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Abstract. Dense forests are discrete subsets of Euclidean space
which are uniformly close to all su�ciently long line segments. The
degree of density of a dense forest is measured by its visibility func-
tion. We show that cut-and-project quasicrystals are never dense
forests, but their finite unions could be uniformly discrete dense
forests. On the other hand, we show that finite unions of lattices
typically are dense forests, and give a bound on their visibility
function, which is close to optimal. We also construct an explicit
finite union of lattices which is a uniformly discrete dense forest
with an explicit bound on its visibility.
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1. Introduction

A set Y ⇢ Rn is called uniformly discrete if there is a uniform lower
bound on the distance between two distinct points of Y , and of finite

density if

lim sup
T!1

#(Y \B(0, T ))

T n
< 1,

where B(x, r) denotes the ball of radius r > 0 around x 2 Rn, and
the distance of points in Rn is measured using some norm (the precise
choice of norm will be immaterial in the results that follow and we will
switch between norms as convenient). Note that a uniformly discrete
set is of finite density but the converse need not hold. We say that Y
is a dense forest if there exists a function " 7! v(") such that for every
" > 0, every line segment of length v(") comes "-close to Y . A function
v : R

+

! R
+

for which this condition is satisfied is then referred to
as a visibility function of Y . By considering a disjoint collection of
cylinders of round base " and height v("), one finds that for a dense
forest of finite density, there is a constant c > 0 such that for all " > 0,

v(") � c"�(n�1). (1.1)
1
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A well-known open question of Danzer is whether there is Y ⇢ R2

which is of finite density and for which the lower bound (1.1) is sharp
up to the choice of c; i.e. whether there is a dense forest in the plane
of finite density with v(") = O

�

1

"

�

. Interest in Danzer’s question has
led to some interest in dense forests of finite density, and uniformly
discrete ones, with visibility functions which are close to the bound
given by (1.1). We mention four papers which are important for our
discussion. A paper of Bishop [6] gave a construction, attributed to
Peres, of a dense forest of finite density in R2. The construction will
be reviewed below. The set in question is a union of three explicit
translated lattices, and the bound v(") = O ("�4) was given for the
visibility function. The set considered in [6] is not uniformly discrete,
and the first proof of the existence of a uniformly discrete dense forest
was given in [19], with an explicit set in Rn for any n � 2, but without
an e↵ective bound on the visibility function. In [1], for every n � 2
and every ⌘ > 0, a probabilistic construction was given which gives rise
to sets of bounded density in Rn satisfying a visibility bound v(") =
O
�

"�(2n�2+⌘)
�

. Note that in the case n = 2, this improves on [6], but
is not yet close to (1.1). In [2], Alon gave a probabilistic argument,
which showed the existence of a uniformly discrete dense forest in R2

with a visibility bound v(") = O
�

"�(1+o(1))
�

. The construction of Alon
could be adapted to higher dimensions as well, and yields sets which
come very close to the lower bound (1.1). However the sets of [2] were
not given explicitly.

Thus it is natural to search for sets Y ⇢ Rn with the following
properties:

• They are explicitly described.
• They are uniformly discrete.
• They are dense forests and their visibility bound comes close to
(1.1).

The explicit sets we will consider involve periodic and almost periodic
sets, and their finite unions. Note that a lattice is clearly uniformly
discrete but is not a dense forest, and the same holds for a periodic
set (a finite union of translates of one lattice). In fact a periodic set
misses a neighborhood of some a�ne subspace of codimension one. On
the other hand, as Peres showed, a union of finitely many periodic sets
could be a dense forest. Such a finite union is clearly of finite density,
and it is sometimes uniformly discrete (see Proposition 2.1). Another
source of explicit constructions are cut-and-project sets or model sets,
which are intensively studied in the literature on aperiodic structures,
see e.g. [3]. We review their definition in §2.2. It is well-known that
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cut-and-project sets are uniformly discrete. However our first result
shows that they cannot be dense forests.

Theorem 1.1. Let Y ⇢ Rn
be a cut-and-project set. Then Y is not a

dense forest; in fact there exists " > 0 and a (n�1)-dimensional a�ne

subspace Z of Rn
such that Y contains no points in the "-neighborhood

of Z.

Nevertheless cut-and-project sets can be used to construct interesting
examples of dense forests. Namely we have:

Theorem 1.2. There exist uniformly discrete dense forests in R2,
which are a finite union of cut-and-project sets.

The uniformly discrete dense forest in Theorem 1.2 is given explicitly.
However our proof does not provide bounds on its visibility function.
We are able to construct other sets which are finite unions of translated
lattices, for which we have good visibility bounds. Namely we have:

Theorem 1.3. There is a union of three translated lattices in R2

which is a uniformly discrete dense forest with visibility bound v(") =
O
�

"�(5+⌘)
�

for any ⌘ > 0.

The three translated lattices are given completely explicitly, see §6.1.
Removing the condition of uniform discreteness and using more trans-
lated lattices, we are able to get much better visibility bounds:

Theorem 1.4. For each n � 2, each s � n and each ⌘ > 0, for a.e.

choice of ns lattices in Rn
, their union is a dense forest with visibility

function satisfying

v(") = O
�

"�(n�1+↵n(s)+⌘)
�

,

where

↵n(s) =
n(n� 1)2

s� (n� 1)
�!

s!1
0.

The measure implicit in this a.e. statement is defined by choosing
at random an s-tuple ⇥ of vectors in Rn�1 and applying an explicit
construction described in §5.2. Moreover this a.e. set is described by the
explicit condition of being uniformly Diophantine, which we introduce
in this paper (see §5.3).

In the special case n = 2, our construction is a generalization of the
construction of Peres mentioned above. Recall that Peres used a union
of three explicit translated lattices to obtain a dense forest in R2, see
Figure 1. His argument used a Diophantine inequality to give a visi-
bility bound of O ("�4) for this set; our analysis, applied to the same
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set, yields a better bound of O ("�3) and shows how, by choosing more
lattices whose generators satisfy a di↵erent Diophantine condition, one
can improve further on this bound.

Figure 1. Peres’ construction: a union of three
translated lattices in the plane which is a dense
forest.

Note that all the examples considered in this paper are known not
to be Danzer sets, i.e. they cannot realize the bound (1.1), see [4, 19].

Organization of the paper. After some generalities on cut-and-
project constructions and tori, we prove Theorems 1.1 and 1.2 in §3
and §4 respectively. The proofs rely on viewing cut-and-project sets
as return times to a section in certain higher dimensional toral flows.
In §5 we introduce the condition of being uniformly Diophantine, and
state Proposition 5.6, which asserts that this condition ensures a cer-
tain uniform rate of equidistribution for translations on tori. We show
that such uniform equidistribution implies visibility bounds for certain
finite unions of translated lattices, and thus reduce Theorems 1.3 and
1.4 to the verification of the existence of uniformly Diophantine ma-
trices. Proposition 5.6 is proved in §6, and is used to derive Theorem
1.3. In §7 we develop a ‘metric theory’ related to the property of be-
ing uniformly Diophantine, from which we deduce the existence of the
required matrices. We conclude the paper with some open problems.

Acknowledgments. The authors gratefully acknowledge the support
of grants BSF 2016256 and ISF 2095/15. The first named author wishes
to thank Federico Ardila for a talk given at the University of Waterloo
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in 2018 which turned out to be most illuminating to solve some of the
questions raised in this paper.

2. Preliminaries

In this section we set our notation and collect some results we will
use.

2.1. Lattices. A subset ⇤ ⇢ Rd is called a lattice if there are v
1

, . . . ,vd

such that ⇤ = spanZ(vi) = Zv
1

� · · · � Zvd (note that in this paper
lattices are always of full rank). Fix a norm on Rd and denote by

�
1

(⇤)  . . .  �d (⇤)

the successive minima of ⇤; that is, �k(⇤) is the minimal r > 0 for
which ⇤ contains k linearly independent vectors of norm at most r. The
successive minima depend on the norm chosen, and unless otherwise
specified, we will use the Euclidean norm. Let µ(⇤) denote the covering
radius of ⇤; that is,

µ (⇤) = sup
x2Rd

inf
�2⇤

kx� �k .

It then follows from Jarńık’s Transference Theorem (cf. [13, Theo-
rem 23.4 p.381]) that

1

2
· �d (⇤)  µ (⇤) 

d

2
· �d (⇤) . (2.1)

When using other norms, the constants 1/2, d/2 should be replaced in
(2.1) by other constants depending on the norm and on d.

A translated lattice or grid is a set of the form x+⇤ where ⇤ is a lat-
tice, and Y ⇢ Rd is called periodic if it is of the form Y =

Ss
j=1

(xj + ⇤)

for some lattice ⇤ and xj 2 Rd.

