lattices. An element
of Sn is an orbit of a lattice in Xn under O. We denote the orbit OL
by [L]. We define

d : Sn×Sn → [0,∞), d ([L1], [L2])
def
= inf {dCF (O1L1, O2L2) : O1, O2 ∈ O} ,

where dCF denotes the Chabauty-Fell metric.

(1) Show that d is a metric, the inf in the definition is actually a
minimum, and can be written as

d ([L1], [L2]) = min {dCF (L1, OL2) : O ∈ O} .
(2) Show that the functions [L] 7→ λi(L) are well-defined on Sn, and

the set WRn
def
= {[L] ∈ Sn : L is well-rounded} is well-defined.

(3) Show that WRn is compact in Sn.
(4) Define a map

Sn → Sn, [L] 7→ [L′]

as follows. Given [L] ∈ Sn, let v1, . . . , vn be vectors in L realiz-
ing the successive minima (that is λi(L) = ∥vi∥ for i = 1, . . . , n).
Let ṽ1, . . . , ṽn be the orthogonal basis obtained by the Gram-
Schmidt procedure and let T̄ : Rn → Rn be the linear trans-
formation which sends ṽi to

1
λi(L)

ṽi for i = 1, . . . , n. Finally let

L′ def= cT̄ (L), where c is the unique positive constant for which
covol(L′) = 1. Show that this map is well-defined (indepen-
dent of the choice of the representative L and of the vectors
v1, . . . , vn) and continuous.

(5) Show that WRn is the set of fixed points for T .
(6) Prove or disprove: λ1([L]) ≤ λ1([L

′]).
(7) Prove or disprove: if L1, L2 ∈ Xn are not well-rounded and

d([L1], [L2]) ∈ (0, 1), then d([L′
1], [L

′
2]) < d([L1], [L2]).
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11. Define the covering radius of L to be

covrad(L)
def
= inf{r > 0 : L+B(0, r) = Rn},

where balls are taken with respect to the Euclidean norm.

• Show that for all n, Zn is well-rounded and satisfies

covol(Zn) = 1, covrad(Zn) =

√
n

2
.

• Show that for n = 2, 3, if L is well-rounded and satisfies covol(L) =
1 then

covrad(L) ≤
√
n

2
, (0.1)

and this bound is sharp.
• For i = 1, 2 let Li ⊂ Rni be a well-rounded lattice with covol(Li) =
1. Let n = n1+n2 and let 0k denote the zero vector in Rk. For
I = 1, 2, we consider Li as a discrete subgroup of Rn via the
natural isomorphisms

Rn1 ∼= Rn1 ⊕ {0n2} and Rn2 ∼= {0n1} ⊕ Rn2 .

Show that there is a unique choice of positive α1, α2 such that
the lattice

α1L1 ⊕ α2L2
def
= {α1ℓ1 + α2ℓ2 : ℓ1 ∈ L1, ℓ2 ∈ L2}

has covolume one and is well-rounded. Give a formula for
covrad(α1L1 ⊕ α2L2) in terms of αi and covrad(Li).

• Show that for all n sufficiently large there is a lattice L ⊂ Rn

of the form α1L1 ⊕ α2L2 as above, which does not satisfy the
bound (0.1).

12. Show that for every n ∈ N, every ε > 0 and every c > 1, there is
C > 0 so that the following holds. Let L ∈ Kε, where Kε is the subset
of Xn consisting of lattices whose shortest nonzero vector has length
at least ε (with respect to the Euclidean norm). Let µ be a Radon
measure on Rn which is invariant under translation by any element of
L, and such that its restriction to a fundamental domain for L is a
probability measure. Let B be a centrally symmetric convex set such
that there is r ≥ 1 for which Br ⊂ B ⊂ Bcr, where Bρ is the Euclidean
ball around the origin of radius ρ. Then

|µ(B)− Vol(B)| < CVol(B)1−
1
n .

Give examples showing that in this statement, the dependence of C on
ε and c cannot be avoided.
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Deduce that for any lattice L ⊂ Rn and any K ⊂ Rn for which
(K,L) is a packing,

Vol(K)

covol(L)
= lim

ρ→∞

Vol
(
Bρ ∩

⋃
ℓ∈L(K + ℓ)

)
Vol(Bρ)

.

13. Prove that for any L ∈ Xn, any x ∈ Rn, and any B ⊂ Rn such
that B is bounded, Vol(B) > 0 and Vol(∂B) = 0, we have

lim
t→∞

|(L+ x) ∩ tB|
Vol(tB)

= 1.

