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ABSTRACT. We introduce a ‘tremor’ deformation on strata of trans-
lation surfaces. Using it, we give new examples of behaviors of
horocycle flow orbits Ugq in strata of translation surfaces. In the
genus 2 stratum H(1,1) we find orbits Ug which are generic for a
measure whose support is strictly contained in Ugq and find orbits
which are not generic for any measure. We also describe a horocy-
cle orbit-closure whose Hausdorff dimension is not an integer.

1. INTRODUCTION

A surprisingly fruitful technique for studying certain mathematical
objects is to study dynamics on their moduli spaces. Examples of this
phenomenon occur in the study of integral values of indefinite quadratic
forms (motivating the study of dynamics of Lie group actions on ho-
mogeneous spaces) and billiard flows on polygonal tables (motivating
the study of the SLy(R)-action on the moduli space of translation sur-
faces). In both cases, far-reaching results regarding the actions on the
moduli spaces have been used to shed light on a wide range of problems
in number theory, geometry, and ergodic theory. See [Zo, , ]
for surveys of these developments.

Let B < SLy(R) be the subgroup of upper triangular matrices, and
let

Udﬁf{us :s€ R},  where us <(1) i) : (1.1)

The U-action is an example of a unipotent flow and, in the case of
strata of translation surfaces, is also known as the horocycle flow. The
actions of these groups on moduli spaces are fundamental in both dy-
namical settings. For homogeneous spaces of Lie groups, actions of
subgroups such as SLy(R), B and U are strongly constrained and much
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is known about invariant measures and orbit-closures. For the action
on a stratum H of translation surfaces, fundamental papers of Mc-
Mullen, Eskin, Mirzakhani and Mohammadi | , : | have
shown that the invariant measures and orbit closures for the SLy(R)-
action and B-action on H are severely restricted and have remarkable
geometric features; in particular an orbit-closure is the image of a man-
ifold under an immersion. This behavior is very much like the behavior
observed in the homogeneous setting.

In this paper we examine the degree to which such regular behavior
might hold for the U-action or horocycle flow on strata. We give ex-
amples showing that, with respect to orbit-closures and the asymptotic
behavior of individual orbits, the U-action on ‘H has features which are
absent in homogeneous dynamics.

In order to set the stage for this comparison we first recall some
results about the dynamics of unipotent flows on homogeneous spaces.
Special cases of these were proved by several authors and the results
were proved in complete generality in celebrated work of Ratner (see
[M] for a survey, and for the definitions used in the statement below).

Theorem 1.1 (Ratner). Let G be a connected Lie group, I a lattice
in G, X =G/T", and U = {us : s € R} a one-parameter Ad-unipotent
subgroup of G.

(1) For any v € X, Uz = Hux is the orbit of a group H satisfy-
mg U ¢ H < G, and Hx is the support of an H-invariant
probability measure fi,.

(2) Any x € X is generic for p,, i.e.

T—oo T

Vf e Cu(X), hm—ffus ds-deux

Statement (1) is known as the orbit-closure theorem, and statement
(2) is known as the genericity theorem.

1.1. Main results. We will introduce a method for constructing U-
orbits with unexpected properties, and apply it in the genus two stra-

tum H(1,1).
In the homogeneous setting, orbit-closures of unipotent flows are
manifolds. It was known (see | ]) that horocycle orbit-closures

could be manifolds with boundary in the setting of translation sur-
faces. We show here that they can be considerably wilder.

Theorem 1.2. There is g € H(1,1) for which the orbit-closure Uq has
non-integer Hausdorff dimension. In fact, by appropriately varying the
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wnitial point, q, we can construct an uncountable nested chain of distinct
horocycle orbit-closures of fractional Hausdorff dimension.

We will give additional information about these orbit-closures in
Theorems 1.8 and 1.9 below.

Let & < H1(1,1) denote the set of unit-area surfaces which can be
presented as two identical tori glued along a slit (in the notation and
terminology of McMullen | |, €4 is the subset of area-one surfaces

in the eigenform locus of discriminant D = 4).

From now on we write G % SLe(R) and & = ¢, The locus € is 5

dimensional, is G-invariant, and is the support of a G-invariant ergodic
probability measure fe.

Theorem 1.3. There is ¢ € H(1,1) which is not contained in E but
which is generic for the measure pug supported on &.

Since £ = supp je is strictly contained in Ug, this orbit does not
satisfy the analogue of Theorem 1.1(2). The next result shows that the
analogue of Ratner’s genericity theorem fails dramatically in H(1,1):

Theorem 1.4. There is a dense G5 subset of ¢ € H(1,1) and f €
C.(H(1,1)) so that

llm 1nf— f usq)ds < limsup — f f(usq)d (1.2)

T—0
In particular such pomts are not generic for any measure on H(1,1),
and there are such points whose forward and backward geodesic trajecto-
ries (i.e., in the notation (2.4), the sets {giq : t > 0} and {g1q : t < 0})
are both dense.

One property of unipotent flows on homogeneous spaces which played
a crucial role in Ratner’s work is ‘controlled divergence of nearby tra-
jectories’. The proof of Theorem 1.3 shows that in strata, divergence
of nearby trajectories can be erratic. We make this precise in §8.3, see
Theorem 8.6.

The proofs of Theorems 1.2, 1.3, and 1.4 rely on the tremor paths
which we now introduce (the geological nomenclature is inspired by
Thurston’s earthquake paths, see [12]).

1.2. Tremors. We can describe the action of the horocycle flow on a
translation surface geometrically as giving us a family of surfaces ob-
tained by changing the flat structure on the original surface by shearing
it horizontally. An interesting modification of this procedure was stud-
ied by Alex Wright [Wrl]. Let ¢ € H, let M, be the corresponding
surface, and suppose M, contains a horizontal cylinder C. Then one
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can deform M, by horizontally shearing the flat structure on C' and
leaving M, ~. C unchanged. This cylinder shear operation defines a
flow on the subset of the stratum corresponding to surfaces containing
a horizontal cylinder. This subset of H is invariant under the horocycle
flow and on it, the flow defined by the cylinder shear commutes with
the horocycle flow. The tremors we study in this paper are partially
defined flows, defined on the set of surfaces whose horizontal foliation
is not uniquely ergodic. Tremors commute with the horocycle flow on
their domains of definition and are a common generalization of both
cylinder shears and the horocycle flow. Wright’s analysis of cylinder
shears focused on shears that keep points inside a G-invariant locus.
On the other hand, we will study tremors that move points in a G-
invariant locus away from that locus and we will use these tremors to
exhibit new behaviors of the horocycle flow.

We can think of both the cylinder shear and the horocycle flow as
arising from transverse invariant measures to the horizontal foliation
F, on the surface M,, where the amount and location of shearing is
determined by the transverse measure. If the cylinder shear flow takes
q to ¢’ then the relationship between their period coordinates (see §2.1
and §2.2, where we will explain the notation and make our discussion
more precise) is given by

@) () — hol@ W) ()
holiy” (v) = hol{ (y) +t - 7(y), holi?(v) = hol'¥)(v). (1.3)

Here holgm) and holfly) denote the cohomology classes corresponding to
the transverse measures dz and dy on M, respectively, 7 is an oriented
closed curve or path joining singularities on M, t is the parameter for
the cylinder shear flow, and 7 is the cohomology class corresponding
to the transverse measure which is the restriction of dy to the cylinder.
The horocycle flow is given in period coordinates as

holgfzzz(v) = holgf) (7) + s- holfly) (), holq(i)q(y) = holfly) (7)- (1.4)

See Figure 1 for an illustration of the geometric meaning of this change
in period coordinates.

Recalling that some surfaces may have additional transverse mea-
sures to the horizontal foliation F,, we will define a surface ¢’ via the
formula

@)y _ (@ W) (o
hol'y (v) = holl® (y) + ¢ B(y), holl’(y) = hol¥(v), (1.5)

where [ is the cohomology class associated with a transverse measure
on F,. In a sense that we will make precise in §5, this means that M,
is deformed by shearing nearby horizontal lines relative to each other,
where the amount of shearing is specified by § and ¢ (see Figure 2 ).
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Vo f=

FIGURE 1. The left hand side shows two triangles in M,.
The right hand side shows the corresponding triangles in
M, where ¢' = u1(q).

Fi1cURE 2. The right hand side shows how the two tri-
angles change with respect to a tremor flow. The periods
of the edges change via equation (1.5).

We write tremy g(q) for ¢’ and tremg(q) for trem; z(q). We refer to a
surface of the form trem, 3(q) as a tremor of q. As we will show in
§4.1.4 and §4.3, ¢’ is uniquely determined by ¢, t and (.

We now give some additional definitions needed for stating our re-
sults. If the transverse measure corresponding to [ is absolutely con-
tinuous with respect to dy (see §4.1.3) we will say that both 5 and the
tremor tremg(q) are absolutely continuous. If ¢ has no horizontal saddle
connections and the transverse measure is not a scalar multiple of dy,
we will say 0 and tremg(q) are essential. We will denote the subspace
of cohomology corresponding to signed transverse measures on JF, by
T,. This can be related to the tangent space to the stratum, see §2.3
and §4.1.1. If the transverse measure is non-atomic, i.e. assigns zero
measure to all horizontal saddle connections or closed leaves, then the
tremor path can be continued for all time, see Proposition 4.13. The
case of atomic transverse measures presents some technical difficulties
which will be discussed in §13.
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1.3. More detailed results. The importance of tremor maps for the
study of the horocycle flow is that, where they are defined, they com-
mute with the horocycle flow, i.e., ustremg(q) = tremg(usq). In partic-
ular we will see that for many tremors, the surfaces usq and ustremp(q)
stay close to each other, and this leads to the following:

Theorem 1.5. Let H be any stratum, let Hq be its subset of area-
one surfaces, and let L < Hy be a closed U-invariant set which is the
support of a U-invariant ergodic measure . Let ¢ € L, B € T, and
¢ = tremg(q). Then:

(i) If B is absolutely continuous then for the sup-norm distance dist

on H (see §2.6), we have

sup dist(usq, usqr) < 0. (1.6)
seR
(ii) If B is absolutely continuous then for any q¢' in Uq ~ L, the
surface My has a non-uniquely ergodic horizontal foliation. In
particular, if L # Hy then Ugy is not dense in H,.
(111) If p-a.e. surface in L has no horizontal saddle connection and
if q is generic for u, then q is also generic for p.

We will give examples of loci £ and points ¢ for which the hypotheses
of Theorem 1.5 are satisfied, namely we will find £ and ¢ for which:

(I) The locus £ is G-invariant and is the support of a G-invariant
ergodic measure p and the orbit Ugq is generic for p.
(II) The surface M, has no horizontal saddle connections and the
transverse measure corresponding to dy on M, is not ergodic
(and hence ¢ admits essential absolutely continuous tremors).
(III) There is an essential absolutely continuous tremor ¢; of ¢ which
is not in L.
There are many examples of strata H and loci £ for which these prop-
erties hold. Omne particular example which we will study in detail is
L =& < Hi(1,1) (see §3.1 for more information on £). Namely we
will prove the following result which, in conjunction with Theorem 1.5,
immediately implies Theorem 1.3.

Theorem 1.6. There are points q € & satisfying (1), (II) and (III)
above. Moreover, for any q € £ which admits an essential tremor [ €
Ty, the points

g trem, (q) € H(1,1) (where r > 0)

satisfy
0<ry<ry = Ug, #Uqp,. (1.7)
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Remark 1.7. Theorem 1.6 is also true if £ is replaced with any of the
other eigenform loci Ep < H(1,1). See §8.2 for more details.

For certain ¢ € £ and 3 € 7,, we can give a complete description of
the closure of Ug; where ¢; = tremg(q). To state this result we will
need a measurement of the size of a tremor and to do this we introduce
the total variation |L|,(B3) of B € T,, see §4.1.2 for the definition. Also
we say that ¢ € &€ is aperiodic if the horizontal foliation of M, is not
periodic, i.e. it is either minimal or contains a horizontal slit separating
the surface into two tori so that the restriction of the horizontal foliation
to each torus is minimal.

Theorem 1.8. For any a > 0 there is gy € £ and an essential tremor
q1 = tremg, (qo) € H(1,1) of qo such that

Uq: = {tremg(q) : q € € is aperiodic, B € T,, |L|,(5) < a}
c {tremg(q) : g€ &, €T, |L|,(B) <al.

(1.8)

Moreover, setting q, o trem, g,(qo), we have that the orbit-closure Ug,
admits the description in (1.8) with the constant a replaced by ra, and
the points q, satisfy the following strengthening of (1.7):

O<ry<ry = Ug, & Uqp,. (1.9)

The following more explicit result implies Theorem 1.2. Its proof
relies on | ]

Theorem 1.9. Let ¢; € H(1,1) be the point described in Theorem
1.8. Then the Hausdorf dimension of the horocycle orbit closure of ¢
satisfies

5.5 < dimUgq, < 6.

