CONVEX BODIES WHICH TILE SPACE BY
TRANSLATION

P. McMULLEN

Abstract. Tt is shown that a convex body K tiles E“ by translation if, and only if,
K is a centrally symmetric d-polytope with centrally symmetric facets, such that
every belt of K (consisting of those of its facets which contain a translate of a given
(d —2)-face) has four or six facets. One consequence of the proof of this result is that,
if K tiles E? by translation, then K admits a face-to-face, and hence a lattice tiling.

§1. Introduction. We say that the convex body (compact convex set with non-
empty interior) K tiles d-dimensional euclidean space EY by translation if there is
some family T of translation vectors, such that the family #" = {K+t|te T} of
translates of K covers E? while two distinct translates K+, and K+, (t; # t,)
have disjoint interiors, so that . is also a packing of E% We shall call K, and its
translates K +¢, (convex translation) tiles, or, occasionally, if we wish to emphasize
their dimension, d-tiles. It is known (we shall give references later) that tiles must
satisfy various conditions; it is the object of this paper to prove that these conditions
completely characterize tiles. The actual characterization is given by

THEOREM 1. The convex body K is a tile if, and only if, K is a centrally symmetric
polytope with centrally symmetric facets, such that each belt of K contains four or six
facets.

If d > 3, then Aleksandrov [1933] (for 4 = 3) and Shephard [1967] have shown
that, if each facet of a d-polytope K is centrally symmetric, then K itself is centrally
symmetric (see McMullen [1976] for a shorter proof). A belt of such a polytope K is
the collection of its facets which contain a translate of a given subfacet (that is,
(d—2)-face) G of K (and also, of course, of —G). (In E3, belts are more familiarly
known as zones, but in higher dimensions, the term zone is restricted to zonotopes—
that is, vector sums of line segments—and has a rather different meaning.)

The history of this problem is very rich, and we shall do no more, here and below,
than mention a few salient contributions. It was the crystallographer Fedorov who
first investigated tiles (naturally in the context of lattice tilings—by which we mean
that T is a lattice, or discrete additive subgroup—in E?) from about 1881, and
characterized the five parallelohedra (as tiles are alternatively called) shortly
thereafter (see Fedorov [1885]). The necessity of the conditions involving central
symmetry was proved by Minkowski [1897]; we shall discuss this in more detail
later. The origin of the final condition is more obscure. While it must clearly have
been recognized early, at least in the context of lattice tilings (see, for example,
Delaunay [1926] and Aleksandrov [1958]), it was Coxeter [1962] who first
proposed that the condition might be sufficient for zonotopes (at least) to tile space.

[MATHEMATIKA, 27 (1980), 113-121]
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§2. The necessity of the conditions. While the necessity of the conditions of
Theorem 1 is known, albeit in the context of lattice tilings (though the proofs are no
different), for completeness of exposition we give a proof here.

Throughout this section, we take K to be a given tile; as above, T denotes the
corresponding family of translation vectors. There is clearly no loss in generality in
supposing that the zero vector oe T.

Lemma 1. K is a polytope.

We first observe that, if ¢;,t, € T with ¢; # t,, then K+¢, meets K +1, if, and
only if, t, —t, e bd (DK), where DK = K—K is the difference body of K. Thus
lt, —t,lt is bounded both above and below by positive numbers, and hence only
finitely many translates K+t;, (i = 1,..., k, say) touch K. On the other hand, each
point of bd K must belong to a tile K+ for some t € T\ {o}. It follows that bd K is
a finite union of sets K n(K+t¢,)) (i = 1,..., k), and we deduce that K is a bounded
polyhedral set; that is, K is a polytope.

LemmMma 2. K is centrally symmetric.

The tile K meets only finitely many sets —(K +1t,) with t;€ T,sayfori = 1,..., k.
Then K is the union of the centrally symmetric polytopes K n(—K—t)
(i = 1, ..., k), whose interiors are disjoint. From a result of Minkowski [1897], it then
follows that K is itself centrally symmetric.

From now on we suppose, again without loss of generality, that the centre of K is
the origin o.

Lemma 3. Each facet F of K is centrally symmetric.

