Dynamics on homogeneous spaces, exercises

Tel Aviv University, Fall 2013

1. Let (X, \mathcal{B}, μ) be a probability space, $T : X \to X$ measurable and measure preserving. Prove the following strengthenings of the Poincaré recurrence theorem:

- (a) For any $A \in \mathcal{B}$ such that $\mu(A) > 0$, for a.e. every $x \in A$, there are $n_k \to \infty$ such that $T^{n_k} x \in A$.
- (b) For any $A \in \mathcal{B}$ such that $\mu(A) > 0$ there is $n \in \left\{1, \dots, \left\lfloor \frac{1}{\mu(A)} \right\rfloor + 1\right\}$ such that $\mu(A \cap T^{-n}(A)) > 0$.
- (c) For any $a, \lambda \in (0, 1)$ there is $c = c(a, \lambda)$ with the following property. For any $A \in \mathcal{B}$ with $\mu(A) = a$ there is $n \in \{1, \ldots, c\}$ such that $\mu(A \cap T^{-n}(A)) > \lambda \mu(A)^2$.

2. Let G be a Lie group acting continuously on a locally compact space X. Let μ be a regular Borel¹ probability measure on X and let $H = \{g \in G : g_*\mu = \mu\}$. Prove that H is a Lie subgroup of G. Notation: $g_*\mu(A) = \mu(g^{-1}A)$.

3. Write the following spaces as homogeneous spaces, i.e. for each space X below, find a Lie group G with a closed subgroup H, such that X is G-equivariantly isomorphic to G/H.

- (a) The space of lines through the origin in \mathbb{R}^n .
- (b) The space of k-frames in \mathbb{R}^n .

Notation: A k-frame in \mathbb{R}^n is a set $\vec{v}_1, \ldots, \vec{v}_k$ of linearly independent vectors in \mathbb{R}^n .

- (c) For $1 \leq k \leq n$, the space of discrete subgroups $\mathbb{Z}\vec{v}_1 \oplus \cdots \oplus \mathbb{Z}\vec{v}_k$ of \mathbb{R}^n , with $\vec{v}_1, \ldots, \vec{v}_k$ a k-frame.
- (d) For $1 \leq k \leq n$, the space of discrete subgroups $\Lambda = \mathbb{Z}\vec{v}_1 \oplus \cdots \oplus \mathbb{Z}\vec{v}_k$ as in (c), up to *homothety*, i.e. up to the equivalence $\Lambda \sim \Lambda'$ iff there is $c \in \mathbb{R}, c \neq 0$ such that $\Lambda' = c\Lambda$.
- (e) The space of nondegenerate bilinear forms in n variables of signature (p,q).

Notation: A bilinear form in n variables is a function $B(\vec{x}, \vec{y}) = \sum_{i,j=1}^{n} a_{ij} x_i y_j$; it is said to be nondegenerate if for all $\vec{x} \neq 0$ there is \vec{y} such that $B(\vec{x}, \vec{y}) \neq 0$; it is said to be of signature (p, q) if after a change of coordinates $\vec{u} = A\vec{x}, \vec{v} = A\vec{y}$, it can be written as $B(\vec{u}, \vec{v}) = u_1 v_1 + \dots + u_p v_p - u_{p+1} v_{p+1} - \dots - u_n v_n$, where p+q=n.

¹From now on all measures on a locally compact space will always be assumed to be Borel regular measures.

(f) The space of full flags in \mathbb{R}^n .

Notation: A full flag in \mathbb{R}^n is a collection of nested linear subspaces $\{0\} \subsetneq V_1 \subsetneq \cdots \subsetneq V_n = \mathbb{R}^n$.

- 4. Prove that the following Lie groups are unimodular:
 - Any abelian Lie group.
 - Any compact Lie group.
 - Any semisimple Lie group.
 - $\operatorname{GL}_d(\mathbb{R})$.
 - Any Lie group containing a lattice.

5. Prove that the group of 2×2 upper triangular matrices of determinant one is not unimodular.

6. Prove that $SL_2(\mathbb{R})$ is a simple Lie group (hint: Jordan form). Deduce from this that $SL_n(\mathbb{R})$ is simple for all $n \geq 2$.