1.4. Acknowledgements. The authors gratefully acknowledge the sup-
port of BSF grant 2016256, ISF grant 2095/15, Wolfson Research
Merit Award, NSF grants DMS-135500, DMS-452762, DMS-1440140
a Warnock chair, and Poincaré chair. The authors thank BIRS-CMO,
CIRM, Fields Institute, IHP and MSRI for their hospitality. The au-
thors are grateful to Matt Bainbridge and Yair Minsky for helpful dis-
cussions. The authors thank the anonymous referees for their careful
reading and excellent comments that greatly improved the accuracy
and readability of the paper.

2. BASICS

In this section we review basic concepts and set up notation. Some
readers will find it useful to skip this section on a first reading, and
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refer back to it as needed. The main differences between our treatment
and other treatments are the attention paid to orbifold loci and the
terminology introduced in §2.5.

2.1. Strata and period coordinates. There are several possible ap-
proaches for defining the topology and geometric structure on strata,
see [F'M, , , Y, Zo]. For the most part we follow the approach
of | ], where the reader can find additional details.

Let M be a compact oriented surface of genus g and let ¥ < M be a
non-empty finite set with & elements. We make the convention that the
points of ¥ are labeled as p1, ..., px. Let r be a list of k£ non-negative in-
tegers satisfying > 7, = 2g — 2. A translation surface of type r is given
by an atlas on M of orientation preserving charts A = (Yo, Ua),cus
where the U, € M ~\ X are open and cover M \ X, the transition maps
g © ¢B_1 are restrictions of translations to the appropriate domains,
and such that the planar structure in a neighborhood of each p; € X
completes to a cone angle singularity of total cone angle 27(r; + 1).
A translation equivalence between translation surfaces is a homeomor-
phism & which preserves the labels and the translation structure.

These charts determine a metric on M and a measure which we de-
note by Leb. These charts also allow us to define natural ‘coordinate’
vector fields 0, and 0, and 1-forms dr and dy on M. The (partially
defined) flow corresponding to d, will be called the horizontal straight-
line flow, and we will denote the trajectory parallel to 0, starting at
pe M, byt— Y®)(t). The corresponding foliation of M ~ X, which
we denote by F, will be called the horizontal foliation. If we remove
from M the horizontal trajectories that hit singular points, then the
straightline flow becomes an actual flow defined on a dense G4 subset
of full Lebesgue measure. If this flow is minimal, i.e. all infinite hor-
izontal straightline flow trajectories are dense, we will say that F is
manimal or that M is horizontally minimal.

Fix r of length k, and g satisfying the relation ) r; = 2g—2. Choose
a surface S of genus g and a set X < § of cardinality k, whose elements
are labelled by 1, ...,k (note that we use the same symbol X to denote
finite subsets of S and of M, this should cause no confusion). We
refer to (S,X) as the model surface. A marking map of a translation
surface M is a homeomorphism ¢ : (S, %) — (M, X) which preserves
labels on ¥. We say that two markings maps ¢ : (S, %) — (M, %) and
¢ (S,2) - (M',X) are equivalent if there is a translation equivalence
h : M — M’ so that h o ¢ is isotopic to ¢’ via an isotopy which fixes
Y. An equivalence class of translation surfaces with marking maps is
a marked translation surface. There is a forgetful map which takes a
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marked translation surface, which is the equivalence class of ¢ : S —
M, to the translation equivalence class of M. We will denote this
map by 7 and usually denote an element of 77!(g¢) by ¢. The set of
translation self-equivalences of M is a finite group which we denote by
['ys. In particular we get a left action, by postcomposition, of I'y; on
the set of marking maps of M.

As we have seen a flat surface structure on M determines two natural
1-forms dx and dy and these 1-forms determine cohomology classes in
HY(M,¥;R) which we denote by hol® and hol®. Specifically for an
oriented curve v we have hol®(v) = §., dz and hol® () = §, dy. We

can combine these classes to obtain an R2-valued cohomology class
holy, = (hol® hol®) in H'(M,%:R?). Conversely, any R?-valued
cohomology class gives rise to two R-valued cohomology classes via the
identification R? = R @ R. We denote the corresponding direct sum
decomposition by

HY(M,%;R?*) = H' (M, %;R,) ® H'(M,X; R,). (2.1)

Now consider a marked translation surface ¢ with choice of mark-
ing map ¢ : (5,X) — (M,X), where M = Mj is the underlying
translation surface. In this situation we have a distinguished element
hol; = ¢*(holys) € H'(S, 3; R?) given by using the map ¢ to pull back
the cohomology class holy, from H'(M,3;R?) to H'(S,3;R?). More
concretely if v is an oriented curve in S with endpoints in 3 then
holz(y) = holp(p(v)). The cohomology class hol; is independent of
the choice of the particular representative in the equivalence class q.
We write dev(g) for the cohomology class hol; € H'(S, 2; R?).

2.2. An atlas of charts on H,,. Let H,, = H,(r) denote the col-
lection of equivalence classes of marked translation surfaces of a fixed
type r. Let H = H(r) denote the collection of translation equivalence
classes of translation surfaces. We will use the developing map defined
above to equip these sets with a topology, via a local coordinate system
which is referred to as period coordinates.

We caution the reader that different variants of these definitions
can be found in the literature, and they might not be equivalent to
our definitions, specifically as regards the question of whether or not
points of ¥ are labelled. Our terminology and notation follows | ],
but we introduce some additional notation related to comparison maps,
which will be useful in §4.2 and §5. Readers who are familiar with these
notions may choose to skip this subsection.
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A geodesic triangulation of a translation surface is a decomposition
of the surface into triangles whose sides are saddle connections, and
whose vertices are singular points, which need not be distinct. The ex-
istence of a geodesic triangulation of any translation surface is proved
in [MS, §4]. Let ¢ : (S,%) — (M,X) be a marking map, let ¢ be the
corresponding marked translation surface, and let 7 denote the pull-
back of a geodesic triangulation with vertices in X, from (M,X) to
(S,%). The cohomology class hol; assigns coordinates in R? to edges
of the triangulation and thus can be thought of as giving a map from
the triangles of 7 to triangles in R? (well-defined up to translation), and
so each triangle in 7 has a Euclidean structure coming from M. Let
U, be the collection of all cohomology classes which map each trian-
gle of 7 into a positively oriented non-degenerate triangle in R?. Each
B € U, gives a translation surface M; g built by gluing together the
corresponding triangles in R? along parallel edges, as well as a distin-
guished marking map, which we denote by ¢, 5 : (S,X) — (M, 3,%),
which is the unique map taking each triangle of the triangulation 7 of S
to the corresponding triangle of the triangulation of M, g and which is
affine on each triangle (with respect to the Euclidean structure coming
from M). Let g, 3 denote the marked translation surface corresponding
to the marking map ¢, 5. Let

VS {Gop: BeUs) and W, U — Vi, WL(8) = g

By construction, § agrees with dev (g, z) on edges of 7, and these edges
generate Hq(S,%). Thus the map

O,V - Uy, ©.(3) = dev(d)

is an inverse to ¥, (and in particular ¥, is injective). The collection of
maps {®,} gives an atlas of charts for H,, and the collection of maps
{W,} gives an inverse atlas for H,,. These charts give H,, a manifold
structure for which the map dev is a local diffeomorphism. In fact this
atlas determines an affine structure on H,, so that dev is an affine map.
We denote the tangent space of Hy, at § € Hy by T3(Hm) and by
T(Hy) the tangent bundle of H,,. Using the fact that the developing
map is a local diffeomorphism we can identify the tangent space at each
point of H,, with H'(S,3;R?) so T(Hw) = Hm x H'(S,3Z;R?). We
say that two tangent vectors v; € Ty (Hy) (i = 1,2), or two subspaces
Vi < Ty, (Huw) are parallel if they map to the same element or subspace
of H'(S,%;R?). We say that a sub-bundle of T'(H,,) is flat if the fibers
over different points are parallel, and that a sub-bundle of T'(H) is flat
if each of the connected components of its pullback to T'(H,,) is flat.
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LBl

FiGURE 3. The left hand side shows two triangles in
M 5. The right hand side shows their images under the
comparison map. In this case the two surfaces are in the
same horospherical leaf.

Let
H'(S,%;R?) = H'(S,%;R,) @ H' (S, 3, R,) (2.2)

be the analogue of (2.1) for the model surface S. This decomposition
determines a foliation of H'(S,¥; R?), whose leaves are pre-images of
points under the projection H'(S,¥;R?) — H'(S,%;R,). The pull-
back of this foliation to H,, is the horospherical foliation (or ‘strong
unstable foliation’; see | ) ] for more information). We de-
note the horospherical leaf of a point ¢ € H,, by W"*(q).

Using the explicit marking maps ¢, 5 : (S,X) — (M, 3,%), we get
explicit comparison maps between surfaces M, g and M, g € V;, taking
triangles affinely to triangles, and having the form

Or.8,5 = Y7, 0 907_,2/ : My g — M.

The maps ¢, g are continuous and piecewise affine but are not in
general affine mappings since they may have different derivatives on
different triangles. If, in addition, M,z and M,z are in the same
horospherical leaf, then the comparison map ¢, s sends horizontal
straightline leaves on M, g to horizontal straightline leaves on M, g,
preserving the vertical distance between plaques (but the length mea-
sure on the leaves may be distorted). See Figure 3.

Let Mod(S, 3) be the group of isotopy classes of homeomorphisms of
S which fix ¥ pointwise. This is the pure mapping class group. 1t acts
on the right on marking maps by pre-composition, and this induces
a well-defined action on H,, (note that Iy, acts on the left). It also
acts on T'(Him) = Hm x H'(S,5R?) by 7 : (¢, 8) = (¢ o7,7(8)).
The developing map is Mod(.S, ¥2)-equivariant with respect to these two
right actions and thus the action of an element of Mod (S, ¥) on Hp,
when expressed in charts, is linear. This implies that the Mod(S, X)-
action preserves the affine structure on H,,. This action is properly
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discontinuous, but not free. Elements with nontrivial stabilizer groups
correspond to surfaces with nontrivial translation equivalences.

The group Mod(S, ¥) acts transitively on isotopy classes of marking
maps hence each fiber of the forgetful map 7 : H,, — H is a Mod(S, X)-
orbit. We can thus view H as the quotient H,,/ Mod(S, ), and equip
it with the quotient topology. The horospherical foliation on H,, de-
scends to a well-defined equivalence relation on H, and we denote the
equivalence class of ¢ € H by W"%(q). Loosely speaking, W**(q) is the
set of translation surfaces whose horizontal measured foliation is the
same as that of M,.

Viewed as a map between topological spaces the forgetful map is
typically not a covering map due to to the presence of translation sur-
faces in ‘H with non-trivial translation equivalences. To make this map
behave more like a covering map we work in the category of orbifolds.

2.3. The affine orbifold structure of a stratum. An orbifold struc-
ture on a space X is given by an atlas of inverse charts. This consists
of a collection of open sets W; that cover X, a collection of maps
¢; : U; — W; where U; are open sets in a vector space V', and a collec-
tion of finite groups G; acting linearly on the sets U; so that each ¢;
induces a homeomorphism from U;/G; to W;. Furthermore we require
that the transition maps on overlaps respect the group actions. The
local groups G; give rise to a local group G,, depending only on z € X,
and well-defined up to a conjugation. More information is contained
in [AIL, Definitions 2.1 & 2.2]. If we require that the overlap functions
and finite group actions respect the affine structure then we get an
affine orbifold.

The singular set of an orbifold is the set of points where the local
group is not the identity. The singular set has a stratification into sub-
manifolds which we will call orbifold substrata, defined as the connected
components of the subsets of the stratum on which the local group is
constant. We will denote the orbifold substratum corresponding to g,
by O,.

We now modify our construction of the atlas for H,, to give an affine
orbifold atlas for H. Let ¢ € H, let M = M, be the underlying transla-
tion surface, and let I'; = I"y; be the group of translation equivalences
of M,. In order to construct an inverse chart in a neighborhood of ¢
we choose a marking map ¢ : (S,%) — (M,%). By pulling back a
triangulation from the quotient of M by I'y;, we can find a geodesic
triangulation 7/ of M which is I'j;-invariant, and we let 7 = ¢~1(7/) be
the pullback of this triangulation to S. As before, let U, be the set of
cohomology classes compatible with 7. Let G, be the (conjugacy class
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of the) subgroup of Mod(S,Y) corresponding to the isotopy classes of
the elements {9~ ' ohop:heT,}. Since 7' is [',-invariant, the group
G, acts on U, and the maps mo W, : U, — H induce maps from U, /G,
to H. By possibly replacing U, by a smaller neighborhood U; < U-
on which this induced map is injective, we get a collection of inverse
charts for an orbifold atlas for H.

The tangent bundle of an orbifold is defined in [AK, Prop. 4.1]. Tt is
itself an orbifold, and is equipped with a projection map 7'(X) — X,
such that the fiber over x can be identified with the quotient of a vector
space by a linear action of G,. The projection map 7'(X) — X is a
bundle map in the category of orbifolds. Note that its fibers can vary
from point to point.