2.2. Cut–and–project quasicrystals. We now define cut-and-project
sets, which are an important source of aperiodic but ordered discrete
sets in mathematical physics. For background and history we refer the
reader to [3]. Let n, k,N be integers with n � 1, k � 1 and N = n+ k,
and write RN = Vphys � Vint for subspaces satisfying dimVphys = n,
dimVint = k. The spaces Vphys and Vint are called the physical and
the internal spaces respectively, and we denote by ⇡phys : RN

! Vphys

and ⇡int : RN
! Vint the projections associated with the direct sum

decomposition. Let L ⇢ RN be a translated lattice, and let W ⇢ Vint

be a bounded set. The set

⇤(L,W )
def

= ⇡phys

�

L \ ⇡�1

int(W )
�
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is called a cut-and-project set, W and L are its window and lattice, and
(n,N) are its associated dimensions.

In the literature there are two slightly di↵erent conventions regarding
cut-and-project sets. In the first, one fixes Vphys (resp. Vint) to be the
space parallel to the first n (resp. last k) coordinate axes and varies the
translated lattice L, while in the second, one fixes L = ZN and varies
the summands of the direct sum decomposition RN = Vphys � Vint. It
will be convenient for us to use both points of view. Also, in the lit-
erature, various di↵erent hypotheses are imposed on the window and
on the lattice. For example it is often assumed that W is compact
and equal to the closure of its interior, and that ⇡phys|L is injective and
⇡int(L) is dense. We emphasize that we do not require these assump-
tions and only assume that W is bounded.

2.3. Tori. We will use boldface letters to denote vectors in RN and
write x · y for the standard inner product of x,y, kxk =

p

x · x and
x

? for {y : x · y = 0}. A torus is the quotient V/⇤ for a finite
dimensional vector space V and a lattice ⇤ ⇢ V . The standard torus

RN/ZN will be denoted by TN , and ⇡ : RN
! TN will be the projection.

For a subspace V ⇢ RN , the restriction of the standard inner product
to V is an inner product, we can use this inner product to induce a
volume form on V , as well as on the quotient torus T = V/⇤. For a
Borel subset A ⇢ T we denote by VolT (A) (or Vol(A) if confusion is
unwarranted) its measure with respect to this volume form.

A subspace V ⇢ RN is called rational if it is the set of solutions of
a system of linear equations with rational coe�cients. This happens if
and only if V \ZN is a lattice in V , or equivalently, ⇡(V ) is a torus in
TN . An a�ne subtorus of TN is a translate x+ ⇡(V ) for V a rational
subspace of RN . Equivalently, it is a coset in the quotient TN/⇡(V ).
We will always equip RN with the standard inner product and use its
restriction to a rational subspace V to equip ⇡(V ) with a volume.

Let V ⇢ RN be a rational subspace and T = ⇡(V ) ⇢ TN be the
corresponding subtorus, and denote by VolT the corresponding measure
on T ⇠= V/(V \ ZN). The quotient space TN/T is naturally identified
with V ?/⇡?(ZN) where ⇡? : RN

! V ? is orthogonal projection, and
we let VolTN/T be the volume on TN/T obtained by using the standard
inner product on V ?. With these conventions we have

VolT (T ) · VolTN/T

�

TN/T
�

= Vol
�

TN
�

= 1. (2.2)

For a lattice ⇤ ⇢ RN , we define its covolume to be Vol(RN/⇤), and
denote this quantity by coVol(⇤). The dual lattice of ⇤ is defined by

⇤⇤ =
�

x 2 RN : 8y 2 ⇤, x · y 2 Z
 

, (2.3)
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and one has (see e.g. [11, Chap. 1])

coVol(⇤) · coVol(⇤⇤) = 1. (2.4)

2.4. Unions of translated lattices. Understanding tori and their
subtori is related to understanding closed (additive) subgroups of RN .
Any closed subgroup H of RN is of the form H = L+V , where V ⇢ RN

is a vector subspace, L is discrete, and the orthogonal projection of L
onto V ? is discrete. Here V is the connected component of the identity
in H. Recall that two discrete subgroups L

1

, L
2

are commensurable if
L
1

\L
2

is of finite index in both L
1

and L
2

, or equivalently, L
1

+L
2

is
discrete. Note that the connected component of L

1

+ L
2

depends only
on the commensurability class of L

1

, L
2

.
We will need the following:

Proposition 2.1. Let L
1

, . . . , Ls be lattices in RN
. Then the following

are equivalent:

(a) There are xi, i = 1, . . . , s such that

Ss
i=1

(xi + Li) is uniformly

discrete.

(b) For each i, j 2 {1, . . . , s}, Li � Lj 6= RN
.

Proof. We first prove (a) =) (b). Let ⇤i = xi + Li for each i.
Assume by contradiction that Li �Lj is dense in RN . Then ⇤i �⇤j =
Li � Lj + xi � xj is also dense, and in particular for any " > 0 there
are x 2 ⇤i,y 2 ⇤j such that 0 < kx�yk < ". This means that ⇤i[⇤j

is not uniformly discrete.
In order to prove (b) =) (a) we will define Hij = Li � Lj  RN

and show that if x
1

, . . . ,xs satisfy

xi � xj /2 Hij for all i, j, (2.5)

then
Ss

i=1

(xi + Li) is uniformly discrete. Note that (2.5) holds for al-
most every choice of x

1

, . . . ,xs. Let " > 0 be smaller than the minimal
distance between xi � xj and Hij, and also smaller than the mini-
mal distance between two distinct points in the same Li. Let y

1

,y
2

be two distinct elements of
Ss

i=1

⇤i. If y
1

,y
2

belong to the same ⇤i

then they are at least a distance " apart, and otherwise we can write
y

1

= xi0 + `
1

, y

2

= xj0 + `
2

with i0 6= j0, `
1

2 Li0 and `
2

2 Lj0 . Then
`
2

� `
1

2 Hi0j0 and hence

ky

1

� y

2

k � kxi0 � xj0 � (`
2

� `
1

)k � ",

as required. ⇤
Corollary 2.2. For any two translated lattices ⇤

1

,⇤
2

⇢ RN
, if the

union Y = ⇤
1

[⇤
2

is uniformly discrete, then Y is not a dense forest;
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in fact there exists " > 0 and an (N � 1)-dimensional a�ne subspace

Z ⇢ RN
such that Y contains no points in the "-neighborhood of Z.

Proof. Let ⇤i = Li + xi, i = 1, 2, let H = L
1

� L
2

, and let V be
the connected component of the identity in H. Since Y is uniformly
discrete, we have by Proposition 2.1 that V  RN . Let V

0

be an (N�1)-
dimensional subspace of RN containing V which is spanned by elements
of H, and let P : RN

! V ?
0

be the orthogonal projection. Then the
choice of V

0

ensures that P (H) is discrete, and since L
1

[ L
2

⇢ H,
we have that Y ⇢ (x

1

+ H) [ (x
2

+ H). If we take a point z 2

V ?
0

\ P ((x
1

+H) [ (x
2

+H)), then the conclusion of the Corollary
will be valid with Z = P�1(z). ⇤

Note that by Theorem 1.3, it is possible to obtain a uniformly discrete
dense forest as a union of three translated lattices in R2.

2.5. Visit times in a dynamical system. Cut-and-project sets also
arise as the set of visit times to a section of an Rn-action on TN , n < N .
Let V ⇠= Rn be a subspace of RN . Then V acts on TN via the linear
action

v · x = x+ ⇡(v).

Following the terminology in [14], for x
0

2 TN and S ⇢ TN we define
the (n,N)-toral dynamics set by the set of ‘return times’ to S:

YS,x0

def

= {v 2 V : v · x

0

2 S}. (2.6)

An Rn-action is called minimal if all orbits are dense. It is well-
known (see e.g. [12, Chap. 3]) that the above Rn-action is minimal
if and only if V is a totally irrational subspace; namely, if and only if
it is contained in no proper rational subspaces of RN . Moreover, for
any x 2 TN , the closure V · x is an a�ne subtorus of TN on which the
V -action is minimal; that is V · x = x+ ⇡(U), where U is the smallest
rational subspace containing V .

A subset S ⇢ TN is called a linear section (for the V -action on TN)
if S = ⇡(K) for a bounded set K ⇢ U , where U is a k-dimensional
a�ne subspace of RN that is transverse to V , and K has non-empty
interior in U .

We will repeatedly use the following well-known fact (which was
mentioned without proof in [14]):

Proposition 2.3. If U, V are subspaces of RN
with RN = U � V , and

S ⇢ ⇡(U) is a linear section for the associated V -action on TN
, then for

any x0 2 TN
, the set YS,x0 is a cut-and-project set for a decomposition

in which V = Vphys and U = Vint. Moreover any cut-and-project set

arises in this way.
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Proof. Let

x

0

2 TN , V = Vphys, U = Vint, L = �x

0

+ZN , S = ⇡(K), W = �K.

Then

v 2 YS,x0 () v + x

0

2 S = ⇡(K)

() 9w 2 W such that v + ⇡(x
0

) = ⇡(�w)

() 9z 2 ZN , w 2 W such that v + x

0

= �w + z

() 9z

0
2 L, w 2 W such that v +w = z

0

() 9z

0
2 L such that v = ⇡phys(z

0), ⇡int(z
0) 2 W.

