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Abstract. We consider the horospherical foliation on any invariant subvari-

ety in the moduli space of translation surfaces. This foliation can be described
dynamically as the strong unstable foliation for the geodesic flow on the in-

variant subvariety, and geometrically, it is induced by the canonical splitting

of C-valued cohomology into its real and imaginary parts. We define a natural
volume form on the leaves of this foliation, and define horospherical measures

as those measures whose conditional measures on leaves are given by the vol-

ume form. We show that the natural measures on invariant subvarieties, and
in particular, the Masur-Veech measures on strata, are horospherical. We show

that these measures are the unique horospherical measures giving zero mass
to the set of surfaces with horizontal saddle connections, extending work of

Lindenstrauss-Mirzakhani and Hamenstädt for principal strata. We describe

all the leaf closures for the horospherical foliation.

1. Introduction

It is an interesting fact that geometric questions about rational polygonal bil-
liards can be addressed by studying the dynamics on moduli spaces of translation
surfaces. This is one of many reasons to study the dynamics on moduli spaces
of translation surfaces — see the surveys [MT02, Zor06, FM14, Wri15b] for other
motivation and a survey of results. We remind the reader that this moduli space is
partitioned into strata, which correspond to translation surfaces of a fixed topologi-
cal type. We useH to denote a stratum andH(1) to denote the subset corresponding

to surfaces of area 1. The group G
def
= SL2(R) acts on H(1).

The horocycle flow is given by

U
def
= {us : s ∈ R} ⊂ G, where us

def
=

(
1 s
0 1

)
.

The analogy between dynamics on strata and homogeneous dynamics has been
fruitful. In the setting of homogeneous dynamics U -actions and G-actions were
analyzed in work of Ratner which showed that orbit closures and ergodic invariant
probability measures are surprisingly well-behaved. The dynamics of G-actions
(and moreover the dynamics of its subgroup P of upper triangular matrices) on
strata were analyzed in two papers [EM18, EMM15] where it was shown that orbit
closures and ergodic invariant measures have nice descriptions (see Section 2.2 for
a precise statement). The situation for the U -action on the strata of the moduli
spaces is now known to be more complicated due to the work of Chaika-Smillie-
Weiss [CSW20].

The G-orbit closures are endowed with a wealth of geometrical structures, among
which is the horospherical foliation which plays the role of the strong unstable man-
ifold foliation for the one parameter diagonal subgroup which is called the geodesic
flow (see §3.2). In §3 we will define horospherical measures. Loosely speaking, the
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horospherical leaves are endowed with affine structures and the horospherical mea-
sures are those for which the conditional measures on these leaves are translation
invariant with respect to these affine structures. In the setting of homogeneous
dynamics, there is a corresponding notion of horospherical dynamics. It has been
established by Dani in [Dan78] and [Dan81] about a decade prior to the work of
Ratner that these dynamical systems are also well-behaved. This paper is con-
cerned with showing that horospherical measures and horospherical leaves in strata
are also well-behaved.

1.1. Statement of results. All measures considered in this paper are Borel regu-
lar Radon measures on strata of translation surfaces. Any G-orbit closure M(1) ⊂
H(1) supports a unique ergodic G-invariant finite smooth measure; we will refer
to this measure as the special flat measure on M(1). The following are the main
results of this paper.

Theorem 1.1. The special flat measure on any G-orbit closure is horospherical.

We will say that a measure µ is saddle connection free if µ-a.e. surface has no
horizontal saddle connections.

Theorem 1.2. Up to scaling, the only saddle connection free horospherical measure
on a G-orbit closure is the special flat measure.

We emphasize that horospherical measures are a a priori not assumed to be
finite. It is thus a consequence of Theorem 1.2 that horospherical measures are
finite under the saddle connection free assumption; it seems likely, but we were
not able to prove, that all ergodic horospherical measures are finite. Theorem 1.2
was announced without proof in [BSW22, Claim 1, §9]. The saddle connection
free assumption cannot be removed; for example, the length measure on a periodic
horocycle trajectory in a closed G-orbit is horospherical. In §5 we will give more
interesting examples of invariant subvarieties and horospherical measures on them,
which are not the special flat measure. We will also classify (see §5.1) all the
horospherical measures on the simplest nontrivial invariant subvarieties, namely
the eigenform loci in H(1, 1).

If a surface has a horizontal cylinder then so does any surface on its horospherical
leaf. We will say that a leaf of the horospherical foliation is cylinder-free if all
surfaces on the leaf have no horizontal cylinders. We say that a measure µ on M
is cylinder-free if µ-a.e. surface has no horizontal cylinders. In §5 we give examples
of horospherical measures which are not special flat and for which almost every
point has a horizontal saddle connection. For these measures it is also the case that
almost every point has a cylinder. It seems likely that this is always the case; or
in other words, that in Theorem 1.2 the condition ‘saddle connection free’ can be
weakened to ‘cylinder-free’. The analogous assertion about orbit closures is true:

Theorem 1.3. Any cylinder-free leaf for the horospherical foliation of a G-orbit
closure is dense in that G-orbit closure.

The proof of Theorem 1.3 uses a statement of independent interest (Theorem
7.2), about extending horizontal saddle connections while staying inside invariant
suborbifolds. This result was explained to us by Paul Apisa and Alex Wright, and
its proof is given in Appendix A.
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The geodesic flow is the restriction of the G-action to the subgroup

(1) A
def
= {gt : t ∈ R} ⊂ G, where gt

def
=

(
et 0
0 e−t

)
.

Answering a question of Forni, we prove:

Theorem 1.4. For any finite horospherical measure µ on M, the pushforward
measures, gt∗µ, converge to the special flat measure on M, with respect to the
weak-∗ topology, as t→ +∞.

Related results are proved in [For21]; we stress however that the notion of ‘horo-
spherical measure’ used in [For21] is different from the one we use here. From a
dynamical perspective, the horospherical foliation is the strong unstable foliation
for the geodesic flow. Our arguments yield a simpler proof of the following theorem.

Theorem 1.5 ([EM18, EMM15]). The special flat measure is the unique A-invariant
horospherical measure on any G-orbit closure. Any leaf for the weak-unstable foli-
ation on any G-orbit closure is dense.

Remark 1.6. Note that we do not assume that the measure in Theorem 1.5 is
finite. If we assumed finiteness, then the first statement would follow immediately
from Theorem 1.4. Also note that Theorem 1.4 is false for infinite measures. Indeed,
in Proposition 6.1, we exhibit an infinite horospherical measure µ and a compact
K such that gt∗µ(K)→t→∞ ∞, and hence no weak-∗ limit of gt∗µ is Radon.

1.2. Further motivation, prior work, and some ideas from the proofs.
The work of Eskin, Mirzakhani and Mohammadi gives a very detailed understand-
ing of invariant measures and sets for the G-action and the P -action on strata of
translation surfaces. A central remaining open problem is to understand horocycle
invariant ergodic measures. Such an understanding would have an application to
the fundamental problem of asymptotic growth of saddle connections on translation
surfaces or rational billiards (see [EM01]). As we will see in §3, horospherical mea-
sures are horocycle-invariant; thus understanding horospherical measures can be
seen as a contribution to the problem of understanding general horocycle-invariant
measures. Specifically, the understanding of horospherical measures has been a key
input to results on more general U -invariant measures in restricted settings — see
[BSW22, ?].

A related result was obtained in 2008, independently by Lindenstrauss and
Mirzakhani [LM08] and by Hamenstädt [Ham09]. They were interested in un-
derstanding mapping class group invariant measures on the space of measured
laminations. This question is related to the problem of classifying horospherical
measures on the principal stratum. Our argument for Theorem 1.2 follows [LM08],
which in turn is inspired by ideas of Dani [Dan78] and Margulis [Mar04] The main
ingredients are the mixing of the A-action, the use of dynamical boxes, an analysis
of how they transform under the A-action, and nondivergence results for the U -
action (which in the present context were obtained in [MW02]). After the requisite
preparations, this argument is given in §4. In order to carry out the details of this
argument, we discuss some geometric structures on orbit-closures for the G-action,
and use these to give a precise description of horospherical measures, special flat
measures, and their decomposition into conditional measures in flow boxes in §3.
Theorem 1.3 is proved in §7. Theorems 1.4 and 1.5 are proved in §6.
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2. Preliminaries

In this section we introduce our objects of study and set up our notation. There
are many approaches to these definitions. In our approach, the linear orbifold
structure (or affine orbifold structure) given by period coordinates will be important
and we will stress this point of view in what follows. A suitable reference for the
theory utilizing this point of view is [BSW22, §2], and unless stated otherwise, our
notation, terminology and assumptions are as in [BSW22]. See also [MT02, Zor06,
FM14, Wri15b]. See [Gol] for a general discussion of affine manifolds.

2.1. Strata and period coordinates. Let S be a connected, compact orientable
surface of genus g, Σ = {ξ1, . . . , ξk} ⊂ S a finite set, a1, . . . , ak non-negative integers
with

∑
ai = 2g−2, andH = H(a1, . . . , ak) the corresponding stratum of translation

surfaces. We let Hm = Hm(a1, . . . , ak) denote the stratum of marked translation
surfaces and π : Hm → H the forgetful mapping. It will be useful to assume that
singular points are labeled, or equivalently, H = Hm/Mod(S,Σ), where Mod(S,Σ)
is the group of isotopy classes of orientation-preserving homeomorphisms of S fixing
Σ, up to an isotopy fixing Σ. We will typically denote elements of H by the letter q
when we want to consider them as points of H, and by the letter M or Mq when we
want to consider their underlying topological or geometrical properties as spaces in
their own right. Points in Hm will be typically denoted by boldface letters such as
q.

We recall from [BSW22] the definition of the map dev : Hm → H1
(
S,Σ;R2

)
. For

an oriented path γ in Mq which is either closed or has endpoints at singularities, let

hol(Mq, γ)
def
=
(∫

γ
dxq,

∫
γ
dyq

)
, where dxq and dyq are the 1-forms on Mq inherited

from the forms dx and dy on the plane. Observe that hol(Mq, )̇ is an element
of H1(Mq,Σ,R2). Given q ∈ Hm represented by f : S → Mq, where Mq is a

translation surface, we define dev(q)
def
= f∗(hol(Mq, ·)), where f∗ denotes the map

induced by f in cohomology. dev(q) is thus an element of H1(S,Σ,R2). The map
dev is also known in the literature as the period map. There is an open cover {Uτ}
of Hm, indexed by triangulations τ of S with triangles whose vertices are in Σ, such
that the restricted maps

ϕτ
def
= dev|Uτ , ϕτ : Uτ → H1

(
S,Σ;R2

)
are homeomorphisms onto their image. The charts ϕτ give an atlas with affine
overlap maps and endow Hm with a structure of affine manifold. This atlas of
charts {(Uτ , ϕτ )} is known as the period coordinate atlas.

The Mod(S,Σ)-action on Hm is properly discontinuous and affine, and hence H
inherits the structure of affine orbifold, and the map π : Hm → H is an orbifold
covering map. We can associate to any affine manifold a holonomy cover and a
developing map. In this case Hm is a cover with trivial holonomy and dev plays the
role of a developing map of H (see [Gol]).
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The group GL+
2 (R) acts on translation surfaces inH andHm by modifying planar

charts. It acts on H1
(
S,Σ;R2

)
via its action on the coefficients R2. The GL+

2 (R)-

action commutes with the Mod(S,Σ)-action, and thus the map π is GL+
2 (R)-

equivariant for these actions. The GL+
2 (R)-action on Hm is free, since dev(gq) 6=

dev(q) for any nontrivial g ∈ GL+
2 (R).

We have a coordinate splitting of R2 and we write R2 = Rx⊕Ry to distinguish the
two summands in this splitting. There is a corresponding splitting of cohomology

(2) H1
(
S,Σ;R2

)
= H1(S,Σ;Rx)⊕H1 (S,Σ;Ry) .

We refer to the summands in this splitting as the horizontal space and vertical space
respectively.

It can also be useful to identify the coefficients with C and consider H1(S,Σ;C).
This is the most natural choice when we are considering Abelian differentials. An R-
structure on a complex vector space V is given by a choice of a real subspace W ⊂ V
so that V = W ⊕ iW . If V is equipped with an R-structure we say that a complex
subspace V ′ ⊂ V is defined over R if V ′ = W ′⊕iW ′ for some real subspace W ′ ⊂W .
We give the complex vector space V = H1(S,Σ;C) the R-structure corresponding
to the real subspace W = H1(S,Σ;R) = H1(S,Σ;Rx) ⊂ H1(S,Σ;C). In this
language iW = iH1(S,Σ;R) = H1(S,Σ;Ry).

More generally, if V is a complex vector space with an R-structure, then GL+
2 (R)

acts on V , with the matrix (
a b
c d

)
sending v = w1 + iw2 to (aw1 + bw2) + i(cw1 + dw2).

Lemma 2.1. Let V be a complex vector space with an R-structure, and V ′ be a
real subspace. The following are equivalent:

(1) V ′ is invariant under the action of GL+
2 (R).

(2) V ′ ⊂ H1(S,Σ;C) is a complex subspace defined over R.

Proof. The implication (2) =⇒ (1) is clear from the definitions. We prove (1)
implies (2). If V ′ is invariant under GL+

2 (R), then since it is a closed subset of V ,
it is mapped into itself by any 2-by-2 matrix, invertible or not. Let

a
def
=

(
0 −1
1 0

)
, b

def
=

(
1 0
0 0

)
, and c

def
= aba−1 =

(
0 0
0 1

)
.

From the definition of the GL+
2 (R) action, one sees that multiplication by a corre-

sponds to multiplication by i, and multiplication by b and c correspond to projec-
tions onto the two summands in (2). Invariance by a implies that V ′ is a complex
subspace, and from the relations bV ′ ⊂ V ′ and cV ′ ⊂ V ′ and b + c = Id, we see
that V ′ is defined over R. �

Remark 2.2. If V has an R-structure, then so does its dual space, so it makes sense
to say that a linear function on V is real. A complex subspace of V is defined over
R if and only it cut out by real linear functions. We will not use this description
in this paper.

We have a restriction map Res : H1(S,Σ;R2)→ H1(S;R2) (given by restricting
a cochain to closed paths). Since Res is topologically defined, its kernel ker(Res)
is Mod(S,Σ)-invariant. Moreover our convention that singular points are marked
implies that the Mod(S,Σ)-action on ker(Res) is trivial.
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Define the real REL space

(3) Z
def
= ker(Res) ∩H1(S,Σ;Rx).

For any v ∈ Z the constant vector field on H1(S,Σ;R2) in direction v pulls back to a
well-defined vector field on Hm via the local diffeomorphism dev. Since monodromy
acts trivially on Z, this descends to a vector field on H. Integrating this vector
field gives a locally defined real REL flow (corresponding to v) (t, q) 7→ Reltv(q).
For every q ∈ H a trajectory is defined for t ∈ Iq, where the domain of definition
Iq = Iq(v) is an open interval of R which contains 0. This interval is all of R if the
underlying surface Mq has no horizontal saddle connections. If q ∈ H, s ∈ R and
t ∈ Iq then t ∈ Iusq, and Reltv(usq) = usReltv(q). The set

(4) Z(q) def
= {v ∈ Z : Relv(q) is defined} = {v ∈ Z : 1 ∈ Iq(v)},

as well as the sets Iq(v), are explicitly described in [BSW22, Thm. 6.1].

2.2. Invariant subvarieties. In this subsection, we introduce our notion of in-
variant subvarieties and irreducible invariant subvarieties. It will be shown in [SY],
using the work of Eskin-Mirzakhani [EM18] and Eskin-Mirzakhani-Mohammadi
[EMM15], that an irreducible invariant subvariety is exactly a GL+

2 (R)-orbit clo-
sure while an invariant subvariety is a finite union of such GL+

2 (R)-orbit closures.