We denote the orbifold tangent space of H at ¢ by T,(H), and the
tangent bundle of H by T'(H). We can identify T'(H) with the quotient
of the tangent bundle of H,, under the action of the pure mapping class
group. The bundle T'(H) has a canonical Mod (S, ¥)-invariant splitting
coming from the decomposition (2.2) and we refer to the summands as
the horizontal and vertical sub-bundles. Thus the horizontal sub-bundle
is given by the tangent spaces to horospherical leaves in H,,.

Since H is the quotient of an affine manifold H,, by a group acting
affinely and properly discontinuously it inherits the structure of an
affine orbifold. A map between affine orbifolds is affine if it can be
expressed by affine maps in local charts.

With the above description of the orbifold tangent bundle of H, we
obtain a description of the sub-bundle corresponding to the orbifold
substrata.

Proposition 2.1. Let g € H be a surface with a nontrivial local group
G, and let O, be the corresponding orbifold substratum. A choice of § €

7(q) gives a component O, of 71(0,) and a subgroup G  Mod(S, %)

~

in the conjugacy class G,, such that Oy, is an affine submanifold of Hy,,

~

and its tangent space T3(O,) at G is identified via the developing map
with the set of vectors in H*(S,%;R?) fized by G.

The proof is left to the reader.

We will need explicit formulas for the projections onto the tangent
space to an orbifold substratum, and onto a normal sub-bundle. Let
M, be a surface with a non-trivial group of translation equivalences,
and choose a chart as above about M,. Choose a marking map of M,
and let G, be the corresponding local group acting on this chart. Define
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By Proposition 2.1, PT is a projection of H'(S,¥;R?) onto the tan-
gent space to the substratum. The kernel of P, which we denote by
A (0,), is a natural choice for a normal bundle to O,. We denote

by P~ = ©1d — P+ the projection onto the normal space to the orbifold
substratum. Note that P* depend on the orbifold substratum O, (via
G,) but this will be suppressed in the notation. It will also be useful
to further decompose the normal bundle into its intersections with the
horizontal and vertical sub-bundles, and we denote these sub-bundles

by A3(Oq) and A (Oy).

Proposition 2.2. Given an orbifold sub-locus O, the bundles T'(O),
N(O), N(O) and AN, (O) are flat, and each has a volume form which
is well-defined (independent of a marking).

Proof. To see that the bundles in the statement are flat, note that
Mod(S, ¥) acts on H'(S,¥;R) and H*(S,X;R?) by linear transforma-
tions, and thus the set of vectors fixed by a subgroup G is a linear
subspace. Now flatness follows using Proposition 2.1.

The map P respects the splitting of cohomology into horizontal and
vertical factors, i.e., it commutes with the two projections onto the sum-
mands in (2.2). Moreover, since the Mod (S, ¥)-action on H'(S, ¥; R?)
preserves H'(S,¥;7Z?), it takes integral classes to rational classes, i.e.,
is defined over Q. It thus induces a map

HY(S,5;R,) o HY(S, 5 Z,) 25 HY(S,%:Q,) = HY(S, T R,)

(with the obvious notations Z,, Q, for the corresponding summands),
and a corresponding map for the second summand Z,, Q,, R,. The ker-
nels of these maps are lattices in .4, (0O) and .4,(QO) which are parallel.
This means that the Lebesgue measure on 4,(0), coming from the
affine structure of Proposition 2.1, has a natural normalization which
does not depend on the choice of a particular lift O — 0. U

Affine structures do not give a metric geometry but some familiar
notions from the theory of Riemannian manifolds have analogues for
affine manifolds. Thus an affine geodesic is a path in an affine manifold
N parametrized by an open interval in the real line which has the
property that in any affine chart the parametrization is linear. We
can also describe affine geodesics by saying that the tangent vector to
the curve is invariant under parallel translation. Affine geodesics are
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projections of orbits of a partially defined flow on the tangent bundle
which we call the affine geodesic flow. An affine geodesic has a maximal
domain of definition which is a connected open subset of R, which may
or may not coincide with R. We denote by Dom(g, v) < R the maximal
domain of definition of the affine geodesic which is tangent at time t = 0
to v e Ti(Hm).

The space of marked translation surfaces with area one is a subman-
ifold My, 1 of Hy, which is invariant under Mod(S, ¥). We refer to the
quotient orbifold as the normalized stratum and denote it by H;. The
normalized stratum is a codimension one sub-orbifold of H but it is
not an affine sub-orbifold. The developing map dev maps H,, ; into
a quadric in H'(S,3;R?), and the tangent space T;(H., 1) is a linear
subspace of H'(S,Y;R?) on which area is constant to first order. This
subspace varies with ¢. Nevertheless it is often quite useful to use the
ambient affine coordinates to discuss it.

The intersection of horospherical leaves in H,, with H,,; give the
horospherial foliation of H,, 1. Its leaves are of codimension one in the
horospherical leaves of H,,. In general if we consider a vector tangent
to Hi then the affine geodesic determined by this vector need not lie
in H; but in the particular case of vectors tangent to the horospherical
foliation (e.g., horocycles and tremors) it will be the case that these
paths lie in H;.

2.4. The action of G = SLy(R) on strata. We now check that the
linear action of GG induces an affine action on charts. There is a natural
left action of G on H'(S,¥;R?) which is given by the action of G' on

the coefficient system, i.e. by postcomposition of R? valued 1-cochains.
Let 7 be a triangulation of S, and let U, = H'(S,%;R?) be defined as

in §2.2. For § € U, and g € GG, we see that g/ défgoﬁ e U;. Let ;848 :
Mg — Mg,z be the comparison map. Notice that it has the same
derivative on each triangle, namely its derivative is everywhere equal
to the linear map g. In particular, the comparison map ¢, 3 48 does not
depend on 7. We will call it the affine comparison map corresponding to
g and denote it by 1,. The action of g on H,, can now be expressed as
replacing a marking map ¢ : § — M by 9,09 : S — gM. Other affine
maps M, — Mg, with derivative g can be obtained by composing 1,
with translation equivalences. Since the G-action commutes with the
Mod(S, ¥)-action, G acts on H and preserves its orbifold stratification.
Additionally, the normal and tangent bundles of Propositions 2.1 and
2.2 are G-equivariant.

We introduce some notation for subgroups of G. Recall the group
U = {us : s € R} introduced in (1.1). We will also use the following
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notation for other subgroups:

et 0 cos —sin6
gt = <0 et) v T = (sin@ cos 6 ) (2.4)

B={<8 abl):a>0,beR}. (2.5)

With this notation we note that the U-action is given in period coor-
dinate charts by

holi” (7) = holy” (7) + 5 - hol !’ (7), holl"}(7) = holi” ();

and

this now gives a precise meaning to equation (1.4). We see in particular
that horocycle orbits are linearly parametrized affine geodesics.

Our next goal is to give a precise meaning to equation (1.5), by
defining transverse measures and their associated cohomology class.

2.5. Transverse (signed) measures and foliation cocycles. In
this section we define transverse measures and cocycles and cohomol-
ogy classes associated with a non-atomic transverse measure. It will be
useful to include signed transverse measures. In some settings it is use-
ful to pass to limits of non-atomic transverse measures, and these limits
may be certain atomic transverse measures. In §13 we will discuss the
case of these atomic transverse measures.

Let M be a translation surface, let § € S* be a direction (i.e., a unit
vector (cos 6, sin f) € R?), and let Fy denote the foliation of M obtained
by pulling back the foliation of R? by lines parallel to 0. A transverse
arc to Fy is a piecewise smooth curve v : (a,b) — M\ X of finite length
which is everywhere transverse to leaves of Fy. A transverse measure
on Fy is a family {v,} where v ranges over the transverse arcs, the v,
are finite regular Borel measures defined on « which are invariant under
isotopy along leaves and so that if 4" < 7 then v, is the restriction of
v, to 7 (in §13 these two requirements will be referred to respectively
as invariance and restriction). Since transverse measures are defined
via measures, the usual notions of measure theory (absolute continuity,
Radon-Nikodym theorem, etc.) make sense for transverse measures (or
a pair of transverse measures). In particular it makes sense to speak of
atoms of a transverse measure, and we will say that v is non-atomic if
none of the v, have atoms. In this paper, if transverse measures have
atoms we require that the atoms be supported on closed loops, each of
which is a closed leaf, or a union of saddle connections that meet at
angles +7 (see §13 for the complete definition). These are the atomic
transverse measures that can arise as limits of non-atomic transverse
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measures. We remark that in the literature, there are several different
conventions regarding atomic transverse measures.

A (finite) signed measure on X is a map from Borel subsets of X to
R satisfying all the properties satisfied by a measure. Recall that every
signed measure has a canonical Hahn decomposition, i.e. a unique rep-
resentation v = vt — v~ as a difference of mutually singular finite mea-
sures. A signed transverse measure is a system {v, } of signed measures,
satisfying the same hypotheses as a signed measure; or equivalently, the
difference of two transverse measures {v] }, {7 }. In what follows, the
words ‘measure’ and ‘transverse measure’ always refer to non-negative
measures (i.e. measures for which v~ = 0). When we want to allow
general signed measures we will include the word ‘signed’. We say that
v is non-atomic if v* are both non-atomic. The sum v (X) + v~ (X)
is called the total variation of v.

If M is a translation surface, Fy is a directional foliation on M, and
v is a non-atomic signed transverse measure on Fy, we have a map
[, from transverse line segments to real numbers, defined as follows.
If v is a transverse oriented line segment and the (counterclockwise)
angle between the direction 6 and the direction of 7 is in (0,7), set
Bu(y) = v(7). If the angle is in (—m,0) set 5,(y) = —v(v). We extend
this to all straight line segments by stipulating that (,(v) = 0 for any
line segment v that is contained in a leaf of the foliation. By linearity
we extend [, to finite concatenations of oriented straight line segments.
Similarly we can define f,(y) for an oriented piecewise smooth curve
v, where the sign of an intersection is measured using the derivative of
7.

By a polygon decomposition of a translation surface M, we mean a
decomposition into simply connected polygons for which all the vertices
are singular points. As we saw every M admits a geodesic triangulation
which is a special case of a polygon decomposition. Let £, be as in the
preceding paragraph. Any element o € Hq(M,X) has a representative
a that is a concatenation of edges of a polygon decomposition. The in-
variance property of a transverse measure ensures that the value (&)
depends only on « and not on the representative @; in particular it does
not depend on the cell decomposition used, and [, is a cochain and
defines a cohomology class in H'(M, ¥;R). We have defined a mapping
v — f3, from non-atomic signed transverse measures to H'(M,¥; R?),
and in §13 we will explain how to extend this map to atomic transverse
measures. We will be primarily interested in transverse measures to
the horizontal foliation. An element of cohomology which corresponds
to a transverse measure (resp., a signed transverse measure) to the hor-
izontal foliation will be called a foliation cocycle (respectively, signed
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foliation cocycle), and B, will be called the (signed) foliation cocycle
corresponding to v.

Identifying R with R, and H'(M,¥;R) with the first summand in
(2.1), we identify the collection of all signed foliation cocycles with a
subspace T, € H'(M,3;R,), and the collection of all foliation cocycles
with a cone C < 7T,. We refer to these respectively as the space
of signed foliation cocycles and the cone of foliation cocycles. The
Hahn decomposition of transverse measures implies that every g € 7,
can be written uniquely as 8 = 87 — 5~ for f* € C;. For every g,
the 1-form dy gives rise to a canonical transverse measure and to the
corresponding cohomology class holgy). When we want to think of this
class as a foliation cocycle, we will denote it by dy or (dy),, and refer
to it as the canonical foliation cocycle.

As discussed above for the horizontal direction, we can define a (par-
tially defined) straightline flow in direction 6 by lifting the vector field
on R? in direction § and following lines parallel to . We write JF, for
the foliation by lines in direction 6 and write F for Fy,. We say that
a finite Borel measure p on M is Fy-invariant if it is invariant under
the straightline flow in direction #. We have the following well-known
relationship between transverse measures and invariant measures.

Proposition 2.3. For each non-atomic transverse measure v on Fy
there exists an Fg-invariant measure (i, with

1, (4) = v(v) - ((h) (2.6)

for every isometrically embedded rectangle A with one side h parallel
to 0, and another side v orthogonal to 0, where { is the Fuclidean
length. The map v — p, is a bijection between non-atomic transverse
measures and Fg-invariant measures that assign zero measure to leaves.
It extends to a bijection between non-atomic signed transverse measures
and Fy-invariant signed measures assigning zero measure to leaves.

It is clear from (2.6) that two different transverse measures give
different measures to some rectangle, and so the assignment is injective.
To see that each Fy-invariant measure arises from a transverse measure,
partition M into rectangles and use disintegration of measures to define
a transverse measure on each rectangle. This transverse measure will
be non-atomic if the invariant measure gives zero measure to every
horizontal leaf.

The map v — [, is almost injective. More precisely, we have:

Proposition 2.4 (Katok). If M, has no horizontal cylinders and v, #
vy are distinct non-atomic signed transverse measures to the horizontal
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foliation, then B, # B.,, and moreover the restrictions of [3,, to the
absolute period space Hy(S) are different.

