Exercise Sheet, Dynamics on homogeneous spaces, Fall 2019

Notations and assumptions. Unless stated otherwise, all measures on a topological space are regular Borel Radon measures. ‘lcsc’ stands for locally compact second countable Hausdorff.

1. Let $G = \text{SL}_2(\mathbb{R})$, B the subgroup of upper triangular matrices. Prove that there is no measure on G/B which is invariant under G. Strengthen this by proving that if $\Gamma \subset G$ is an unbounded subgroup (i.e. Γ is not compact) and Γ does not leave invariant a finite set of points in G/B, then there is no measure on G/B which is invariant under Γ.

2. Let G be a lcsc group and X a lcsc space. Suppose G acts continuously and transitively on X and for $x_0 \in X$, let $H = \{g \in G : gx_0 = x_0\}$ and let $\pi : G/H \to X$, $\pi(gH) = gx_0$ and $\pi' : G \to X$, $\pi'(g) = \pi(gH)$.

(i) Prove that π, π' are well-defined and continuous and that π is a homeomorphism.

(ii) Prove that $K \subset X$ is compact if and only if there is a compact $K' \subset G$ such that $\pi'(K') = K$.

(iii) Suppose L is a closed subgroup of G and define the orbit map $\iota : L/L \cap H \to X$, $\iota(\ell(L \cap H)) = \ell x_0$. Prove that ι is injective, and prove that it is a homeomorphism onto its image if and only if the orbit Lx_0 is closed.

(iv) Are (ii) and / or (iii) true for general actions of topological groups, i.e. if one does not assume that G and / or X are lcsc?

3. Let Γ be a discrete subgroup of $G = \text{SL}_2(\mathbb{R})$, let $\mathbb{H}^+ \overset{\text{def}}{=} \{z \in \mathbb{C} : \text{Im} z > 0\}$ and let $d(\cdot , \cdot)$ denote the hyperbolic metric on \mathbb{H}^+. Suppose $z_0 \in \mathbb{H}^+$ is not stabilized by any element of $\Gamma \setminus \{e\}$, and let $D = \{z \in \mathbb{H}^+ : \forall \gamma \in \Gamma \setminus \{e\}, d(\gamma z, z_0) \geq d(z, z_0)\}$. In items (ii)—(v) below, assume Γ is cocompact.

(i) Prove that D is a surjective set for the action of Γ on \mathbb{H}^+ by Moebius transformations, and the interior of D is an injective set (i.e., D is measurable, contains a representative from each orbit, and no two points in the interior of D are in the same orbit). Also prove that the boundary of D consists of a locally finite collection of geodesic arcs (a geodesic arc is a path which minimizes the hyperbolic distance of any two points on it; local finiteness means that any compact subset of \mathbb{H}^+ contains finitely many segments from ∂D).

(ii) Deduce that if Γ is cocompact then D has finitely many sides and Γ is finitely generated.
(iii) Deduce that if \(\alpha \) is any geodesic which intersects the interior of \(\mathbb{D} \), then \(\mathbb{D} \setminus \alpha \) has two connected components.

(iv) Let \(B_T \overset{\text{def}}{=} \{ z \in \mathbb{H}^+ : d(z, z_0) \leq T \} \) and let \(\partial, \text{int} \) denote respectively boundary and interior. For each \(\gamma \in \Gamma \) and each \(x \in \text{int}(\gamma \mathbb{D}) \), let \(\alpha_x \) be the intersection of \(\gamma \mathbb{D} \) with the geodesic through \(x \) perpendicular to the geodesic from \(x \) to \(z_0 \), let \(\beta_x \) be the intersection of \(\partial B_{d(x,z_0)} \) with \(\gamma \mathbb{D} \) and let \(D_x \) be the maximal distance between a point of \(\alpha_x \) and the nearest point of \(\beta_x \). Prove that \(D_x \to 0 \) uniformly as \(d(x, z_0) \to \infty \), that is,
\[
\sup \{ D_x : x \in \text{int}(\gamma \mathbb{D}) \cap \partial B_T \text{ for some } \gamma \in \Gamma \} \to_{T \to \infty} 0.
\]