7. Let $X = \operatorname{SL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{Z})$ and let $x \in X$, $g_t = \begin{pmatrix} e^{t/2} & 0\\ 0 & e^{-t/2} \end{pmatrix}$. Let $\pi : \operatorname{SL}_2(\mathbb{R}) \to X$ be the projection and let $h = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R})$ so that

 $x = \pi(h)$. Prove:

- The orbit $\{g_t x : t \in \mathbb{R}\}$ is compact \iff there is $\gamma_0 \in \mathrm{SL}_2(\mathbb{Z})$ with $|\mathrm{tr}(\gamma_0)| > 2$ and with eigenvectors (d, -c), (-b, a).
- The orbit $\{g_t x : t \in \mathbb{R}\}$ is closed but not compact $\iff g_t x \to_{t \to \pm \infty} \infty$ $\iff a/b$ and c/d belong to $\mathbb{Q} \cup \{\infty\}$.

8. Let $X_d \stackrel{\text{def}}{=} \operatorname{SL}_d(\mathbb{R}) / \operatorname{SL}_d(\mathbb{Z})$ be the space of unimodular lattices in \mathbb{R}^d , and let $\lambda_1(\Lambda)$ denote the length of the shortest nonzero vector of Λ . Show that $\lambda_1 : X_d \to (0, \infty)$ is a continuous proper function (a function is proper if the pre-image of a compact set is compact).

9. Let $\|\cdot\|$ denote the Euclidean norm, and for $\Lambda \in X_d$, let

$$\operatorname{covrad}(\Lambda) \stackrel{\text{def}}{=} \inf\{r > 0 : \forall y \in \mathbb{R}^d \, \exists x \in \Lambda \text{ such that } \|x - y\| < r\}.$$

Prove that covrad : $X_d \to (0, \infty)$ is a continuous proper function.

10. For a vector $\vec{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$, let $\Lambda_{\vec{x}} \in X_{d+1}$ denote the lattice spanned by the standard basis vectors $\vec{e_1}, \ldots, \vec{e_d}$ and $(x_1, \ldots, x_d, 1)$. For the following diophantine properties of \vec{x} , state and prove necessary and sufficient conditions for the property to hold in terms of the orbit of $\Lambda_{\vec{x}}$ under certain subgroups or subsemigroups of $SL_{d+1}(\mathbb{R})$.

- \vec{x} is **VWA**, i.e. there is $\varepsilon > 0$ and infinitely many solutions $\vec{p} \in \mathbb{Z}^d, q \in \mathbb{N}$ to the inequality $\|q\vec{x} \vec{p}\| < \frac{1}{q^{1/d+\varepsilon}}$.
- \vec{x} is **MVWA**, i.e. there is $\varepsilon > 0$ and infinitely many solutions $\vec{p} = (p_1, \ldots, p_d) \in \mathbb{Z}^d, q \in \mathbb{N}$ to the inequality $\prod_1^d |qx_i p_i| < \frac{1}{q^{1+\varepsilon}}$.

 $\mathbf{2}$

• \vec{x} is singular, i.e. for every $\varepsilon > 0$ there is Q_0 so that for every $Q > Q_0$, there is a solution $\vec{p} \in \mathbb{Z}^d, q \in \mathbb{N}$ to the inequalities $||q\vec{x} - q|| = |q|| = |q||$ $\|\vec{p}\| < \frac{\varepsilon}{Q^{1/d}}, \ q < Q.$

11. Let G be an lcsc group acting continuously on a lcsc space X preserving a Borel probability measure μ . Show that the G-action is ergodic if and only if any $f \in L^2(X, \mu)$ which is G-invariant (i.e. gf = f for all $g \in G$, as elements of $L^2(X,\mu)$), is constant a.e. Prove that the G-action is mixing if and only if for any $f_1, f_2 \in L^2(X, \mu)$ and any $g_n \in G, g_n \to \infty$ we have $\langle g_n f_1, f_2 \rangle \to \int_X f_1 d\mu \cdot \int_X f_2 d\mu.$

12. Let $g \in \mathrm{SL}_n(\mathbb{R})$ such that at least one of the eigenvalues λ of g satisfies $|\lambda| \neq 1$. Prove that the sets

$$U^{\pm} = \{h \in \mathrm{SL}_n(\mathbb{R}) : g^{-n} h g^n \to_{n \to \pm \infty} e\}$$

are closed subgroups of $\mathrm{SL}_n(\mathbb{R})$ of positive dimension, and that G is generated by U^+, U^- . These groups are called respectively the expanding and contracting horospherical subgroups of g.