⇤

2.6. More detailed statements. Via Proposition 2.3, we see that
Theorem 1.1 asserts that (n,N) toral dynamics sets arising from linear
sections are not dense forests. On the other hand, in [19], a uniformly
discrete dense forest was constructed, using visit times to a section
in an Rn-action on a compact homogeneous space. We would like to
modify this construction and use dynamics of linear toral flows instead,
but as Theorem 1.1 shows, if we use a linear section the resulting set
will not be a dense forest. To rectify this we will allow a larger class of
sets to serve as the section S.

For this discussion we will specialize to the case N = 3, n = 2, so
that a section is one-dimensional. We say that S ⇢ T3 is a piecewise

linear unavoidable section if

(1) S is a finite union J
1

[ · · ·[ J` where the Ji are disjoint projec-
tions under ⇡ of closed line segments in R3 (of finite length).

(2) S intersects every co-dimension 1 sub-torus, that is S \ ⇡(x +
Q) 6= ? for every x 2 R3 and every 2-dimensional rational
subspace Q ⇢ R3.

The following results will be proved in §4. They immediately imply
Theorem 1.2.

Theorem 2.4. Piecewise linear unavoidable sections in T3

exist.

In fact, as we will see, they exist whenever the dimensions n,N
satisfy N = n+ 1, but we will not be using this fact.

Theorem 2.5. For every piecewise linear unavoidable section S ⇢ T3

,

every x

0

2 T3

, and every 2-dimensional subspace V ⇢ R3

which does

not contain rational lines and is transverse to S, the set

Y = YV,S,x0

def

= {v 2 V : v · x

0

2 S}
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is a uniformly discrete dense forest in V ⇠= R2

. The set Y is a finite

union of cut-and-project sets with associated dimensions (2, 3), with the

same physical space Vphys = V .

3. Cut-and-project sets are not dense forests

In this section we will prove Theorem 1.1. We will need the following
well-known fact (see e.g. [11, Cor., p. 25]):

Proposition 3.1. Let q 2 ZN
and Q = q

?
. Then

kqk � Vol
�

Q/Q \ ZN
�

. (3.1)

Moreover, if q is primitive (i.e. the gcd of its coordinates is equal to

1), then we have equality in (3.1).

Lemma 3.2. Let k,N 2 N, 1  k < N , and let U ⇢ RN
be a k-

dimensional subspace. Then for every bounded set K ⇢ U there exists

an (N � 1)-dimensional rational subspace Q ⇢ RN
, and some b 2 RN

,

such that ⇡(K) \ ⇡(Q+ b) = ?.

Proof. Given K and U , it su�ces to find a rational subspace Q of
dimension N � 1, and a coset of ⇡(Q), eQ 2 TN/⇡(Q), such that
⇡(K)\ eQ = ? (where the quotient denotes quotients of abelian groups).
Indeed, if this happens then any b 2 ⇡�1(⇡( eQ)) will satisfy the required
conclusion. Given a rational subspace Q ⇢ RN of dimension N � 1, let
PQ? : RN

! Q? denote the orthogonal projection on Q?. Note that
⇡(Q) ⇠= Q/

�

Q \ ZN
�

is an (N � 1)-dimensional sub-torus of TN , and
that the space of cosets TN/⇡(Q) is parameterized by Q?/PQ?(ZN).

If no such coset eQ 2 TN/⇡(Q) exists then PQ?(K) coversQ?/PQ?(ZN),
and in particular Vol(PQ?(K)) � Vol(Q?/PQ?(ZN)). So it su�ces to
find a rational subspace Q with the property that

Vol(PQ?(K)) < Vol(Q?/PQ?(ZN))
(2.2)

=
1

Vol(Q/Q \ ZN)
· (3.2)

Let {u
1

, . . . ,uk} be an orthonormal basis of U . By replacing K with
a set that contains it, it su�ces to find Q satisfying (3.2) where

K =

(

k
X

i=1

aiui : |ai|  t

)

, (3.3)

for some t > 0. We will look for Q = span {q}?, where q 2 ZN . By
Proposition 3.1, it would su�ce to find q 2 ZN with Vol(PQ?(K)) <
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1

kqk . For K as in (3.3), denoting by (e
1

, . . . , eN) the standard basis, we
have

Vol(PQ?(K))  2
p

k · t ·max

⇢

�

�

�

�

ei ·
q

kqk

�

�

�

�

: i 2 {1, . . . , k}

�

,

and this expression is smaller than 1/ kqk if

max
1ik

{|ei · q|} < �, where �
def

=
1

2
p

kt
· (3.4)

Let L be a line in U?; then (3.4) clearly holds if q is a nonzero integer
vector in the �-neighborhood of L; that is, in the set

C

def

=
�

x 2 RN : dist(x, L) < �
 

.

Since C is a convex centrally symmetric body of infinite volume, by
Minkowski’s convex body theorem (see e.g. [11, p. 71]) such an integer
vector q exists. ⇤
Proof of Theorem 1.1. Replacing TN if necessary with V · x, we may
assume that V is totally irrational. If n = N then Y is periodic, that
is Y is a finite union of cosets of a lattice ⇤ ⇢ Rn, and then we may
take Z to be parallel to an (n � 1)-dimensional subspace spanned by
vectors in ⇤.

So we can assume that n < N and YS,x0 is a (n,N)-toral dynamics
set, associated with the action of a totally irrational n-dimensional
space V on the torus TN . Set k = N � n. Then, by assumption,
S = ⇡(K), where K is a compact subset of a k-dimensional a�ne
space U ⇢ RN . Let z 2 U \ V , and note that YS,x0 � z = Y⇡(K�z),x0 .
Then it su�ces to show that Y⇡(K�z),x0 is not a dense forest. Note that
K � z ⇢ U � z which is a k-dimensional subspace of RN . By Lemma
3.2 there exists an (N � 1)-dimensional rational subspace Q ⇢ RN ,
and a coset eQ of it, such that ⇡(K � z) \ ⇡( eQ) = ?. Note that

Z
def

= V \

eQ is a (n � 1)-dimensional a�ne subspace of V and of eQ.
Since ⇡(K�z)\⇡( eQ) = ?, and the sets ⇡(K�z) and ⇡( eQ) are closed
in TN , there exists some " > 0 such that dTN (⇡(K � z), ⇡( eQ)) > ".
Then we also have d(⇡(K � z), ⇡(Z)) > ". That is, any point which is
"-close to Z misses YS,x0 � z, and this proves the assertion. ⇤

4. An explicit uniformly discrete dense forest using

toral flows

In this section we will prove Theorems 2.4 and 2.5.
In order to see that a piecewise linearly unavoidable section exists,

we refer the reader to Figure 2.
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Figure 2. A piecewise linearly unavoidable section in
T3: any 2-torus intersects at least one of the faces of the
cube in a loop, and thus intersects the section.

We also sketch an alternative existence proof for linearly unavoidable
sections, which uses toral dynamics and can be generalized to higher
dimensions, i.e. to the case N = n+ 1 for arbitrary n � 2.

Sketch of another proof of Theorem 2.4. Let {Tj : j 2 N} be an enu-
meration of the 2-dimensional a�ne tori passing through the origin
in T3. From Proposition 3.1 we have Vol(Tj) ! 1 and from (2.2),
Vol
�

TN/Tj

�

! 0. Let J
1

, J
2

, J
3

⇢ R3 be closed line segments, in lin-
early independent directions, such that the images in S =

S

⇡(Ji) are
disjoint. Since the directions are linearly independent, there is a uni-
form lower bound on the angle that each Tj makes with at least one
of the Ji. Therefore when projecting onto T3/Tj, for all large enough
j, at least one of the Ji projects onto the quotient T3/Tj. Thus for all
su�ciently large j, and every coset T 0

j of Tj, we have T 0
j \ S 6= ?.

Now by adding finitely many line segments to S, and keeping the
property ⇡(Ji1)\ ⇡(Ji2) = ?, we obtain a piecewise linear unavoidable
section. ⇤

Proof of Theorem 2.5. This is very close to the argument of [19, Proof
of Thm. 1.3]. First note that uniform discreteness of Y follows from
the fact that the segments comprising S are closed and disjoint, and
the transversality assumption. We prove that Y is a dense forest by
contradiction. If not, then there exists some " > 0, unit vectorswj 2 V ,
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and Lj ! 1 such that the line segments `j
def

= {xj + t ·wj : t 2 [0, Lj]}
satisfy dist(Y, `j) � " for all j. Denote

Kj
def

=
n

v 2 V : dist(v, `j) 
"

3

o

,

and define a sequence of Borel probability measures µj on T3 by

8f 2 C(T3),

Z

T3

fdµj
def

=
1

Vol(Kj)

Z

Kj

f(v · x

0

)dv,

where the integral on the right hand side is with respect to the Eu-
clidean volume on V . By passing to a subsequence we may assume

that wj
j!1
���! w, and that µj

weak�⇤
����! µ. Since wj is the direction

of the long axis of the cylinder Kj, it follows that the measure µ is

invariant under H
def

= span(w). By [12, Chap. 3], every Borel prob-
ability measure on T3, invariant and ergodic under H, is the Haar
measure on some rational torus T ⇢ T3. Note that such a T cannot
be 1-dimensional. Indeed if such a T is 1-dimensional then T = ⇡(H),
hence w is a rational direction in the physical space V , contradicting
the assumption that V does not contain rational lines.