Definition 2.3. A d-dimensional linear manifold is a submanifold L of Hm which
is a connected component of dev−1(V ) where V is a d-dimensional complex subspace
of H1

(
S,Σ;R2

)
defined over R.

Since the developing map is equivariant and Mod(S,Σ) acts linearly on the
space H1

(
S,Σ;R2

)
, it follows that Mod(S,Σ) takes a d-dimensional linear manifold

to a d-dimensional linear manifold. If L is a linear manifold corresponding to
VL ⊂ H1

(
S,Σ;R2

)
, we denote by ΓL be the subgroup of Mod(S,Σ) that preserves

L. Since the developing map dev is Mod(S,Σ)-equivariant, we get an induced
action of ΓL on VL. We say that L is an equilinear manifold if furthermore we have
det (γ|VL) = ±1 for every γ ∈ ΓL. This condition is a strong condition when the
group ΓL is large. This will be implied by local finiteness discussed below. This
condition will be used later to construct natural ΓL-invariant measures on L.

Definition 2.4. A d-dimensional invariant subvariety is a subset M ⊂ H such
that π−1(M) is a locally finite union of d-dimensional equilinear manifolds.

We will write d = dim(M); in some texts this is referred to as the complex
dimension of M. The term “invariant” in the definition of invariant subvariety is
justified by the following:

Proposition 2.5. An invariant subvariety is closed and GL+
2 (R)-invariant.

Proof. Since V is a closed subset of H1
(
S,Σ;R2

)
it follows that dev−1(V ) is a

closed subset of Hm. It follows that a linear manifold is a closed subset of Hm.
The set π−1(M) is closed because it is a locally finite union of closed sets, and this
implies that M is closed.

Since π is GL+
2 (R)-equivariant, it is enough to prove that π−1(M) is GL+

2 (R)-
invariant. Let L be a linear submanifold contained in π−1(M) which maps to VL
under dev. By definition, VL is defined over R and by Lemma 2.1 it is invariant
under the action of GL+

2 (R) on H1
(
S,Σ;R2

)
. Since dev is GL+

2 (R)-equivariant
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the action of GL+
2 (R) on Hm preserves dev−1(VL). Since GL+

2 (R) is connected,
the action of GL+

2 (R) on Hm preserves L. Since π−1(M) is a union of linear sub-
manifolds it follows that it is invariant under GL+

2 (R). �

Definition 2.6. A d-dimensional invariant subvariety is said to be irreducible
if it cannot be written as a union of two proper distinct d-dimensional invariant
subvarieties.

We have the following equivalent characterization:

Proposition 2.7. Let M be a d-dimensional invariant subvariety. Then M is
irreducible if and only if for any d-dimensional equilinear manifold L ⊂ π−1(M),
we have

(5)
⋃

γ∈Mod(S,Σ)

L · γ = π−1(M).

For the proof of Proposition 2.7 we will need the following:

Lemma 2.8. If L and L′ are distinct d-dimensional linear submanifolds, then
π(L) ∩ π(L′) is a meager subset of π(L) and of π(L′).

Proof. We first show that π−1 (π(L) ∩ π(L′)) is a countable union of sets of dimen-
sion less than d. We have:

π−1(π(L)) =
⋃

γ∈Mod(S,Σ)

L · γ and π−1(π(L′)) =
⋃

γ∈Mod(S,Σ)

L′ · γ.

Now consider an intersection (L · γ) ∩ (L′ · γ′). We have dev(L · γ) ⊂ V and
dev(L′ ·γ) ⊂ V ′ for d-dimensional linear subspaces of H1(S,Σ;R2). If V = V ′ then
L · γ and L′ · γ′ are topological components of dev−1(V ) so they are either disjoint
or equal. If L · γ = L′ · γ′ then L = L′ · γ′γ−1 so π−1(π(L)) = π−1(π(L′)) and
π(L) = π(L′) contrary to assumption.

If V 6= V ′ then (L · γ) ∩ (L′ · γ′) ⊂ dev−1(V ∩ V ′). This is a complex subspace
of positive codimension so its inverse image is a nowhere dense subset of the d-
dimensional manifolds L ·γ and L′ ·γ′. Thus π−1 (π(L) ∩ π(L′)) is a meager subset
of π−1(π(L)) and π−1(π(L′)). Since π is open and the intersections (L ·γ)∩ (L′ ·γ′)
are closed, the projection π(L) ∩ π(L′) is a meager subset of π(L) and π(L′). �

Proof of Proposition 2.7. Say that M is irreducible and let L be a d-dimensional
equilinear manifold in π−1(M). If (5) does not hold, we can write π−1(M) as a
countable union of orbits of distinct linear submanifolds L1, L2, . . ., as

π−1(M) =
⋃
`

⋃
γ∈Mod(S,Σ)

L` · γ,

where L = L1 and the list {Li} contains more than one element. We have

M =
⋃
`

π(L`).

We define

A
def
= π(L1) and B

def
=
⋃
1<`

π(L`).

Since M is irreducible, and since we have assumed that (5) fails, we have M = B.
This implies A ⊂ B, and hence π(L1) =

⋃
` π(L1)∩π(L`). According to Lemma 2.8
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π(L1)∩ π(L`) is a meager subset of π(L1) so our decomposition of π(L1) expresses
π(L1) as a meager set and violates the Baire category theorem. We conclude that
M = A which is what we wanted to show.

Now assume that for any d-dimensional equilinear manifold L ⊂ π−1(M) we
have (5). Suppose we have a decomposition M = A ∪B where

A =
⋃
j

π(Lj) and B =
⋃
k

π(L′k),

where both collections {Li}, {L′k} are Mod(S,Σ)-invariant and comprised of d-
dimensional equilinear manifolds. By (5), π−1(A) and π−1(B) are either empty or
equal to π−1(M). Thus A and B are not proper subsets of M. �

It follows from Proposition 2.7 that ifM is a d-dimensional irreducible invariant
subvariety and L is a d-dimensional equilinear manifold contained in π−1(M), then
π(L) = M. This motivates the following definition that will be used throughout
the text

Definition 2.9. Let M be a d-dimensional irreducible invariant subvariety. A lift
of M is a d-dimensional equilinear manifold L ⊂ π−1(M).

The following result establishes the link between GL+
2 (R)-orbit closures and in-

variant subvarieties. In the forthcoming [SY], it will be deduced from the results of
[EMM15, EM18].

Theorem 2.10. Irreducible invariant subvarieties and GL+
2 (R)-orbit closures coin-

cide. Furthermore, any invariant subvariety is a finite union of irreducible invariant
subvarieties.

Convention 2.11. From now on we will make the standing assumption that all
the invariant subvarieties we will consider are irreducible.

Let M be a d-dimensional invariant subvariety. We conclude this section by
constructing a Radon measure supported on M which will be defined up to a
multiplicative constant. This will require some constructions which are summarized
in Appendix B. Let L be a lift of M, let VL = dev(L) and let ΓL be the stabilizer
in Mod(S,Σ) of L. Let α be a volume form on L that is obtained as the pullback
by dev of an element of the top degree exterior power of VL. The group GL+

2 (R)
acts smoothly on Hm. Denoting by g∗ the pull-back operator on differential forms
corresponding to the action of g ∈ GL+

2 (R) on Hm, we have

∀g ∈ GL+
2 (R), g∗α = (det g)d α.(6)

The volume form α defines a measure on L that we denote by µL. Since L is an
equilinear manifold, the measure µL is ΓL-invariant. Furthermore, since Mod(S,Σ)
acts transitively on the set of of lifts of M, it can be arranged that for any γ ∈
Mod(S,Σ), γ∗µL = µL·γ . This means that the sum

µ̃M =
∑

L⊂π−1(M)

µL,

where the sum ranges over the lifts of M, is a Mod(S,Σ)-invariant measure on
Hm. The measure µ̃M is a Radon measure, which follows from the fact that the
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collection of irreducible components is locally finite. Using Proposition B.3, there
is a unique Radon measure µM on H such that for any f ∈ Cc(Hm), we have∫

Hm

f dµ̃M =

∫
H

(∫
Hm

f dθq

)
dµM(q),

where

θq
def
=

∑
q∈π−1(q)

N(q) · δq, N(q)
def
= |{γ ∈ Mod(S,Σ) : q = q · γ}|

(as in equation (44)). The measure µM is supported on M. It follows from
Lemma B.2 that it is SL2(R)-invariant. We call it the linear measure on M.
Notice that this is a slight abuse of language as µM is only determined up to a
multiplicative constant.

2.3. Area one locus, cone construction, and special linear measures. Let
q ∈ Hm, let q = π(q), and let M = Mq be the underlying translation surface.
The area of M can be expressed using period coordinates as follows. We define a
Hermitian form on H1(S,Σ;C) by

(7) (α, β) =
i

2

∫
S

α ∧ β̄.

(See [BSW22, §2.5] for a topological interpretation of equation (7).) The area of
M is then given by (dev(q),dev(q)). This is thus a quadratic formula in period
coordinates. Note that (·, ·) is the pull-back of the intersection form on H1(S;C)
to H1(S,Σ;C).

For the purposes of this paper we will use a related real valued bracket 〈α, β〉
involving the pairing of horizontal and vertical classes. Say that on a marked surface
Mq we have a 1-form α corresponding to an element of H1(S,Σ;Rx) (a horizontal
form) and a 1-form β corresponding to an element of H1(S,Σ;Ry) (a vertical form).
Then

〈α, β〉 =

∫
S

α ∧ β

and this gives

(8) area(Mq) = 〈dxq, dyq〉 =

∫
S

dxq ∧ dyq.

We denote the subset of surfaces in Hm and H of area one by H(1)
m and H(1).

More generally, when M is an invariant subvariety and L is a lift of M, we also
denote by M(1) and L(1) their intersection with the area-one locus. The latter are
G-invariant and invariant under real REL flows (where defined).

We recall that there is a rescaling action of R∗+ on H that corresponds to the

action of the subgroup of GL+
2 (R) of scalar matrices with positive coefficients. We

consider the cone measure mM onM(1) defined for any Borel subset A ⊂M(1) by

mM(A)
def
= µM(cone(A)), where cone(A)

def
= {t · a : t ∈ (0, 1], a ∈ A}.(9)

When M is the whole stratum H, the measure mH is proportional to the Masur-
Veech measure. More generally, we shall call the measure mM the special flat
measure on M. If L is a lift of M, we can perform the same cone construction
with the measure µL and we denote by mL the corresponding measure. Let m̃M
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be the pre-image of mM under π, that is the unique measure on Hm such that for
any f ∈ Cc(Hm), ∫

π−1(M)

f dm̃M =

∫
M

(∫
Hm

f dθq

)
dmM(q)(10)

(see Definition B.1). It is easily verified that

m̃M =
∑

L⊂π−1(M)

mL.(11)

One can show that the special flat measure mM is always finite. Indeed, this is a
consequence of Theorem 1.1 and Lemma 4.8.

2.4. The sup-norm Finsler metric. We now recall the sup-norm Finsler metric
on Hm. This structure was studied by Avila, Gouëzel and Yoccoz, for proofs and
more details see [AGY06] and [AG10]. Let ‖ · ‖ denote the Euclidean norm on R2.
For a translation surface q, denote by Λq the collection of saddle connections on
Mq and let `q(σ) = ‖holq(σ)‖ be the length of σ ∈ Λq. For β ∈ H1(Mq,Σq;R2) we
set

(12) ‖β‖q
def
= sup

σ∈Λq

‖β(σ)‖
`q(σ)

.

We now define a Finsler metric for Hm. Let f : S → Mq be a marking map
representing a marked surface q ∈ Hm. Using period coordinates we can identify
the tangent space to Hm at q with H1(S,Σ;R2). Then

(13) ‖β‖q
def
= sup

τ∈Λq

‖β(f(τ))‖
`q(f(τ))

is a norm on H1(S,Σ;R2). It satisfies the equivariance property

(14) ∀h ∈ Mod(S,Σ), ‖β‖q = ‖h∗β‖q·h,
where q · h is represented by the marking map f ◦ h. The map

T (Hm)→ R, (q, β) 7→ ‖β‖q
is continuous. The Finsler metric defines a distance function1 on Hm which we call
the sup-norm distance and define as follows:

(15) dist(q0, q1)
def
= inf

γ

∫ 1

0

‖γ′(τ)‖γ(τ)dτ,

where γ ranges over smooth paths γ : [0, 1] → H with γ(0) = q0 and γ(1) = q1.
The topology induced by the sup norm distance on Hm is the one induced by period
coordinates, and the resulting metric space is proper and complete. We can use the
distance function on Hm to define a distance function on H by

dist(q0, q1) = inf{dist(q0, q1) : qi ∈ π−1(qi), i = 0, 1}.

3. Horospherical measures

Let M be an invariant subvariety of dimension n. The goal of this section is
to define the horospherical foliation onM and the related horospherical measures,
which are our object of study in this paper. These objects will be defined via their
counterparts for the irreducible components of π−1(M).

1In order to avoid confusion we use ‘distance function’ to refer to what is often called a metric.
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3.1. Boxes. We now define a notion of boxes. They will be used throughout the
text and will play two roles: boxes give local coordinates on invariant subvarieties
(more precisely, on the irreducible components of their pre-image by π) that are
convenient for the study of horospherical measures; additionally, they will be used
in a mixing argument in the proof of Theorem 1.2.

From now on, we identify H1(S,Σ,C) with H1(S,Σ,R2) as in §2.1. Let V ⊂
H1(S,Σ,C) be a complex linear subspace defined over R. We have

(16) V = Vx ⊕ Vy,

where

Vx
def
= V ∩H1(S,Σ;Rx) and Vy

def
= V ∩H1(S,Σ;Ry)

are identified by the isomorphism Vx 3 v 7→ iv ∈ Vy. We define

V (1) def
= {(x, y) ∈ V : x ∈ Vx, y ∈ Vy, 〈x, y〉 = 1},

and denote by

(17) πx : V → Vx, πy : V → Vy

the projections corresponding to the direct sum decomposition (16), and by π′x the
projection from π−1

x (Vx r {0}) to the projective space P(Vx). Finally let

(18) Ψ : V (1) → P(Vx)× Vy, Ψ(q) = (π′x(q), πy(q)).

Lemma 3.1. The map Ψ is a local diffeomorphism.

Proof. Say that (x0, y0) ∈ V (1) is mapped by Ψ to (x̄0, y0) in P(Vx)× Vy. We will
construct a local inverse. Since 〈x0, y0〉 = 1 we can find neighborhoods Ux of x0 in
Vx and Uy of y0 in Vy so that 〈x, y〉 > 0 for x ∈ Ux and y ∈ Uy. We define maps

(19) ψ̃ : Ux × Uy → V (1), ψ̃(x, y) =

(
x

〈x, y〉
, y

)
and

(20) ψ : U ′x × Uy → V (1), ψ([x], y)
def
= ψ̃(x, y), where U ′x

def
= π′x(Ux).

The map ψ̃ is smooth and descends in a well-defined way to define ψ. We see that
Ψ ◦ ψ is the identity map, i.e., ψ is a local inverse of Ψ. �

Definition 3.2 (Boxes). Let L be a lift of M and let V = dev(L). A box in L is a
relatively compact subset B ⊂ L(1) together with a diffeomorphism ϕ : U ′x×Uy → B
such that, in the notations above,

• U ′x and Uy are open sets in P(Vx) and Vy respectively.
• Ψ ◦ dev ◦ ϕ = Id.

For y ∈ Uy, the plaque of y in B is the set Ly
def
= ϕ(U ′x × {y}).

