
Exercise sheet – Geometry of Numbers
Tel Aviv University, Fall 2020

Notation. Unless specified otherwise, xu, vy is the standard inner
product of u, v P Rn, } ¨ } is the corresponding `2 norm on Rn and
Bpx, rq is the open ball around x of radius r, with respect to this norm.
The Lebesgue measure on Rn is denoted by Vol. For a set F Ă Rn,

convpF q “

#

ÿ

xPF0

axx : F0 Ă F is finite, ax ě 0,
ÿ

xPF0

ax “ 1

+

.

A set K Ă Rn is called convex if K “ convpKq, and is called a convex
body if it is compact, convex, and has nonempty interior. For two sets

A,B Ă Rn we define A ` B
def
“ ta ` b : a P A, b P Bu and ´A

def
“ t´a :

a P Au. A convex set K is centrally symmetric if K “ ´K. The dual
L˚ of L is defined by

L˚
def
“ tu P Rn : @v P L, xu, vy P Zu.

A grid is a set of the form x`L where x P Rn and L Ă Rn is a lattice.
The covolume of the grid x`L is covolpLq. Let Xn denote the collection
of lattices of covolume 1 in Rn, and let Yn denote the collection of grids
of covolume 1 in Rn. The SLnpRq-invariant probability measure on Xn

is denoted by mXn .

1. Let L Ă Rn and let V be its Voronoi cell. Prove that V is a
polytope, that is there is a finite F0 Ă Rn such that V “ convpF0q.
Prove that V is centrally symmetric. A face of convpF0q is a subset
of the form convpF1q where F1 Ă F0 and convpF1q contains no interior
points of convpF0q. The dimension of a face V 1 is dim spanRpV

1 ´ V 1q.
Prove that for each n´1-dimensional face V 1 of V there is x0 P V

1 such
that V 1 ´ x0 is centrally symmetric. Prove that the maximal number
of parallel n´ 2 faces of V is either 4 or 6, and show by example that
these bounds are achieved.

2. Let L “ Zn and let p P N. What is the number of sublattices
L1 Ă L such that rL : L1s “ p? For p a prime, write down an algorithm
for exhibiting all of them. That is, for each such L1, find a matrix A
such that L1 “ AZn.

3. Let L Ă Rn be a lattice and let S Ă Rn be a bounded convex set
with nonempty interior. For r ą 0, define r ¨ S “ trs : s P Su. Prove
that

lim
rÑ8

# pLX r ¨ Sq

rn
“

VolpSq

covolpLq
.
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Show that in fact

# pLX r ¨ Sq “ crn `Oprn´1q, for c “
VolpSq

covolpLq
.

4. Let L Ă Rn be a lattice and for i “ 1, . . . , n, let

λi
def
“ inftr ą 0 : LXBp0, rq contains i linearly independent vectorsu

be its Minkowski successive minima. Also let

λ̄i
def
“ inftr ą 0 : LXBp0, rq contains a primitive i-tuple of vectorsu.

(a) Choose a basis of Rn successively as follows. Let v1 be a shortest
nonzero vector in L, and given v1, . . . , vr for some r ă n, let vr`1
be a shortest vector in

Ar
def
“ tv P L : v1, . . . , vr, v are linearly independentu.

Prove that for all i, }vi} “ λi.
(b) Choose v̄1, . . . , v̄n successively by the algorithm described in (a),

replacing Ar with

Ār
def
“ tv P L : v̄1, . . . , v̄r, v is a primitive pr ` 1q-tupleu.

Give an example of a lattice for which }v̄n} ą λ̄n.
(c) In (b), for a given n, what is the maximal possible number of

indices i for which }v̄i} ‰ λ̄i?

5. Let L Ă Rn be a lattice and let K be a convex body. Prove that:

(i) If dim spanRpK X Lq “ n then

# pK X Lq ď n!
VolpKq

covolpLq
` n.

(ii) If K is centrally symmetric then

# pK X Lq ě 2

Z

VolpKq

2n covolpLq

^

` 1.

6. Let } ¨ } be a norm on Rn, and let λipLq denote the successive
minima of a lattice L with respect to the norm. Prove that for any
lattice L Ă Rn,

2n

n!

covolpLq

VolpBp0, 1qq
ď

n
ź

i“1

λipLq.