The facet F can only be covered by the translates of —F in those tiles
K+1t; (t;€ T) which meet K in F. Thus we can express F as a union of centrally
symmetric (d— 1)-polytopes F n(—F+t) (with i = 1, ..., k, say), whose interiors,
relative to the affine hull aff F of F, are disjoint. Hence, as above, we conclude that F
is itself centrally symmetric.

Lemmas 1, 2 and 3 are all due to Minkowski [1897]; his arguments are directed
at lattice tilings in E3, but they generalize at once to arbitrary tilings by translation in
E‘. We observe that we cannot expect to do better than Lemma 3 in general. For, as
shown by McMullen [1970], if d = 4, then a d-polytope all of whose subfacets are
centrally symmetric has all its faces of every dimension centrally symmetric, and so is
a zonotope. However, the regular 24-cell {3, 4, 3} tiles E*, but is not a zonotope (see
Coxeter [1973]).

LemmMA 4. Each belt of K contains 4 or 6 facets.

Let the belt of K determined by the subfacet G have m pairs of opposite facets; we
shall suppose m > 4, and obtain a contradiction. We can choose g € G to lie on no j-
face of any tile K+t (te T) withj < d—2, and we consider the tiles which contain
g. The sum of the dihedral angles of K at its subfacets parallel to G (and so in the
belt) is 2(m — 1)x. Thus, firstly, g cannot lie in the relative interior of a facet of any
tile, for, since the dihedral angle at any subfacet is less than n, the sum of the dihedral
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CONVEX BODIES WHICH TILE SPACE BY TRANSLATION 115

angles at two non-opposite subfacets of the belt is greater than
(m—1)n—(m—2)n = n. Hence g lies in subfacets alone. But, similarly, the sum of the
dihedral angles at three mutually non-opposite subfacets is greater than
(m—1)n—(m—3)n = 2=, and so g cannot belong to three tiles. Thus m < 3, as was
claimed.

A belt of K consisting of n facets will be called an n-belt. The argument used
above in fact shows that, if the point g does lie in the relative interior of some facet of
another tile, then m = 2, so that the belt is a 4-belt. Note that we have also used
above the obvious fact that a facet F of K can only be covered by translates of its
opposite facet — F. Hence, if a tile meeting K in (a part of) F actually meets g at a
subfacet, its dihedral angle at g is the same as (because opposite to) the dihedral
angle of K at the subfacet in F adjacent to G in the given belt.

§3. The sufficiency of the conditions. To prove the sufficiency of the conditions of
Theorem 1, we shall see that we can confine our attention to face-to-face tilings X",
which are such that the intersection of two (distinct) tiles in J¢" is empty or a common
face of both tiles. For such a tiling, it is clear that the corresponding family T of
translations is a lattice.

Given that K satisfies the conditions of Theorem 1, one might conceive of
constructing a suitable tiling by K in the following way. If F is any facet of K, then
the opposite facet —F is a translate of F. Thus there is a translation vector ¢
carrying —F into F; then we have (K+¢;)n K = F = —F+t;. We note that
t_p = —t;. We have such translations for each facet of K, and by compounding
them, we obtain the collection ) = {K+t|te T} of translates of K, where
T = {d rnetr | np € Z}, with Z denoting the integers. This gives us our candidate for
a tiling.

We must show that J is simultaneously a covering and packing of E? We deal
with the covering property first; as will become apparent, we shall not need to call
upon the belt condition to do this. We find it convenient to introduce some notation,
to use here and later. If G is any face of K, define the subset T; of T recursively by
o€ T, and t € T if there is some ¢’ € T;;, such that K+t and K + ¢’ meet in a common
facet which contains G. It is a natural convention that T, = T'; we also note that
Tk = {0}.If K' = K+t e and G is a face of K’, we write X, = {K'+1'|t' € T;_,}.
Clearly it is appropriate to set ', = ) . We notice that, while the definition of T;
depends upon the initial choice of a tile of which G is a face, that of 2; does not,
inasmuch as we recover #; from any K" € ) (see also the alternative description of
X in the proof of Lemma 5 below). However, we cannot as yet exclude the
possibility that G is also a face of some K" ¢ );; in fact, our arguments will not
use this assumption. We also see that, for teT, X;,, = A+t
(= {K'+t| K" € X}). So, without loss of generality, in our next two lemmas we
shall suppose that G is a face of K itself.