The composition in the second item in Definition 3.2 makes sense since dev(L(1)) ⊂
V (1), in light of equation (8). It should be understood as a choice of a suitable pa-
rameterization for boxes. Note that the data ϕ,U ′x × Uy are implicit in the notion
of a box, but in order to avoid excessive notation we simply write B.

More generally, a box in π−1(M) is a box in one of the irreducible components
of π−1(M). Such a box B will be called regular if for any γ ∈ Mod(S,Σ) either
B · γ ∩B = ∅ or γ ∈ Γ, where Γ is the stabilizer in Mod(S,Σ) of B (i.e. the set
of γ ∈ Mod(S,Σ) such that B · γ = B). When B is regular, the map π induces
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a homeomorphism B/Γ → π(B). In particular the image of a regular box by
π is an open subset of M. Since Mod(S,Σ) acts diagonally on P(H1(S,Σ,Rx))×
H1(S,Σ,Ry), the set of boxes is preserved by the action of Mod(S,Σ). Furthermore,
a finite intersection of boxes is a box. Thus, by Lemma 3.1, for every q ∈ π−1(M),
there is a regular box in π−1(M) containing q.

Remark 3.3. There is an asymmetry in the definition of a box; we could equally
well define a box using Vx and P(Vy).

3.2. Definition of the horospherical foliation. Recall that a smooth map of
manifolds is a submersion if its derivative is of full rank at every point. The im-
plicit function theorem implies that the connected components of the fibers of a
submersion are the leaves of a foliation.

Definition 3.4. Let L be a lift of M and let V be the linear space on which L is
modeled. The foliations on L(1) induced by the submersions

π′x ◦ dev : L(1) → P(Vx) and πy ◦ dev : L(1) → Vy,

are called the weak stable and strong unstable foliations. They are denoted respec-
tively by W s

L and Wuu
L . The leaf of the weak stable foliation containing q ∈ L(1)

will be denoted by W s
L(q) and the leaf of the strong unstable foliation containing q

will be denoted by Wuu
L (q).

It follows from Lemma 3.1 that these foliations are well-defined, and the leaves
of these foliations are everywhere transverse.

Lemma 3.5. The action of Mod(S,Σ) permutes the leaves of Wuu
L . For any leaf

F , the restriction dev|F is a local homeomorphism to an affine subspace of V and

with respect to this affine structure, the subgroup ΓL
def
= {γ ∈ Mod(S,Σ) : L ·γ = L}

acts on the leaves of Wuu
L by affine maps.

Proof. The monodromy preserves the product splitting V = Vx ⊕ Vy and acts
linearly on each factor. Thus the monodromy acts projectively on P(Vx). Since dev
is monodromy equivariant, the leaves of the foliations W s

L and Wuu
L are permuted

by the action of Mod(S,Σ).
For the second assertion, it is clear from the definitions that dev maps the leaf F

to a set of the form {(x, y0) ∈ V : x ∈ Vx and 〈x, y0〉 = 1} for some fixed y0 ∈ Vy, and
by Lemma 3.1, the map dev|F is a local diffeomorphism. The last assertion follows
from the Mod(S,Σ)-equivariance of dev and the fact that Mod(S,Σ) preserves the
bracket 〈·, ·〉. �

Remark 3.6. Lemma 3.5 equips the leaves of the foliation Wuu
L with an affine

manifold structure. This structure need not be geodesically complete. Using real Rel
deformations, one easily constructs affine geodesics in a leaf Wuu

L (q) which contain
a surface with a horizontal saddle connection whose length goes to zero as one
moves along the leaf. There are additional sources of non-completeness involving
surfaces whose horizontal foliation is minimal but not uniquely ergodic, see [MW14].
Furthermore, using [MW14, Thm. 1.2], one can show that each leaf Wuu

L (q) is
mapped by the developing map homeomorphically to an explicitly described convex
domain in H1(S,Σ;Rx), defined by finitely many linear inequalities and equalities.

It follows from Lemma 3.5 that the partition of L(1) given by the leaves Wuu
L

induces a partition of M(1). We denote it by Wuu and if q ∈ M(1), we denote
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by Wuu(q) the element of the partition that contains q. We emphasize that Wuu

does not depend on the choice of a particular irreducible component used to define
it. This is a consequence of the fact that Mod(S,Σ) acts on H1(S,Σ,C) by real
endomorphisms and thus preserves the splitting into real and imaginary parts of
cohomology classes.

Definition 3.7. A horosphere is an element of the partition Wuu.

Remark 3.8. Occasionally, we may call the partition Wuu the horospherical fo-
liation of M, even though M is generally not a manifold. Even if this will play
no role in the rest of the paper, we justify this choice of terminology for the sake
of completeness: the invariant subvariety M can be seen to have the structure of a
properly immersed manifold M, i.e., is the image of a manifold N under a proper
orbifold immersion f : N → H and there is a foliation on N whose leaves are sent
to horospheres by f . We can choose N to be the quotient of L by a finite-index
torsion-free normal subgroup Γ0 of Mod(S,Σ) and f : L/Γ0 → H, qΓ0 7→ π(q). By
Lemma 3.5, the horospherical foliation on L descends to a foliation on the man-
ifold L/Γ0. The leaves of this foliation are indeed mapped to horospheres and f
is an orbifold immersion. The fact that it is proper follows from the fact that the
collection of irreducible components of π−1(M) is locally finite.

Reversing the roles of πx and πy, and defining π′y in an analogous fashion, we
also define the strong stable and weak unstable foliations W ss

L and Wu
L as those

induced by the submersion πx ◦ dev, π′y ◦ dev respectively. Lemma 3.5 holds for
these foliations as well, with obvious modifications. Summarizing: for every q ∈ L
we have

W ss
L (q) ⊂W s

L(q), Wuu
L (q) ⊂Wu

L(q),

the leaves W ss
L (q) and Wuu

L (q) have a natural affine structure and, for n = dim(M),
we have

dimW ss
L (q) = dimWuu

L (q) = n− 1, dimW s
L(q) = dimWu

L(q) = n.

As we saw in §2.4, the sup-norm Finsler metric induces a distance function on
Hm as a path metric. We will induce distance functions on leaves of the stable and
strong stable foliations using the same approach. For q0, q1 ∈ Hm belonging to

the same stable (respectively, strong stable) leaf, we define dist(s)(q0, q1) (respec-

tively, dist(ss)(q0, q1)) by the formula in equation (15), but making the additional
requirement that the entire path γ is contained in the stable (respectively strong
stable) leaf of the qi.

We similarly define dist(s)(q0, q1) and dist(ss)(q0, q1) for q0, q1 ∈ H belonging to
the same stable (respectively, strong stable) leaf. We will call the distance functions

dist(s), dist(ss) the stable (resp. strong stable) sup-norm distance function.
These distance functions have the following properties:

Proposition 3.9. Let L a lift of M and let q0, q1 ∈ L.

(1) If q0, q1 are in the same stable (resp., strong stable leaf) leaf then dist(q0, q1) ≤
dist(s)(q0, q1) (resp., dist(q0, q1) ≤ dist(ss)(q0, q1)).

(2) If q0, q1 are in the same strong stable leaf then for all t ≥ 0,

dist(ss)(gtq0, gtq1) ≤ dist(ss)(q0, q1).

And the same holds for the strong unstable leaf.
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(3) If q1 = gtq0 for some t ∈ R then dist(s)(q0, q1) ≤ |t|.
(4) Statements (1), (2) and (3) also hold in H, for q0, q1 in place of q0, q1.

Proof. Assertion (1) is obvious from definitions, and assertions (2) and (3) are
proved in [AG10, §5] (where what we call the strong stable foliation is referred to
as the stable foliation). The assertions for H follows from the corresponding ones
for Hm. �

Remark 3.10. Almost everywhere, the horospheres Wuu(q) and W ss(q) are actu-
ally the unstable and stable manifolds of the geodesic flow. That is, for any q, and
almost every (with respect to the measure class induced by the affine structure on
leaves) q1 ∈Wuu(q), q2 ∈W ss(q), we have

dist(gtq, gtq1) −→
t→−∞

0 and dist(gtq, gtq2) −→
t→∞

0.

This is proved in [Vee86] (see also [FM14]) for M = H(1). The same result for
general invariant subvarieties can be proved by adapting the arguments used in
[FM14].

3.3. Definition of horospherical measures. Let L be a lift of M as in Subsec-
tion 2.2 and let V ⊂ H1(S,Σ,C) be the subspace on which L is modeled. We write
V = Vx ⊕ Vy as in equation (2). Let ηx and ηy be the translation invariant volume
forms on Vx and Vy determined by a choice of an element of the top degree wedge
power of Vx and Vy. Define

αx
def
= (πx ◦ dev)∗(ηx), αy

def
= (πy ◦ dev)∗(ηy).(21)

We recall that the measure µL on L was defined in Section 2.2 as the integral of
a volume form α. From now on, this form will be chosen so that α = αx ∧ αy. We
define the Euler vector field E on Hm such that for any q ∈ Hm,

E(q) = Ex(q)
def
=

∂

∂t

∣∣∣
t=0

(
et 0
0 et

)
· q.(22)

This vector field can be thought of as the tangent vector to the rescaling action,
which justifies our choice of terminology. Notice furthermore that the image of E
by dev is the usual Euler vector field e(v) = v on H1(S,Σ;C). This is due to the
fact that dev is GL+

2 (R)-equivariant. Since L is a linear manifold, the vector field
E is tangent to it. We use this to define the form

βx
def
= ιEαx,

i.e., the contraction of αx by the Euler field E. The restriction of βx to the leaves
of Wuu

L induces a volume form. We denote by νβx
the induced measures. We

emphasize that this defines a system of measures, one on each leaf Wuu
L (q), so

one should write νLβx,q
instead of νβx

; we omit this in our notation. We say that

a measure m on L is horospherical if it is supported on L(1) and its conditional
measures on the leaves of Wuu

L are given by the measures νβx
. More precisely, this

means that for any box B in L, there is a measure λ on Uy such that for any
compactly supported continuous function f : L→ R,

(23)

∫
B

f dν =

∫
Uy

(∫
Ly

f dνβx

)
dλ(y).
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Remark 3.11. The measure λ is an example of a ‘transverse measure’ for the
horospherical foliation. This means it is a system of measures on sets tranverse
to the foliation which is invariant under holonomy along leaves, see [CC03, Vol.
1, 10.1.13 & 11.5.2]. According to the theory of transverse measures equation (23)
yields as a bijection between horospherical measures and transverse measures. We
will not be using this point of view in this paper.

Remark 3.12. Let φt be a smooth flow acting on L. A measure ν is said to be
invariant if for any t ∈ R we have (φt)∗ν = ν. This definition is equivalent to
requiring that the conditional measures of ν on the orbits of φt be multiples of the
Lebesgue measure dt, i.e., invariant under the maps φsx 7→ φt+sx for any fixed t.
The equivalence can be shown by disintegrating ν on flow boxes, i.e., boxes whose
horizontal plaques are pieces of φt-orbits. By Lemma 3.5, leaves of Wuu

L are modeled
on linear subspaces, and thus one could try and define horospherical measures as
those that are invariant under translation along the leaves. However, these transla-
tions are not part of a globally defined group action; for instance trajectories might
escape to infinity in finite time. Our definition of horospherical measures is in-
spired by the second characterization of invariant measures, where the foliation by
orbits of φt is replaced by the strong unstable foliation and the translation invariant
measure dt is replaced by νβx .

In order to define a notion of horospherical measures on M, we first need some
terminology: let ν be a Radon measure onM and let ν̃ be its pre-image by π as in
equation (10) (see also Appendix B). By construction, the measure ν̃ is supported
on π−1(M). If L is a lift ofM, then the restriction of the measure ν̃ to L is called
the lift of ν corresponding to L. More generally, a lift of ν is a measure of the form
ν̃|L where L is any lift of M. For instance, the measures mL in equation (11) are
the lifts of mM.

Definition 3.13 (Horospherical measure). A Radon measure ν on M(1) is horo-
spherical if its lifts are horospherical.

By Proposition 2.7, it is enough that one of the lifts is horospherical, as the
action of Mod(S,Σ) preserves the set of horospherical measures on Hm. It will also
be convenient for us to speak of a horospherical measure onM by which we mean a
measure supported on M(1) ⊂M which is horospherical when restricted to M(1).
We have the following useful local disintegration formula:

Proposition 3.14. Let ν be a horospherical measure on M. For any regular box
ϕ : U ′x × Uy → B in π−1(M), there is a measure λ on Uy such that for any
compactly supported continuous function f :M→ R, denoting B = π(B) we have

(24)

∫
B

f dν =

∫
Uy

(∫
Ly

f ◦ π dνβx

)
dλ(y).

Proof. Let L be a lift ofM in which B is contained. We denote by Γ the stabilizer
in Mod(S,Σ) of B, and by ν̃ the pre-image of ν under π. By definition, the measure
ν̃|L is horospherical, and we let λ0 be a measure on Uy as in equation (23). We set

λ
def
= 1
|Γ|λ0, and claim that λ satisfies equation (24). Indeed, let f ∈ Cc(H) and

assume for now that the support of f is contained in B̄. Let h be the function that
is equal to f ◦π on B̄ and 0 elsewhere. This function is continuous and its support
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is contained in B̄ by construction. Using that the stabilizer of B̄ in Mod(S,Σ) is
also Γ, we calculate that for any q ∈ H, we have

∫
Hm

h dθq = |Γ|f(q). We have∫
B

f dν =
1

|Γ|

∫
H
h dν̃ =

1

|Γ|

∫
Uy

(∫
Ly

f ◦ π dνβx

)
dλ0(y),

which is what we wanted. In case the support of f is arbitrary, we pick a sequence
ψn of uniformly bounded smooth functions with support contained in B̄ and that
converge pointwise to 1B , the indicator function of B, and we apply the previous
computation to ψnf in place of f . We have∫

B

ψnf dν =

∫
Uy

(∫
Ly

ψnf ◦ π dνβx

)
dλ(y).

Passing to the limit using Lebesgue’s dominated convergence, we obtain equa-
tion (24). �

3.4. The special flat measures are horospherical. In this subsection we prove
Theorem 1.1, which gives us our first examples of horospherical measures. Namely
we will show that the Masur-Veech measures on strata, and more generally, the
special flat measures defined in equation (9), are horospherical.

LetM be an invariant subvariety and let L be a lift ofM. In order to establish
Theorem 1.1, we shall first establish that the measure mL as in equation (11) is
horospherical. This will be achieved in Proposition 3.17. We need some preparatory
results. We recall that the measure mL is obtained by the cone construction applied
to µL, i.e., for any Borel set A ⊂ L(1),

mL(A) = µL(cone(A)),

and the measure µL is itself obtained by integration of α = αx ∧ αy, where αx and

αy are as in equation (21). Let β
def
= ιEα. By construction, β induces a volume

form on L(1) and we denote by µβ the measure obtained by integration of β. The
following relates the measure µβ and the cone measure mL.

Lemma 3.15. We have
µβ = 2 dim(M) ·mL.

Proof. The proof is an application of Stokes’ theorem. It follows from equations (6)
and (22) that the Lie derivative of α with respect to the Euler vector field satisfies
LE(α) = 2 dim(M) · α. Let U be an open set in L(1) contained in one chart for
the manifold structure on L. Notice that the only part of the boundary ∂cone(U)
of cone(U) to which E is not tangent is U itself. In particular, the only part of
∂cone(U) on which ιEα does not vanish is U . We have from Stokes’ formula (for
manifolds with corners, see e.g. [Lee13]) that∫

cone(U)

d(ιEα) =

∫
∂cone(U)

ιEα =

∫
U

ιEα = µβ(U).