For a proof see [[X]. Katok considered measures rather than signed
measures, but the passage to signed measures follows from the unique-
ness of the Hahn decomposition. It is easy to see that the injectivity
of the assignment v — f, fails if the requirement that M, has no
horizontal saddle connections is omitted. For more on this, see §13.

2.6. The Sup-norm Finsler metric. We now recall the sup-norm
Finsler metric on H,, studied by Avila, Gouézel and Yoccoz in | ].
Let | - | denote the Euclidean norm on R? For a translation surface
q, denote by A, the collection of saddle connections on M, and let
l,(0) = |hol,(o)| be the length of o € A,. For g € H'(M,, X,; R?) we

/3 o
6 d_ef sup ————.
H Hq oelq £q<0)

We now define a Finsler metric for H,,. Let ¢ : (S,%) — (M, X)
be a marking map, which represents ¢ € H,. Recall that we can
identify Ty(Hy,) with H'(S,3;R?). Then |p*B]; = | 8], is a norm on
H'(S,3;R?), or equivalently:

df
18l2=

(2.7)

up LB
reny Lo(eo(7)

Note that Aj varies as ¢ changes, and that ||0]; is well-defined (i.e.
depends on ¢ and not on the actual marking map ¢). Recall that
using period coordinates, the tangent bundle T'(H,,) is a product H,, X
H'(S,%;R?). As shown in | , Prop. 2.11], the map

T(Hw) =R, (¢,8) — |83 (2.9)

(2.8)

is continuous.
The Finsler metric defines a distance function on H,, which we call
the sup-norm distance and define as follows

dist(qo, 1) = 1nff 1Y (7) [ d (2.10)
Here v ranges over smooth paths 7 : [0,1] — H with v(0) = gp and
(1) = ¢i. This distance is symmetric since |3z = | — B4
The following was shown in | , §2.2.2]:

Proposition 2.5. The metric dist is proper, complete, and induces the
topology on H,, given by period coordinates. It is invariant under the
action of the pure mapping class group.
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By Proposition 2.5, in order to compute the length of a path p, one
can lift the path to H,, and measure its length there. Note that dist
need not be invariant under parallel translation.

Proof. The fact that the sup-norm distance is a Finsler metric giv-

ing the topology on period coordinates is | , proof of Proposition
2.11]. The fact that the metric is proper is | , Lemma 2.12]. Com-
pleteness is | , Corollary 2.13]. The metric is invariant under the

action of the mapping class group because its definition depends only
on the collection of saddle connections in M, which is independent of
the marking. 0

We will now compute the deviation of nearby G-orbits with respect
to the sup-norm distance. Let [g]op, ¢" and tr(g) denote respectively
the operator norm, transpose, and trace of g € G. The operator norm
can be calculated in terms of the singular values of g. Specifically the
operator norm is the square root of the the largest eigenvalue of g'g.
For a 2 by 2 matrix this eigenvalue can be expressed in terms of the
trace and determinant of g*g:

19l = \/tr(gtg) + Qtrz(gtg) —4 (2.11)

Recall the affine comparison map v, : M, — M,, with derivative
g, from §2.4. For this map we have hol(¢(¢)) = g(hol(c)) and hence
|lollgg = [g(hol(c))|,. From this it is not hard to deduce that

19897 < Iglop + 9™ lop - 18]z
Corollary 2.6 (See | ], equation (2.13)). For any s,t € R and any
B e HY(S,Z;R?), we have

s% + |s|\/s? + 4
v (1 ) 1615

Jus(8) ;

and
19:(B)llgi < €185

Integrating these pointwise bounds and using the definition of the
sup-norm distance, we find that nearby horocycle trajectories diverge
from each other at most quadratically and nearby geodesic orbits di-
verge at most exponentially. Namely:

Corollary 2.7. For ¢y and ¢, € H,, and any s,t € R,
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diSt((]No, q~1) < diSt(usq~07 U5671)

2 2
- (1+5 +|s]2\/s —|—4)

<1 N s2 + |s|v/s? + 4)_1
2

dist(qo, 1)
and
et dist(Gy, 3y) < dist(g,q < A dist (3. 7). 2.12
qo, 11 9tq0, 9t4 qo, 11

In the case of unipotent flows in homogeneous dynamics nearby or-
bits diverge at most polynomially with respect to an appropriate met-
ric. Corollary 2.7 shows that on strata, nearby horocycles orbits diverge
from each other at most quadratically. In §8.3 we will discuss the more
delicate question of lower bounds for the rate of divergence of horocy-
cles, and show that erratic divergence is possible.

3. THE SPACE OF PAIRS OF TORI GLUED ALONG SLITS

In this section we collect some information we will need regarding
the structure of £ and the dynamics of the straightline flow on surfaces
in £. We also prove Proposition 3.5, which plays an important role in
§10. It shows that for surfaces in &, the ergodic measures in directions
which are not uniquely ergodic have good approximations by splittings
of the surface into two tori. This may be considered as a converse to a
construction of Masur and Smillie | , §3.1].

3.1. The locus £. McMullen studied the eigenform loci £p, which are
affine G-invariant suborbifolds of H(1,1) (see | | and references
therein). The description of € = &, which will be convenient for us
is the following. Recalling that #(0,0) is the stratum of tori with
two marked points, we have that £ is the collection of g € H(1,1) for
which there is a branched 2 to 1 translation cover from M, onto a
torus in #(0,0). To avoid confusion with different conventions used in
the literature, we remind the reader that we take the marked points
in 7(0,0) and #H(1,1) to be labelled. See | , §7] for additional
information.

Given a torus T € H(0,0) and a saddle connection ¢ joining the two
marked points we can build a surface M € H(1,1) by cutting 7" along
0, viewing the resulting surface as a surface with boundary. We define
M to be the result of taking two copies of the surface with bound-
ary and gluing along the boundaries. The surface M has a branched
covering map to 7" and a deck transformation which is an involution
interchanging the two copies of T. A slit on a translation surface is a
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union of homologous saddle connections which disconnect the surface.
Thus in this example, the preimage o of § under the map M — T is
a slit. We say that M is built from the slit construction applied to o.
Clearly surfaces built from the slit construction belong to £.

The following proposition shows that, with respect to the terminol-
ogy of §2.3, & consists of points in H(1,1) where the local orbifold
group is non-trivial; namely, it is the group of order two generated by
an involution in Mod(S, X).

Proposition 3.1 (] |). The locus & is connected. It admits a four
to one covering map P : € — H(0,0) which is characterized by the
following property: for every q € & there is an order 2 translation
equivalence v = 1y : M, — My, such that the quotient surface My/{v) is
a translation surface which is translation equivalent to the torus Tp).

Proof. Connectedness of £ is proved in | , Theorem 4.4]. It remains
to show that P is four to one. By definition, if ¢ € £ then M, has a
translation automorphism ¢ such that M,/{¢) is a torus in #(0, 0).

We begin by determining the fixed points of ¢. If a translation au-
tomorphism fixes a nonsingular point it fixes a neighborhood of that
point. Thus the set of nonsingular fixed points is open and closed.
We conclude that the only possible fixed points are singularities and
singularities are indeed fixed since they are labelled. We conclude that
¢ induces a branched covering map which has non-trivial branching at
the two singular points.

Let T be a torus with ¥ = {p;,ps} corresponding to a point in
H(0,0). Any ¢ € £ for which P(q) = T gives an unbranched cover
M, ~ P7'(X) - T\ X. Conversely any unbranched cover of 7'\ X
can be completed to a branched cover of T'. This cover is ramified at
p; € X precisely when a small loop ¢; around p; in T" does not lift as
a closed loop in M,. So the cardinality of P~'(T) is the number of
topologically distinct degree 2 covers of T' . X for which the loops ¢;
do not lift as closed loops. Equivalently, it is the number of conjugacy
classes of homomorphisms (7" \ ¥) — Z/2Z for which the image of
the class of each ¢; is nontrivial. Since Z/2Z is abelian, the covering
spaces are determined uniquely by elements § € H'(T'\3; Z/2Z) which
has dimension 3 and we are counting those ¢ for which both 6(¢;) # 0.
Since the loops ¢; and ¢y are homologous, this condition gives a single
inhomogeneous linear equation on a Z/27 vector space of dimension 3,
so we have four solutions. 0
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As we saw surfaces built from the slit construction belong to £. The
following is a strong converse to this statement (a similar result holds
for all eigenform loci, see | , 87]).

Proposition 3.2. Two saddle connections 1 and do on the same torus
in H(0,0), connecting the singularities, give rise to the same surface
in € if and only if the corresponding homology classes [61] and [d2] are
equal as elements of Hy(T,%;Z/27). In particular every surface in &
can be built from the slit construction in infinitely many ways (that is,
using infinitely many different §).

Proof. As in the proof of Proposition 3.1, a surface in £ corresponds to
aclass 0 € H'(T\X;Z/2Z) for which the 6(¢;) are nonzero, for j = 1,2.
If ¢ is any path from p; to pe, it defines a class [0] € H{(T,%;Z/27),
and we will say 6 is represented by § if 6 is the class in H (T \X;Z/27)
which is Poincaré dual to [§]. Clearly, if 6 is represented by some ¢
then 6 satisfies the requirement 6(¢;) # 0, and by a dimension count,
any such 6 is represented by some path §. It remains to show that each
0 is represented by infinitely many saddle connections ¢ from p; to ps.
To see this, let 9y be some path representing 6, let vg of holr(dy), let
AY holy(H(T;7Z)), and let A/ difAu(vO + A) . Since R? is the universal
cover of T, A is a lattice in R2, vy ¢ A, and the required paths § are
those for which holr () € vg 4+ 2 - A and for which the straight segment
in R? from the origin to holr(d) does not intersect A’ in its interior. It
follows from this description that the set of such ¢ is infinite. O

For use in the sequel, we record the conclusion of Proposition 2.2 in
the special case of the orbifold substratum &:

Corollary 3.3. We can identify the tangent space T(E) with the +1
eigenspace of the action of v on H'(S,%;R?) and the normal bundle
N (E) with the —1 eigenspace. The bundle A (E) has a splitting into
flat sub-bundles

N(E) = N (E) @ Ay (E),

and each of these sub-bundles has a flat monodromy-invariant volume
form.

3.2. Dynamics on £. Here we state some important features of the
straightline flow on surfaces in €.

Proposition 3.4. Let g€ &, let M = M, be the underlying surface, let
L: M — M be the involution as described in Proposition 3.1, let F be
the horizontal foliation on M, and let (dy), be the canonical transverse
measure. Suppose that the foliation F is not periodic. Then for any
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transverse measure v to F, L4V is also a transverse measure and there
is ¢ > 0 such that v + 1,v = c¢(dy),. Moreover, if F is not uniquely
ergodic, then (up to multiplication by constants) it supports exactly two
ergodic transverse measures which are images of each other under iy,
and Leb is not ergodic for the horizontal straightline flow.

This follows from the facts that « commutes with the flow and that,
under our aperiodicity assumption, the projection of F to the torus is
uniquely ergodic. We leave the details to the reader.

The following proposition is the main result of this section. Recall
that Fy denotes the foliation in direction 6, where 8 = 0 corresponds
to the horizontal direction.

Proposition 3.5. Suppose q € £ has the property that the horizontal
foliation on M, is minimal but not ergodic and let p be an invariant
ergodic probability measure on M, for the horizontal straightline flow.
Then there are directions 0;, such that the foliations F; in direction 0,
contain saddle connections 0; satisfying the following:

(1) The union o; = 0; U 1(0;) is a slit in F; separating M, into two

1sometric tori.
(it) The holonomy hol,(6;) = (x;,y;) satisfies

zi| >0, 0#y;, — 0 as j — 0.
J J

In particular the direction 0; is not horizontal but tends to hor-
izontal, and the length of 6; tends to co. Moreover there are
no saddle connections 6 on M, with holonomy vector satisfying
‘holff)(é)‘ < |z;| and ‘holgy)(é)‘ < ly;l.

(iit) For each j we can choose one of the tori A; in M,~0;, such that
the normalized restriction p; of Leb to A; converges to j as j —
o0, w.r.t. the weak-+ topology on probability measures on M,.
Thus, letting v and v; be the transverse measures corresponding
to pu and p; (via Proposition 2.3), and letting 3, and B; = f3,, be
the corresponding foliation cocycles in H'(M,,%,;R), we have

5]‘ - 5%
We divide the argument below into steps.

Proof. Step 1. Finding slits satisfying (i) and (ii): divergence
in £ versus convergence in H(0).