Let g 2 C(T3) be a bump function that is positive on S and sup-
ported on the "/3 neighborhood of S. Recall that since S is a piecewise
linear unavoidable section, S intersects every 2-dimensional rational
sub-torus of T3, and in particular S \ T 6= ?, for every T as above.
This implies that

R

T3 gd⌫ > 0 for any ergodic H-invariant measure ⌫,
and hence by ergodic decomposition,

R

T3 gdµ > 0. On the other hand,
for every j and for every v 2 Kj, by definition dist(v, Y ) �

2"
3

, thus
distT3(v · x

0

,S) � 2"
3

and v · x

0

misses the support of g. This implies
g(v · x

0

) = 0, and hence
R

T3 gdµj = 0 for every j, a contradiction to

µj
weak�⇤
����! µ.
Let I

1

, . . . , I` be line segments whose projections define S. Then each
⇡(Ii) is a linear section and hence the set Y =

S`
j=1

Y⇡(Ii),x0 is a finite
union of cut-and-project sets as required. ⇤

5. Finite unions of translated lattices and uniformly

Diophantine sets of vectors

We now move to results concerning finite unions of translated lat-
tices.

5.1. More notation. The following notation will be used in the rest
of the paper. Given two expressions X and Y , we will use both of the
notations X ⌧ Y and X = O(Y ) to mean that X and Y are depending
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on some variables and there exists a constant c > 0 (called the implicit

constant), independent of these parameters, such that X  cY .

• Throughout we will have two dimensions n and d linked by the
relation

n = d+ 1 � 2.

• The coordinates of x 2 Rn will be denoted by (x
1

, . . . , xn).
• k · k1 and k · k

2

will denote respectively the sup-norm and Eu-
clidean norm, B1(x, r) and B

2

(x, r) will denote the respective
open balls. When making a statement which does not depend
on the choice of norm we will simply write k · k and B(x, r)
unless these notations are specifically defined otherwise.

• x · y will denote the usual scalar product between the vectors
x, y 2 Rn.

• ⇡ : Rn
! Tn = Rn/Zn is the natural projection.

• hxiZn will denote the distance from x 2 Rn to Zn with respect
to the sup-norm. Thus d(⇡(x), ⇡(y)) = hx� yiZn is the metric
on Tn induced by k · k1. For n = 1 we will abbreviate this as
hxiZ = hxi.

• A real n⇥m matrix A (where n,m � 1) will be identified with
a vector in Rn⇥m by concatening its successive columns. Its
transpose will be the m⇥ n matrix denoted by AT .

5.2. On Peres’ construction of dense forests. We recap Peres’
explicit construction of a discrete forest of bounded density, given in
[6]. Let ' = (1 +

p

5)/2 be the golden ratio and let

F
1

(')
def

= Z2

[

✓

1 0
' 1

◆

· Z2.

Thus, F
1

(') is the union of the standard integer lattice in R2 with an
irrational shear of it1.

Applying Dirichlet’s theorem in Diophantine approximation, Peres
proved that F

1

(') is a dense forest when restricting to line segments
with slope bounded in absolute value by 1 (that is, to those line seg-
ments “close to horizontal”). His argument ensured a visibility function
of O ("�4). Set

F
2

(')
def

= Z2

[

✓

' 1
1 0

◆

· Z2

1In fact, in [6], the slightly di↵erent set

✓✓

1/2
0

◆

+ Z2

◆

[

✓

1 0
' 1

◆

·Z2 was used

in place of F1(').
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and note that F
2

(') is obtained by permuting the role of the coordinate
axes in the definition of F

1

('). This implies a similar bound for line
segments with slope bigger than 1 in absolute value (that is, any line
segment “close to vertical”). Thus, defining

F(')
def

= F
1

(') [ F
2

(')

(which is the union of three lattices), we have a dense forest with
visibility function satisfying v(") = O ("�4) . See Figures 3 and 4, which
represent respectively the sets of points F

1

(') and F
2

('). Their union
is the dense forest F(') depicted in Figure 1.

Figure 3. The "-thickening of
the set F1(') represented above
intersects line segments “close to
horizontal”.

Figure 4. The "-thickening of
the set F2(') represented above
intersects line segments “close to
vertical”.

The goal of this section is to generalize Peres’ construction, obtain-
ing dense forests in any dimension which are almost fully explicit (see
Section 5.3 for details) and with good visibility bounds. In particular
we will improve the visibility bound in Peres’ original planar forest.

Let J : Rn
! Rn be the linear transformation that acts by permu-

tating coordinates as follows:

J (x
1

, x
2

, . . . , xn�1

, xn)
T = (x

2

, x
3

, . . . , xn, x1

)T . (5.1)
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Given an integer s � 2, denote by

⇥s,d = (✓
1

, . . . ,✓s) (5.2)

an s-tuple of d-dimensional vectors.
Then define

F
1

(⇥s,d)
def

=
s
[

i=1

✓

1 0T

✓i Id

◆

· Zn, (5.3)

where Id stands for the d ⇥ d identity matrix. For ` = 1, . . . , n, let
F` (⇥s,d) denote the image of F

1

(⇥s,d) under J `�1, i.e.

F` (⇥s,d) = J `�1 (F
1

(⇥s,d)) , (5.4)

and let

F (⇥s,d)
def

=
n
[

`=1

F` (⇥s,d) . (5.5)

Note that F (⇥s,d) is the union of at most ns lattices, and that Peres’
construction is F (⇥

2,1) with ⇥
2,1 = (0,').

5.3. Visibility bounds for these forests. Recall that a vector ✓ 2

Rd is said to be Diophantine of type ⌧ > 0 if there exists a constant
c(✓) = c > 0 such that

8u 2 Zd
\{0}, hu · ✓i � c

kuk

⌧ ·

A multidimensional version of Dirichlet’s theorem (see [10, Theo-
rem VI, p.13]) implies that necessarily ⌧ � d. The visibility bounds in
the forest (5.5) will depend on a strenghtening of this concept:

Definition 5.1. Let � be a non-increasing function tending to zero
at infinity. An s-tuple of d dimensional vectors ⇥s,d, as in (5.2), is
uniformly Diophantine of type � if for any T � 1 and any ⇠ 2 Rd,
there exists i 2 {1, . . . , s} such that for all u 2 Zd

\{0} with sup-norm
at most T ,

hu · (⇠ � ✓

i

)i � �(T ). (5.6)

The set of ⇥s,d that are uniformly Diophantine of type � will be de-
noted by UDT d

s (�). Thus, ⇥s,d 2 UDT d
s (�) means that

inf
T�1

inf
⇠2Rd

max
1is

min
1kuk1T

u2Zd

�

�(T )�1

hu · (⇠ � ✓

i

)i
 

� 1.

Also, given ⌧ > 0, set

UDT d
s (⌧)

def

=
[

c>0

UDT d
s

�

x 7! cx�⌧
�

.
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It is easily seen that the set UDT d
s (�) is translation invariant; that

is, for any ↵ 2 Rd,

(✓
1

, . . . ,✓s) 2 UDT d
s (�) () (✓

1

+↵, . . . ,✓s +↵) 2 UDT d
s (�).

In particular, from any uniformly Diophantine set of vectors of a given
type, one can obtain another uniformly Diophantine set of vectors of
the same type such that one of the latter vectors takes any predefined
value. Also, if UDT d

s (�) 6= ?, then taking ⇠ = 0 in (5.6) and using
Dirichlet’s theorem, one sees that necessarily

� (T ) = O
�

T�d
�

. (5.7)

Theorem 5.2. Assume that ⇥s,d 2 UDT d
s (�). Then the set F (⇥s,d)

constructed in (5.5) is a dense forest in Rn
with visibility function sa-

tisfying

v(") = O

✓

⇣

"d�1

· �
�

d"�1

��1

⌘d
◆

. (5.8)

Theorem 5.2 will be established in §5.4. Note that as the bound on
the uniformly Diophantine type comes closer to the upper bound (5.7),
the bound (5.8) on the visibility approaches the optimal (1.1).

A number ✓ 2 R is badly approximable if it is of Diophantine type
⌧ = 1. It is well-known that the golden ratio ' is badly approximable.
It will be shown in §7.1 that any (↵, �)T 2 R2, where � � ↵ is a badly
approximable number, belongs to the set UDT 1

2

(3). Combined with
Theorem 5.2, this implies that the visibility bound in Peres’ original
forest can be improved from O ("�4) to O ("�3).