It follows from the Cartan formula that LE(α) = dιEα + ιEdα. Since α is closed,
we deduce that dιE(α) = LE(α). Gathering everything, we obtain

2 dim(M) ·mL(U) = µβ(U).

This is true for all U as above, and these open sets generate the Borel σ-algebra on
L(1). �
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We introduce two new vector fields Ex and Ey on Hm:

Ex(q)
def
=

∂

∂t

∣∣∣
t=0

(
et 0
0 1

)
· q and Ey(q)

def
=

∂

∂t

∣∣∣
t=0

(
1 0
0 et

)
· q.(25)

By definition we have E = Ex + Ey, and for any q ∈ Hm, we have

∂

∂t

∣∣∣
t=0

gt · q = Ex(q)− Ey(q).(26)

For the proof of Theorem 1.1, we will also need the following calculation:

Lemma 3.16. The restrictions of the forms αx and αy to L(1) satisfy

ιE(αx ∧ αy) = 2(ιEαx) ∧ αy.

Proof. Let n = dim(M). We begin by observing that on restriction to L(1), we
have

(27) ι(Ex−Ey)(αx ∧ αy) = 0.

Indeed, we deduce from equation (26) that Ex−Ey is tangent to L(1). In particular,

since L(1) has real dimension 2n − 1, any family of 2n − 1 linearly independent
vector fields that are tangent to L(1) contain Ex − Ex in their span. This implies
equation (27).

Now we calculate:

ιE(αx ∧ αy) = ι2Ex−(Ex−Ey)(αx ∧ αy)

(27)
= 2ιEx

(αx ∧ αy) = 2ιEx
αx ∧ αy + (−1)nαx ∧ ιExαy.

The last equality follows from the Leibniz formula for contractions

ιV (α ∧ β) = (ιV α) ∧ β + (−1)deg(α)α ∧ ιV β.
Now, notice that Ex is tangent to the fibers of πy ◦ dev. Since αy = (πy ◦ dev)∗ηy,
we deduce that ιExαy = 0. Similarly, we prove that ιEyαx = 0 and thus

ιE(αx ∧ αy) = 2ιEx
αx ∧ αy = 2ιEαx ∧ αy.

�

Proposition 3.17. The measure mL is horospherical.

Proof. It follows from Lemma 3.15 that mL is given, up to a multiplicative constant,
by integration of the differential form β = ιE(αx ∧ αy). Lemma 3.16 implies that
β = 2βx∧αy. Notice that both the forms βx and αy are basic, i.e., they are obtained
by pullback of forms on P(Vx) and Vy by the projections dev ◦ π′x and dev ◦ πy.
Indeed, we have αy = (dev◦πy)∗ηy and using Lemma 3.1, we can build a differential
form β′x on P(Vx) such that (dev ◦ π′x)∗β′x = βx.

Now, let ϕ : U ′x × Uy → B be a box in L(1) and let f ∈ Cc(L). Notice that
ϕ∗αy = ηy and ϕ∗βx = β′x. We have:∫

B

f · βx ∧ αy =

∫
U ′x×Uy

f ◦ ϕ · β′x ∧ ηy

=

∫
Uy

(∫
U ′x×{y}

f ◦ ϕ · β′x
)
· ηy

=

∫
Uy

(∫
Ly

f · βx

)
· ηy.
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If we let λ be the measure on Uy given by integration of the form 2
dim(M) · ηy, we

obtain ∫
B

f dmL =

∫
Uy

(∫
Ly

f dνβx

)
dλ(y).

�

Proof of Theorem 1.1. By definition, in order to prove that mM is horospherical,
we need to show that the lifts ofmM are horospherical. We recall from equation (11)
that the lifts of mM are given by the mL. Theorem 1.1 is then a consequence of
Proposition 3.17. �

3.5. The horocycle flow, real REL, and horospherical measures. In this
subsection we will show that the horocycle flow and the real Rel deformations
move points in their horospherical leaf, and preserve horospherical measures.

Proposition 3.18. Horospheres and horospherical measures are horocycle flow-
invariant.

Proof. For q ∈ Hm with dev(q) = (x, y) and s ∈ R, we have

(28) dev(usq) = (x+ sy, y).

This implies that the horocycle flow maps Wuu
L (q) to itself and since π is GL+

2 (R)-
equivariant, we deduce that horospheres are preserved by the horocycle flow.

We also deduce from equation (28) that the horocycle flow preserves the form αx.
Since the horocycle flow commutes with the rescaling action, it also preserves the
Euler vector field, from which we deduce that for any s ∈ R we have us

∗βx = βx.
In particular, the horocycle flow preserves the measures νβx

.
Let ν be a horospherical measure and let s0 > 0. We claim that for any q ∈ M

such that the orbit segment {usq : s ∈ R, |s| ≤ s0} is embedded, i.e., Uq is not a
periodic horocycle orbit with period of length smaller than 2s0, there is an open set
U ⊂M containing q such that for any compactly supported continuous function f
with support contained in U and any s ∈ R with |s| ≤ s0, we have:

(29)

∫
M
f ◦ us dν =

∫
M
f dν.

To see this, let q ∈ Hm be such that π(q) = q and define

σ
def
= {usq : s ∈ R, |s| ≤ s0}.

Let Γ be the stabilizer in Mod(S,Σ) of q. Since the GL+
2 (R)-action on Hm

commutes with Mod(S,Σ), the group Γ acts trivially on σ and since Uq is not a
periodic orbit with period smaller than 2s0, we have that that σ ·γ ∩σ = ∅ for any
γ ∈ Mod(S,Σ), unless γ ∈ Γ. By thickening σ, we can find a box B ⊂ π−1(M)
containing σ and up to replacing B with

⋂
γ∈ΓB · γ, we can assume that B is

regular. By construction, for any s ∈ R with |s| ≤ s0, the surface usq belongs to
B = π(B) and lies on the plaque of q. Since the horocycle flow acts continuously,
there is a neighborhood U ⊂ B around q such that for any q′ ∈ π−1(U) ∩B and
|s| ≤ s0, we have usq

′ ∈ B. Let λ be a transverse measure on Uy, i.e., a measure
as in equation (24), and let f be a continuous function with support contained in
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U . It follows from equation (24) that∫
M
f ◦ us dν =

∫
Uy

(∫
Ly

f ◦ us ◦ π dνβx

)
dλ(y)

=

∫
Uy

(∫
Ly

f ◦ π dus∗νβx

)
dλ(y)

=

∫
Uy

(∫
Ly

f ◦ π dνβx

)
dλ(y) =

∫
M
f dν.

The second equality follows from the fact that π is GL+
2 (R)-equivariant and the

fact that for any y ∈ Uy, the action of us maps supp(f ◦ π) ∩ Ly inside Ly, which
in turns is implied by our choice of U and the fact that the horocycle flow maps
the leaves of Wuu

L into themselves.
For any f ∈ Cc(H), define

sf
def
= inf{s > 0 : supp(f) contains a periodic surface of period s}.

It is easy to see that sf is always positive, and using the first part of the proof
together with a partition of unity argument, we can show that equation (29) holds
for f and s ∈ R with |s| ≤ sf . Furthermore, notice that for any s ∈ R, we have
sf = sf◦us . Writing s = ks′ with k ∈ N and |s′| ≤ sf , we obtain∫

M
f ◦ us dν =

∫
M
f ◦ u(k−1)s′ dν = · · · =

∫
M
f dν.

This proves that ν is horocycle flow-invariant. �

For any irreducible invariant subvariety M, we let

(30) ZM
def
= V ∩ Z,

where V is the model space of some lift of π−1(M) and Z is the real REL space.
Notice that the space ZM actually does not depend on the choice of particular lift.
This is a consequence of Proposition 2.7 together with with the fact that Mod(S,Σ)
acts trivially on ker(Res).

Proposition 3.19. Let v ∈ ZM, q ∈ M, and suppose the Rel flow Relv(q) is
defined. Then Relv(q) ∈ Wuu(q). If ν is a horospherical measure and Relv(q) is
defined for ν-a.e. q, then ν is invariant under the (almost everywhere defined) map
q 7→ Relv(q).

Proof. Let Z(q) be as in equation (4). Since ZM ⊂ V , where V is the subspace
that M is modeled on, we have Relv(q) ∈ M if q ∈ M and v ∈ ZM ∩ Z(q). The
only properties of the horocycle flow which were used in the proof of Proposition
3.18 are that us0 preserves the horospheres, and acts on them by translations.
The same properties are valid for the action of Relv for v ∈ ZM. Indeed, Relv
sends surfaces of area one to surfaces of area one, and if dev(q) = (x, y) then
dev(Relvq) = (x+ v, y). �

If a measure µ on M is saddle-connection free, then for µ-a.e. q ∈ M, Relv(q)
is defined for every v ∈ ZM, and satisfies the ‘group law’ property

∀v1, v2 ∈ ZM, Relv1 (Relv2(q)) = Relv1+v2(q).
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Following [Wri15a], we say that an irreducible invariant subvariety M is of rank
one if dim(Res(V )) = 2, where V is the model space of any lift of π−1(M). In the
rank one case we have the following converse to Propositions 3.18 and 3.19:

Proposition 3.20. If M is an invariant subvariety of rank one and µ is a saddle
connection-free measure, then µ is horospherical if and only if it is invariant under
the horocycle and the real Rel flows.

Proof. By a dimension count, we see that when M has rank one, the dimension of
horospheres is the same as dim(ZM) + 1. This means that the horosphere Wuu(q)
satisfies

Wuu(q) = {Relv(usq) : s ∈ R, v ∈ ZM},
that is the group action generated by the horocycle flow and real Rel acts tran-
sitively on the horospheres. As we saw in the proofs of Propositions 3.18 and
3.19, this action is by translations, with respect to the affine structure on Wuu(q)
afforded by Lemma 3.5. Since the measures νβx

are the unique (up to scaling)

translation-invariant measures on the affine manifolds L(1), the invariance of µ un-
der the horocycle and real Rel flows implies that the conditional measures on the
plaques in a box are given by νβx

. �

3.6. Further properties. Let X be a manifold with a foliation, and a Borel mea-
sure µ. We say that µ is ergodic for the foliation if any Borel subset B which is a
union of leaves satisfies either µ(B) = 0 or µ(X rB) = 0. For instance we have:

Proposition 3.21. The special flat measure on an invariant subvariety is ergodic
for the horospherical foliation.

Proof. This follows from Proposition 3.18, the ergodicity of the special flat mea-
sure with respect to the A-action (see e.g. [FM14, Section 4]), and the Mautner
phenomenon (see [EW11]). �

Denote by P(uu) (M) the collection of horospherical measures on M with total
mass at most one. The following standard results in ergodic theory are valid in the
context of horospherical measures:

Proposition 3.22. For the horospherical foliation on any invariant subvariety
M(1), we have:

(1) The space P(uu) (M), with the weak-∗ topology, is a compact convex set.
(2) A horospherical probability measure is ergodic if and only if it is an extreme

point of P(uu) (M).
(3) For any probability measure µ ∈ P(uu) (M) there is a probability space

(Θ, η) and a measurable map Θ → P(uu) (M) , θ 7→ νθ, such that νθ is
ergodic and a probability measure for η-a.e. θ, and µ =

∫
Θ
νθ dη(θ).

(4) If µ1, µ2 ∈ P(uu) (M) such that µ1 � µ2, and µ2 is ergodic, then µ1 = cµ2

for some c ≥ 0.

Proof. It is clear from definitions that if µ1, µ2 ∈ P(uu) (M), and α ∈ (0, 1), then
αµ1 + (1 − α)µ2 ∈ P(uu) (M). It is also clear that condition (24), and the condi-
tion µ(M) ≤ 1, are both closed conditions. This proves the first assertion. The
remaining assertions follow from Choquet’s theorem by standard arguments, see
e.g. [CC03, Chap. 2.6]. �
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We say that two surfaces q, q′ ∈ H are horizontally equivalent if there is a home-
omorphism Mq →Mq′ of the underlying surfaces that preserves the labels of singu-
larities and maps the union of the horizontal saddle connections of Mq bijectively
to the union of those of Mq′ . Note that a horizontal equivalence only preserves
certain horizontal structure. It preserves saddle connections but need not preserve
the horizontal foliation.

Proposition 3.23. Any two surfaces in the same horospherical leaf are horizontally
equivalent.

Actually, using [MW14], one can show that for any two surfaces M1 and M2

in the same horospherical leaf, there is a homeomorphism M1 → M2 mapping
horizontal foliation to horizontal foliation. We include a proof in order to keep the
paper self-contained.

Proof. It suffices to show this upstairs; that is, we let q, q′ ∈ Hm with q′ ∈Wuu
L (q),

let f : S → Mq and f ′ : S → Mq′ be marking maps representing q, q′ and show
that, if f and f ′ are carefully chosen, f ′ ◦ f−1 gives a bijection of horizontal saddle
connections. We first discuss q′ ∈ Wuu

L (q) which are sufficiently close to q. Let
f : S → Mq be a marking map representing q and let σ1, . . . , σr be the horizontal
saddle connections on Mq. By definition of the horospherical foliation, dev(q′) −
dev(q) ∈ H1(S,Σ;Rx). Let τ be a triangulation of S such that the segments f−1(σi)
are edges of triangles. Let f ′ be constructed from τ , so that the map f ′ ◦ f−1 is
affine on each triangle of τ (see the discussion of comparison maps in [BSW22,
§2.4]). Let U = Uτ be the corresponding neighborhood of q. We may assume that
q′ ∈ U , and thus the paths f ′ ◦ f−1(σi) are represented by saddle connections on
Mq′ , and since dev(q′) − dev(q) ∈ H1(S,Σ;Rx), these paths are horizontal saddle
connections on Mq′ . This means that f ′ ◦ f−1 : Mq → Mq′ is a homeomorphism
mapping the horizontal saddle connections of Mq injectively to horizontal saddle
connections on Mq′ . Let V be the set of surfaces in Wuu

L (q) which are horizontally
equivalent to q. We have shown that the V is open in Wuu

L (q). Since there are
only finitely many equivalence classes for horizontal equivalence, this shows that
any equivalence class is both open and closed. By connectedness of Wuu

L (q), this
shows that V = Wuu

L (q) and completes the proof. �

From Proposition 3.23 we deduce:

Corollary 3.24. If ν is an ergodic horospherical measure then there is a subset
M′ ⊂ M of full ν-measure such that any two surfaces in M′ are horizontally
equivalent.

Remark 3.25. In [BSW22, Def. 5.1], using boundary marked surfaces, topological
horizontal equivalence is introduced. In this definition the homeomorphism Mq →
Mq′ is required to preserve additional structure, e.g. the angular differences between
saddle connections at each singular point. Proposition 3.23 and Corollary 3.24 hold
for this finer notion of equivalence as well.

4. Saddle connection free horospherical measures

In this section we will prove Theorem 1.2. We first state and prove some auxiliary
statements.
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4.1. The Jacobian distortion in a box. The different plaques in a box can be
compared to each other using the structure of a box. Namely, let ϕ : U ′x × Uy →
B ⊂ L(1) be a box. For any point y ∈ Uy we define

ϕy : U ′x → Ly, ϕy([x])
def
= ϕ([x], y),

where Ly is the plaque of y in B (see Definition 3.2).

For any two points y0 and y1 in Uy, the map ϕy0,y1
def
= ϕy1 ◦ ϕ−1

y0 is a diffeomor-
phism between the plaques Ly0 and Ly1 in B, identifying points parameterized by
the same point in U ′x. Define

δy1 : Ly0 → R, δy1(q)
def
= 〈xq, y1〉− dim(M),

where xq = πx ◦ dev(q). The diffeomorphism ϕy0,y1 is not measure preserving.
Instead, we have the following:

Proposition 4.1. (Jacobian calculation) For any two points y0, y1 ∈ Uy we have

(31) (ϕy0,y1)∗
(
βx|Ly1

)
= δy1 ·

(
βx|Ly0

)
.