We consider the projection map 7 : € — H(0) given by the com-
position of the map P : & — #(0,0) from Proposition 3.1 with the
forgetful map forgetting the second marked point. In other words,
7 My, — M,/{). Since M, has a minimal horizontal foliation, so does
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Mz We normalize the area of M, to be 2, so that 7(¢) has unit
area, and thus belongs to the normalized stratum 7;(0), which can be
identified with the space of unimodular lattices SLo(R)/SLy(Z). The
horizontal foliation is minimal if and only if the corresponding lattice
does not contain a nonzero horizontal vector, and this implies that
there is a compact set K < H(0) for which

there is ¢; — oo such that g_;;7(q) € K. (3.1)

Denote by M, the moduli space of Riemann surfaces of genus g
and let M, be its Deligne-Mumford compactification (see [13, §5] for
a concise introduction). Passing to a further subsequence (which we
will continue to denote by ¢; to simplify notation) we have that g_; ¢
converges to a stable curve in Ms. This curve projects to some torus
in M; (and not in its boundary M; \. M) because the projection of K
to M is compact. So the limiting stable curve has area 2. By | ,
Theorem 1.4, the limit of g_;,¢ is not connected and so, considering
the projection to Mj again, it is built from two tori connected at a
node. Thus for all large j, the surfaces

i) def
MW= Mgftjq (3.2)

are built from two copies of a torus 7; € K glued along slits whose
lengths go to zero. These slits must be the union of two saddle con-
nections that connect the two different singularities of M), Indeed,
the slit cannot project to a short curve on 7 and it must be trivial
in homology. Write M(© = My, let ¢; : MO — MU be the affine
comparison map corresponding to g, and let 0; < M ©) denote the
pullback under ¢; of one of the saddle connections that make up this
slit, so that the other is ¢(d;). Letting #; be the direction of §;, we
obtain (i).

Because the horizontal flow on M(© is minimal, the d; are not hor-
izontal. For any fixed non-horizontal segment § on M the length
of ¢;(8) on M) goes to infinity as j — oo. Therefore we may assume
that the ¢; are all different. By the discreteness of holonomies of sad-
dle connections (see | ]), this implies that |(z;,y;)| — oo, where
(.Tj, y]) = hOlM(o)(5j>. Since

[holyi (¢(6;)) = (e, ;)| — 0,

we have that y; — 0 and so z; — c0. Because the torus 7j is in the
compact set K, the only short saddle connections of MU) are 9; and
¢(d;) which implies the second assertion in (ii). This establishes (ii).
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Step 2. Sets of uniform convergence for the straightline flow
on one side of the slit.

For the proof of (iii), recall that Y®)(¢) denote the horizontal straight-
line flow (starting at p, with time parameter t). By the Birkhoff ergodic
theorem, there is an increasing sequence S, — o0 and an increasing se-
quence of subsets B, < M©® such that limj_., u(M© < E,) = 0,
Y®)(t) is defined for all + € R and all p € Ej, and for any choice of
pr € Ei, and an interval I, ¢ R around 0 of length |I;| > S, the
empirical measures 7, on M© defined by

f fdme = — | £ X@@0)dt (f e CuMy))

2| Jr,
satisfy
M —k—owo [, With respect to the weak-+ topology. (3.3)

Step 3. Notation for Y(¢)-orbit segments on one side of the
slit.

FI1GURE 4. The picture explains the notation from Step
3.  The parallelograms represent tori. The surface
MO = Mg_tjq is obtained by gluing the two tori along
the slit. The vertical line on the left connected compo-
nent of MW\ ¢;(0;) is denoted by £. The horizontal line
segment is H, for some point x € . Because H, does not
intersect ¢,(o;), we have that z is in D;, and H, is in B;
and in B;.

Let o; be the slit on M© ag before, and Aj, AL be the two tori
comprising M© ~ o; as in (i). We will define certain segments in M ()
and use (3.1) in order to obtain bounds on their length.

Denote by ¢ the involution of Proposition 3.1, on both M© and
MW so that ¢; commutes with «. Then ¢;(c;) is a slit on M) and
as we saw, its length |¢;(o;)| satisfies |¢;(c;)| — 0. Since, by (3.1),
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7 (MW) e K for all j, the diameter of M is bounded above inde-
pendently of j. Since ¢;(A;) is one of the connected components of
MW ¢;(a;), ¢;(A;) contains a vertical segment whose length is a
fixed number independent of j. We denote this segment by ¢, and let
¢ () (the segments ¢ and ¢ depend on j but we omit this from the
notation). For each x € £ U ¢’ let I(x) be the interval starting at 0,
such that H, % {Y@(t):tel(x)} is the horizontal segment on M)
starting at x and ending at the first return to £ U ¢’. Then, by consid-
ering the projection to IC, we see that the length of I(x) is bounded
above and below by positive constants independent of j and z, and by
adjusting ¢ there is a constant C' such that

Vj,Veelul', wehave 1<|I(z) <C.

Let

Djdéf {xretul:¢;(o;)nH, =}
and

B, | JH, and B, | ] H..

zeD; xeD;nY

Thus B; is the union of trajectories in M () starting and ending in
¢ U ¢ that do not pass through the slit ¢;(c;), and B; is the set of
such trajectories that stay in ¢;(A;). Then clearly «(B;) = B; and
moreover, since |¢;(a;)| — 0, Leb(B;) — Leb(MW) = 2. Similarly we
have Leb(B;) — 1.

Let k; be the largest k for which e’ > Sy. Then k; — o. By
Proposition 3.4 we have Leb = u + ., and so for large enough 7,
¢;(Er; UL(Ey;)) N By # . Since «(B;) = B; this implies ¢;(Ey,) N B; #
@. Since the two tori A;, A} cover M © by replacing A; with Al if
necessary, we may assume that for all large enough j,

Step 4: Comparing Y (t)-orbit segments on one side of the
slit, and Lebesgue measure restricted to that component.

Let p; be the restriction of Leb to Aj;, so that p; is a probability
measure. Our goal is to show that for all e > 0 and f € C. (M (0)), for
all j large enough we have

fdp;— fdp
M(0) M(0)

<e. (3.4)

We will do this by showing that orbit segments of points in Ej, which
are almost generic for u, track orbit segments of other points, which
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approximate Leb ((3.6) below). We assume with no loss of generality
that ] = 1.
ef

Fix 11 € ¢;(A; n Ey;) n B; and let y; e qu_l(atl). There is z € { N D;
such that z; € H,, and we let ydﬁf qﬁj’l(x). Recall that <;5;1 maps hor-

izontal and vertical straightline segments on M) to horizontal and

vertical straightline segments on M, multiplying their lengths re-
spectively by e*. In particular J(y) o gzﬁj_l

segment on M of length at least e and containing y;, and since
Y1 € By, this implies via (3.3) that for j sufficiently large,

(H,) is a horizontal line

<< (35)

1 e'91J(y)|
m Jo f (T(y) (t)) dt — J fdp 3

M(0)

We now make the previously mentioned orbit tracking argument:
Let 2’ € D; n . So there is a vertical subsegment of ¢, with length
at most C, connecting = and 2’. Since ¢ < ¢;(A;), this segment lies
completely inside ¢;(A;). Arcs starting in ¢;(A;) can only leave ¢,(A;)
by passing through the slit ¢;(o;). Thus, if T@(¢) is in ¢;(4;) and
the vertical straightline segment of length C starting at T (¢) misses
¢;(0;), there is also a vertical segment from Y@ (t) to T(*)(¢) of length

at most C, which lies completely inside ¢;(A;).
For any ' € D; n {, we set y’difgbj_l(x’). Since |¢;(o;)] — 0, the
discussion in the preceding paragraph implies that there is a finite union

of subintervals J; = Ji(y') in J = J(¥'), such that |J;| = O(|¢;(0;)]) —
0 and such that for all t € J~ J; there is a vertical line segment of length
at most C' from Y@ (t) to T@)(¢), and this segment stays completely

Thus, for all large enough 7 we have

m fwm ‘ f (T<y’>(t)> —f(r (t))‘dt < % (3.6)

Let fi; be the restriction of Leb to gzﬁj_l(Bj). Then using Fubini’s theo-

rem to express [i; as an integral of integrals along the lines gbj_l(HI/),
for 2’ € D; n ¢, we find from (3.5) and (3.6) that

_ 2e
’ fdp; — fdu‘ <3 (3.7)
M(0) M)

Since B; < ¢;(4;) and qu_l preserves Lebesgue measure, we have

¢;'(Bj) = A;j, Leb(¢;'(B;)) — 1 = Leb(4;)

J
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and hence for all large j,

fps = | g
M(0) M (0)

Combining this with (3.7) gives (3.4). O

€
< -.
3

Similar ideas can be used to prove the following statement.

Theorem 3.6. Suppose q € £, and the horizontal measured foliation
of the underlying surface My is minimal but not ergodic. Then there is
a sequence of decompositions of M, into pairs of tori A; and A} glued
along slits, and such that the set
Ay =4
i j=i
is invariant under the horizontal flow, and has Lebesque measure 1/2.

The statement will not be used in this paper and its proof is left to
the reader.

4. TREMORS

In this section we give a more detailed treatment of tremors and
their properties.

4.1. Definitions and basic properties.

4.1.1. Semi-continuity of foliation cocycles. Let q € H represent a sur-
face M, with horizontal foliation F,. Recall from §2.5 that the trans-
verse measures (respectively, signed transverse measures) define a cone
C; of foliation cocycles (resp., a space 7T, of signed foliation cocycles)
and these are subsets of H*(M,, ¥;R,.). For amarking map ¢ : S — M,
representing a marked translation surface § € 77!(q), the pullbacks
©*(CF) and ¢*(T,) are subsets of H'(S, X;R,) and will be denoted by
C’; and 7. Note that these notions are well-defined even at orbifold
points (i.e. do not depend on the choice of the marking map) because
translation equivalences map transverse measures to transverse mea-
sures. Recall that g € C; is called non-atomic if § = [, for a non-
atomic transverse measure v. We will mostly work with non-atomic
transverse measures as described in §2.5, and for completeness explain
the atomic case in §13.

Recall from §2.2 that for any ¢, the tangent space T,(#H) at ¢ is
identified with H'(M,, X,;R?) (or with H'(M,,%,;R?)/T, if q is an
orbifold point), and that a marking map identifies the tangent space
Ty (Hy) with H'(S,%;R?). The following proposition expresses an
important semi-continuity property for the cone of foliation cocycles.
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Proposition 4.1. The set
i {(@8) € Hun x H'(S.SiR,) : e CF |

is closed. That is, suppose G, — q is a convergent sequence in Hpy,
and let an,Cg < HY(S,%;R,) be the corresponding cones. Suppose

that B, € H'(S,3;R,) is a convergent sequence such that (3, € C(;; for
every n. Then lim, ., 3, € C’g.

Proposition 4.1 will be proved in §4.2 under an additional assumption
and in §13 in general. Note that care is required in formulating an
analogous property for 7, because dim7, can decrease when taking
limits. See Corollary 4.4. Also note the requirement ¢ € H,,; our
definitions of transverse measures are not well-suited to degenerations
involving limiting to ¢ in a boundary stratum.

4.1.2. Signed mass, total variation, and balanced tremors. We now de-
fine the signed mass and total variation of a signed foliation cocycle.
Recall from §2 that dz = (dz), denotes the canonical transverse mea-
sure for the vertical foliation on a translation surface ¢ and holéw) de-
notes the corresponding element of H'(M,,%,;R). Given q € H and
e H' (M,,%,;R), denote by L,() the evaluation of the cup product
holgx) U 8 on the fundamental class of M,. In particular, if 8 = 3, for
a non-atomic signed transverse measure v then

L,B) = f dx A v; (4.1)
Mq

or equivalently, if g = pu, is the horizontally invariant signed measure

associated to v by Proposition 2.3, then L,(8) = u(M,). We will refer

to L,(8) as the signed mass of 5. Our sign conventions imply that

Ly(B) > 0 for any nonzero 3 € C;.

Note that if h : M, — M, is a translation equivalence then L,(53) =
L,(h*(B)). Thus, if § € 7 '(¢) is a marked translation surface repre-
sented by a marking map ¢, and 5’ € H'(S,X;R) satisfies 8 = ¢./3,
then we can define Lz(5’) d=6f L,(B), and this definition does not depend
on the choice of the marking map ¢ representing ¢. In particular the
mapping (¢, 5) — L,(f) defines a map on T'(H), even if ¢ lies in an
orbifold substratum.

Recall that every signed measure and every signed transverse mea-
sure has a canonical Hahn decomposition v = v* — v~ as a difference
of measures. Thus any 8 € 7, can be written as § = f* — = where
Bt e Cr. In analogy with the total variation of a measure we now
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define
|L|q(6) = Lq(BJr) + Lq(5_>7 (4-2)

and call this the total variation of 5. Note that the signed mass is de-
fined for every 8 € H'(M,, ¥;R) but the total variation is only defined
for 8 € 7,. The linearity of the cup product implies that the maps

are both continuous. In combination with Proposition 4.1, this implies:

Corollary 4.2. The sets
i “ (@ 8): BeCY, Ly(8) = 1}

and

i (0. 8): Be CF . Ly(B) = 1)
are closed, and thus define closed subsets of T'(H.) and T(H).

The following special case will be important in the proofs of Theorem
1.3 and Theorem 1.4.

Corollary 4.3. Let q € H, and denote its canonical foliation cocycle by
holgy). Suppose the underlying translation surface M, has area one and
1s horizontally uniquely ergodic. Then for any sequence q, € H such
that ¢, — q, and any B, € C with Ly, (8,) = 1, we have 3, — holgy).