The property of being a uniformly Diophantine set of vectors will be
related in §7.1 to an explicit Diophantine condition. As a consequence,
the existence of such sets will be guaranteed in any dimension. More
precisely, the following result will be established in §7.2:

Theorem 5.3. Assume that s � d + 1. Let � be a non-increasing

function tending to zero at infinity such that

lim inf
T!1

�(2T )

�(T )
> 0 (5.9)

and

1
X

m=1

2md(s+1)� (2m)s�d < 1. (5.10)

Then, with respect to the d ⇥ s-dimensional Lebesgue measure, for al-

most all ⇥s,d there is c = c (⇥s,d) > 0 such that ⇥s,d 2 UDT d
s (c�).

As an immediate consequence of Theorems 5.2 and 5.3 we obtain:
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Corollary 5.4. Under the assumptions of Theorem 5.3, the visibility

in the dense forest F (⇥s,d) constructed in (5.5) can be bounded by (5.8)
for almost all ⇥s,d.

For instance, by setting

�(T ) = T�( d(s+1)
s�d +⌘) for ⌘ > 0,

where s � d+1, one sees that Theorem 1.4 is a consequence of Corollary
5.4. Additional improvements are possible by setting

�(T ) = T�( d(s+1)
s�d ) log(T )��

for appropriately chosen � = �s,d.

5.4. Reduction to a Diophantine statement. In this subsection
we will examine what it means for a line segment L to be "-close to the
set F (⇥s,d) defined in (5.5). For the computations in this subsection
it will be most convenient to work with the sup-norm on Rn, and so
in this section kxk = kxk1. As all norms on Rn are bi-Lipschitz
equivalent to each other, and the problems we consider are insensitve
to multiplications by constants depending on dimension, this involves
no loss of generality.

Let

0 < " <
1

2
and let L be the parameterized line segment

L

def

= {↵t+ � : t 2 [0,M ]} ,

where ↵,� 2 Rn, k↵k = 1, so that M � 0 is at most the length of L
and at least a fixed constant multiple of it.

By (5.4) and (5.5), L is within distance " of F (⇥s,d) if and only if
for some `, J `(L) is within distance " of F

1

(⇥s,d). Since the matrix
J in (5.1) permutes the coordinates, there is no loss of generality in
assuming that k↵k = |↵

1

| (where ↵
1

denotes the first coordinate of ↵).
Also by switching endpoints of L if necessary we can assume ↵

1

= 1.
Thus we now assume

↵
1

= k↵k = 1, (5.11)

and study when L comes "-close to the set F
1

(⇥s,d) defined by (5.3).
Given k 2 Z, and using (5.11), we see that L intersects the hyper-

plane {x : x
1

= k} precisely when �
1

 k  �
1

+M , and the intersec-
tion point is given by ↵ (k � �

1

) + �. It follows from (5.3) that this
point comes "-close to F

1

(⇥s,d) when there exists an index 1  i  s
such that

h↵(k � �
1

) + � � k✓iiZd = hk (↵� ✓i) + � � �
1

↵iZd < ".
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Write k = d�
1

e+m, where 0  m  M is an integer and where d · e

denotes the ceiling function. Then the preceding discussion shows:

Proposition 5.5. Suppose that

8⇠, ⇣ 2 Rd, 90  m  M, 9i 2 {1, . . . , s} s.t. hm (⇠ � ✓

i

) + ⇣iZd < ".
(5.12)

Then any line segment with length M gets "-close to a point in F (⇥s,d).

In turn, (5.12) is implied by the statement that for every ⇠ 2 Rd there
is an index 1  i  s for which the finite sequence (m · ⇡ (⇠ � ✓

i

))
0mM

is "-dense in Td (with respect to the metric on Td induced by h · iZd).
We will now investigate conditions under which the multiples of a vec-
tor are not "-dense in the torus. Given parameters " > 0 and M � 1,
define

Cd(",M) =
�

⇠ 2 Td : the sequence (m⇠)
0mM is not "-dense in Td

 

.
(5.13)

Let also

Sd(",M)
def

=

⇢

⇠ 2 Td : 9u 2 Zd
\ {0} , kuk  cd"

�1, hu · ⇠i  c0d ·
"d�1

M1/d

�

,

where
cd

def

= d and c0d
def

= d3/2. (5.14)

Proposition 5.6. With the above notation, assume that

M � 2d"�d. (5.15)

Then Cd(",M) ⇢ Sd(",M).

Proposition 5.6 will be proved in the next section. We now use it to
derive Theorem 5.2.

Deduction of Theorem 5.2 from Proposition 5.6. Given " > 0, M � 1
and ⇥s,d as in (5.2), set

⌃d (",M,⇥s,d)
def

=
s
\

i=1

(Sd(",M) + ✓i) ,

where addition is taken on Td and we identify ✓i with its projection
modulo Zd.

Assume that ⇥s,d 2 UDT d
s (�). Definition 5.1 is then readily seen to

imply that the set ⌃d (",M,⇥s,d) is empty whenever

M >
⇣

c0d · "
d�1

· �
�

cd"
�1

��1

⌘d

, (5.16)

in which case, for every ⇠ there exists an index i 2 {1, . . . , s} such
that ⇠ � ✓i 62 Sd(",M). Using (5.7) we see that (5.16) implies that
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M > c"�d for some constant c depending only on d. Thus, replacing
M if necessary by its constant multiple, we have that (5.15) is also
satisfied, and hence by Proposition 5.6 we have that (m (⇠ � ✓

i

))
0mM

is "-dense in Td. This implies Theorem 5.2 via Proposition 5.5. ⇤

6. Effective equidistribution in tori

The goal of this section is to prove Proposition 5.6. In this section,
unless stated otherwise, we continue with the notation kxk = kxk1,
and use the metric on Td induced by the sup-norm. The following
lemma provides a necessary condition for ⇠ 2 Td to belong to the
set Cd(",M) defined in (5.13). This condition reduces the proof of
Proposition 5.6 to the study of the multiples of a rational vector.

Lemma 6.1. Assume that (5.15) holds. Then

Cd (",M) ⇢

[

p/q2S

B

✓

p

q
,

1

qM1/d

◆

, (6.1)

where S is the set of all rational vectors p/q 2 Td
such that

1  q  M and

p

q
2 Cd

⇣"

2
, q
⌘

. (6.2)

Proof. We prove that the complement of the right hand side of (6.1) is
contained in the complement of the left hand side.

Let ⇠ 2

T

p/q2S

h

Td r B
⇣

p

q
, 1

qM1/d

⌘i

. By Dirichlet’s theorem, there

exist a vector p 2 Zd and an integer 1  q  M such that

�

�

�

�

⇠ �

p

q

�

�

�

�

<
1

qM1/d
·

This implies that p/q /2 S, namely that (m · ⇡(p/q))
0mq�1

is "/2-

dense in Td. Assuming (5.15), we show that (m · ⇡(⇠))
0mM is "-dense

in Td.
Let � 2 Td. By the "/2-density of (m · ⇡(p/q))

0mq�1

there exists
an integer 0  m  q � 1 such that

⌧

m
p

q
� �

�

Zd

<
"

2
·
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Then,

hm⇠ � �iZd =

⌧

m

✓

⇠ �

p

q

◆

+

✓

m
p

q
� �

◆�

Zd

 m ·

�

�

�

�

⇠ �

p

q

�

�

�

�

+

⌧

m
p

q
� �

�

Zd

<
1

M1/d
+

"

2


(5.15)

",

whence the lemma. ⇤
In view of Lemma 6.1, we wish to provide a necessary condition for

the relation p/q 2 Cd

�

"
2

, q
�

appearing in (6.2) to hold. For this we
will recast the statement in terms of lattices. Let ⇤ (p, q) be the lattice
spanned by the rational vector p/q 2 Rd and by the vectors e

1

, . . . , ed

of the standard basis of Rd; that is,

⇤ (p, q)
def

= spanZ

⇢

p

q
, e

1

, . . . , ed

�

⇢ Rd.

Also let

⇤⇤ (p, q)
def

=
�

u 2 Zd : p · u ⌘ 0 (mod q)
 

.

It is easily seen that ⇤ (p, q) is the dual of ⇤⇤ (p, q), and of index q in
Zd. From this and (2.4) it is easy to deduce the following:

Lemma 6.2. The lattice ⇤ (p, q) has covolume 1/q whenever gcd(p, q) =
1, and

⇡ (⇤ (p, q)) =

✓

k · ⇡

✓

p

q

◆◆

0kq�1

. (6.3)

Recall from §2.1 that �
1

(⇤) and µ(⇤) denote respectively the first
minimum and the covering radius of a lattice ⇤. We now show:

Lemma 6.3. Assume that the Euclidean length of the shortest nonzero

vector in ⇤⇤ (p, q) satisfies

�
1

(⇤⇤ (p, q)) > d · "�1.

Then the sequence (k · ⇡ (p/q))
0kq�1

is "/2-dense in Td
.