Proof. For any y ∈ Uy, write

L̄y
def
= πx ◦ dev(Ly),

where πx is the projection in equation (17). Then L̄y is an open subset of the affine
hyperplane

(32) {x ∈ Vx : 〈x, y〉 = 1}.
By Definition 3.2 the map

F : L̄y → Ly, F (x)
def
= ϕ([x], y)

is a diffeomorphism with inverse πx ◦ dev. We denote by ex the Euler vector field
on Vx. Notice that F ∗βx is the restriction to L̄y of ιexηx. Indeed, we calculate

F ∗βx = F ∗ιE(πx ◦ dev∗ηx) = F ∗(πx ◦ dev)∗ (ιexηx) = ιEx(ηx).

The map F gives a chart of Ly in which βx is ιexηx. We shall perform our calculation
in these charts and verify equation (31) in L̄y instead of Ly. Let y0, y1 ∈ Uy, and
set

h : L̄y1 → R, h(x)
def
=

1

〈x, y1〉
.

The map ϕy0,y1 : Ly0 → Ly1 is expressed in charts simply as the map

ϕ̄y0,y1 : L̄y0 → L̄y1 , ϕ̄y0,y1(x) = h(x)x.

This implies by the product rule that

(Dϕ̄y0,y1)x(v) = h(x) v + (Dh)x(v)x.

Hence, denoting d = dim(M), for v1, . . . , vd−1 in the tangent space to L̄y0 at x we
have:

((ϕ̄y0,y1)∗ιexηx)x (v1, . . . , vd−1)

=(ιexηx)ϕ̄y0,y1 (x)

(
Dxϕ̄y0,y1(v1), . . . , Dxϕ̄y0,y1(vd−1)

)
=(ηx)h(x)x

(
h(x)x, h(x)v1 +Dxh(v1)x, . . . , h(x)vd−1 +Dxh(vd−1)x

)
=(ηx)h(x)x

(
h(x)x, h(x)v1, . . . , h(x)vd−1

)
= h(x)d(ιexηx)x(v1, . . . , vd−1).
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This is Formula (31). �

Notice that for any y0, y1 ∈ Uy and [x] ∈ U ′x, we have

δy1 ◦ ϕy0([x]) =
( 〈x, y0〉
〈x, y1〉

)dim(M)

.

This leads us to define the distortion of B as follows:

δB
def
= sup

{∣∣∣∣∣1−
(
〈x, y0〉
〈x, y1〉

)d∣∣∣∣∣ : [x] ∈ U ′x, y0, y1 ∈ Uy

}
.

Remark 4.2. The quantity 〈x,y0〉〈x,y1〉 has the following geometric interpretation. The

points ϕ([x], y0) and ϕ([x], y1) are in the same weak stable leaf, and this leaf is
further foliated by strong stable leaves. The geodesic flow maps a given weak stable

leaf to itself, permuting the strong stable leaves inside it. The choice t = log
(
〈x,y0〉
〈x,y1〉

)
is the value of t ∈ R for which gt maps ϕ([x], y0) to the strong stable leaf of ϕ([x], y1).

The distortion can be used to bound the variation of the mass of the horospherical
plaques of B with respect to the measures νβx

. Indeed, by an easy change of
variables, using ϕy0,y1 we have

|νβx
(Ly1)− νβx

(Ly0)| ≤ δB νβx
(Ly0).

From this it follows that

(33)

∣∣∣∣νβx
(Ly1)

νβx
(Ly0)

− 1

∣∣∣∣ ≤ δB.
The distortion of a box is well-behaved with respect to the geodesic flow. For

t ∈ R and any B in π−1(M), we write

Bt
def
= gt(B) and Bt

def
= π(Bt).

Proposition 4.3. Let B be a box in π−1(M). Then Bt is a box with δBt = δB
and it is regular whenever B is.

Proof. Let ϕ : U ′x×Uy → L(1) be the parametrization ofB, where L is an irreducible
component of π−1(M) and let Ūy be the image of Uy under multiplication by e−t,

and let ϕ̄([x], y)
def
= gt ◦ ϕ([x], ety). Using the fact that the geodesic flow preserves

the splitting into stable and horospherical foliation, and acts on Vy by multiplication

by e−t, we see that ϕ̄ : U ′x× Ūy → L
(1)
1 is a parameterization of Bt as in Definition

3.2. Also, for i = 0, 1, if ([x], ȳi) ∈ U ′x × Ūy, where ȳi = e−tyi, then

〈x, ȳ0〉
〈x, ȳ1〉

=
〈x, y0〉
〈x, y1〉

.

This implies that the distortion of B is the same as the distortion of Bt.
The last statement follows from the fact that the actions of GL+

2 (R) and Mod(S,Σ)
commute. �
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4.2. Thickness of a box. We now introduce the notion of the thickness of a box.
To define this quantity we use the sup-norm Finsler metric of §2.4 to induce a
distance function on leaves of the stable foliation. We rely on work of Avila and
Gouezel [AG10, §5], who defined a similar distance function on the leaves of the
strong stable foliation.

For a subset of a stable leaf, we denote by diam(s) its diameter with respect to

the distance function dist(s). We define the thickness of the box B as

τB
def
= sup

[x]∈U ′x
diam(s) ϕ({[x]} × Uy);

that is, the maximal diameter of a plaque for the stable foliation.
We will need boxes whose thickness is also well-behaved under the geodesic flow.

Similarly to Proposition 4.3, we have:

Proposition 4.4. For any ε > 0 and any q ∈ π−1(M(1)), there is a regular box
B in π−1(M) containing q such that for any t ≥ 0, τBt

≤ ε.

Proof. Let L be a lift ofM that contains q and let Γ be the stabilizer in Mod(S,Σ)
of q. Since Mod(S,Σ) acts properly discontinuously onHm, there is a neighborhood
V containing q such that for any γ ∈ Mod(S,Σ), either V · Γ ∩ V = ∅ or γ ∈ Γ.
By Lemma 3.1, let B̄ ⊂ V be a box containing q and let ϕ̄ : Ū ′x × Ūy → B̄ be

the parametrization of B̄. Let dev(q) = (x0, y0), let Û ′x be a neighborhood of [x0]
whose closure is contained in Ū ′x, and let

C
def
= ϕ

(
Û ′x × {y0}

)
.

That is, C is a bounded subset of a horospherical leaf, contained in a plaque of B̄,
and with closure in the interior of B̄. Let ε1 ∈

(
0, ε4
)

be small enough so that

C1
def
=

⋃
|t|≤ε1

gt(C) ⊂ B̄,

and let ε2 ∈
(
0, ε4
)

such that

C2
def
=

⋃
q1∈C1

{
q2 ∈W ss

L (q1) : dist(ss)(q1, q2) < ε2

}
is contained in B̄. Such numbers ε1, ε2 exist because C is bounded, and C2 contains
a neighborhood of q. We can therefore let U ′x ⊂ Û ′x and Uy ⊂ Ūy be small enough
open sets so that B = ϕ̄(U ′x × Uy) contains q and is contained in C2. Since B
is contained in V, we may replace B by ∩γ∈ΓB · γ and we can assume that B is
regular, with stabilizer Γ.

For q ∈ B, let Ls(q) be the plaque through q for the weak stable foliation, that
is, the connected component of q in B ∩W s

L(q). For each q2 ∈ B there is a point
q0, which is the unique point in the intersection C∩Ls(q2), and a path from q0 to
q2 which is a concatenation of two paths γ1 and γ2. The path γ1 = {gtq0 : t ∈ I}
from q0 to q1 goes along a geodesic arc, where I is an interval of length at most
ε1. The path γ2 from q1 to q2 has sup-norm length at most ε2 and is contained in
W ss
L (q2). Since ε1, ε2 <

ε
4 , each point in any stable plaque in B is within distance

at most ε
2 from the unique point at the intersection of this plaque with C, where the

distance is measured using the distance function dist(s). Concatenating such paths
we see that the diameter of any stable plaque in B is at most ε, and this implies
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the same bound for stable plaques in B. That is, the thickness of B is less than
ε. By Proposition 3.9, the lengths of geodesic paths and of paths in strong stable
leaves, do not increase when pushed by gt for t ≥ 0. Thus the same argument (using
the pushes of γ1 and γ2 by gt) give the required upper bound on the thickness of
Bt. �

For a compactly supported continuous function f on M, we denote by ωf its
continuity modulus with respect to the sup-norm distance function. In particular,
ωf (t)→ 0 as t→ 0+ and

|f(q1)− f(q2)| ≤ ωf (dist(q1, q2)) for any q1, q2 ∈M.

The following key lemma says that for any horospherical measure ν, any regular
box B and any test function f , the integral of f with respect to ν|B can be ap-
proximated by the integral of f ◦ π with respect to νβx

on any one horospherical
plaque of B, provided that B has small distortion and small thickness. We recall
that B ⊂M is defined as the image of B by π.

Lemma 4.5. Let ν be a horospherical measure, let f ∈ Cc
(
M(1)

)
and let B be a

regular box such that ν(B) > 0. Then for any y ∈ Uy,

∣∣∣∣∣ 1

ν(B)

∫
B

f dν − 1

νβx
(Ly)

∫
Ly

f ◦ π dνβx

∣∣∣∣∣ ≤ ωf (τB) + 2‖f‖∞δB.

Proof. For y, y′ ∈ Uy, let ϕy,y′ : Ly → Ly′ be as in §4.1. On the one hand, for any
y′ ∈ Uy we have∣∣∣∣∣

∫
Ly′

f ◦ π dνβx
−
∫
Ly′

f ◦ π ◦ ϕy′,y dνβx

∣∣∣∣∣ ≤
∫
Ly′

|f ◦ π − f ◦ π ◦ ϕy′,y| dνβx

≤ ωf (τB)νβx(Ly′).

The second inequality follows from the fact that, by definition of the thickness,
for any [x] ∈ U ′x, the distance between the points ϕ([x]) and ϕ(ϕy′,y([x])), with

respect to the distance function dist(s), is at most τB and thus also with respect to
the distance function dist, together with the fact that π is a contraction.

On the other hand, by the definition of δB, we have:

∣∣∣∣∣
∫
Ly′

f ◦ π ◦ ϕy′,y dνβx −
∫
Ly

f ◦ π dνβx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Ly

f ◦ π dϕ∗y,y′νβx −
∫
Ly

f ◦ π dνβx

∣∣∣∣∣
≤ ‖f‖∞δBνβx

(Ly).

The last inequality follows from Proposition 4.1 and the definition of δB . Using
equation (33) we deduce that for any y, y′ ∈ Vy,∣∣∣∣∣ 1

νβx
(Ly′)

∫
Ly′

f ◦ π dνβx −
1

νβx
(Ly)

∫
Ly

f ◦ π dνβx

∣∣∣∣∣ ≤ ωf (τB) + 2‖f‖∞δB.
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Let y0 ∈ Uy and let λ be a measure on Uy as in equation (24). Notice that
ν(B) =

∫
Uy
νβx(Ly) dλ(y). Therefore∣∣∣∣∣ 1

ν(B)

∫
B

f dν − 1

νβx
(Ly0)

∫
Ly0

f ◦ π dνβx

∣∣∣∣∣
≤

∣∣∣∣∣ 1

ν(B)

∫
Uy

(∫
Ly

f ◦ π dνβx

)
dλ(y)− 1

νβx
(Ly0)

∫
Ly0

f ◦ π dνβx

∣∣∣∣∣
≤ 1

ν(B)

∫
Uy

νβx(Ly)

∣∣∣∣∣ 1

νβx(Ly)

∫
Ly

f ◦ π dνβx −
1

νβx(Ly0)

∫
Ly0

f ◦ π dνβx

∣∣∣∣∣ dλ(y)

≤ωf (τB) + 2‖f‖∞δB.
�

4.3. Mixing of geodesics, nondivergence of horocycles. We recall the follow-
ing useful results:

Lemma 4.6 (Nondivergence of the horocycle flow [MW02]). For any ε > 0 and
c > 0 there is a compact K ⊂M(1) such that for any q ∈M(1), one of the following
holds:

• liminf
T→∞

1
T

∫ T
0

1K(usq) ds > 1− ε (where 1K is the indicator of K).

• The surface q has a horizontal saddle connection of length smaller than c.

For any 0 < c ≤ ∞, let M<c be the subset the subset of M(1) consisting of
surfaces which have a horizontal saddle connection of length smaller than c, and let
M≥c =M(1) −M<c. We deduce the following corollary.

Lemma 4.7. For any 0 < ε < 1 and 0 < c ≤ ∞, there is a compact set K ⊂M(1)

such that for any U -invariant measure µ on M(1),

µ(K) > (1− ε)µ(M≥c).
Proof. Given ε and c, let K be a compact set given by Lemma 4.6 (if c = ∞, we
can apply Lemma 4.6 to any finite c). An application of a generalisation of the
Birkhoff ergodic theorem for locally finite measures (see [Kre85, Thm. 2.3] for a
general formulation) to the invariant measure µ and the function 1K shows that
there is a non-negative function f ∈ L1(µ) such that ‖f‖L1(µ) ≤ ‖1K‖L1(µ) = µ(K)

and for µ-almost every q ∈M(1),

1

T
|{s ∈ [0, T ] : usq ∈ K}| −→

T→∞
f(q).

By Lemma 4.6, we have that for almost every q ∈ M≥c, f(q) > 1 − ε. As a
consequence,

µ(K) ≥
∫
M
f dµ > (1− ε)µ(M≥c).

�

Lemma 4.7 will be used at several places in this text. The first fact we deduce
from it is the following:

Lemma 4.8. Let ν be a saddle connection free horospherical measure and let δ > 0.
Then there is a regular box B ⊂ π−1(M), a constant c > 0 and an unbounded
increasing sequence of times ti such that:
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(a) For all i ≥ 0, ν(Bti) > cν(M), where Bti = π(Bti).
(b) Both the thickness and distortion of each Bti are smaller than δ.

In particular it follows from (a) that ν is finite.

Proof. Let K be a compact subset as in Lemma 4.7 for ε = 1
2 , c = ∞, and denote

νt
def
= (g−t)∗ν. By Proposition 3.18, ν is U -invariant, and since gt normalizes U , the

same holds for νt. Since ν is saddle-connection free, so is νt. So, applying Lemma
4.7 to νt,

νt(K) >
νt(M≥∞)

2
=
νt(M)

2
.

For every δ > 0, using Proposition 4.4, K ∩M(1) can be covered by the image
by π of regular boxes B1, . . . ,BN whose distortion is smaller than δ, and for which
the thickness of gt(Bj) is smaller than δ, for each j and each t ≥ 0. By Lemma 4.3,

the distortion of gt(Bj) is also less than δ for each j and each t ≥ 0. Let c
def
= 1

2N .
For each t, there is j = j(t) ∈ {1, . . . , N} such that

νt (Bj) ≥
νt(K)

N
> c νt(M).

Let ti →∞ be a sequence along which j = j(ti) is constant. Then (a) and (b) hold
for B = Bj . �

Lemma 4.9 (Mixing of the geodesic flow). For any invariant subvariety M, the
geodesic flow is mixing with respect to the special flat measure on M(1).

For a proof and detailed discussion of this result and its quantitative strength-
enings, see [FM14, Chap. 4] or [EMM22].