The total variation of a foliation cocycle also has a semicontinuity
property:
Corollary 4.4. Suppose §,, — @ in Hy and B, € Tz, < H'(S,%;R) is
a sequence of mon-atomic signed foliation cocycles for which the limait
B = lim, . B, exists and sup,, |L|s, (Bn) < 0. Then B € Ty and

| Lla(B)< lim inf [ Lz, (5n). (4.3)

Corollary 4.4 will also be proved in §4.2 under an additional assump-
tion, and the proof in the general case will be given in §13.

We say that € T, is balanced if L(f) = 0, and we let 7?1(0) denote
the set of balanced signed foliation cocycles. Combining Corollary 3.3
and Proposition 3.4, for surfaces in £ we see that balanced foliation
cocycles are those that are ‘normal’ to &:

Corollary 4.5. Let O be an orbifold substratum of H and q € O. Then
Ty 0 A(0) q(o), with equality in the case O = E; namely, if ¢ € £
is aperiodic then 7:,(0) = M(E).
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Proof. Let g € O, let I'; be the group of translation equivalences of M,

let G G, be the local group as in §2.3 and let v € G. Recall that T’
and G are isomorphic and by fixing a marking map, we can think of
v simultaneously as acting on M, by translation automorphisms, and
on H'(S,%;R?) by the natural map induced by a homeomorphism.
Since translation automorphisms of M, preserve the canonical trans-

verse measure (dz),, we have ”y*holé 2) — hol , and thus for any £,

Lo(v*B) =(hol’™ U +*B)(M,) = (hol'™ U B)(v(M,))
=(holl™) U B)(M,) = Ly(B).

Hence, if 8 € T, n A,(O) then P*(S) = 0, where P* is the projection
onto the tangent space of O given in (2.3), and we have

veg veg

Therefore g e 7;(0)

Now if g € £ is aperiodic and € 7:,(0), then we can write g = [, for a
signed transverse measure v, and let y = p, be the associated horizon-
tally invariant signed measure (see Proposition 2.3). Since [ € 7('1(0) we
have p(M,) = 0. Recall from Proposition 3.4 that aperiodic surfaces in
& are either uniquely ergodic, or have two ergodic measures which are
exchanged by the involution ¢ = ¢,. By ergodic decomposition (applied
to each summand in g = ™ — p~) we can write p as a linear combi-
nation of ergodic measures (where the coefficients may be negative). If
M, is uniquely ergodic then this gives u = ¢- Leb and since pu(M,) = 0
we have p = 0. If M, has two ergodic probability measures f; and
Mo = Lypty then p = cypq + cotypy and

0 = u(My) = crpr(My) + copn (L(My)) = c1 + c2,

S0 ¢y = —co. In both cases we obtain t,p = —p, which implies 1,5 =
— (. Thus, using Corollary 3.3, we see that 5 € A,(E). O

4.1.3. Absolutely continuous foliation cocycles. Let v; and vy be two
signed transverse measures for F,. We say that v, is absolutely con-
tinuous with respect to vs if the corresponding signed measures fi,,, i,
given by Proposition 2.3 satisfy u,, < p,,. We say that v is absolutely
continuous if it is absolutely continuous with respect to the canonical
transverse measure (dy),. Since (dy), is non-atomic, so is any abso-
lutely continuous signed transverse measure. For ¢ > 0, we say v is
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L dv L dy‘ . (4.4)

We call a signed foliation cocycle § = 3, absolutely continuous (respec-
tively, c-absolutely continuous) if it corresponds to a signed transverse
measure v which is absolutely continuous (resp., c-absolutely contin-
uous). Let ||v|| gy denote the minimal ¢ such that the above equation
holds for all transverse arcs v (our notation stems from the fact that
|v|| gy is the L*-norm of the Radon-Nikodym derivative %, although
we will not be using this in the sequel). Given g € H and ¢ > 0, denote
by C;-fN(c) (respectively, by TV (c)) the set of absolutely continuous

(signed) foliation cocycles f, with |v| gy < c.

c-absolutely continuous if

for any transverse arc v on M, <c

Remark 4.6. As the reader will note, we will use both |L|,(5) and
|v|ry to measure the ‘size’ of a foliation cocycle 8 = f3,. For most
purposes in this paper, |L|, is easier to work with. Additionally, it is
more broadly defined, making sense when the tremor corresponds to
a singular measure. However, || - |ry is more suitable for estimates
involving the distance function dist (see Proposition 6.7) and plays an
essential role in the proof of Proposition 7.1.

It is easy to see that
CHRN () < {B e CF + Ly(B) < c) (4.5)
and
T (e) = {BeTq |LIg(B) < cb. (4.6)

As we will see in Lemma 8.3, for some surfaces we will also have a
reverse inclusion.

We now observe that for aperiodic surfaces, the assumption of abso-
lute continuity implies a bound on the Radon-Nikodym derivative:

Lemma 4.7. Suppose M, is a horizontally aperiodic surface, v is an
absolutely continuous transverse measure, and p = p, s the corre-
sponding measure on My, so that p < Leb. Then there is ¢ > 0 such
that |v|gn < c. Moreover the constant ¢ depends only on the coeffi-
cients appearing in the ergodic decompositions of p and Leb, and if p
is a probability measure and Leb = >’ a;v;, where {v;} are the horizon-
tally invariant ergodic probability measures and each a; s positive, then
|v|rnv < max; . The same conclusions hold if instead of assuming M,
s aperiodic, we assume the measure v is aperiodic, that is | assigns
zero measure to any horizontal cylinder on M,.
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Proof. Let {p1,...,uq} be the invariant ergodic probability measures
for the horizontal straightline flow on M,. Since M, is horizontally
aperiodic, this is a finite collection, see e.g. [K]. Thus there only
finitely many ergodic measures which are absolutely continuous with
respect to p, and we denote them by {u1,...,ux}. The measures p;
are mutually singular. Write Leb = . a;u; and pu = 7, bipt;, where all
a;, b; are non-negative and not all are zero. Since p1 « Leb, we have

bi >0 = a; > 0.
Set
e bz
X max{—:bi #0}. (4.7)
a;
For any Borel set A < M, we have

— Zbim(A) < CZ aipi(A) = cLeb(A).

This implies that the Radon Nikodym derivative satisfies —b < ca.e.
The horizontal invariance of y and Leb shows that the Radon-Nikodym
derivative diﬁ is defined on almost every point of every transverse
arc v, and the relation (2.6) shows that it coincides with the Radon-

Nikodym derivative 775 dy)q Thus we get (4.4).

The second assertion follows from (4.7), and the last assertion follows
by letting u; denote the horizontally invariant measures on the com-
plement of the union of the horizontal cylinders in M,, and repeating
the argument given above. U

4.1.4. Tremors as affine geodesics, and their domain of definition. Re-
call from §2.2 that we identify T(H,,) with H,, x H'(S,3,R?). Our
particular interest is in affine geodesics tangent to signed foliation co-
cycles. That is, we take

BeTyc H(S I;R,)

(where the last inclusion uses a marking map ¢ : S — M, representing
7). We write v = (8,0) € H'(S,¥;R?) and consider the parameterized
line 6(t) = 05,(t) in H,, satistying

0(0) = q and %Q(t) =0 (4.8)

(where we have again used the marking to identify the tangent space
Towy(Hm) with H'(S,%;R?)). By the uniqueness of solutions of dif-
ferential equations, these equations uniquely define the affine geodesic
0(t) for ¢t in the maximal domain of definition Dom(q,v). As in the
introduction we now have trem, 3(¢) = 0(t) and tremg(q) = 6(1) when
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1 € Dom(q, 5). Equation (4.8) and uniqueness of solutions imply that

for ¢ > 0 we have 0 .,(t) = 0;.(ct) and Dom(q,v) = ¢Dom(q, cv). In

particular tremy .5(q) = trem. (q) and thus trem, 3(q) = trem;s(q).
Since the developing map is affine, we find

hol®) o+ (7) = holt” (1) + B(3), hol®), - (7) = hol? (7).  (4.9)

Comparing equations (4.9) and (1.5), we see that we have given a formal
definition of the tremors introduced in §1.2.

The pure mapping class group Mod(.S, ) acts on each coordinate of
T(Hm) = Hm x H'(S,X,R?), and by equivariance we find that

tremg(q) = w(tremg(q)) and Dom(q,ﬁ)défDom(cY,B)

are well-defined and independent of the choice of § € 77 1(q).
Basic properties of ordinary differential equations now give us:

Proposition 4.8. The set
D ={(q,v,s) € T(Hm) x R:se Dom(q,v)}
is open in T'(Hy) x R, and the map
D 5 (q,v,8) — b5.(s)
18 continuous. In particular the tremor map

{(3,8) € THwm : B €Tg} = Hum, (q,5) — tremgy

15 continuous where defined.

Comparing equation (4.9) to the definition of the horocycle flow in
period coordinates, we immediately see that for the canonical foliation
cocycle dy = holéy), we have

tremgq, (q) = usq. (4.10)

4.2. Tremors and polygonal presentations of surfaces. In this
section we prove Proposition 4.1, under an additional hypothesis. This
special case is easier to prove and suffices for proving our main results.
We will prove the general case of Proposition 4.1 in §13. At the end of
this section we deduce Corollary 4.4 from Proposition 4.1.

Proposition 4.9. Let G, — ¢ in Huw, By — B in H'(S,X;R,) be as
in the statement of Proposition 4.1. Write g, = 7(qn), ¢ = 7(q) and
suppose also that

there is a ¢ > 0 such that for alln, f, € C’(;;’RN(C). (4.11)
Then (€ CH N (c).
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Clearly Proposition 4.9 implies Proposition 4.1 in the case that (4.11)
holds.

Recall that any translation surface has a polygon decomposition, and
that fixing a polygon decomposition on a marked surface makes it pos-
sible to consider the same polygon decomposition on nearby marked
surfaces. For the proof of Proposition 4.9, we introduce polygon de-
compositions which are useful for understanding transverse measures
to the horizontal foliation.

In a general polygon decomposition of a surface, some edges might be
horizontal, and corresponding edges on nearby surfaces may intersect
the horizontal foliation with different orientations. This will cause com-
plications and in order to avoid them, we introduce an adapted polygon
decomposition (APD) of a surface. An APD is a polygon decomposi-
tion in which all polygons are either triangles with no horizontal edges,
or quadrilaterals with one horizontal diagonal. Any surface has an
APD, as can be seen by taking a triangle decomposition and merging
adjacent triangles sharing a horizontal edge into quadrilaterals. We fix
an APD of M,, with a finite collection of edges {J;}, all of which are
transverse to the horizontal foliation on M,. Since we are considering
marked surfaces, we can use a marking map representing § € 7 '(q)
and the comparison maps of §2.2 and think of the arcs J; as arcs on
S, as well as on My for any marked translation surface 5' sufficiently
close to q. Moreover, the edges {J;} are also a subset of the edges of
an APD on M, and they are also transverse to the horizontal foliation
on M. Note that on M, the APD may contain additional edges that
are not edges on M,, namely some of the horizontal diagonals on M,
might not be horizontal on M, and in this case we add them to the
{J;} to obtain an APD on M,.

Since the polygons of a polygon decomposition are simply connected,
a 1-cochain representing an element of H'(S,¥;R) is determined by its
values on the edges of the polygons. For each ¢, each polygon P of the
APD with J = J; € 0P, and each = € J, there is a horizontal segment
in P with endpoints in dP one of which is x. The other endpoint of
this segment is called the opposite point (in P) to x and is denoted by
oppp(x). The image of J under oppp is a union of one or two sub-arcs
contained in the other boundary edges of P.

A transverse measure v for the horizontal foliation on M, assigns a
measure to each J. We will denote this either by v, or by v|; when
confusion may arise. By the invariance property of a transverse mea-
sure,

(Oppp)* V|J = V|oppp(J)a (412)
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FIGURE 5. Two APD’s on nearby surfaces in #(2). The
dotted horizontal line represents a diagonal of a quadri-
lateral on the first surface and is an edge of a triangle on
the second surface since it is no longer horizontal.

Y1 Y2

FIGURE 6. The opposite point map, with y; = oppp, ()
and ys = oppp, (2).

and this holds for any P and .J. We call (4.12) the invariance property.
Note that in this section, all measures under consideration are non-
atomic, and we will not have to worry about whether intervals are
open or closed (but in §13 this will be a concern).
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Proposition 4.10. Given an APD for a translation surface M,, and
a collection of finite non-atomic measures vy on the edges J as above,
satisfying the invariance property, there is a transverse measure v on
M, for which v|; = v,.

Proof. We can reconstruct v from the v;, by homotoping any transverse
arc to subintervals of edges of the APD along horizontal leaves (this is
well-defined in view of the invariance property). 0

Proposition 4.10 makes it possible to reduce questions about trans-
verse measures on surfaces, to finitely many measures on some arcs.
We use this idea in the following:

Proof of Proposition 4.9. We will write 3, = f,, for a sequence of c-
absolutely continuous transverse measures v, on M, (in particular the
v, are non-atomic). Our goal is to prove that there is a transverse
measure v on M, such that 8 = §,. The main idea of the proof is
to use APD’s to reduce the discussion to measures on finitely many
transverse arcs. It suffices to consider the restriction of the transverse
measure to a particular finite collection of transverse arcs, which we
now describe.