Proof. A well-known result of Banaszczyk [5, Thm. 2.2], asserts that
for any lattice ⇤ ⇢ Rd, µ(⇤) · �

1

(⇤⇤)  d/2 (we note that weaker
results had been known for some time, and these could also be used in
our context, at the sole expense of requiring a change in the constants
appearing in (5.14)). Since ⇤(p, q) contains Zd, the sequence (6.3) will
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be "/2-dense in Td (with respect to the sup-norm) provided the sup-
norm covering radius of ⇤(p, q) is at most "/2. Thus the Lemma follows
immediately from Banaszczyk’s bound and the bound kxk  kxk

2

. ⇤

We will need a further transference result (see [10, Theorem II,
Chap. V] for a proof):

Lemma 6.4 (Mahler’s Transference Theorem). Let ⇠ 2 Rd
and assume

that there is a nonzero integer q such that

hq⇠iZd  C and |q|  U,

for real parameters C and U satisfying 0 < C < 1  U . Then there is

v 2 Zd
\ {0} such that

h⇠ · vi  D and kvk  V,

where

D = dU�(d�1)/dC, V = dU1/d.

Proof of Proposition 5.6. Let ⇠ 2 Cd (",M), where M satisfies (5.15).
From Lemma 6.1, there exist p 2 Zd and q � 1 such that

kq⇠ � pk  M�1/d (6.4)

and such that (6.2) holds.
Assume first that q < "�d. Lemma 6.4, applied with the parameters

C =
1

M1/d
and U = "�d,

yields the existence of v 2 Zd such that

h⇠ · vi  d ·
"d�1

M1/d
and 1  kvk  d · "�1.

In particular, ⇠ 2 Sd(",M). Assume now that

q � "�d. (6.5)

Since p/q 2 Cd(
"
2

, q), Lemma 6.3 implies the existence of u 2 ⇤⇤(p, q) ⇢
Zd with

1  kuk  kuk

2

 d · "�1, (6.6)

and hence such that, by (2.3),

p

q
· u = k
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for some integer k. Then by the Cauchy-Schwarz inequality,

h⇠ · ui  |⇠ · u� k| =

�

�

�

�

✓

p

q
� ⇠

◆

· u
�

�

�

�



�

�

�

�

p

q
� ⇠

�

�

�

�

2

· kuk

2



(6.4),(6.6)

p

d

qM1/d
· d · "�1



(6.5)

d3/2 ·
"d�1

M1/d
.

By (5.14), ⇠ 2 Sd(",M) and the proof of Proposition 5.6 is complete.
⇤

6.1. An explicit uniformly discrete dense forest. In this section
we prove Theorem 1.3. We will work with a variant of the set F(⇥s,d),
which can be analyzed in a similar way. Let ↵, �, �, � be nonzero real
numbers satisfying the following conditions:

(i) �
�(↵+�)

2 Q.

(ii) (↵ + �) (� + �) = 1.
(iii) For any ⌘ > 0 there is c > 0 such that for any integers P,Q,

not both zero,

hP↵ +Q�i � cmax{|P |, |Q|}

�(2+⌘)

and
hP� +Q�i � cmax{|P |, |Q|}

�(2+⌘).

Now define

⇤
1

= Z2, ⇤
2

=

✓

� ↵
0 1

◆

· Z2, ⇤
3

=

✓

1 0
� �

◆

· Z2.

Theorem 1.3 follows from the following statements:

Proposition 6.5. Assuming (i), (ii), there are x

2

,x
3

2 R2 such that
⇤

1

[ (x
2

+ ⇤
2

) [ (x
3

+ ⇤
3

) is uniformly discrete.

Proposition 6.6. Assuming (iii), for any ⌘ > 0 there is c > 0 such
that for any " > 0, any x 2 R2, any M > c/"5+⌘, and any slope
� 2 [�1, 1], the set ⇤

1

[ (x+⇤
2

) comes within " of any ‘nearly vertical’
line segment

{y + tu : t 2 [0,M ]}, where u = (�, 1)T .

A similar statement holds replacing ⇤
2

with ⇤
3

and u with (1, �)T

(that is, ⇤
1

[ (x+ ⇤
3

) comes "-close to ‘nearly horizontal’ segments).
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Proposition 6.7. There are examples of numbers ↵, �, �, � satisfying

hypotheses (i)–(iii). For instance, one can define

↵
def

=
p

2, �
def

= 3�
p

2 +
p

3�
p

6, �
def

=
p

3, �
def

= � 3 +
p

6.

Proof of Proposition 6.5. In light of Proposition 2.1, it is enough to
show that none of the three sets

⇤
1

+ ⇤
2

, ⇤
1

+ ⇤
3

, ⇤
2

+ ⇤
3

are dense in R2. This is clear for ⇤
1

+⇤
2

(respectively, ⇤
1

+⇤
3

), since
the second (resp. first) coordinate of any vector in this set is an integer.
For ⇤

2

+ ⇤
3

we note that by (ii),

det

✓

↵ + � 1
1 � + �

◆

= 0,

and hence the two vectors (↵ + �, 1)T 2 ⇤
2

, (1, � + �)T 2 ⇤
3

are
collinear. Let ` denote the line perpendicular to (↵ + �, 1)T . Note
that u

2

= (�, 0)T 2 ⇤
2

and u

3

= (0, �)T 2 ⇤
3

. Then the following
calculation shows that the projections of u

2

,u
3

onto ` are nonzero and
commensurable:

u

2

· (�1,↵ + �)T

u

3

· (�1,↵ + �)T
=

��

�(↵ + �)
2 Q.

This implies that the projection of ⇤
2

+ ⇤
3

onto ` is not dense and
in particular ⇤

2

+ ⇤
3

6= R2. ⇤

Proof of Proposition 6.6. We work with ⇤
1

[ (x+⇤
3

) and ‘nearly hor-
izontal’ segments, the proof for nearly vertical segments being similar.
Let

L = {`(t) : t 2 [0,M ]} , where `(t) = (y
1

+ t, y
2

+ �t)T 2 R2,

with

y
1

, y
2

, � 2 R and |�|  1.

Also let x = (x
1

, x
2

)T .
As we saw in the proof of Proposition 5.5, if

(m · ⇡ (�))
1mM is "-dense in T1 (6.7)

then ⇤
1

comes "-close to L. By a similar argument, if
✓

m · ⇡

✓

� � �

�

◆◆

1mM

is
"

�
-dense in T1 (6.8)
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then x + ⇤
3

comes "-close to L. Indeed, setting tm
def

= m � {y
1

� x
1

}

(where {x} denotes the fractional part of x 2 R), j = jm = m+by
1

�x
1

c

(where bxc denotes the integer part of x 2 R), we have that

`(tm) =

✓

y
1

� {y
1

� x
1

}+m
y
2

� �{y
1

� x
1

}+ �m

◆

=

✓

x
1

+ j
y
2

� �{y
1

� x
1

}+ �m

◆

is "-close to

x+ ⇤
3

=

⇢✓

x
1

+ j
x
2

+ j� + k�

◆

: j, k 2 Z
�

when
⌧

1

�
(y

2

� �{y
1

� x
1

}� x
2

� �by
1

� x
1

c) +m

✓

� � �

�

◆�

<
"

�
.

So it remains to show that for M > c/"5, for any � 2 R, at least one
of (6.7), (6.8) holds. If not, then by Lemma 6.1 there are q

1

, q
2

2 Z
with 1  |q

1

|  (✏/2)�1, 1  |q
2

|  ("/2�)�1 and p
1

, p
2

2 Z such that

|q
1

� � p
1

| <
1

M
and

�

�

�

�

q
2

✓

� � �

�

◆

� p
2

�

�

�

�

<
1

M

(note indeed that the set Cd(⌘, q) appearing in Lemma 6.1 is easily
described when d = 1 : it is the set of rationals p/q such that 1  |q| 
⌘�1 whenever gcd(p, q) = 1). Multiplying the first formula by q

2

and
the second one by q

1

� and using the triangle inequality we obtain

|q
1

q
2

� + q
1

p
2

� � p
1

q
2

| <
2�

"M
. (6.9)

Now set P = q
1

q
2

, Q = q
1

p
2

, and invoke assumption (iii), with ⌘/2 in
place of ⌘. At the possible expense of replacing M with its constant
multiple, we see that (6.9) cannot happen when M > c/"5+⌘. ⇤

Proof of Proposition 6.7. It is easy to check that (i) and (ii) are sat-
isfied by ↵, �, �, �. With these choices, ↵ is an irrational in Q(

p

2), �
is an irrational in Q(

p

3), and �, � are in Q(
p

2,
p

3) such that 1, �, �
are linearly independent over Q. Now requirement (iii) follows from a
theorem of Schmidt, see [17, Cor. 1E, p.152]. ⇤

7. A metric theory of uniformly Diophantine s–tuples

Throughout this section, � is a non-increasing function tending to
zero at infinity, s � d+ 1, and ⇥ = ⇥s,d is an s-tuple of vectors in Rd.
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7.1. Uniformly Diophantine s-tuples and multilinear algebra.
Our goal is to provide a su�cient condition for ⇥ to belong to the set
UDT d

s (�). We will require some preliminaries from multilinear algebra.
We introduce the required notions and facts, referring to [7, Chap.3]
for proofs and more details.