4.4. Putting it all together. We have gathered all the ingredients needed to give
the proof of one of our main results.

Proof of Theorem 1.2. Let ν be a saddle connection free horospherical measure.
We assume first that ν is ergodic for the horospherical foliation. We will show
that the special flat measure mM is absolutely continuous with respect to ν. To
see this, let A be a Borel set of positive measure for mM. Since mM is a Radon
measure, in particular inner regular, there is a compact K contained in A such that
mM(K) > 0. Let U be an open set that contains A and let f :M(1) → [0, 1] be a
continuous function whose support is contained in U and that evaluates to 1 on K.
Such a function exists by Urysohn’s Lemma. Let ε > 0, and choose δ > 0 so that

ωf (δ) + 2‖f‖∞δ < ε.

By Lemma 4.8, there is c > 0, a regular box B and ti → ∞ such that for each
i, τBti

< δ and δB < δ, and ν(Bti) ≥ cν(M). Applying Lemma 4.5 to both ν and
mM we obtain ∣∣∣∣∣ 1

ν(Bti)

∫
Bti

f dν − 1

mM(Bti)

∫
Bti

f dmM

∣∣∣∣∣ < 2ε.

By mixing of the geodesic flow with respect to mM, there is i > 0 large enough
such that mM(Bti ∩K) > mM(B)(mM(K)− ε). Therefore:
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ν(U)

c ν(M)
≥ ν(U)

ν(Bti)
≥ 1

ν(Bti)

∫
Bti

f dν

>
1

mM(Bti)

∫
Bti

f dmM − 2ε

≥mM(Bti ∩K)

mM(Bti)
− 2ε > mM(K)− 3ε.

Since ε was chosen arbitrarily, we have proven ν(U) ≥ c ν(M)mM(K). Since this
holds for an arbitrary open U containing A, and ν(M) is finite, we deduce by outer
regularity of the measure ν that ν(A) is positive. This completes the proof that
mM � ν.

It follows from Proposition 3.22 that mM = cν for some c ≥ 0, and since mM is
nonzero, c > 0 and ν = 1

cmM. For general ν, we obtain from the case just discussed
that all the ergodic components of the measure ν are proportional to the special
flat measure and thus ν itself is proportional to the special flat measure. �

5. Examples of horospherical measures

The simplest example of a horospherical measure which is not the special flat
measure occurs when M is a closed GL+

2 (R)-orbit. In this case the leaves of the
horospherical foliation are the U -orbits, and the length measure on a closed periodic
U -orbit is a horospherical measure; indeed, in this case, the transverse measure λ
in equation (24) is atomic.

In order to obtain more examples, we use the following:

Proposition 5.1. Let Wuu(q) be a closed horosphere in M. Then Wuu(q) is the
support of a horospherical measure ν whose lifts are the measures νLβx,q

where L is

a lift of M and π(q) = q.

Proof. The horosphere Wuu(q) is closed if and only if the collection
{
Wuu
L (q)

}
is

locally finite, where q ranges over π−1(q) and L ranges over the lifts of M that
contain q. Each of the Wuu

L (q) carries the Radon measure νLβx,q
and the measure

ν̃
def
=
∑

νLβx,q

is a Mod(S,Σ)-invariant Radon measure on π−1(M). Let ν be the Radon measure
on M whose lift is ν̃ (see Proposition B.3). The measure ν is horospherical by
construction. �

To construct a second example of a closed horosphere, we use horizontally peri-
odic surfaces, i.e., surfaces which can be represented as a finite unions of horizontal
cylinders. Let M = H(1, 1). This stratum is an invariant subvariety of complex
dimension 5 (see Definition 2.4), and thus its horospherical leaves have real di-
mension 4. Let a, b be real numbers with a, b ∈ (0, 1) and 0 < b < min(a, 1 − a)
and let (τ1, τ2) ∈ R/aZ × R/(1 − a)Z. Define the surface q = qa,b,τ1,τ2 ∈ M by
the polygonal representation shown in Figure 1. It is comprised of two horizontal
cylinders, each of height 1, and of areas a and (1 − a). The parameters τ1, τ2 are
called twist parameters, they are only defined mod aZ and (1 − a)Z respectively
because twisting a cylinder by an amount that is an integer times its circumference
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τ2

τ1

b

1− a

a

1

1

Figure 1. A completely periodic surface in H(1, 1).

amounts to applying a Dehn twist and thus does not change the isomorphism class
of the surface.

It is clear that varying the parameters a, b, τ1, τ2 results in surfaces that belong to
the horospherical leaf of q, and thus, by a dimension count, they locally parameterize
the leaf of q. In either of the cases b→ 0 or b→ min(a, 1−a), the surfaces qa,b,τ1,τ2
have shorter and shorter horizontal saddle connections on the boundaries of the
cylinders, and thus exit compact subsets ofM(1). This means that the horosphere
Wuu(q) is closed and that the map

R/aZ× R/(1− a)Z× {(a, b) ∈ (0, 1)2 : 0 < b < min(a, 1− a)} →M(1)

given by (a, b, τ1, τ2) 7→ qa,b,τ1,τ2 is a proper embedding whose image is Wuu(q). It
can be checked that in this case the map (a, b, τ1, τ2) 7→ dev(qa,b,τ1,τ2) is affine in
charts. Thus the horospherical measure can be written explicitly (up to scaling) as
dν(qa,b,τ1,τ2) = da db dτ1 dτ2.

Remark 5.2. For the horospherical measure constructed in the preceding example,
the space ZM (defined in equation (30)) is one dimensional, and for every surface q
in the support of this measure, Z(q) (defined in equation (4)) is a bounded interval.
Moreover, for any v ∈ ZM there is a positive measure set of surfaces q (with small
values of a) for which Relv(q) is not defined. This shows that the hypothesis in
Proposition 3.19, that Relv(q) is defined, is not always satisfied. (More explicitly,
a leaf of the real REL foliation is given by varying b.)

It is no coincidence that the closed horospheres in the two preceding examples
consist of horizontally periodic surfaces. This is a consequence of the following
more general result:

Proposition 5.3. For any stratum H and any q ∈M, the surface Mq is horizon-
tally periodic if and only if the horosphere Wuu(q) (in H) is a closed subset of H.
In this case every surface in Wuu(q) is horizontally periodic, and the horospherical
measure on Wuu(q) constructed in Proposition 5.1 is finite. Furthermore, for any
invariant subvarietyM, if its horosphere Wuu(q) (inM) is closed, then the surface
Mq is horizontally periodic.

Proof. Suppose first that Mq is horizontally periodic, and let f : S → Mq be a
marking map representing q ∈ π−1(q). Let C1, . . . , Cs be the horizontal cylinders
on Mq, and let cj , hj denote respectively the circumference and height of Cj . Since
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the area of Mq is one,

(34)

s∑
j=1

cjhj = 1.

Let α1, . . . , αr, αr+1, . . . , αr+s be a collection of oriented paths in S with end-
points in Σ which satisfy the following:

• The collection {f(αi) : i = 1, . . . , r + s} consists of saddle connections.
• The collection {f(αi) : i = 1, . . . , r}, is the set of all the horizontal sad-

dle connections on cylinder boundaries, and these are oriented so that the
horizontal coordinate increases.
• For j = 1, . . . , s, the saddle connection f(αr+j) is contained in Cj , crosses
Cj , and is oriented so that the vertical coordinate increases.

If C is a cylinder and σ is a saddle connection on a translation surface, we say
that σ crosses C if it intersects all the core curves of C.

These paths represent classes in H1(S,Σ) and they give a generating set for
H1(S,Σ). Write the holonomies hol(Mq, αi) as

hol(Mq, αi) =(ti, 0) i = 1, . . . , r

hol(Mq, αr+j) =(τj , hj) j = 1, . . . , s.
(35)

For each j and each boundary component of Cj , we have

(36)
∑
i∈I

ti = cj ,

where I is a subset of {1, . . . , r} containing the saddle connections comprising the
boundary component. Conversely, for any set of numbers cj , ti, τj satisfying (34)
and (36), we can recover a surface in the horospherical leaf of q by constructing an
explicit polygonal presentation for each of the cylinders.

Let q′ ∈Wuu(q). Note that the underlying surface Mq′ is horizontally periodic.
Indeed, being horizontally periodic is equivalent to having 2g − 2 + k horizontal
saddle connections, that is, a horizontal saddle connection starting from every hor-
izontal prong on the surface. This property holds for all q′ ∈ Wuu(q) by virtue of
Proposition 3.23.

The set of parameters ti, τj giving surfaces in Wuu(q) is bounded. Indeed, the ci
defined by equation (36) are bounded by equation (34), and this implies that the
numbers ti ∈ (0,maxj cj) are bounded.

Changing the τj by adding an integer multiple of cj amounts to performing Dehn
twists in the cylinder Cj and does not change the projection of the surface to M.
That is, the numbers τj can be taken to lie in the bounded set [0, cj).

Also, as the parameters ti leave compact subsets of the bounded domain de-
scribed above, at least one of the horizontal saddle connections on the correspond-
ing surface has length going to zero. This implies that the bounded set of surfaces
we have just described by varying the parameters ti, τj projects to the entire leaf
Wuu(q), that this leaf is properly embedded, and that all surfaces in this leaf are
horizontally periodic.

Furthermore, we can use equation (34) to express c1 as a function of c2, . . . , cs
(a constant function when s = 1), and using (36), we can write some of the
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variables cj , τj , ti as linear combinations of a linearly independent set of vari-
ables. We can then write the horospherical measure up to scaling as dν(q) =∏
j∈J1

dcj
∏
j∈J2

dτj
∏
i∈J3

dti, for some subsets of indices, and thus the preceding
discussion shows that the total measure of the leaf is bounded.

Now suppose q is contained in an invariant subvariety M, and that Mq is not
horizontally periodic. According to [SW04], the horocycle orbit Uq consists of
surfaces that are not horizontally periodic, but there is q′ ∈ Uq such that Mq′ is
horizontally periodic. By Proposition 3.18, Uq is contained in the horosphere of q
(in M). Thus q′ ∈ Wuu(q). Since Mq is not horizontally periodic, according to
the first part of the proof, q′ /∈ Wuu(q). This shows that the leaf Wuu(q) has an
accumulation point that is not contained in the leaf, which is to say that Wuu(q)
is not closed. �

5.1. Classification of horospherical measures in the eigenform loci in
H(1, 1). The stratum H(1, 1) contains a countable collection of invariant subva-
rieties of complex 3-dimensional or real dimension 5 known as eigenform loci. This
terminology is due to McMullen, who gave a complete classification of these in-
variant subvarieties in a sequence of papers (see [McM07] and references therein),
following the first such examples discovered by Calta [Cal04]. The horocycle in-
variant measures and orbit-closures for the U -action on an eigenform locus, were
classified in [BSW22] (these classification results require Theorem 1.2 of the present
work). We can classify the horospherical measures inside eigenform loci as follows:

Theorem 5.4. Let M be an eigenform locus in H(1, 1), and let ν be an ergodic
horospherical measure on M. Then either ν is the special flat measure mM or
ν is the measure given by Proposition 5.1 on a closed horosphere Wuu(q) of a
horizontally periodic surface q ∈M.

Proof. Since ν is horospherical, it is U -invariant, but not necessarily ergodic for
the U -action. The measure classification of U -invariant ergodic measures given
[BSW22, Thm. 9.1] lists seven possible descriptions of such measures, and most
of these are distinguished from each other via their a.e. horizontal equivalence
class (in [BSW22], the almost-sure horizontal equivalence class for a U -invariant
ergodic measure is denoted by Ξ(µ)). In fact the only two cases which are not
distinguished by Ξ(µ) in [BSW22] are cases (5) and (7). By Proposition 3.23 and
ergodicity, there is a subset of full ν-measure consisting of horizontally equivalent
surfaces. This implies that if we decompose ν into its U -ergodic components µ,
then either a.e. µ will be of the same type, or a.e. µ will be of either type (5) or
type (7).

If a.e. µ is of type (1) or (2), then ν is supported on completely periodic surfaces,
and it can be directly verified that the horospheres of such surfaces (withinM) are
closed. Thus in these cases ν is given by Proposition 5.1. If a.e. µ is either of type
(5) or type (7) then ν is saddle connection free, and then by Theorem 1.2 it is the
special flat measure mM.

In each of the three remaining cases, that is, a.e. µ is of type (3), (4), or (6),
ν-a.e. surface has exactly one horizontal saddle connection or exactly two homolo-
gous horizontal saddle connections forming a horizontal slit. Using the notation of
Lemma 4.7, we see that in each of these three cases, ν(M≥∞) = 0, and moreover
that for ν-a.e. surface we can lengthen or shorten all horizontal saddle connections
by moving in the real REL leaf. It follows that Rels(M≥c) and M≥c+s differ on a
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set of ν measure zero. Since ν is REL-invariant, ν(M≥c) = ν(Rels(M≥c)), and we
conclude that the quantity ν(M≥c) does not depend on c for any finite c.

By Lemma 4.7 applied to any positive c, this quantity is bounded by ν(K) for
some compact set K, and is therefore finite. So, taking the limit as c → 0, we see
that ν(M) = ν(M≥c) for any c, and then taking the limit as c→∞, we conclude
that ν(M) = ν(M≥∞), which is equal to 0 from above. This absurdity rules out
the remaining cases (3), (4), and (6).

�

5.2. An example of horospherical measure in H(2). Since there is currently no
classification of horospherical measures in H(2), it is of interest to give examples.
In this subsection we construct an ergodic horospherical measure in H(2) which
is not the special flat measure and is not supported on one properly embedded
horospherical leaf.

Recall from Corollary 3.24 that for a given ergodic horospherical measure, almost
all surfaces are horizontally equivalent. In Figure 2 we show a typical surface q for
our horospherical measure, and a typical topological picture of its horizontal saddle
connections. These saddle connections will be denoted by δ and δ′. They disconnect
the surface into a horizontal cylinder C, shaded gray in Figure 2, and a torus T .

δ

η

δ′

η

δ′

Figure 2. A surface in H(2) with two horizontal saddle connec-
tions, bounding a horizontal cylinder. On the right, the corre-
sponding horizontal saddle connection diagram.

Let x be the length of δ and δ′, let η be a saddle connection passing from top
to bottom of the cylinder C, and let its holonomy be (τ, a). Fix q ∈ π−1(q). The
height of C is constant and equal to a in a neighborhood of q in Wuu

L (q). The area
of C is ax, and hence

(37) 0 < x <
1

a
.

Moreover, changing τ by an integer multiple of x amounts to performing a Dehn
twist in C so does not change the surface Mq. Thus we may take

(38) τ ∈ [0, x).

When varying surfaces within their horospherical leaves, we change horizontal com-
ponents of all saddle connections, and thus changing τ and x we stay in the horo-
spherical leaf. Similarly, by Proposition 3.18, us′q ∈Wuu(q) for every s′. Moreover,

if Mq = C ∪ T as above, the surface u
(T )
s Mq obtained by performing the horocycle

flow on T and leaving C unchanged is also in Wuu(q). It is easy to check that
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changing the three parameters x, τ, s gives a linear mapping in period coordinates,
and that the three corresponding tangent directions in directions in Tq(M) are lin-
early independent. Since the complex dimension of H(2) is 4, the real dimension
of the horospherical leaves in H(2) is three, so the variables x, τ, s give an affine
parameterization of a neighborhood of q in Wuu(q).

Since the height a of C remains constant in Wuu(q), by equations (37) and (38),
the variables x, τ take values in the bounded domain

∆
def
=

{
(x, τ) : 0 ≤ τ < x <

1

a

}
.