Let 7 be the triangulation of M, obtained by adding the horizontal
diagonals to quadrilaterals in an APD. As discussed in §2.2; using 7 and
marking maps, we obtain maps ¢,, : S — M, , ¢ : S — M,, such that
for each n, the comparison map p,0¢ ™! : M, — M, is piecewise affine,
with derivative (in planar charts) tending to the identity map as n —
o0. Let P be one of the polygons of the APD and K < 0P a subinterval
of the form J or oppp(J) as above. For all large enough n, none of
the sides ¢, 0 ¢ !(K) are horizontal and all have the same orientation

as on M,. Let Vég) be the measure on ¢, o ¢ !(K) corresponding to

Vp. Using the marking ¢! we will also think of ué?) as a measure on

K = o H(K).
Passing to subsequences and using the compactness of the space of
measures of bounded mass on a bounded interval, we can assume that

for each K, the sequence <I/§?)> converges to a measure vg on K.

It follows from (4.11) that vg is %on—atomic, indeed it is c-absolutely
continuous since all the u}? are. Each of the measures u}? satisfies the

invariance property for the horizontal foliation on M,,, and we claim:

Claim 4.11. The measures vi satisfy the invariance property for the
horizontal foliation on M,.
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To see this, suppose K = .J in the above notation, the case K =
oppp(J) being similar. For each n let oppgf) be the map corresponding
to the horizontal foliation on M, ; it maps J to a subset of an edge or
two edges of the APD. Let I be a compact interval contained in the
interior of J. Then for all sufficiently large n, oppgf)(l ) < oppp(J),

and the maps oppgf)| ; converge uniformly to oppp|;. By our assump-
tion that the measure is non-atomic, the endpoints of I have zero v ;-
measure. Therefore, since Vgn) — vy, by the Portmanteau theorem we
have v;(I) = Vopp,.(s)(0PPp(I)). Such intervals I generate the Borel o-
algebra on J, and so we have established the invariance property. This

proves Claim 4.11. A

By Proposition 4.10, the vk define a transverse measure v, and we let
B = B,. Recall that we have assumed (3, — [ as cohomology classes
in H'(S,3;R). For each edge J of the APD,

B(T) < Ba(J) = m —my = B'(J), (4.13)
and so ' = . U

We now deduce Corollary 4.4. As in the proof of Proposition 4.1, we
will use assumption (4.11). The general case will be established in §13.

Proof of Corollary 4.4 under assumption (4.11). We first give a formula
for L,(B,), where v is a transverse measure on the surface M,. Fixing
an APD on M,, we can write

L) =X 3 | Devia), (4.14)

P JeL(P)

where P ranges over the edges of the APD, L(P) is the set of edges on
the left-handside of P, and for x € J, D(x) denotes the length of the
horizontal segment from z to oppp(x). Indeed, this formula is just a
more detailed version of (4.1).

Now, for each n write 3, = f3,, where v, is a transverse measure on
M,,, and let v, = v;F —v, be the Hahn decomposition. By assumption,

Ly (B7) < LIz, (8n)

is a bounded sequence. Using the comparison maps ¢~ o ¢, : M, —
M, used in the preceding proof, we can think of the (v;7)|; as measures
on J with a uniform bound on their total mass, and we can pass to a
subsequence to obtain (v )|y — (v£)] s, thus defining (via Proposition
4.10 as in the proof of Proposition 4.1) tranverse measures v on M,.
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Let v vi — v, and let [ %' 3,. Recall that a cohomology class
is determined by its values on the edges of a triangulation, and non-
atomic transverse measures evaluate to zero on horizontal saddle con-
nections. Thus we obtain from (4.13) that 3,, — B’. But since we
have assumed g = lim, 3,, we have § = 3’ € 7,. The Hahn decompo-
sition p = put — p~ of a finite measure is characterized by the following
minimizing property: for any pair of measures ot with = ot — 07,
and any non-negative integrable function f, we have § fdu* +§ fdu~ <
{ fdo* + § fdo~. Thus, even though v|; = (v})|; — (vy)|s might not
be the Hahn decomposition of v, we have from (4.14) that

‘L|q(ﬁu) < Lq(ﬁu*) + Lq(ﬁu*)
= tim (Ly(8,y) +Ly(8,,)) = lim [Lla,, (By,).

Since this holds for any choice of the subsequence, we obtain (4.3). O

(4.15)

4.3. The domain of definition of a tremor, and foliation cocy-
cles in a fixed horospherical leaf. In this subsection we will set up
a canonical identification of 7, and 7, when ¢ and ¢’ belong to the
same horospherical leaf. For this, the notation of an APD, introduced
in the §4.2, will turn out to be useful. As a consequence, and using re-
sults of | |, we will show that for a non-atomic tremor, the domain
of definition Dom(q, 8) is the entire real line, and we will obtain useful
‘group action’ properties of tremors on a fixed horospherical leaf.

Recall from §2.2 that via the identification of T'(H,,) with the prod-
uct Hy, x HY(S,3;R?), for any G1, Ga € Hum, every vy € Ty, (Hy) has a
unique parallel vector vy € T, (Hy). We say that vy is obtained from
vy by parallel transport.

Proposition 4.12. (¢f. | , Theorem 1.2]). If q1 and ¢y are ele-
ments of Hy, belonging to the same horospherical leaf W™ then parallel
transport takes Ty, to Tg,. It takes C to CJ and takes non-atomic
tremors to non-atomic tremors. It takes (dy)q, € Ty to (dy)e, € Ta,-

Proof. Since qi, > are both in W** there is a path p : [a,b] — W¥*
such that p(a) = @1, p(b) = G. For each ty € [a,b], fix an APD on
p(to), and let 7 = 7(ty) be the triangulation obtained from this APD
by adding diagonals to quadrilaterals, as in the proof of Proposition 4.9.
Let V. be the open subset of H,, associated with 7 as in §2.2. We obtain
a covering of [a,b] by {p™" (V;¢y)) : to € [a,b]}, and by compactness we
can pass to a finite covering. Thus in proving the Proposition we may
assume that the image of p is contained in one V,, where 7 = 7(a) is
the triangulation obtained from an APD on M, .
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Let ¢ : M, — M,, be the comparison map which is affine on trian-
gles of 7, as defined in §2.2. Since ¢;, ¢ belong to the same horospheri-
cal leaf, a segment is horizontal on M, if and only if its image under ¢
is horizontal on M,,. In particular the APD on M,, is sent to an APD
on M,,, and the restriction of ¢ to edges of the APD commutes with
the opposite point maps (this situation is illustrated in Figure 3). This
implies via Proposition 4.10 that ¢ induces a bijection between signed
transverse measures on M, and M,,, and this bijection maps positive
(respectively, atomic) transverse atomic transverse measures to positive
(resp. atomic) transverse measures. Also, again using that g, g, are in
the same horospherical leaf, the map ¢ sends (dy),, to (dy)g,. Thus the
map ¢* : H'(M,,,%,,;R?*) — H'(M,,,%,,; R?) induced by ¢ sends T,
to T, and sends (dy),, to (dy),. Finally, since ¢ is obtained from ¢
by pre-composing charts by ¢, the definition of parallel vectors given
in §2.2 shows that the map induced by ¢* is parallel transport. 0

Proposition 4.13. If 5 € T, is non-atomic then Dom(q, 5) = R.
The assumption that £ is non-atomic is important here, see §13.

Proof. Let ¢ € m1(q), let B € H'(S,2;R,), let v = (3,0), let 0(¢)
be the parameterized line (4.8), and let Dom(q, #) denote its domain
of definition. Let 7, = hol®(§) + s8 be the corresponding line in
H'Y(S,%;R,). We can define ~, for all s € R, and for s € Dom(q, 3) we
have v, = dev(f(s)). Thus v is a line in H'(S,3;R,), 0 is its lift via
dev, and our goal is to show that this lift is well-defined for all s € R.

We denote by F the foliation on S ~ ¥ obtained by pulling the
horizontal foliation on M, by ¢. For all the surfaces qN’ in any lift of
7, F is also the pullback of the horizontal foliation on M. Let B(F)
denote the set of cohomology classes 7/ € H!(S,%;R) satisfying the
following conditions:

(i) For any oriented saddle connection § on M, with hol™(§) > 0,
we have p*~/(§) > 0.
ii) For any non-atomic transverse measure v to F, 7 has a positive
y Y p
. def
cup product with 7 = 3,,.

By | , Thm. 1.1, see also Thm. 11.2] (but swapping the roles
of horizontal and vertical foliations), in order to show that the path
7 lifts, it suffices to show that 75 € B(F) for all s. Since f is non-
atomic, it vanishes on horizontal saddle connections, and this implies
that for any horizontal saddle connection §, the function s — 74(9) is
constant. Therefore v,(6) = 75(8) = hol®(§) > 0, and this implies (i).
In order to check (ii), let 7 be the cohomology class corresponding to
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a non-atomic transverse measure. Then

J%/\T:J((dx)g—i-sﬁ)AT:J(dm)[;/\T—i—sﬂ/\Tzf(dx)gAT>O.

We have used here the fact that two cohomology classes arising from

non-atomic measures transverse to the same foliation have cup product
zero (see [I<, Prop. 4]). O

It follows from Proposition 4.12 that for any horospherical leaf WW**
in H,,, there is a fixed subspace Tma) H'Y(S,%;R,), so that for
each ¢ € W"", the collection of non-atomic foliation cocycles in 75 is

canonically identified with T;;ﬁ. Note that if ¢ has no horizontal saddle
connections, then the same is true for the same is true for any surface
in the horospherical leaf of ¢; in this case ¢ admits no atomic foliation

cocycles and T; = 719 We define a map
T W s W (B,§) —> tremg(q). (4.16)
This map is well-defined in light of Proposition 4.13.

Proposition 4.14. The map in (4.16) satisfies the ‘group-action’ law

tremﬁl +B2 ((7) = tremﬁl (trem52 (a))
for all g e W™ and (31, 3 € TJV“EJ
Proof. For any s, s9 € R, the path

Yorsg i R = HY (S, S Ry), Yoysn(t) € holy + t(5181 + 52/3)

can be lifted to a path 0, 5, by Proposition 4.13. This implies that
tremy, g, +s.8,(¢) is well-defined. Since dev is a local homeomorphism,
it has a unique lifting property. That is, for any path v : [0,1] —
H'(S,%;R,) and any go with v(0) = dev(qp), there is at most one path
6 :[0,1] — Hy, with 6(0) = g and v = devof. The two paths

s > tremg, (trem,p, (7)), s — trempg, ;45,(q)

are continuous by Proposition 4.8, and commutativity of addition in
H(S,¥; R,) shows that they are lifts of the same path in H*(S,3; R,).
Thus they are the same, and setting s = 1 we get the required result.

See | , Prop. 4.5] for a similar argument. U

Corollary 4.15. For any we U and B € T,, we have
utremg(q) = tremg(ug), Dom(ugq, ) = Dom(q, 3). (4.17)
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Proof. If £ is non-atomic, this is immediate from (4.10) and Proposition
4.14. The proof when f is atomic is similar to the proof of Proposition
4.14. In this paper, we will not be using (4.17) when £ is atomic, and
we leave the details to the reader. U

5. THE TREMOR COMPARISON HOMEOMORPHISM

Recall from §4.3 that two points ¢y and g; in the same horospher-
ical leaf share the same space of foliation cocycles. This was proved
in Proposition 4.12 by analyzing the effect of a composition of finitely
many comparison maps ¢ : My, — M,,, each of which is affine on each
triangle of a triangulation. The map ¢ respects horizontal foliations,
that is maps the leaves of the horizontal foliation F on My, to horizon-
tal leaves on M,,, and preserves the canonical transverse measure dy
measuring the ‘height displacement’ between leaves. In this section we
will show that if ¢; is obtained from ¢y by a non-atomic tremor, then
there is a comparison map M,, — M, that shears along horizontal
leaves; that is, respects the horizontal foliations F on M,, and M,,,
preserves the transverse measure dy, and in addition, preserves the
length parameter along horizontal leaves. In the language of flows, the
comparison map from §4.3 commutes with the horizontal straightline
flow up to a time change, and in this section we will produce a map
commuting with straightline with no time change. This map need not
be affine on triangles. The difference between these maps is illustrated
in Figures 2 and 3. We note that for the horocycle flow, the affine
comparison maps defined in §2.4 are both affine on triangles, and act
by shearing horizontal leaves with respect to each other (see Figure 1).

As we will see in Proposition 5.9, the existence of a comparison
homeomorphism that shears along horizontal leaves characterizes the
property of lying on the same tremor path.