Equip Rs with its usual scalar product and let {ei}
1is be the stan-

dard basis. The Grassmann algebra is the vector space

^

Rs def

=
s
M

r=0

r̂

Rs

equipped with the inner product for which the set of wedge products
ei1 ^ · · · ^ eir , where

1  i
1

< i
2

< . . . < ir  s and 0  r  s,

is an orthonormal basis. A multivector X 2

Vr Rs is said to be decom-

posable if there exist x
1

, . . . ,xr in Rs such that X = x

1

^ · · ·^xr. The
Cauchy-Binet formula shows that the scalar productX ·Y between two
pairs of decomposable vectors X = x

1

^ · · ·^xr and Y = y

1

^ · · ·^yr

is given by

X · Y = det (x
i

· y
j

)
1i,jr .

From now on, the notation k . k will be reserved for the norm derived
from this inner product (note that its restriction to

V

1 Rs
' Rs is the

usual Euclidean norm k . k
2

in Rs).
Let P(

V

Rs) be the space of lines in
V

Rs, and for any subspace V
of Rs, given a basis v

1

, . . . ,vr of V , define XV 2 P(
V

Rs) as the line
spanned by v

1

^ · · · ^ vr 2

Vr Rs. It is easily seen that this is well-
defined (independent of the choice of the basis), and it is known that
the map V 7! XV (which is called the Plücker embedding) is a bijection
between the set of r-dimensional linear subspaces in Rs and the set of
lines spanned by nonzero decomposable multivectors in

Vr Rs. For
any nonzero u 2 Rs, the length of the projection of u on the space
orthogonal to V is given by

kXV ^ uk

def

=
kX̂V ^ uk

kX̂V k

, where X̂V = v

1

^ · · · ^ vr,

and this is again independent of choices. The quantity kXV ^uk
kuk is some-

times called the projective distance between V and the line spanned by
u. See [9, §3] and [15, §2] for more details.
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Given an integer T � 1, define Vs,d(T ) to be the set of s⇥ d integer
matrices
�

(u
1

, . . . ,us)
T
2 Zs⇥d : 8i 2 {1, . . . , s}, ui 2 Zd and 1  kuik1  T

 

.
(7.1)

Furthermore, given a matrix U = (u
1

, . . . ,us)T 2 Vs,d(T ), define

t

U

(⇥)
def

= (u
1

· ✓
1

, . . . ,us · ✓s)
T
2 Rs (7.2)

and set for simplicity X

U

= X

colspan(U)

, where colspan(U ) is the sub-
space of Rs spanned by the colums of the matrix U .

The main result in this section is then the following:

Proposition 7.1. Assume that ⇥ /2 UDT d
s (�). Then there exist T �

1, p 2 Zs
and U 2 Vs,d(T ) such that

|pi|  4
p

d · kuik2 ·max{1, k✓ik1} (7.3)

for all i 2 {1, . . . , s} and

y
p

(U ,⇥) = p+ t

U

(⇥) (7.4)

satisfies

kX

U

^ y
p

(U ,⇥)k <
p

s · �(T ). (7.5)

In particular, ⇥ 2 UDT d
s (�) as soon as

inf
T�1

min
U2Vs,d(T )

inf
p2Zs

�

p

s · �(T )
��1

· kX

U

^ y
p

(U ,⇥) k � 1. (7.6)

This condition should be compared with those appearing in the the-
ory of approximation of vectors by rational subspaces. Let y 2 Rs

be a nonzero vector. In the standard theory (see [9, 15] and the ref-
erences therein), one is interested in showing the existence of rational
s ⇥ d matrices U of a given rank 1  r  d for which the inequality
kX

U

^yk  �(T ) holds under the assumption that the so–called ‘Weil
height’ of the subspace colspan(U ) is bounded by T (this height is at
most (T 0)r if the columns of U have Euclidean norms at most T 0). In
the problem we are considering, the vector y is not fixed but rather
varies along with the approximant U , via formula (7.4).

Proposition 7.1 justifies a claim made after Theorem 5.2; namely

that a pair (↵, �)T 2 R2 such that �
def

= � � ↵ is a badly approximable
number belongs to UDT 1

2

(3). Indeed,

V

2,1(T ) =
�

(q, v)T 2 Z2 : 1  |q| , |v|  T
 

.
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From condition (7.6), the claim is easily seen to be implied by the
existence of a constant c = c (�) > 0 such that for T � 1,

min
1|q|,|v|T

hqv�i
p

q2 + v2
�

c

T 3

·

This follows from the assumption that � is a badly approximable num-
ber; that is, from the relation infm2Z\{0} |m| · hm�i > 0.

Proof of Proposition 7.1. The condition ⇥ 62 UDT d
s (�) means that

there exist T � 1 and ⇠ 2 Rd such that for each index 1  i  s,
one can find an integer pi and an integer vector ui satisfying the rela-
tions

1  kuik1  T and ui ·⇠ = pi+ui ·✓i+�i, with |�i| < �(T ). (7.7)

The pi here satisfy the bound (7.3). Indeed, we may assume (translat-
ing ⇠ by an integer vector if necessary) that k⇠ � ✓ik1  1. Thus for
any 1  i  s, by the Cauchy–Schwarz inequality,

|pi|  kuik
2

· (k⇠k
2

+ k✓ik
2

) + |�i|

 kuik
2

·

p

d · (1 + 2 k✓ik1) + 1,

where the trivial bound �(T )  1 guaranteed by (5.6) is used to obtain
the last inequality. Now define

• U as the s⇥ d matrix U

def

= (u
1

, . . . ,us)T ;

• p as the s-dimensional integer vector p
def

= (p
1

, . . . , ps)T ;

• � as the s-dimensional vector �
def

= (�
1

, . . . , �s)T ;
• t

U

(⇥) as the s-dimensional vector (7.2).

The system of equations (7.7) can then be rewritten as

U⇠ = p+ t

U

(⇥) + � (7.8)

with

U 2 Vs,d(T ) and k�k1 < �(T ). (7.9)

Consider ⇠ as the unknown in the linear system of s equations in d
variables (7.8). Assume furthermore that U has rank 1  r  d,
and let v

1

, . . . ,vr 2 Zs denote r linearly independent columns of the
matrix U . From the theory of Gaussian elimination, the system (7.8)
admits a solution if and only if p + t

U

(⇥) + � 2 span {v
1

, . . . ,vr};
that is, if and only if

 

r̂

i=1

vi

!

^ (p+ t

U

(⇥) + �) = 0.
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This equation can be rewritten as

X̂

U

^ (p+ t

U

(⇥)) = �X̂

U

^ �,

where X̂

U

= v

1

^ . . . ^ vr. Hadamard’s inequality (see [20, eq. (13)
p.49]) then implies that

�

�

�

X̂

U

^ (p+ t

U

(⇥))
�

�

�



�

�

�

X̂

U

�

�

�

· k�k

2

<
(7.9)

p

s · �(T ) ·
�

�

�

X̂

U

�

�

�

,

whence the Proposition. ⇤

7.2. Towards a metric theory of uniformly Diophantine s-tuples.
The goal of this section is to establish Theorem 5.3. This will be done
with the help of several lemmas.

Lemma 7.2. Let r 2 {1, . . . , s}, let X 2

Vr Rs
be a nonzero decom-

posable multivector, and let x 2 Rs
. Then

kX ^ xk = kXk ·

�

�P?
X

(x)
�

� ,

where P?
X

denotes the orthogonal projection onto the orthocomplement

of the subspace represented by X.

Proof. This is well–known. See [20, Chap.1. §15] for details. ⇤

The following is an easy consequence of the compactness of the Grass-
mann variety of k-dimensional subspaces in Rs. Note that an explicit
value of the constant cs below can be worked out from [16, Theorem 1]
(one can for instance take cs = 2�s�1).

Lemma 7.3. There is a constant cs > 0 such that for any k 2 {1, . . . , s}
and any k-dimensional subspace H ⇢ Rs

, the following holds. Denote

by PH the orthogonal projection onto H and by (e
1

, . . . , es) the stan-

dard basis of Rs
. Then there exist indices 1  i

1

< i
1

< · · · < ik  s
such that for any x 2 span{eij}1jk,

kPH (x)k
2

� cskxk2.

We will also need a consequence of the Brunn-Minkowski inequality
(see [18, §10.1] for a more detailed discussion).

Lemma 7.4. Let C and K be centrally symmetric convex bodies in Rk
.

Then for any x 2 Rk
,

Vol (C \ (K + x))  Vol (C \K) . (7.10)



30 FAUSTIN ADICEAM, YAAR SOLOMON, AND BARAK WEISS

Proof. Let
C = {y 2 Rk : C \ (K + y) 6= ?},

and let

fC,K : C ! R, fC,K(x)
def

= Vol (C \ (K + x))1/k .