(v) Complete the details of the reduction sketched in class for Margulis’ result: let \(m_{G/\Gamma} \) denote the \(G \)-invariant Borel probability measure on \(G/\Gamma \), and suppose that for any \(f \in C(G/\Gamma) \), \(\frac{1}{\pi} \int_0^\pi f(g \tau \theta) d\theta \to_{t \to \infty} \int f \, dm_{G/\Gamma} \). Show that if \(m \) is the hyperbolic area measure on \(\mathbb{H}^+ \) and \(z_0 \in \mathbb{H}^+ \) has a trivial stabilizer under \(\Gamma \), then
\[
|\{ z \in \Gamma z_0 : d(z, z_0) \leq T \}| \sim \frac{m(B_T)}{m(\mathbb{D})}, \text{ as } T \to \infty.
\]

4. Give an example of an infinitely generated discrete subgroup of \(\text{SL}_2(\mathbb{R}) \).

5. Prove that \(G = \text{SL}_n(\mathbb{R}) \) is simple (as a topological group), i.e. if \(H \subset G \) is a closed normal subgroup then \(H \) is either discrete or equal to \(G \).

6. Show that the universal cover of a connected Lie group is a Lie group. Prove that the fundamental group of a connected Lie group is abelian. Show that \(\text{SL}_n(\mathbb{R}) \) is connected. Compute the fundamental group of \(\text{SL}_n(\mathbb{R}) \) for \(n \geq 2 \).

7. An element \(h \) in a group \(G \) is called central if \(hg = gh \) for all \(g \in G \), and a subgroup of \(G \) is called central if all its elements are central. Suppose \(G \) is a connected Lie group and \(H \) is a discrete normal subgroup. Show that \(H \) is central.

8. Show that if \(G \) is an lcsc group acting continuously and transitively on an lcsc space \(X \), and preserving a measure \(\nu \), then this measure is unique, that is if \(\nu_1, \nu_2 \) are two such nonzero measures on \(X \) such that for any Borel set \(A \) and \(g \in G \) we have \(\nu_i(gA) = \nu_i(A) \) \((i = 1, 2) \) then there is a constant \(c > 0 \) such that \(\nu_2 = c\nu_1 \). Conclude that left and right Haar measures on an lcsc group \(G \) are unique up to scaling.

9. Show that a Lie group is unimodular if one of the following holds: \(G \) is simple (as a topological group); \(G \) is compact; \(G \) is nilpotent. Also
show that if a left Haar measure \(\nu_L \) on \(G \) satisfies \(\nu_L(G) < \infty \), then the same is true for a right Haar measure, and \(G \) is compact.

10. Let \(\mathcal{X}_n \) denote the collection of closed subsets of \(\mathbb{R}^n \), and define the Chabauty-Fell metric on \(\mathcal{X}_n \) as follows: \(d(A_0, A_1) \) is the minimum of 1 and

\[
\inf \left\{ r > 0 : \text{ for } i = 0, 1, \ B \left(0, \frac{1}{r} \right) \cap A_i \subset \bigcup_{a \in A_{1-i}} B(a, r) \right\},
\]

with the convention \(\inf \emptyset = \infty \). Prove that \(d \) is a metric on \(\mathcal{X}_n \) and that with this metric, \(\mathcal{X}_n \) is compact and complete. Let \(\mathcal{L}_n = \text{SL}_n(\mathbb{R}) / \text{SL}_n(\mathbb{Z}) \), the space of covolume 1 lattices equipped with the quotient topology. Prove that the inclusion map \(\iota : \mathcal{L}_n \to \mathcal{X}_n \) is continuous, and deduce that for any \(i \), the maps \(\mathcal{L}_n \to \mathbb{R}, \Lambda \mapsto \lambda_i(\Lambda) \) and \(\Lambda \mapsto \bar{\lambda}_i \) are continuous, where

\[
\lambda_i(\Lambda) \overset{\text{def}}{=} \inf \{ r > 0 : \Lambda \cap B(0, r) \text{ contains } i \text{ linearly independent vectors} \},
\]

and

\[
\bar{\lambda}_i(\Lambda) \overset{\text{def}}{=} \inf \{ r > 0 : \Lambda \cap B(0, r) \text{ contains a primitive } i\text{-tuple} \}.
\]

Show that any element in the closure of \(\iota(\mathcal{L}_n) \) is a group. Show that the map \(\mathcal{L}_n \to \mathcal{X}_n \) which sends a lattice \(L \) to its Voronoi cell, is continuous.