We say that X surrounds G if relint G < int N(G), where we write N(G) = ().
As will become clear below, the appropriate analogue for )¢ itself is that ¢ covers

E*.

LemMA 5. For each face G of K, X; surrounds G.

Let dimG = r. The lemma is trivial for r = d; if r = d—1, then clearly X
surrounds G (and T; = {0, t;}, in the notation introduced above). So, suppose that
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r < d—1, and that the lemma holds for all faces of K of dimension at least r+ 1. Let
gerelintG. We call ¢’ € K equivalent to g, written g' ~ g, if there is a sequence
g =4go-91>---»9n = ¢ in K, such that, for k = 1, ..., n, there is a facet F, of K with
gk = g1+ Itiseasy to see that ¥ = {K—g'+g|g ~g}. LetSbea(d—r—1)
sphere centred at g and orthogonal to aff G, and of small enough radius that, for each
g ~ g, S meets only those facets of K —g’+g which contain G. To show that )
surrounds G, it is clearly enough to prove that S is covered by 47;. For, in that case,
if B is an r-ball in G centred at g, then conv(B U S) will be a closed neighbourhood of
g in N(G).

For convenience here and later, if K’ € & and G is a face of K’ (possibly G = ),
we write

C(K', G) = \U{N(F)| F aface of K’ with G = F},

where the inclusion in the definition is strict, and K’ is always counted as a face of
itself. We remark that, if F;, € F,, then N(F,) 2 N(F,), so the union above could be
taken over all faces F of K’ of dimension dim G+ 1 which contain G.

For every K’ € X, each point of K’ n § lies in the relative interior of some face F
of K’ strictly containing G. By our inductive assumption, each point of relint F n §
has a neighbourhood in S contained in N(F) € C(K’, G). Since K' n § is compact, it
follows that there is some & > 0 such that the d-neighbourhood of K" n S in S is
contained in C(K’, G). As X is finite, we can use the same ¢ for each K’ € J¢;. Hence
the o-neighbourhood in S of each point of S in

U{C(K', G) | K" € H} = N(G)

is contained in N(G). Since the connected set S meets N(G), we conclude that
S < N(G), as required.

Exactly the same argument shows that 5 covers E“. Since X; surrounds G for
each non-empty face G of a tile K'e X", there is some J-neighbourhood of K’
contained in C(K') = C(K', &), and as C(K+t) = C(K)+t for te T, the same ¢
serves for each K’ € ). Arguing as in the last paragraph, we conclude that J¢ itself
covers E‘.

We say that X fits around G if, for every K, K, € X, K, n K, is a face of each
tile. For G = &, this condition implies that ¢ is a packing of E°.

LEMMA 6. If G is a face of K, then X ¢ fits around G.

We again use an inductive argument. The result is obvious if dimG = dor d—1.
If dimG = d—2, then the subfacets of K which are equivalent to G (under the
equivalence relation induced by ~) are all those in a 4-belt determined by G, or
alternate subfacets in a 6-belt, as appropriate; in either case, the dihedral angles of K
at these equivalent subfacets sum to 2z, and the four or three tiles (respectively) in
A ¢ fit around G. So, we shall assume that dimG = r < d—2, and that the lemma
holds for all faces of dimension at least r+ 1.

Now, it is enough to show that, if K', K" € #; are such that int(K' n K") #+ &,
then K’ = K”. For, suppose that K' n K” > G (the inclusion being strict), but
int(K' n K”) = (¥. Let F be a maximal (with respect to inclusion) face of K’, with
(relint F) n K” % . By Lemma 5, relint F < int N(F), and so there is some

K" e Ay, with int(K” nK") + &. If int(K"” n K") + & implies K" = K", it
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would then follow that K" € X also, and that K’ and K" meet in a common face
containing F. Since F is maximal, we would then deduce that K’ n K" = F, as
required.

So, suppose that K', K" € ) satisfy int (K’ n K"”) #+ . By definition, we can
find K' = K,,K,,...,K, = K" in X, such that, fori=1,...,n, K, ;nK;isa
common facet of K,_, and K;, which also contains G. We can clearly suppose that
K; # K; for i # j. We call such a sequence of tiles a strong chain in X;. If
g €relint G, and S is the small (d —r — 1)-sphere centred at g, introduced in the proof
of Lemma 5, then this strong chain in J; gives rise to a strong chain of spherical
(d—r—1)-polytopes Q;, = K;nS (i =0,...,n). (We shall also write Q' = K' N §,
and so on.)