Fix t 2 (0, 1) and x,y 2 C. Since

C \ (K + (1� t)x+ ty)) = C \ ((1� t) (K + x) + t (K + y))

� (1� t) (C \ (K + x)) + t (C \ (K + y)) ,

the Brunn-Minkowski inequality implies that fC,K is concave on C. If
x /2 C then (7.10) is immediate, so let x 2 C. Since C and K are
centrally symmetric, we have fC,K(�x) = f�C,�K(�x) = fC,K(x), and
thus the concave function

t 2 [�1, 1] 7! fC,K (tx)

is even. It therefore reaches its maximum when t = 0. ⇤
With the notation of Proposition 7.1, given positive integersN, T and

U 2 Vs,d(T ), let E
(N)

s,d (U , T ) be the set of d⇥ s-matrices ⇥ satisfying

k⇥k1 < N (7.11)

and such that for some p 2 Zs, (7.5) holds, and

|pi|  4
p

dN kuik
2

for all i 2 {1, . . . , s}. (7.12)

Note that this is just a reformulation of inequality (7.3) taking into
account assumption (7.11). Then we have:

Lemma 7.5. With the above notation,

Vol
⇣

E(N)

s,d (U , T )
⌘

= O
�

T r
· �(T )s�r

�

,

where r = rank(U ) and the implicit constant depends on s, d and N .

Proof. Write the d⇥ s matrix ⇥ = ⇥s,d 2 E(N)

s,d (U , T ) as in (5.2), and
let u

1

, . . . ,us 2 Zd
\{0} denote the transposes of the (nonzero) rows of

U . Fix an integer vector p
def

= (p
1

, . . . , ps)T 2 Zs for which (7.12) holds.
Each ✓i, i 2 {1, . . . , s} can be written uniquely as

✓i = �i ·
ui

kuik
2

+wi 2 B1 (0, N) , with wi · ui = 0, �i 2 R.

(7.13)
By the orthogonality in (7.13), upon identifying u

?
i with Rd�1, the

volume element on Rd can be decomposed in the coordinates (7.13) as

d✓i = d�i · dwi, (7.14)
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and moreover

|�i| <
p

dN and kwik1 <
p

dN. (7.15)

From the condition ⇥ 2 E(N)

s,d (U , T ) we will derive a restriction on
the coe�cients � = (�i)i=1,...,s; for the vectors wi we will not have any
further restriction beyond the bound on the right-hand side (7.15), i.e.,
they are bounded by constants depending only on d and N .

Let H(U ) be the orthocomplement of the subspace of Rs spanned
by the columns of U , so that H(U ) has dimension s � r, and let
I
U

⇢ {1, . . . , s} be the set of s � r indices obtained when applying
Lemma 7.3 to H(U ). Denoting by P the orthogonal projection onto
H(U ), Lemma 7.2 and inequality (7.5) imply that

kP (y
p

(U ,⇥))k = kX

U

^ y
p

(U ,⇥)k

< ⇢
def

=
p

s · �(T ). (7.16)

In terms of the standard basis e
1

, . . . , es of Rs and using (7.2), (7.4)
and (7.13), this yields

kP (y
p

(U ,⇥))k =

�

�

�

�

�

P

 

s
X

i=1

(�i kuik
2

+ pi) ei

!

�

�

�

�

�

2

< ⇢,

which we can rewrite as
�

�

�

�

�

X

i2IU

�i kuik
2

· P (ei) + x

�

�

�

�

�

2

< ⇢, (7.17)

where

x =
X

i2IU

pi · P (ei) +
X

i 62IU

(�i kuik
2

+ pi) · P (ei) 2 H(U ).

Define the centrally symmetric polytope

C
�

def

=

(

X

i2IU

�i kuik
2

· P (ei) : |�i| <
p

dN for all i 2 I
U

)

.

Then (7.17) shows that for ⇥ 2 E(N)

s,d (U , T ), the coe�cients � satisfy

B
2

(0, ⇢) \ (C
�

+ x) 6= ?. (7.18)

Note that x only depends on (�i)i/2IU and that C
�

depends only on
(�i)i2IU .

An immediate consequence of Lemma 7.4 is that the volume of the
intersection (7.18) is less than the volume obtained when setting x = 0.
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In other words, for each fixed x,

Vol
��

(�i)i2IU 2 Rs�r : (7.17) holds
 �

 Vol

0

@

8

<

:

(�i)i2IU :

�

�

�

�

�

P

 

X

i2IU

�i kuik
2

· ei

!

�

�

�

�

�

2

< ⇢

9

=

;

1

A .

From Lemma 7.3 and the choice of the index set I
U

we find that
�

�

�

�

�

X

i2IU

�i kuik
2

· ei

�

�

�

�

�

2

< s⇢ (7.19)

for some constant s > 0 depending only on s. From (7.16), the mea-
sure of the ellipsoid determined by (7.19) is, up to a multiplicative
constant depending on the parameters s, d, r and N ,

Y

i2IU

�(T )

kuik
2

=
�(T )s�r

Q

i2IU kuik
2

· (7.20)

This upper bound is independent of the remaining r coordinates (�i)i 62IU .
When integrating this bound against these r coordinates when they
vary within the range (7.15), one obtains that the measure of the set of
vectors � 2 (�

p

dN,
p

dN)s such that (7.16) holds for a fixed integer
vector p is, up to another multiplicative constant depending on s, d, r
and N , again bounded above by (7.20).

Note that from (7.12), there are at most
⇣

16
p

dN
⌘s

⇥

Qs
i=1

kuik
2

vectors p to be taken into account. Also, from the definition of the set
Vs,d(T ) in (7.1), the inequality kuik

2

 T holds for all i 2 {1, . . . , s}.
The measure of the set of vectors � 2 (�

p

dN,
p

dN)s such that (7.16)
holds for some integer vector p is thus, up to a multiplicative constant
depending on s, d, r and N , at most

�(T )s�r
·

Y

i 62IU

kuik
2

 �(T )s�r
· T r.

The lemma then follows upon integrating this bound according to the
decomposition (7.14) taking into account the right-hand side of (7.15).

⇤
Completion of the proof of Theorem 5.3. Under the assumptions of The-
orem 5.3, using Proposition 7.1, it is enough to prove that for almost
all matrices ⇥ 2 Rd⇥s, there are only finitely many values of T � 1
such that the relation (7.5) holds for some matrix U 2 Vs,d(T ) and
some vector p = (p

1

, . . . , ps)
T
2 Zs satisfying (7.3).
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Given an integer m � 1 such that 2m  T < 2m+1, it follows from
the monotonicity of the function � and from assumption (5.9) that

� (T )  � (2m)  �
�

2m+1

�

for some  > 0 and for all m large enough. Since, clearly, Vs,d(T ) ⇢

Vs,d (2m+1), this shows that it su�ces to consider the case that T is a
power of 2.

Fix an integer N � 1. Then we see that Theorem 5.3 is implied by

Vol

0

@lim sup
m!1

0

@

[

U2Vs,d(2
m
)

E(N)

s,d (U , 2m)

1

A

1

A = 0. (7.21)

To establish this, decompose Vs,d (T ) as the disjoint union

Vs,d (T ) =
d
[

r=1

V

(r)
s,d (T ) ,

where V

(r)
s,d (T ) denotes the set of matrices in Vs,d (T ) with rank r and

note that the number of integral s ⇥ d matrices of norm at most T is
O(T sd). Thus

Vol

0

@

[

U2Vs,d(2
m
)

E(N)

s,d (U , 2m)

1

A



d
X

r=1

X

U2V(r)
s,d(2

m
)

Vol
⇣

E(N)

s,d (U , 2m)
⌘

⌧

(Lemma 7.5)
2msd

d
X

r=1

2mr
· � (2m)s�r

⌧ 2m(s+1)d
· � (2m)s�d ,

where the last relation follows from the trivial bound �(T )  1 guar-
anteed by (5.6). Now (5.10) in conjunction with the Borel–Cantelli
Lemma (see e.g. [8, Lemma C.1]) imply (7.21). ⇤

8. Some open questions

In this section we collect some questions left open by our discussion.

(1) What is the actual optimal bound on the visibility function
in Peres’ original example? Note that Peres gave a bound of
O("�4), which we improved to O("�3), but it is possible that
this bound is also not tight. More generally, can one improve
the visibility bounds of the sets F (⇥s,d) for appropriate choices
of ⇥s,d? Similarly, can one prove better visibility bound for the
uniformly discrete dense forest discussed in Theorem 1.3?
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(2) For appropriate choices of the subspace V , give visibility bounds
for the uniformly discrete example of Theorem 2.5.

(3) What is the best rate that the function � can attain for the set
UDT d

s (�) to be nonempty?
(4) Explicit examples of badly approximable numbers / vectors /

matrices are known: they are constructed from sets of alge-
braic conjugates. Can one find explicit examples of elements in
UDT d

s (�)?
(5) The notion of uniformly Diophantine set of vectors has not been

considered before, but well-studied questions of Diophantine ap-
proximation are of interest here. For example, the Hausdor↵ di-
mension of UDT d

s (�) for various choices of �. Also, for which
choices of � does UDT d

s (�) intersect nondegenerate analytic
manifolds nontrivially? Note that besides its explicit interest,
this is likely to be relevant to Question 1 above, as the condi-
tions under which a union of lattices is uniformly discrete leads
to the consideration of submanifolds in the space of lattices; see
conditions (i) and (ii) of §6.1.
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