11. Show that for any \(n \in \mathbb{N} \) there is \(c > 0 \) such that for any \(\Lambda \in \mathcal{L}_n \) there is a basis \(v_1, \ldots, v_n \) for \(\Lambda \) such that for all \(i = 1, \ldots, n \),

\[
\frac{1}{c} \|v_i\| \leq \lambda_i(\Lambda) \leq c\|v_i\|.
\]

12. The covering radius of a lattice \(\Lambda \) is defined as

\[
\text{covrad}(\Lambda) \overset{\text{def}}{=} \min \{ r > 0 : \forall x \in \mathbb{R}^n \exists y \in \Lambda \text{ such that } \|x - y\| \leq r \}.
\]

Show that the min in this definition is indeed attained, and that it is the minimal \(r \) so that the closed \(r \)-ball around 0 contains the Voronoi cell of \(\Lambda \). Show that for a sequence \((\Lambda_j)_j \subset \mathcal{L}_n \), \((\Lambda_j)_j \) has no convergent subsequences if and only if \(\text{covrad}(\Lambda_j) \to_{j \to \infty} \infty \).

13. Let \(E \subset \mathbb{R}^n \setminus \{0\} \) be a measurable set of Lebesgue measure \(V < \infty \). Let \(m \) be the \(\text{SL}_n(\mathbb{R}) \)-invariant probability measure on \(\mathcal{L}_n \). Show that \(\int_{\mathcal{L}_n} |\Lambda \cap E|d\mu(\Lambda) = V \). Deduce that there is \(c > 0 \) such that for every \(n \in \mathbb{N} \), there is a lattice \(\Lambda \in \mathcal{L}_n \) such that \(\lambda_1(\Lambda) \geq c\sqrt{n} \).

14. Let \(G \) be an lcsc group acting on an lcsc space \(X \). Suppose \(\mu \) is a Borel measure which is quasi-invariant (i.e. \(G \) maps sets of zero measure to sets of zero measure), ergodic (i.e. for any \(G \)-invariant set
A, either \(\mu(A) = 0 \) or \(\mu(X \setminus A) = 0 \), and with support equal to \(X \).

Show that almost every \(G \)-orbit is dense.

15. Suppose \(G \) is a Lie group and \(\Gamma \) is a lattice in \(G \), and let \(\pi : G \to G/\Gamma \) denote the quotient map. Show that for \(F \subset G \), \(\pi(F) \) is compact if and only if there is a neighborhood \(U \) of \(e \) in \(G \) such that for any \(\gamma \in \Gamma \setminus \{e\} \) and every \(g \in F \), \(g\gamma g^{-1} \notin U \). Show that if \(H \) is a closed subgroup of \(G \) and \(\Gamma_H = H \cap \Gamma \) is a lattice in \(H \), then the map \(H/\Gamma_H \to G/\Gamma \), \(h\Gamma_H \mapsto h\Gamma \), is proper.

16. Suppose \(\Gamma \) is a discrete subgroup of a unimodular Lie group \(G \), and \(N \) is a closed normal subgroup of \(G \). Let \(\pi : G \to G/N \) be the natural projection and suppose \(\pi(\Gamma) \) is a lattice in \(G/N \) and \(\Gamma \cap N \) is cocompact in \(N \). Show that \(\Gamma \) is a lattice in \(G \). Deduce that \(\text{SL}_n(\mathbb{Z}) \ltimes \mathbb{Z}^n \) is a lattice in \(\text{SL}_n(\mathbb{R}) \ltimes \mathbb{R}^n \).

17. Let \(G \) be a connected Lie group and let \(g \in G \). Let
\[
U^+ \overset{\text{def}}{=} \{ h \in G : g^n h g^{-n} \to_{n \to +\infty} e \}, \quad U^- \overset{\text{def}}{=} \{ h \in G : g^n h g^{-n} \to_{n \to -\infty} e \}.
\]
Show that \(U^\pm \) are subgroups of \(G \), and that the closure of the group generated by \(U^+ \) and \(U^- \) is normal in \(G \).

18. Let \(G \) be an lcsc group acting on an lcsc space \(X \) and let \(\mu \) be a measure on \(X \). Show that if a measurable set \(A \) satisfies \(\forall g \in G, \mu(A \Delta gA) = 0 \) then there is a measurable set \(A' \) such that \(gA' = A' \) for all \(g \in G \) and \(\mu(A \Delta A') = 0 \).