We now make a fixed choice of a point x € int(Q’ N Q") (here, interiors are taken
relative to S), and consider spherical polygonal loops L based at x (that is, L is
composed of finitely many arcs of great circles of S, and begins and ends at x). Such a
loop L is associated with the strong chain Q' = Q,, Q,,...,Q, = Q" if L passes
successively from Q;_, to @; (i = 1,...,n). Observe that we allow L to return to a
given Q, after leaving it, but only if L is at that point passing through a subsequent
Q;- Thus Lis a union of n+ 1 subares L; = Q; (i = 0, ..., n), some of which possibly
degenerate to points, such that L, ; and L; meet in an endpoint of each in
Qi N Q;; of course, L, and L, meet at x. We call L an interior loop if each L, is
contained in intQ; urelint(Q;_, N Q) urelint(Q; »n Q,,,) (with appropriate
modifications for i = 0, n); thus L meets only the interiors of the Q; and the relative
interiors of the common facets Q;_, n Q; through which it passes.

We denote by A(L) the spherical arc length of the loop L, and let 2 be the infimum
of A(L) over all (interior) loops based at x which are associated with strong chains
from Q' to Q”. We shall show that A = 0, which will imply that Q" = Q". In this
context, we remark that, if L is a loop associated with a given strong chain, then
there is an interior loop L associated with the same chain, such that A(L)
approximates A(L) as closely as we wish.

To prove this, we use the fact that dimS = d—r—1 > 2, so that S is simply
connected, and hence loops in S based at x can be contracted over S to x. So,
suppose that, in fact, A > 0, and let Q' = Q,, Q,, ..., Q, = Q" be a strong chain from
Q' to Q”, with which is associated a loop L, based at x of length A(L,) = A. Note
that, since the space of loops in S based at x is compact (in the Hausdorff metric
topology; see after Conjecture 3 below), such a loop L, exists. We can slightly
displace x in int (Q' n Q") at the beginning, to ensure that no loop which is a single
great circle can be minimal. It is then clear that L, cannot be an interior loop;
necessarily, that part of L, in each Q; consists of a single arc of a great circle, possibly
degenerating to a single point.

Now L, has a non-straight angle at the relative interior of a face F n S of some
Q;, where F is a face of the corresponding K;e X, with G < F; clearly
dim F < d—2, so in fact F will be a common face of at least two K in the chain. Let
L, meet F in y. Since yerelint F < int N(F) (by Lemma 5), there is some J-
neighbourhood W, say, of y in N(F) n S. We now choose u,ve L, W to be
separated on L, by y, and replace that part of L, between u and v by the great circle
arc uw < W < int(N(F)n S), to obtain a new loop L,, for which clearly
ML) < AMLg) = A. The proof will be completed (by contradicting the assumption
that A is minimal) if we show that L, is also associated with a strong chain from Q' to

Q".
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To this end, suppose s minimal and ¢t maximal with, say, u € Q, and v € Q, (and,
necessarily, s # t, since otherwise uv < Q,, and then L, would not bend at y). Pick
sequences (¢;,) < W nintQ, with limu;, = v and (v,) =« W nint Q, with limy, = v,
such that w, v, < W is in general position with respect to X, so that u, v, meets no
face of dimension less than d — 1 of any tile in X7; this is possible, since X is finite.
Again because ¢ is finite, we can pass to a suitable subsequence of k’s, if necessary,
and suppose that u, v, passes through the same sequence of tiles for each k, say
0, =00.0,,....0,, = Q,, where 3, =K,nS and K;eH; (j=0,...,m). Our
inductive assumption on r = dim G now enters. Since . fits around F, we see that,
forj=1,...,m, Qj_l and Qj meet in a common (d —r — 2)-face, which arises from
the common facet K;_, n K; (containing F, and hence also G) of K, , and K;.
Finally, since lim (4, v,) = uv, we conclude that, if we replace Q,.,,..., Q,_, in the
original strong chain by §,, ..., §,,_,, we obtain a new strong chain, with which L,
is associated.