Thus we can think of ∆ as a moduli space which parameterizes the possible shapes
of the cylinder C. We construct a bundle B with base ∆, and a homogeneous space

fiber, as follows. Let Tor
def
= G/SL2(Z), the space of tori of some fixed area. This

area is usually taken to be one, but by rescaling, can be taken to be any fixed
number. For each x ∈

(
0, 1

a

)
, let Tor(x) denote the space of tori of area 1 − ax

and with an embedded horizontal segment of length x. This is the complement in
Tor of a closed set with empty interior (consisting of periodic horocycles of period
at most x). Define B to be the bundle with base ∆ and such that the fiber over
(x, τ) ∈ ∆ is Tor(x).

Let µ be the G-invariant probability measure on Tor. Since the set of surfaces
which do not admit an embedded horizontal segment of some length is of µ-measure
zero, we can also think of µ as a probability measure µx on Tor(x). For (x, τ) ∈ ∆
let C = C(x, τ) be a cylinder of height a, circumference x and twist τ . We have a
map

Ψ : B → H(2)

defined by gluing the torus T from Tor(x), with a slit of length x, to the cylinder
C(x, τ). Let

ν
def
=

∫ 1/a

0

∫ x

0

Ψ∗(µx) dτ dx.

The image Ψ(B) is a five-dimensional properly embedded submanifold of M, con-
sisting of all surfaces that can be presented as in Figure 2 for some fixed choice of
a > 0. Along any sequence of elements (x, τ) ∈ ∆ leaving compact subsets, we have
either x → 0 or the area 1 − ax of T goes to zero, and in both cases the surfaces
in the image of Ψ have short saddle connections. This shows that Ψ(B) is prop-
erly embedded. Since ν is invariant under translations using the affine coordinates
x, τ, s, it is a finite horospherical measure supported on Ψ(B).

6. The geodesic flow and weak unstable foliation

Proof of Theorem 1.4. Let µ be a finite horospherical measure, and let µt
def
= gt∗µ.

Our goal is to show that µt →t→∞ mM. In order to prove that µt → mM, it is
enough to show that in any subsequence tn →∞ one can find a further subsequence
t′n so that µt′n → mM. This will be accomplished in two steps. In the first step
we will pass to a subsequence along which µt′n → µ∞, and show that µ∞ is also
a probability measure. In the second step we show that µ∞ is saddle connection
free. Since µ∞ is also horospherical by item (1) of Proposition 3.22, an application
of Theorem 1.2 then completes the proof.

Since µ(M) is finite, we can renormalize so that µ(M) = 1. For the first step,
we need to show that the sequence of measures {µtn} is tight, i.e., for any ε > 0
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there is a compact K ⊂ M such that for all large enough n, µtn(K) ≥ 1 − ε. For
this we will use Lemma 4.7.

Since µ(M) = 1, there is a c small enough that µ(M≥c) > 1 − ε
2 . By Lemma

4.7 there is a compact K ⊂M such that

ν(K) >
(

1− ε

2

)
ν(M≥c)

for ever U -invariant measure ν. Applying this to ν = µt for any t ≥ 0 gives

µt(K) >
(

1− ε

2

)
µt(M≥c)

=
(

1− ε

2

)
µ(M≥e−tc)

>
(

1− ε

2

)2

> 1− ε,

where the penultimate inequality uses M≥c ⊂M≥e−tc.
By tightness, there exists a subsequential limit that is a probability measure.

Now, letting µ∞ be any limit along a subsequence tn, it remains to show that
µ∞ is saddle-connection free. We will show that for any ε > 0 and any C < ∞,
µ∞(M<C) < ε. Choose c small enough that

µ(M<c) <
ε

2
.

Next, choose n large enough so that e−tnC < c and

|µtn(M<C)− µ∞(M<C)| < ε

2
.

Then

µ∞(M<C) < µtn(M<C) +
ε

2
= µ(M<e−tnC) +

ε

2
< ε.

where the last inequality usesM<e−tnC ⊂M<c. Since ε and C were arbitrary, we
conclude that µ∞ is saddle-connection free, and this concludes the proof. �

We now show that the conclusion of Theorem 1.4 might not hold in the case
where µ is an infinite measure.

Proposition 6.1. There is an infinite horospherical measure µ so that no weak-∗
limit of gt∗(µ) is Radon.

Proof. Let M be a closed GL+
2 (R)-orbit, that is to say M is the orbit of a Veech

surface. As mentioned earlier, in this case horospheres correspond to U -orbits. Let
q ∈M(1) be a surface that sits on a periodic U -orbit of length 1, let ν be the normal-

ized length measure on that U -orbit, i.e ν =
∫ 1

0
us∗δq ds, where δq denotes the Dirac

mass at q and define a measure µ by the formula
∫
fdµ =

∫ +∞
0

(∫
fdg−s∗ν

)
ds,

where f is any compactly supported continuous function. Note that this quantity
is indeed finite as for s large enough, the U -orbit of g−sq consists of surfaces with
very short horizontal saddle connections and thus it is far away from the support
of f . Here we used the fact that surfaces on periodic U -orbits are horizontally
completely periodic. The measure µ is an infinite horospherical Radon measure
and to conclude, it is enough to show that there is a compact K ⊂ M such that
gt∗µ(K)→ +∞ as t→ +∞.
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Let ` be the length of the shortest horizontal saddle connection on q. By Lemma
4.6, there is a compact K ⊂ M and T0 > 0 such that for any T > T0 and any
q′ ∈M(1) without horizontal saddle connection shorter than `, we have

1

T
|{t ∈ [0, T ] : utq

′ ∈ K}| > 1

2
.

Let t > ln(T0). For any s < t/2, the horizontal saddle connections of the surface
q′ = gt−sq are larger than ` and e2(t−s) > T0 and thus we have that

(gt−s)∗ν(K) =
1

e2(t−s) |{τ ∈ [0, e2(t−s)] : uτgt−sq ∈ K}| >
1

2
.

It follows that

gt∗µ(K) ≥
∫ t/2

0

gt−s∗ν(K) ds >
t

4
.

Thus gt∗µ(K)→t→∞ ∞, and hence no weak-∗ limit of gt∗µ is Radon �

Proof of Theorem 1.5. Let ν be a horospherical measure that is invariant by the
geodesic flow. We will show that ν(M<∞) = 0. Since g−t(M[c,∞)) = M[e−tc,∞)

and (gt)∗ν = ν, we see that ν(M[c,∞)) does not depend on c. Here the notation
M[a,b) means M≥a ∩M<b. By Lemma 4.7 applied to any particular finite c and

ε = 1
2 , there is a compact set K such that

ν(M[c,∞)) <
ν(K)

2
,

and so in particular it is finite. Therefore, in the limit as c → ∞, we see that
ν(M[c,∞)) = 0, and then again taking the limit as c→ 0 we conclude ν(M<∞) = 0.
Finally, by Theorem 1.2 we conclude that ν is the special flat measure.

We now show that any leaf for the weak-unstable foliation is dense. Let q ∈M(1)
1 ,

let U be an open set contained in M(1) and let f be a nonzero non negative
compactly supported function whose support is contained in U . In order to show
U ∩ Wu(q) 6= ∅ we will show that there is p ∈ Wu(q) such that f(p) > 0. Let

ε
def
=
∫
M f dµM > 0, let ωf denote the continuity modulus of f with respect to the

sup-norm distance function, and let q ∈ π−1(q). Using Propositions 4.3 and 4.4,

let B be a regular box containing q such that for any t ≥ 0, the box Bt
def
= gt(B)

satisfies ωf (τBt) + 2‖f‖∞δBt <
ε
4 . Let mM be the special flat measure on M(1).

By mixing of the geodesic flow (Proposition 4.9), there is T > 0 such that for any
t > T , we have ∣∣∣∣ 1

mM(B)

∫
Bt

f dmM −
∫
M
f dmM

∣∣∣∣ < ε

4
.

Applying Lemma 4.5 to the special flat measure mM, and denoting by Lt the
plaque of gtq in Bt, we have∣∣∣∣ 1

mM(B)

∫
Bt

f dmM −
1

νβx
(Lt)

∫
Lt

f ◦ π dνβx

∣∣∣∣ < ε

4
,

and consequently∣∣∣∣∫
M
f dmM −

1

νβx
(Lt)

∫
Lt

f ◦ π dνβx

∣∣∣∣ < ε

2
.
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This implies
∫
Lt
f ◦π dνβx

> 0 and since π(Lt) is contained in Wu(q), we obtain

that there is p ∈Wu(q) such that f(p) > 0. �

7. Closures of horospherical leaves

The goal of this section is to prove Theorem 1.3. First, in order to explain the
idea, we will prove the following weaker result.

Theorem 7.1. Let q ∈ M(1) be a surface without horizontal saddle connections.
Then Wuu(q) is dense in M(1).

Proof. Let U be any open set contained in M(1) and let f be a nonzero non-
negative function whose support is contained in U . It is enough to show that there
is p ∈ Wuu

q such that f(p) > 0. Let ε =
∫
M f dmM > 0, let c = 1, and let K be a

compact subset as in Lemma 4.6. For any n > 0, the surface g−nq does not have

horizontal saddle connections and thus there is sn > 0 such that pn
def
= usng−nq

satisfies

(39) pn ∈ K ∩Wuu(g−nq).

The horocycle flow preserves the horospheres and the geodesic flow permutes
them. As a consequence gnpn ∈ Wuu(q). Since K ∩M(1) can be covered by the
image by π of finitely many arbitrarily small boxes, by passing to a subsequence and
using Propositions 4.3 and 4.4, we can assume that there is a boxB ⊂ π−1(M) such
that the translates Bn = gn(B) satisfy ωf (τBn

) + 2‖f‖∞δBn
< ε

4 and pn ∈ π(B),
for all n ∈ N. Denote by Ln a plaque of Bn = gn(B) whose image by π contains
gn(pn). By mixing of the geodesic flow, for all large enough n:∣∣∣∣ 1

mM(B)

∫
Bn

f dmM −
∫
M
f dmM

∣∣∣∣ < ε

4
.

It thus follows from Proposition 4.5 applied to the special flat measure mM that∣∣∣∣ 1

mM(B)

∫
Bn

f dmM −
1

νβx
(Ln)

∫
Ln

f ◦ πνβx

∣∣∣∣ < ε

4
.

Consequently, for large enough n,∣∣∣∣∫
M
f dmM −

1

νβx
(Ln)

∫
Ln

f ◦ πνβx

∣∣∣∣ < ε

2
,

and thus

1

νβx(Ln)

∫
Ln

f ◦ πνβx
>

∫
M
f dmM −

ε

2
> 0.

This implies that there is a p ∈ π(Ln) ⊂Wuu(q) such that f(p) > 0. �

In order to upgrade Theorem 7.1 to Theorem 1.3, we will need the following
result, proved in Appendix A:

Theorem 7.2 (Paul Apisa and Alex Wright). Let M be an invariant subvariety
and suppose that q ∈M(1) has horizontal saddle connections, but is not horizontally
periodic. Then there is q′ ∈Wuu(q) such that all horizontal saddle connections on
Mq′ are strictly longer than the shortest horizontal saddle connection on Mq. If in
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addition Mq has no horizontal cylinders, then for any T > 0 there is q′ ∈ Wuu(q)
such that the shortest horizontal saddle connection on Mq′ is longer than T .

Proof of Theorem 1.3. We repeat the arguments given in the proof of Theorem 7.1.
In that proof, the only place where we used the assumption that q has no horizontal
saddle connections, is to ensure the existence of pn satisfying condition (39). For
this, using Proposition 3.18 and Lemma 4.6, it is enough to show that there is q′n ∈
Wuu(g−nq) such that the shortest horizontal saddle connection in Mq′n

has length at
least one. By our assumption, Mq has no horizontal cylinders and therefore neither
does Mg−nq, and thus we can conclude using the second assertion of Theorem
7.2. �

Appendix A. Extending saddle connections (Apisa and Wright)

In this section we give the proof of Theorem 7.2. We need some auxiliary state-
ments. A horizontal cylinder on a translation surface is a cylinder whose core curve
is horizontal. We say that a cylinder and a saddle connection are disjoint if they do
not intersect, except perhaps at singular points. Our convention is that cylinders
are closed, and thus a cylinder and a saddle connection on one of its boundary
components are not considered to be disjoint.

We recall the notion of M-equivalence of cylinders, introduced in [Wri15a]. Let
M be an invariant subvariety, let q ∈ M and let C1, C2 be two parallel cylinders
in Mq. The cylinders are calledM-parallel if there is a neighborhood U of q inM,
such that C1, C2 remain parallel for all q′ ∈ U . More precisely:

• there is a lift L of M and open V ⊂ L and U ⊂ M such that q ∈ U ,
π|V : V → U is a homeomorphism and dev is injective on V;
• for q ∈ V with q = π(q), represented by a marking map f : S → Mq, and

for any q′ ∈ V, represented by f ′ : S →Mq′ , the sets f ′ ◦ f−1(Ci), i = 1, 2
are parallel cylinders on q′ = π(q′).

Being M-parallel is clearly an equivalence relation.
For a cylinder C on a translation surface M , we denote by GC the subgroup

of GL+
2 (R) fixing the holonomy of the core curve of C. Clearly GC1

= GC2
if

C1, C2 are parallel. If C1, . . . , Cr are parallel on M and g ∈ GC1 then the cylinder
surgery corresponding to g, C1, . . . , Cr is a modification of the surface M obtained
by applying g to the Ci and leaving the complement M r

⋃r
i=1 Ci untouched. For

example if C is horizontal then the elements of GC are of the form

(
1 s
0 t

)
, with

t > 0. The cylinder surgery of such a matrix with t = 1 consists of cylinder
shears with shear parameter s. The cylinder surgery with s = 0 consists of cylinder
stretches with stretch parameter t. By an appropriate conjugation, the definition
of cylinder shears and stretches is extended to non-horizontal cylinders.

We have:

Proposition A.1 (Wright, [Wri15a]). For M, any q ∈ M, and an M-parallel
equivalence class of cylinders C1, . . . , Cr on Mq, if g ∈ GCi then the surface obtained
from Mq by cylinder surgery corresponding to g, C1, . . . , Cr is also in M.

Suppose q ∈ M and C1, . . . , Cr are M-parallel cylinders on Mq, which are
not necessarily a full equivalence class of M-parallel cylinders. Let L be a lift
of M, let q ∈ L ∩ π−1(q) and let V ⊂ H1 (S,Σ;C) such that L is a connected
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component of dev−1(V ). Varying g ∈ GC1
gives rise to a two dimensional collection

(in the previous example, corresponding to possible choices of the parameters s, t) of
surfaces, obtained from Mq by cylinder surgery corresponding to g, C1, . . . , Cr. This
collection corresponds to a complex affine line in period coordinates. A generator
for this complex line is

(40) σ({Ci,hi})
def
=

r∑
i=1

hiγ
∗
i ,

where hi is the height of Ci, γi is the core curve of Ci and γ∗i is the dual class to
γi in H1(S,Σ). In the case where the {Ci} are horizontal, moving along the line
tangent to σ({Ci,hi}) in M amounts to performing cylinder shears in each of the
Ci, and moving along the line tangent to i · σ({Ci,hi}) inM amounts to performing
cylinder stretches.

Below we will be interested in such one-parameter families of deformations that
preserve M and are tangent to σ({Ci,hi}) as in equation (40), in which the {Ci}
might not be a full equivalence class of M-parallel cylinders, and the hi might not
be their heights. When σ({Ci,hi}) ∈ V for q, L, V as above we simply say that
σ({Ci,hi}) is contained in the tangent space to M at q.