13. Let $X_d = \operatorname{SL}_d(\mathbb{R})/\operatorname{SL}_d(\mathbb{Z})$. Prove that for any $\varepsilon > 0$ there is a compact subset $K \subset X_d$ such that for any lattice $\Lambda \in X_d$, and any oneparameter unipotent subgroup $\{u_t : t \in \mathbb{R}\} \subset \mathrm{SL}_d(\mathbb{R})$, one of the following holds:

- (i) $\liminf_{T\to\infty} \frac{1}{T} |\{t \in [0,T] : u_t \Lambda \in K\}| \ge 1 \varepsilon.$ (ii) There exists $k \in \{1, \dots, d-1\}$ and $v_1, \dots, v_k \in \Lambda$ such that the subspace span (v_1, \ldots, v_k) is invariant under u_t .

Are (i) and (ii) mutually exclusive? Show by an example that one cannot omit the statement (ii) in the preceding statement.

14. A symmetric box in \mathbb{R}^d is a set of the form $[-a_1, a_1] \times \cdots \times [-a_d, a_d]$ for $a_i > 0, i = 1, ..., d$. Let X_d be the space of unimodular lattices and for $\Lambda \in X_d$, say that a box B is admissible for Λ if $B \cap \Lambda = \{0\}$. Let

$$\kappa(\Lambda) = \frac{1}{2^d} \sup \{ \operatorname{Vol}(B) : B \text{ an admissible box for } \Lambda \}.$$

- (i) Is κ continuous?
- (ii) Show that $\inf_{\Lambda \in X_d} \kappa(\Lambda)$ is attained, i.e. is equal to $\kappa(\Lambda_0)$ for some Λ.
- (iii) Show that there is $\kappa_0 = \kappa_0(d)$ such that for a.e. $\Lambda \in X_d$ (w.r.t. the natural measure on the space of lattices), $\kappa(\Lambda) = \kappa_0$.
- (iv) Compute κ_0 .

15. Let $I \subset \mathbb{R}$ be an interval, $\varphi: I \to \mathbb{R}^d$ a polynomial function such that $\{\varphi(s): s \in I\} \subset \mathbb{R}^d$ is not contained in an affine hyperplane. Prove that for almost every $s \in I$, $\varphi(s)$ is not singular (as defined in question 10).

16. Let G be a connected Lie group, let $m(\cdot)$ be a left-invariant Haar measure on G and let $\{F_n\}$ be a sequence of Folner sets in G, i.e. $m(F_n) < \infty$

for each n, and for each $g \in G$, $\frac{m(F_n \Delta gF_n)}{m(F_n)} \to_{n \to \infty} 0$. Suppose X is a compact G-space on which the G-action is uniquely ergodic. Denote the unique G-invariant Borel probability measure by μ .

• Prove that for any $f \in C(X)$ and any $x_0 \in X$,

$$\frac{1}{m(F_n)} \int_{F_n} f(gx_0) dm(g) \to_{n \to \infty} \int_X f d\mu.$$

- Show that the convergence in the previous assertion, is uniform with respect to x_0 .
- Show by an example that the assumption that X is compact is essential.

17. Let $G = SL_2(\mathbb{R})$ and let Γ be a cocompact lattice. Let g_t be as in Question 7 (the geodesic flow).

- Show that (in contrast to the case of the horocycle flow) there are infinitely many distinct closed orbits for the $\{g_t\}$ -action on G/Γ .
- Show that for any two closed orbits $C_i \stackrel{\text{def}}{=} \{g_t x_i : t \in \mathbb{R}\}, i = 1, 2$, there is an orbit $\{g_t y : t \in \mathbb{R}\}$ such that for any sequence t_n tending to $+\infty$ (resp. $-\infty$), there is a convergent subsequence $g_{t_{n_k}} y \to_{k \to \infty} z$ with $z \in C_1$ (resp. $z \in C_2$).

18.

- Let Γ be a cocompact lattice in $\mathrm{SL}_d(\mathbb{R})$, acting by linear transformations on \mathbb{R}^d . Show that any Γ -orbit in $\mathbb{R}^d \setminus \{0\}$ is dense.
- Show that for $\vec{v} \in \mathbb{R}^2 \setminus \{0\}$, and for $\Gamma = \mathrm{SL}_2(\mathbb{Z})$, either the Γ -orbit of \vec{v} is discrete and there is $c \in \mathbb{R} \setminus \{0\}$ such that $c\vec{v} \in \mathbb{Q}^2$, or the Γ -orbit of \vec{v} is dense in \mathbb{R}^2 .