Here tB is defined as in Question 12.

14. Let ⟨·, ·⟩ denote the standard inner product, and let λi be the
successive minima defined using the Euclidean norm. Given a lattice
L ⊂ Rn, let

L∗ def
= {x ∈ Rn : ∀u ∈ L, ⟨x, u⟩ ∈ Z}

(the dual lattice). Show that covol(L) = 1/covol(L∗). Deduce that
(L∗)∗ = L and that the mapping Ψ(L) = L∗ restricts to a mapping
Ψ : Xn → Xn. Show that Ψ∗mXn = mXn . A lattice L is called self-
dual if L = L∗. Show that for any orthogonal matrix O ∈ SLn(R),
the lattice OZn is self-dual. Show that if L ∈ Xn and ⟨x, x⟩ is an
even integer for any x ∈ L, then L is self-dual. Show that for any
i ∈ {1, . . . , n} and any L ∈ Xn we have

λi(L)λn+1−i(L
∗) ≥ 1.

15. Fix n ≥ 2 an integer. Let ν and νj be Borel probability measures
on Xn and let A be a collection of Borel functions. We say that νj
converges to ν with respect to test functions in A if for any f ∈ A, f
is integrable w.r.t. νj for all j and w.r.t. ν, and∫

Xn

f dνj −→j→∞

∫
Xn

f dν. (0.2)

Fix a sequence pj of primes, pj → ∞. For each prime p let

Fp,n
def
= {p1/n · L : L ⊂ Rn is a lattice,Zn ⊂ L, [L : Zn] = p}.

Prove that the uniform measures defined by

νpj
def
=

1

Fp,nj

∑
L∈Fpj,n

δL, where Fp,nj

def
= #Fpj ,n

satisfy:
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(1) νj converges to mXn as j → ∞ with respect to the collection

{f̂ : f ∈ Cc(Rn ∖ {0})}, where f̂(L) =
∑

x∈L∖{0}

f(x).

(2) νj converges to mXn as j → ∞ with respect to the collection
Cc(Xn).

16. Let L ∈ Xn be a lattice, let ∥ · ∥ be the Euclidean norm on
Rn, let V be the Voronoi cell of L, let λ1(L) be the first successive

minimum, let ρ(x)
def
= e−π∥x∥2 , and let covrad(L) be the covering radius

of L.

η1
def
=

∫
V

∥x∥ dVol(x), η2
def
=

∫
V

∥x∥2 dVol(x), η3
def
=

∫
V

ρ(x) dVol(x).

Show the following:

• λ1(L) = 2 sup{r > 0 : B(0, r) ⊂ V }.
• covrad(L) = inf{r > 0 : B(0, r) ⊃ V }.
• η1(L) ≤ covrad(L) ≤ 2η1(L) ≤ 2

√
η2(L).

• η3
∑

x∈L ρ(x) ≤ 1.

• infL∈Xn

η1(L)
covrad(L)

= 1
2
, infL∈Xn

η2(L)
covrad(L)2

∈
[
1
4
, 1
3

]
.

17. Let d,m be positive integers, let n = d+m and let Rn = Rd⊕Rm

be the standard direct sum decomposition where the projections π1 :
Rn → Rd, π2 : Rn → Rm are given by

π1(x) = (x1, . . . , xd), π2(x) = (xd+1, . . . , xn), (x = (x1, . . . , xn)).

Let W ⊂ Rm be a bounded open set and let L ⊂ Rn be a lattice.
Suppose that

π2(L) is dense in Rm and π1|L is injective. (0.3)

Let Λ = Λ(L,W )
def
= π1(L ∩ π−1

2 (W )) (such sets Λ are called cut-and-
project sets). Show that

• There are 0 < r < R such that the balls {B(x, r) : x ∈ Λ} are
disjoint and the balls {B(x,R) : x ∈ Λ} cover Rd.

• The limiting density

D(Λ) = lim
T→∞

#Λ ∩B(0, T )

Vold(B(0, T ))

exists and is equal to Volm(W )
covol(L)

(here Volk is Lebesgue measure

on Rk).
• For mXn-a.e. L, (0.3) holds.
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• For fixed W there is δ > 0 such that for almost every choice of
L (with respect to mLn), we have an error estimate

|#Λ ∩B(0, T )−D(Λ)Vold(B(0, T ))| = O
(
T d−δ

)
.