19. Let \(G \) be an lcsc group acting on an lcsc \(X \), and let \(\mu \) be a probability measure on \(X \) which is \(G \)-invariant, and suppose there are no other \(G \)-invariant probability measures on \(G \) (if this holds we say that the action of \(G \) on \(X \) is uniquely ergodic). Prove that \(\mu \) is ergodic. Let \(\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n \) and let \(\Gamma \) be the abelian group generated by vectors \(v_1, \ldots, v_d \) in \(\mathbb{R}^n \), acting on \(\mathbb{T}^n \) by the rule
\[
\gamma \pi(x) = \pi(\gamma + x), \quad \text{where} \quad \pi : \mathbb{R}^n \to \mathbb{T}^n \quad \text{is the projection}.
\]
Prove that the \(\Gamma \) action on \(\mathbb{T}^n \) is uniquely ergodic if and only if the group \(\Gamma + \mathbb{Z}^n \) is dense in \(\mathbb{R}^n \). Deduce that if \(\Gamma \) is the cyclic group generated by \(v = (x_1, \ldots, x_n) \) then \(\Gamma \) acts ergodically if and only if \(1, x_1, \ldots, x_n \) are linearly independent over \(\mathbb{Q} \).

20. Let \(k, \ell, n \in \mathbb{N} \) with \(k + \ell = n \), let \(G = \text{SL}_n(\mathbb{R}) \), let \(\Gamma \) be a lattice in \(G \), let \(X = G/\Gamma \) and \(m_X \) be the \(G \)-invariant probability measure on \(X \). Let \(g_t = \text{diag}(e^{\ell t} I_k, e^{-k t} I_\ell) \), where \(I_m \) is the \(m \times m \) identity matrix. Let \(U \) be the matrices \((u_{ij})_{1 \leq i, j \leq n} \) satisfying \(u_{ii} = 1 \) for all \(i \) and \(u_{ij} = 0 \) when \(i \neq j \) unless \(i \leq k \) and \(j > k \). Let \(m_U \) be Haar measure on \(U \) and \(\mathcal{O} \) a bounded open subset of \(U \). For \(x_0 \in X \) let \(\nu_0 \) be the pushforward
of the normalized restriction $m_U|_O$, under the map $u \mapsto ux_0$. Show that $g_* \nu_0$ converges to m_X in the weak-* topology, as $t \to \infty$.

21. Let U, G, g_t be as in the preceding question, let m_U be the Haar measure on U, let $\Gamma = \text{SL}_n(\mathbb{Z})$, $X = G/\Gamma$, $\pi : G \to X$ the quotient map, and let m_X be the G-invariant probability measure on X. Show that the orbit $U\pi(e)$ is compact. Show that for m_U-a.e. u, the orbit $\{g_t \pi(u) : t \geq 0\}$ is equidistributed in X, i.e. $\forall f \in C_c(X), \frac{1}{T} \int_0^T f(g_t \pi(u))dt \to_{T \to \infty} \int_X f \, dm_X$.

22. Suppose (X, \mathcal{B}, μ, T) is an ergodic p.p.s. and show that an estimate on the rate of decay of matrix coefficients gives an effective pointwise ergodic theorem. Namely, show that for any $\alpha > 0$ there is $\delta > 0$ such that for $f \in L^2(\mu)$ with $\int_X f \, d\mu = 0$, if there is $C_1 > 0$ such that

$$ |(f \circ T^n, f) | \leq C_1 n^{-\alpha}, $$

then there is $C_2 = C_2(f)$ such that for μ-a.e. $x \in X$,

$$ \left| \frac{1}{N} \sum_{n=0}^{N-1} f(T^nx) \right| \leq C_2 N^{-\delta}. $$

23. Let $X = \text{SL}_{d+1}(\mathbb{R})/\text{SL}_{d+1}(\mathbb{Z})$ and let $g_t = \text{diag}(e^t, \ldots, e^t, e^{-dt})$. For $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ let $\bar{x} = (x_1, \ldots, x_d, 1) \in \mathbb{R}^{d+1}$, and let $\Lambda_x = \text{span}_\mathbb{Z}(e_1, \ldots, e_d, \bar{x}) \subseteq X$. Say that $x \in \mathbb{R}^d$ is singular if for any $\varepsilon > 0$ there is Q_0 such that for all $Q > Q_0$ there are $p \in \mathbb{Z}^d, q \in \mathbb{N}$ such that $q < Q$ and $\|qx - p\| < \varepsilon Q^{-1/d}$. Show that x is singular if and only if $g_t \Lambda_x \to_{t \to \infty} \infty$. Show that for any polynomial map $p = (p_1, \ldots, p_d) : \mathbb{R} \to \mathbb{R}^d$ (i.e. p_i is a polynomial with real coefficients for every i), such that the image of p is not contained in a proper affine subspace of \mathbb{R}^d, for a.e. s, $p(s)$ is not singular.