Proposition A.2. If M is an invariant subvariety and q ∈M is not horizontally
periodic, then for any ε > 0 there is q0 in the horocycle orbit Uq satisfying the
following. On the surface Mq0 there is a nonempty collection ofM-parallel cylinders
C1, . . . , Cr, of heights h1, . . . , hr, each of which is disjoint from all horizontal saddle
connections, and positive η1, . . . , ηr with (1 − ε)hi < ηi < (1 + ε)hi, such that the
class σ({Ci,ηi}) as in equation (40) is contained in the tangent space to M at q0.
Furthermore, there is constant A0 > 0, depending only on M, so that if q ∈ M
has no horizontal cylinders then one can choose a collection of cylinders with these
properties so that, in addition, the sum of the areas of the cylinders is at least A0.

Proof of Proposition A.2. According to [SW04], there is q∞ in the closure of Uq
which is horizontally periodic, and we will see that the required properties hold
for all q0 ∈ Uq sufficiently close to q∞. Let M∞ be the underlying surface of
q∞, let C ′1, . . . , C

′
r be the horizontal cylinders on M∞ and, for each i, let A′i, c

′
i,

ηi and γi denote respectively the area, circumference, height, and core curve of
C ′i. Here we consider γi as an element of H1(S,Σ) by using a marking f : S →
M∞ corresponding to q∞ ∈ π−1(q∞). By Proposition A.1, σ{C′i,ηi} belongs to the
tangent space of M at q∞.

For any θ0 > 0 there is a neighborhood U = U(θ0) of q∞ in M such that if
q0 ∈ U then the underlying surface has r cylinders C1, . . . , Cr of circumferences ci
and height hi and areas Ai coming from the C ′i and satisfying

(41) ci < c̄
def
= 2 max

i=1,...,r
c′i, Ai > A

def
=

1

2
min

i=1,...,r
A′i, (1− ε)hi < ηi < (1 + ε)hi,

and with directions of core curves in (−θ0, θ0).
If C is a cylinder and σ is a saddle connection on a translation surface, recall

that we say that σ crosses C if it intersects all the core curves of C. Since a cylinder
contains no singularities in its interior, if a saddle connection intersects the interior
of a cylinder, then it must cross it. Let ` be the maximal length of a horizontal
saddle connection on Mq and let θ0 be small enough so that a horizontal segment
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of length ` cannot cross a cylinder of direction θ satisfying 0 < |θ| < θ0, with
circumference at most c̄ and area at least A.

By making U smaller, so that it is an evenly covered neighborhood of q∞, we can
ensure that σ({Ci,ηi}) belongs to the tangent space ofM at q0. Indeed, if V is a con-

nected component of π−1(U) and q0, q∞ ∈ V are preimages of q0, q∞ respectively,
then the core curves of the cylinders Ci, C

′
i map to the same elements γi ∈ H1(S,Σ)

under the corresponding marking maps, and thus σ({C′i,ηi}) = σ({Ci,ηi}).
Now, let q0 ∈ Uq ∩U . Since q is not horizontally periodic, neither is q0. Therefore

there is a nonempty subset of the horizontal cylinders C ′i on M, say C ′1, . . . , C
′
s,

which areM-parallel and such that the corresponding cylinders C1, . . . , Cs are not
horizontal cylinders on Mq0 , and satisfy the bounds in equation (41). Furthermore
the maximal length of a horizontal saddle connection on Mq0 is ` since the horocycle
flow maps horizontal saddle connections to horizontal saddle connections of the
same length. By the choice of θ0, the cylinders in this equivalence class are all
disjoint from horizontal saddle connections on Mq0 . This proves the first assertion.

Let t be an upper bound on the number of horizontal cylinders for a surface in

M and let A0
def
= 1

2t . The argument above works for any collection of M-parallel
cylinders C ′1, . . . , C

′
r which are horizontal on q∞ and are not horizontal on q0. If q

has no horizontal cylinders then neither does q0, and we can apply the argument
with any equivalence class of M-parallel horizontal cylinders C ′1, . . . , C

′
r on M∞.

One of these classes must have total area at least 1
t , and thus for U sufficiently

small, the sums of the areas of the corresponding cylinders C1, . . . , Cr is at least
A0. �

Proof of Theorem 7.2. We first prove the first assertion. Let q0 be as in Proposition
A.2. Since q0 is in the horocycle orbit Uq, it belongs to Wuu(q), and by Proposition
A.2 there are M-parallel cylinder C1, . . . , Cr on the underlying surface M0 and
numbers η1, . . . , ηr such that σ({Ci,ηi}) is contained in the tangent space to M at
q0, and the heights h1, . . . , hr satisfy

(42)
hi
2
< ηi < 2hi.

Denote by θ > 0 the direction of these cylinders, and let (ϕt : t ∈ I) be the local
flow corresponding to the constant vector field −σ({Ci,ηi}). Here I is the domain
of definition of this local flow; it is an open connected subset of R containing 0.
Denote the underlying surface of ϕt(q0) by Mt. One can check that in order to
obtain Mt from M0, one replaces the cylinder Ci on M0 with a cylinder of the same
circumference and direction, and of height hi − t sin(θ)ηi, leaving the subsurface
M0 r

⋃
Ci unchanged. The bounds (42) ensure that the heights of the cylinders

remain positive for any 0 ≤ t ≤ t0
def
= 1

2 sin(θ) and thus [0, t0] ⊂ I, that is, ϕt(q) is

well-defined for any t ∈ [0, t0]. The area At occupied by the cylinders corresponding

to C1, . . . , Cr on Mt is bounded above by A(1− t sin(θ)
2 ), where A is the sum of the

areas of the cylinders C1, . . . , Cr. When t = t0, this is bounded above by 3A
4 . Define

(43) τ
def
= (1−At0)

−1
and g

def
=

(
τ 0
0 1

)
,

and let q′ = g ◦ ϕt0(q0). Although the maps g, ϕt0 do not preserve the area of
the surface, their composition does. Moreover neither of these maps change the
vertical component of the holonomy of any curve. The GL+

2 (R)-action preserves
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M and, by Proposition A.2, so does ϕt0 . The map g strictly increases the length
of all horizontal saddle connections on M0, and the cylinder surgery ϕt0 does not
affect their length, since the cylinders Ci are disjoint from the horizontal saddle
connections on M0. This completes the proof of the first assertion.

For the second assertion, we use the second assertion in Proposition A.2 to
choose the cylinders so the sum of their areas satisfies A ≥ A0. This ensures that

the horizontal saddle connections on q′
def
= g ◦ϕt0(q0) are longer than the horizontal

saddle connections on q by a factor of at least τ , where τ > 1 is as in equation (43)
and τ−1 is bounded away from 0. In light of Proposition 3.23, q′ ∈Wuu(q) will not
have horizontal cylinders either. So we can apply the above argument iteratively,
at each stage obtaining surfaces in Wuu(q) with longer and longer horizontal saddle
connections. Since the lengths of these horizontal saddle connections grows by a
definite amount in each step, after finitely many steps they will all be longer than
T . �

Appendix B. Measures on H and Mod(S,Σ)-invariant measures on Hm

The goal of this section is to prove a result on the correspondence between Radon
measures onH and Mod(S,Σ)-invariant Radon measures onHm. This result is part
of the folklore but we were not able to find a reference; see [Fur73, Prop. 1.3] for
an analogous result in a restricted setting.

We state the result in a general setting. Let X̃ be a paracompact manifold and Γ
a discrete group acting properly discontinuously on X̃. We will write the Γ-action
as an action on the right. Let X = X̃/Γ be the quotient space and π : X̃ → X the
quotient map. If Γ acts freely then X is a manifold and π is a covering map. If Γ
does not act freely then we can view X as an orbifold and π as a regular orbifold
covering map (although no knowledge of orbifolds is assumed in this section). We
do not assume that the action on Γ is faithful but, since the action of Γ is proper,
the subgroup of Γ that acts trivially on X̃ must be finite.

For q̃ ∈ X̃ let Γ(q̃) be the stabilizer of q̃ in Γ. For any q ∈ X, we define a measure

on X̃ by

(44) θq
def
=

∑
q̃∈π−1(q)

|Γ(q̃)| · δq̃,

where δq̃ is the Dirac mass at q̃. The measure θq is supported on π−1(q). For any

f ∈ Cc(X̃) and q̃ ∈ X̃ we have

(45)

∫
X̃

f dθπ(q̃) =
∑
γ∈Γ

f(q̃ · γ).

It follows from the fact that Γ acts properly discontinuously on X̃ that the sum on
the right-hand side is finite.

Definition B.1. Given a Radon measure ν on X we define a Radon measure ν̃ on
X̃, called the pre-image of ν, by the formula∫

X̃

f dν̃ =

∫
X

(∫
X̃

f dθq

)
dν(q) for any f ∈ Cc(X̃).(46)

Equation (46) defines a unique Radon measure ν̃ on X̃ in light of the Riesz Repre-

sentation Theorem. To see that (46) converges, note that the integrand q 7→ F (q)
def
=
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X̃
f dθq is a Borel function, which is supported on the compact set π(supp f), and

is bounded by D ‖f‖∞, where D
def
= #{γ ∈ Γ : (supp f) · γ ∩ supp f 6= ∅} is finite

since the Γ-action is properly discontinuous.
By equation (45) the measures θq are all Γ-invariant, and since ν̃ is an average

of the measures θq, we have:

Lemma B.2. The measure ν̃ is Γ-invariant.

The following converse can be understood as a disintegration theorem for Γ-
invariant Radon measures on X̃.

Proposition B.3. Let m be a Γ-invariant Radon measure on X̃. There is a unique
Radon measure µ on X such that m is the pre-image of µ.

We call µ the image of m.

Proof. Let m be given. We are claiming the existence of a Radon measure µ so that
equation (46) holds (with ν̃, ν replaced with m,µ). The idea of the proof is to build
µ on small neighborhoods using the fact that π is an orbifold cover. This will be
made rigorous using a partition of unity. Let q̃ ∈ X̃ and let Γ(q̃) be the stabilizer

of q̃ in Γ. Since Γ acts properly discontinuously on X̃, Γ(q̃) is finite, and there is
connected Γ(q̃)-invariant neighborhood V of q̃ and a neighborhood U of π(q̃) such
that π induces a homeomorphism V/Γ(q̃)→ U , and

π−1(U) =
⊔

γ∈Γ(q̃)\Γ

V · γ,

where γ ranges over a set of coset representatives, and where the sets V · γ are
disjoint. We say that such a U ⊂ X is evenly covered (in the orbifold sense).

Let (Ui)i∈I be a locally finite cover of X by evenly covered neighborhoods. Such

a cover exists by the paracompactness of X̃ and the considerations above. For each
i ∈ I choose a connected component Vi of π−1(Ui). Denote by Γi = Γ(Vi) the
stabilizer of Vi in Γ. Let (ρi)i∈I be a partition of unity subordinate to the cover
(Ui)i∈I and define a Radon measure µ on X (by using the Riesz Representation
Theorem) such that for any f ∈ Cc(X),∫

X

f dµ =
∑
i∈I

1

|Γi|

∫
Vi

(ρif) ◦ π dm.(47)

We want to show that the measure µ satisfies equation (46). We claim first that

for any q̃ ∈ X̃, there is a neighborhood V around q̃ such that equation (46) holds

for any f ∈ Cc(X̃) with support contained in V. Indeed, let q̃ ∈ X̃ and let V
be a neighborhood of q̃ small enough so that for any i ∈ I, V intersects at most
one connected component of π−1(Ui). This is possible since the cover by the Ui is
locally finite. Let J = {i ∈ I : π(V)∩Ui 6= ∅} and for j ∈ J , let γj ∈ Γ be such that
Vj · γj ∩ V 6= ∅. By the assumption on V, the coset Γj · γj is uniquely determined.
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Let f ∈ Cc(X̃) with support contained in V. We compute:

∫
X

(∫
X̃

f dθq

)
dµ(q) =

∑
i∈I

1

|Γi|

∫
Vi

∑
γ∈Γ

ρi(π(q̃))f(q̃ · γ) dm(q̃)

=
∑
j∈J

1

|Γj |

∫
Vj ·γj

∑
γ∈Γj

ρj(π(q̃))f(q̃ · γ) dm(q̃)

=
∑
j∈J

1

|Γj |

∫
X̃

∑
γ∈Γj

ρj(π(q̃))f(q̃) dm(q̃)

=
∑
j∈J

∫
X̃

ρj(π(q̃))f(q̃) dm(q̃) =

∫
X̃

f dm.

(48)

Now let f be an arbitrary compactly supported continuous function and let K
denote its support. Using a covering argument and the computation above, we
can find finitely many (Wi)i that cover K and such that equation (47) holds for
continuous functions with support contained in Wi. Let (ψi)i be a partition of
unity associated with this cover. We can write f =

∑
i ψif . By construction, each

of the ψif has support contained in Wi and the result follows by equation (48) and
the linearity of the integral.

To prove uniqueness of the measure µ, we proceed as follows. Let µ1 and µ2 be
two Radon measures on X that satisfy equation (46) (with m,µi instead of ν̃, ν).
Let f ∈ Cc(X) be a compactly supported continuous function whose support is
contained in an evenly covered neighborhood U and let V be a connected component
of π−1(U). We denote by Γ(V) the stabilizer in Γ of V. Let h be the function on

X̃ that is equal to f ◦ π on V and vanishes outside of V. Since the support of f is
contained in U , the function h is continuous and has compact support. Furthermore,
it is easy to see that for any q ∈ X,

∫
X̃
h dθq = |Γ(V)|f(q). This implies

∫
X

f dµ1 =
1

|Γ(V)|

∫
X̃

h dm =

∫
X

f dµ2.

To deal with the case when f is an arbitrary function of compact support we appeal
once more to existence of partitions of unity. �

Let G be a group acting on X̃ so that the action commutes with the action of
Γ. The group G induces an action on X so that π is G-equivariant.

Proposition B.4. A Radon measure µ on X is invariant under g ∈ G if and only
if its pre-image µ̃ is invariant under the action of g on X̃.

Proof. We start by proving two formulas showing the naturality of the pre-image
construction.

Claim B.5. g∗(θq) = θg(q).
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g∗(θq) =
∑

π(q̃)=q

|Γ(q̃)| · δg(q̃)

=
∑

π(g(q̃))=g(q)

|Γ(q̃)| · δg(q̃)(49)

=
∑

π(g(q̃))=g(q)

|Γ(g(q̃))| · δg(q̃) = θg(q).(50)

In line (49) we used the fact that π(g(q̃)) = g(π(q̃)) = g(q). In line (50) we used
the fact that the Γ action commutes with g, which implies that |Γ(g(q̃))| = |Γ(q̃)|.

Claim B.6. g∗(µ̃) = g̃∗(µ).

It suffices to show that both measures assign the same integrals to continuous
functions of compact support on X̃. Let f be such a function.∫

X̃

f dg̃∗(ν) =

∫
X

(∫
X̃

f dθq

)
dg∗(ν)(q)

=

∫
X

(∫
X̃

f dθg(q)

)
dν(q) =

∫
X

(∫
X̃

f dg∗(θq)
)
dν(q)(51)

=

∫
X

(∫
X̃

f ◦ g dθq
)
dν(q)

=

∫
X̃

f ◦ g dν̃ =

∫
X̃

f dg∗(ν̃).(52)

In line (51) we used Claim B.5. In line (52) we used the definition of the pre-image
applied to the function of compact support f ◦ g.

Using these formulas we now prove the Proposition. If g∗(µ) = µ then g∗(µ̃) =

g̃∗(µ) = µ̃ by Claim B.6. So µ̃ is invariant under the action of g on X̃. If g∗(µ̃) = µ̃

then g̃∗(µ) = g∗(µ̃) = µ̃ so the pre-images of g∗(µ) and µ are equal. It follows from
the uniqueness assertion in Proposition B.3 that g∗(µ) = µ. �
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