To complete the proof of Theorem 1, we can apply exactly the same argument as
that of Lemma 6 to X itself, with S replaced by EY and using the simple
connectedness of E?. However, one further comment is needed. As we have seen,
there is some & > 0, such that C(K) contains a d-neighbourhood of K. (We use the
notation introduced above.) Thus, if C(K) is composed of N tiles, then an interior
loop (which by definition does not revisit any tile) can meet at most N tiles in an
interval of length 24. It follows that the length »n of our strong chain leading from K’
to K" is bounded above by a constant multiple of the supposed minimal length of
interior loops based at x (roughly, n < NJ/26).

We remark that Theorem 1 was proved in the special case of zonotopes by
Shephard [1974] (for d < 4) and McMullen [1975].

§4. Further results. We shall note here that Theorem 1 has a number of
consequences.

THEOREM 2. Every convex translation tile admits a lattice tiling.

For, as we now see, the family T of translation vectors associated with the tiling
X constructed in §3 is a lattice.

This result is obvious in dimension d = 2, and Delaunay [1933] has sketched a
proof for d = 3. Note that our methods yield no insight into whether a general tiling
can be continuously distorted (through tilings) to the face-to-face tiling, or even some
lattice tiling. Theorem 2 is also related to Problem XVIII of Hilbert [1902]. For, the
same result does not hold for the slightly more general class of star-bodies, as was
shown by Stein [1972] with a centrally symmetric polyhedral example in E'° (if we
do not demand central symmetry, there is an example in E’). We also remark that
Kershner [1968] has answered Hilbert’s original question by giving examples of
convex pentagons which tile E? by rigid motions, but do not admit any tiling whose
symmetry group is transitive on the tiles.

~ Groemer [1962] has investigated the following closely related problem. We say K
tiles E* by homothety, or is a homothety tile, if there is some closed interval [a, ] of
positive real numbers, such that some family J¢" of homothetic copies K' = AK +t of
K, with ratio of homothety 4 € [«, £], tiles E?. Such a homothety tiling % is proper if
X~ does not consist of translates of a single tile. Now Groemer showed that a
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homothety tile is again a centrally symmetric polytope with centrally symmetric
facets, and so satisfies the conditions of Lemmas 1 to 3 (the proof is more
complicated than in our case). As the proof of Lemma 4 clearly demonstrates, the
fact that each belt of a tile K contains four or six facets depends only on the shape of
the tiles, and not on their relative sizes. As a result, we have:

THEOREM 3. If the convex body K tiles E* by homothety, then K admits a lattice
tiling. In particular, K tiles E* by translation.

Groemer remarks that K can have at most 39— 3 facets. But Minkowski [1897]
showed (in E, but as usual his argument generalizes easily) that a lattice tile has at
most 2(2¢—1) facets. Hence:

COROLLARY. A homothety tile in E? has at most 2(2°— 1) facets.

In fact, Groemer [1964] proved rather more. His result consists of the cases
d < 4 of the following.

THeoOREM 4. Let K be a proper homothety d-tile. Then K is a prism (with base a
(d—1)-tile).

To prove this, we first need:

LeEmMA 7. Let K be a tile, and F a facet of K. If every belt of K containing F is a
4-belt, then K is a prism with base F.

For, let F’ be the opposite facet of K; then conv(F n F') < K. But if G is a
subfacet of K lying in F, then the facet of K which meets F in G meets F’ in the
corresponding subfacet G'. It then follows that conv(F n F’) 2 K; hence
K = conv(F n F')is a prism with base F, as stated. Finally, it is clear that F is itself
a tile.