7. Given a lattice L Ă Rn let κipLq
def
“ }vi}, where v1, . . . , vn are

a basis of L obtained by the Korkine Zolotarev reduction procedure
(recall that in case of ties the Korkine-Zolotarev basis is not uniquely



3

defined, and thus κipLq depends on the particular choice of the basis
v1, . . . , vn). Let

αipLq
def
“ inftcovolpL0q : L0 Ă L an additive subgroup, dim spanRpL0q “ iu,

and let λipLq denote the Minkowski successive minima. Say that func-
tions ApLq, BpLq on the collection of lattices in Rn satisfy A — B if
there is a constant C (depending on n) such that for all L,

C´1ApLq ď BpLq ď CApLq.

Prove that κipLq — λipLq and αipLq — λ1pLq ¨ ¨ ¨λipLq.

8. Let L Ă Rn be a lattice and let m P N. Suppose A Ă Rn is a Borel
set with VolpAq ą m covolpLq. Prove that there are x0, x1, . . . , xm P A,
distinct elements such that xi ´ xj P L for every i, j.

9. Let Gn “
Àn

p“0Rn
p denote the Grassmann algebra. Prove or

disprove:

‚ there is u P Gn r t0u such that u^ u ‰ 0.
‚ there are u, v P Gn such that }u^ v} ą }u} }v}.

10. Let L be a lattice and let t0u “ L0 Ł L1 Ł ¨ ¨ ¨ Ł Lk Ł Lk`1 “ L
be its Harder-Narasimhan filtration. L is called stable if k “ 0. For each
i let Vi

def
“ spanpLiq

K and let πi : Rn Ñ Vi be the orthogonal projection.
The points tprankpLiq, log covolpLiqq : i “ 0, . . . , k ` 1u are the profile
of L. Prove that:

‚ πipLjq is discrete for each i. Below we will consider it as a lat-

tice in V 1
def
“ spanpπipLjqq, and compute its Harder-Narasimhan

filtration and profile using the restriction of the Euclidean inner
product to V 1.

‚ For each i, the Harder-Narasimhan filtration of πipLq is t0u “
πipLiq Ł πipLi`1q Ł ¨ ¨ ¨ Ł πipLkq Ł πipLq.

‚ πipLi`1q is stable for each i.
‚ If covolpLq “ 1 then the profile of L˚ is the image of the profile

of L under the reflection R2 Ñ R2, px, yq ÞÑ pn ´ x, yq. For a
fixed value of c “ covolpLq ‰ 1, find a map ϕc : R2 Ñ R2 with
the same property.

11. Let ClpRnq denote the space of closed subsets of Rn, equipped
with the Chabauty-Fell metric D.

‚ Show that for Y, Y1, Y2, . . . P ClpRnq, we have Yj Ñ Y if and
only if for every y P Y there is a sequence yj P Yj with yj Ñ y,
and whenever, for a subsequence ij Ñ 8, for any yij P Yij such

that y8
def
“ limj yij exists, we have y8 P Y .
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‚ Prove that ClpRnq is compact.
‚ Show that if Lj Ñ L are lattices, and VorpLq is the Voronoi

cell of L, considered as an element of ClpRnq, then VorpLjq Ñ

VorpLq.
‚ Show that if Lj Ñj L then αipLjq Ñj αipLq and λipLjq Ñ λipLq

for i “ 1, . . . , n.
‚ Show that for any L P Xn there is r0 ą 0 such that for any
r P p0, r0q, the closed ball tL1 P Xn : DpL,L1q ď ru is compact.

‚ We think of Xn and Yn as subsets of ClpRnq. What are their
closures Xn and Yn?

12. For n “ 2, 3, list all perfect lattices and all eutactic lattices in
Rn.

13. The Gram matrix of an n-tuple v1, . . . , vn in Rn is the symmetric
matrix pxvi, vjyqi,j“1,...,n. Suppose L “ spanZpv1, . . . , vnq and let A be

the Gram matrix of v1, . . . , vn. Prove that detpAq “ covolpLq2. Sup-
pose L is perfect. Prove that there is t P Rr t0u so that tA has ratio-

nal coefficients. The Hermite constant is µn
def
“ sup tλ1pLq

2 : L P Xnu.
Prove that µn

n P Q.

14. Let F Ă Rn be a finite set, and let tλx : x P F u be real numbers.
Show that the following conditions are equivalent:

‚ For any A P Symn, trpAq “
ř

xPF λxϕxpAq, where ϕxpAq “
xAx, xy.

‚ Id “
ř

xPF λx||x||
2Px, where Px is the orthogonal projection

onto spanpxq.
‚ For any y, z P Rn, we have xy, zy “

ř

xPF λxxy, xy xz, xy.

15. Show that if an lcsc (locally compact second countable) group G
acts transitively on an lcsc space X, then there is at most one invariant
Radon measure on X (up to scaling). That is, if µ1, µ2 are nonzero
Radon measures on X and satisfy g˚µi “ µi for all g P G and i “
1, 2, then there is c ą 0 such that µ1 “ cµ2. Give an example of a
transitive action of an lcsc group on an lcsc space with no invariant
Radon measures.

16. A map f : Rn Ñ Rn is called affine if @x1, x2 P Rn, @s P R,
we have fpsx1 ` p1 ´ sqx2q “ sfpx1q ` p1 ´ sqfpx2q. Let ASLnpRq
denote the group of orientation preserving volume preserving affine
maps Rn Ñ Rn. Show that f P ASLnpRq can be written uniquely as
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fpxq “ Afx` yf , where Af P SLnpRq and yf P Rn. Show that the map

ϕ : ASLnpRq Ñ SLn`1pRq, ϕpfq “

ˆ

Af yf
0 1

˙

is an injective group homomorphism, and that

ϕpfq

ˆ

x
1

˙

“

ˆ

fpxq
1

˙

, @x P Rn.

Show that ASLnpZq “ ϕ´1pSLn`1pZqq is a lattice in ASLnpRq and that
Yn is isomorphic to ASLnpRq{ASLnpZq. Show that the map Yn Ñ Xn

which sends a grid L to the lattice L´ L is proper, and that the fiber
over L0 P Yn is naturally isomorphic to Rn{L0. Show that a sequence
pLjq Ă Yn satisfies Lj Ñ 8 if and only if covradpLjq Ñ 8, where

covradpLq
def
“ inftr ą 0 : L`Bp0, rq “ Rn

u.

State and prove an analogue of the Siegel summation formula for the
space Yn.

17. Let n ě 3 and let B Ă Rn be a Borel set. Prove that

‚ If VolpBq ă 8 then # pLXBq ă 8 for mXn-a.e. L P Xn.
‚ If VolpBq “ 8 then # pLXBq “ 8 for mXn-a.e. L P Xn.

18. A lattice L Ă Rn is called even unimodular if covolpLq “ 1 and
}v}2 P 2Z for any v P L. Prove that if L is even unimodular, then L is
self-dual, that is, L “ L˚. Also prove that the lattice

E8
def
“

$

&

%

¨

˝

x1
...
x8

˛

‚P R8 : @i, 2xi P Z, 2x1 ” ¨ ¨ ¨ ” 2x8 mod 2, and
ÿ

xi P 2Z

,

.

-

is even unimodular. Show that λ1pE8q “
?

2 and that E8 contains 240
shortest nonzero vectors.

19. Let f P CcpXnq, let M P N, and define F1, F2 P CcpXnq by

F1pLq
def
“ fpL˚q, F2pLq

def
“

1

SM

ÿ

rL:L1s“M

fpM´1{nL1q

(the sum in the definition ranges over all sub-lattices of index M , and
SM is the number of such sub-lattices).

Prove that
ş

Xn
f dmXn “

ş

Xn
F1 dmXn “

ş

Xn
F2 dmXn .

20. Let e1, . . . , en denote the standard basis of Rn, let f P CcpRnq

and let f̂ : Xn Ñ R be the function f̂pLq “
ř

xPLrt0u fpxq. For t ą 0
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and a “ pa1, . . . , an´1q P r0, 1q
n´1, let

Lt,a
def
“ spanZ

˜

ete1, . . . , e
ten´1,

n´1
ÿ

i“1

etaiei ` e
´pn´1qten

¸

.

Prove that

lim
tÑ8

ż

r0,1qn´1

f̂pLt,aq dVolpaq “

ż

Xn

f̂dmXn .

21. For L P Xn, define the covering density of L by

ΘpLq
def
“ inftVolpBq : L`B “ Rn, B is a Euclidean ballu.

What is
ş

Xn
ΘpLq dmXnpLq?