We now prove Theorem 4. Let G be a subfacet of a tile K in the proper
homothety tiling K, which determines a 6-belt. Each general point g of G lies in two
other tiles (compare the argument of Lemma 4); we show that these tiles must be
translates of K. For, let K" = AK +1t be one of these tiles, and suppose, if possible,
that 4 < 1 (the case A > 1 is the same, with the roles of K and K’ reversed). Then K
and K’ meet on part of a facet F of K and a facet F’ of K’. Now K and K’ are also
related by an opposite homothety; if z is the centre of this homothety, so that
K'—z = — (K —z), then z lies in the hyperplane aff F = aff F’. Since g € F, we see
that g, = —Ag+(A+1)z € F'. Similarly, since ge F’, g, = —A 'g+(A " '+1)zeF.
But now g, lies in the open line segment between g and g,, and we conclude at once
that the subfacet —AG +(4A+ 1)z of K’ meets relint F. But the argument of Lemma 4
shows that this is impossible; hence 4 = 1, as was claimed. We further see that, if G’
i1s a subfacet of K’ (necessarily in F’) such that dim(G n G’) = d—2, then the
opposite subfacets of K in F and K’ in F' meet in —(G n G’)+2z, which has the
same volume as G N G'. It now follows at once that F is covered completely by such
facets F' of tiles K’, which meet K in this way. We finally conclude that, if
K' = AK +tis atile in 2 with A # 1 which meets K in part of a facet F, then every
belt of K containing F is a 4-belt. Thus, by Lemma 7, K is a prism with base F, and
this proves Theorem 4.
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§5. Open questions. It is possible that the ideas we have been exploring here may
help to find solutions to some interesting problems on tiles. At least, our preliminary
investigations, even though they have so far been unsuccessful, lead us to believe this,
and embolden us to state the problems in the form of conjectures.

Our first problem is somewhat related to the result of Theorem 4.

CoNjecTUuRE 1. Let K admit a non-face-to-face tiling of E®. Then K is a direct sum
(of smaller dimensional tiles).

This conjecture is straightforward to prove if d < 3.

Our remaining conjecture is an old one, and to elucidate the problem, we shall
split it up into several equivalent conjectures. As traditionally defined, a Voronoi
polytope (or Dirichlet region) is the set of points of E? no farther from the origin o
than from any other point of a lattice T. Because of the essentially affine nature of
the problem, we find it convenient to generalize the definition. Let T be a lattice in
E‘ and ¢ a positive definite quadratic form on E% Then the Voronoi polytope
V(T, ¢) is defined by

V(T,$) = {xeE*| ¢(x) < p(x—t) forallteT}.

Clearly, by applying suitable linear transformations, we can normalize so that
T = Z% or ¢ = ||x]|* (not, of course, simultaneously). Then our main conjecture,
bearing in mind our convention that a tile is centred at o, is:

ConJecTURE 2.  Every tile is a Voronoi polytope.

It was Voronoi [1908-09] who first investigated this problem, in connexion with
questions on the geometry of numbers. (See Gruber [1979] for a recent survey on
this area.) To discuss Voronof’s partial solution, we need a definition. Let K be a d-
tile. If r = 0, ..., d—2, we call K r-primitive if, in its face-to-face tiling ", every r-face
G of KX lies in exactly d —r+1 tiles of . Of course, d —r+ 1 is the minimal number
of tiles which can surround G. The special case r = 0 we call simply primitive. Now
Voronoi himself showed that every primitive tile is a Voronoi polytope, and so
Conjecture 2 would follow from:

ConjecTurE 3. Euvery tile is a limit of primitive tiles.

The limit here is in the Hausdorff metric topology on non-empty compact
(convex) sets, where the distance p(L, M) between L and M is given by

p(L,M) =min{p >0|L < M+pB, M < L+pB},

the sum is Minkowski addition, and B is the unit ball. In this context, we remark that
Groemer [1971] has shown that, if a limit of Voronoi polytopes is full dimensional, it
is again a Voronoi polytope.

In fact, Zitomirskii [1929] has shown that every (d —2)-primitive tile is a Voronoi
polytope. (Note that a d-tile is (d — 2)-primitive if, and only if, each of its belts is a 6-
belt.) So, Conjecture 2 would also follow from the (apparently) even weaker
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CoNJECTURE 4. Every d-tile is a limit of (d — 2)-primitive tiles.

We also observe, by fixing the quadratic form ¢, but varying the lattice T, that
every Voronoi polytope V(T, ¢) is a limit of primitive tiles, and so Conjecture 2
implies Conjecture 3. Hence these three conjectures are equivalent.

We further remark that Delaunay [1929], in the context of enumerating their 52
combinatorial types, has shown that every 4-tile is a Voronoi polytope. That every
tile of smaller dimension is a Voronoi polytope can easily be established directly.
Finally, McMullen [1975] has proved a slightly weaker result for zonotopes: every
zonotope which tiles E? is equivalent to a Voronoi polytope. By calling two
zonotopes equivalent, we mean that one can be obtained from the other (up to
affinity) by altering the lengths of its component line segments.
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