Proposition 5.1. Let qo € H and let My = M,, be the corresponding
surface. Let pg : S — My be a marking map and let §o € 7 (qo) be
the corresponding marked translation surface. Let v be a mon-atomic
signed transverse measure on the horizontal foliation of My and let
B = B,. Let ¢¢ = tremys(qo) and g = tremyg(qo), let My = M,
be the underlying surface, and let @, : S — M,; be a marking map

representing ¢;. Denote holy, = (holﬁ"”), holﬁ”). Then there is a unique

homeomorphism 1, - My — M, which is isotopic to ¢ o oy, preserves
horizontal foliations and satisfies

hol™ (44(7)) = ol () + 1 j v and hol® (44(7)) = hol®(7) (5.1)

Y
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for any piecewise smooth path v in My between any two points.

Definition 5.2. We call ¢, : My — M, the tremor comparison home-
omorphism (TCH).

The uniqueness of a tremor comparison homeomorphism implies the
following important naturality property:

Corollary 5.3. With the notation of Proposition 5.1, suppose pg and
wy are two different marking maps S — M, representing qo, so that
©h 0wyt s dsotopic to a translation equivalence h of My. Then the
TCH’s 1y and 1, satisfy 1y = 1) o h.

In order to construct 1y, we start with a comparison map ¢ which is
only assumed to satisfy (5.1) in case 7 is a saddle connection. We then
modify ¢ by means of an isotopy which moves points along leaves of
the horizontal foliation of the target surface M;. The signed distance
along horizontal leaves will be chosen so that (5.1) holds for all piece-
wise smooth curves v connecting any two points. Since the horizontal
straightline flow may not be defined for all times, one of the complica-
tions we will address is to ensure that we can move points horizontally
by the required amount.

Proof of Proposition 5.1. We begin by proving the existence of ¥;. Let
7 be a triangulation of S obtained as the pullback via ¢, of a geodesic
triangulation on Mj,. Since we will be using the opposite point map
defined in §4.2, we will take 7 to be given by adding horizontal diagonals
to the polygons of an APD, as in the proof of Proposition 4.12. Let
U, and V; be the open sets in H'(S,¥;R?) and H,,, as in §2.2. For a
sufficiently small € > 0, in the interval I = [0,¢] we have

{trems(q) : te I} <V, (5.2)

and we will first prove the existence of i, for t € I where I satisfies
(5.2). The existence for all ¢ then follows by composing maps defined
on small intervals, as in the first paragraph of the proof of Proposition
4.12. With this in mind we can re-parameterize I, and replace 3 by its
multiple by a positive constant, to assume that ¢ = 1, I = [0, 1] and
o, q1 € V-

Let 79,71 denote respectively the pushforward of the triangulation
T to My, My, and let ¢ : My — M; be the comparison map which
is affine and orientation-preserving on triangles of 7 as in §2.2. Thus
¢ sends 15 to 7. The definition of tremors gives us (5.1) with ¢ in
place of ¢, and for any path + on M, with endpoints in . Recall
from Proposition 4.12 that ¢ takes the horizontal foliation of M to the
horizontal foliation of M’ and takes (dy)g, to (dy)z. Also ¢ preserves
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the rightward orientation on horizontal lines. We will construct the
homeomorphism ¢ by composing ¢ with a map which moves a point in
M, along its horizontal leaf. Recall that T®)(s) denotes the image of
x € M, under horizontal straightline flow, to (signed) distance s. With
this notation, for a continuous function s : My — R, we write

Y(p) = TED) (5(p)). (5.3)

As mentioned above, the straightline flow map ¢ — Y®#®)(¢) might
not be defined to time ¢ = 3(p); we will show in Lemma 5.6 that it
actually is. Thus, for p € My, ¥ (p) is obtained by motion along the
horizontal leaf of ¢(p) in My, by the signed distance $(p); see Figure 2.
Clearly such a map will satisfy the second equation in (5.1), and §(p)
will be chosen so that the first equation in (5.1) holds as well. The
construction of §(p) and proof that it has the desired properties will be
broken up into several lemmas.

We begin by specifying the values of the function s, on each of the
edges of the triangulation 7y of M,. On the horizontal edges of the
triangulation, we set s equal to zero. Let o : [0,1] — My denote an
affine parameterization of a non-horizontal edge of 75. We define

o(t) (1)

5(o(t)) = f dv — tf dv, (5.4)
(0) (0)

where the integrals are taken along the path o between the indicated

limits.

Lemma 5.4. The following hold for each edge o:

(a) The definition (5.4) does not depend on the choice of orientation
for a; that s, defines the same function on the edge, if one uses
a(1 —t) instead of o(t).

(b) The map t — 5(o(t)) is continuous.

(¢c) 5(0(0)) = 5(a(1)) = 0.

Proof. Assertion (a) follows from a computation using (5.1) for the
curve o; we leave this to the reader. Assertion (b) follows from the fact
that v is non-atomic. Assertion (c) follows from (5.4). A

We now check that when using (5.4), a map defined via (5.3) has
the required property of preserving distances along horizontal lines, for
two points on opposite sides of a polygon P of the APD. To this end,
let oppp be the opposite point map as in §4.2, and let o, ¢’ denote two
affine parameterizations of sides of P, so that

x=o0(t)edP, y=oppp(x)=0o(t)



TREMORS AND HOROCYCLES 47

for appropriate ¢, € [0, 1]. Let dy, d; denote respectively the horizontal
signed distance between x,y and ¢(x), ¢(y) in My, M;; that is,

y="Tdp),  oly) =T(d).

Here we swap if necessary the roles of z and y to assume that dy > 0,
for the definition of d; we refer to straightline flow on M;, and in case
the horizontal trajectory of x is periodic we use the parameterization
of paths through the interior of P and ¢(P). Note that the straightline
flow from z to y is well-defined by definition of oppp, and straightline
flow from () to ¢(y) is well-defined since ¢ maps horizontal segments
to horizontal segments and preserves their orientation.

Lemma 5.5. We have dy = d; — 5(x) + 5(y).

Note that Lemma 5.5 does not assume that ¢ as in (5.3) is well-

defined; but if one assumes that 1 is well-defined, one concludes from
Lemma 5.5 that dj, the signed horizontal distance between x and y, is
the same as d; — 5(z) + 5(y), the signed horizontal distance between
¥(z) and P(y).
Proof. By decomposing P into triangles, we can assume with no loss of
generality that P is a triangle. We can further assume, using Lemma
5.4(a), that P has one vertex at &, where o and ¢’ are affine pa-
rameterizations of opposite edges of P with ¢(0) = ¢'(0) = ¢ and
hol® (&) < hol® (o), as shown in Figure 7. Let a denote a path from
x to y along the horizontal segment through P. Then « is homotopic
to the path from x to y along the edges of P, and hence

do = holy(a) = ' hol{” (¢") — tholl” (). (5.5)
Similarly
di = hol; (p(a)) = ' hol{” ((0")) — thol{” (¢(0)).  (5.6)
0 ? 90(0)\7”(”
r Y o(r) ©(y)
3 ©(§)

F1GURE 7. Paths used in the proof of Lemma 5.5.
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Applying the opposite point invariance property (4.12), we obtain

o(t) o' (t)
J V= f V. (5.7)
o(0) a’(0)

By (5.1) (which holds for the saddle connections o and ¢’), along with
(5.5) and (5.6), we get

dy — dy =t' <hol§x)(go(a’)) ~ hol® (a’)) — (holgm)(gp(a)) - hol((f”)(a))

a'(1) o(1)
=t f v—t J v,
o’ (0) o (0)

and by (5.4) and (5.7) we also get

o (1) o(1)
5(2) — 5(y) = 5(0 (1)) — 5(0' () = ¥ J vt f "

o’(0)
This gives the required identity. A

We now extend s by affine interpolation to the interiors of triangles.
For any point p € M, let x,y denote the two intersections of the
horizontal leaf of p with 0P, so that y = oppp(z), and let dy be as
above. Then there is ¢ € (0,1) so that p = Y@ (tdy) = TW ((t — 1)dy).
We define

5(p) € (1 —1)5(x) + t3(y). (5.8)
Since ¢ and (5.8) are both affine and orientation-preserving, the con-
clusion of Lemma 5.5 continues to hold; namely, for any two points z’

and y’ which are on a horizontal segment passing from side to side of
a polygon of the APD, we have

do = d1 — g(‘f/) + g(y,), (59)

where dj, d; denote signed distances defined using ', ¥'. In other words,
where defined, 1) maps horizontal segments to horizontal segments iso-
metrically.

With this extended definition we claim:

Lemma 5.6. For any p € My, the horizontal straightline flow from
o(p) to signed distance §(p) on M is defined, and thus the map
defined via (5.3) is well-defined.

Proof. Suppose by way of contradiction that for some p € M, the
straightline flow trajectory from ¢(p) to signed distance s(p) is not
defined. We know from Lemma 5.4(c) that p is not a singular point.
Assume with no loss of generality that §(p) > 0; our assumption means
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that for some 0 <t < 5(p) we have {Y@CP)(t) : 0 <t < te} is well-
defined but the one-sided limit
gdzef lim T(<P(p))(t)
=t

is a singular point on M;. Let k be the number of times the trajectory
{T(”(p))(t) 0<t< tcm} crosses edges of the APD. We can choose p
with the above properties so that & is minimal. We will reach a con-
tradiction in both cases k = 0 and k£ > 0.

If & = 0 then there is a polygon A of the APD on M, such that
€ = (&) is a vertex of p(A) and p € A. Let x be the point on JA
which is opposite to &, so that p is on the segment from x to £&. We
define dy, d; as above, with p and £ playing respectively the roles of x
and y. Since tq5 > 0 we must have that ¢(p) is to the left of £ in the
polygon ¢(A), and hence d; > 0. Since @ preserves the orientation of
horizontal lines we must have dy > 0. By our contradiction assumption,
terit = dp. Finally 5(€) = 0 by Lemma 5.4(c). Putting these together
and using equation (5.9) we get the contradiction

5(p) = terit = dy = do + 5(p) — 5(&) > 5(p).

Now suppose k£ > 0. Let A be a polygon of the APD containing p
and let 3/ be the endpoint of the rightward oriented segment from p to
0A. Let dy, dy be defined as above, using the points p and 3’ instead of
x and y. We compute the numbers ¢, ., k" corresponding to 3’ instead

of p. We have t.;, = teit —dy and K = k — 1. Using Lemma 5.5 we
have

5(y") = do — dy 4+ 5(p) = do — dy + teie = do + ti =t

crit*

This implies that ¢’ also satisfies that the straightline flow from ¢ (y)
to distance §(y) is not defined, and contradicts the minimality in the
choice of p. A

Lemma 5.7. The map v is a homeomorphism which is isotopic rel X
to ¢ and satisfies

YO0 (1) = (TP 1) (510)
for any p e My and any t € R for which one (hence both) of these terms
is defined.

Proof. The function x — 5(z) is continuous by Lemma 5.4 and (5.8).
This implies that ¢/ is continuous. Since M, is compact, in order to
show that 1 is a homeomorphism, it is enough to show that it is bijec-
tive. To this end, we first note that (5.10) holds. Indeed by equation
(5.9), (5.10) holds for any interval I for which the path {Y®)(t) : t € I}
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is contained in a polygon of the APD, and thus, by induction on the
number of times a horizontal straightline segment from p to YT®(¢)
crosses edges of the APD, it holds for all ¢.

It follows from Lemma 5.4(c) that ¢|ys = ¢|x and hence that 1 is a
label-preserving bijection on ¥. It follows from (5.10) that the restric-
tion of ¥ to a horizontal straightline flow trajectory is an isometry (with
respect to the metric induced by the 1-form dx). Since the restriction
of ¥ to a horizontal trajectory is an isometry mapping singular points
to singular points, the restriction of ¥ to any horizontal trajectory is
a bijection. Moreover, by (5.3), the image of a horizontal trajectory
under v is the same as its image under , and since ¢ is a bijection,
we obtain that 1 is also a bijection.

Consider the one-parameter family of maps

g () ETED (r5(2))  (r e [0,1]).

Clearly, this family gives a homotopy between ¢ and 1 fixing 3 point-
wise. To see that each ¢ is a homeomorphism, arguing as before
we see that it suffices to show that it is bijective on each horizontal
straightline flow trajectory. For such a trajectory, it is indeed bijective
as it is a linear homotopy between order-preserving homeomorphisms.
This shows that ¢ and 1 are isotopic rel X. A

Lemma 5.8. The map v satisfies formula (5.1).

Proof. We first claim that it is enough to prove the claim for paths ~
whose image is contained in edges of the APD. Indeed, if (5.1) holds
for two paths it holds for their concatenation. Thus, in order to prove
the result for an arbitrary path, it suffices to prove the result for a path
~ contained in one polygon A of the APD. Suppose 7 is obtained by
sliding every point in v to an edge o of A; that is, 7/(t) = TOO)(p(t)),
where p(t) is the horizontal signed distance from ~(¢) to o. Using
formula (5.10), we see that (') is obtained from (v) by sliding
horizontally by the same amount p(¢). From this one easily sees that
if (5.1) holds for 7/, it also holds for 7.

It remains to check that (5.1) holds for paths whose image is con-
tained in an edge o < 0dA. This follows easily from the definition (5.4)
of 5 along edges of A; we leave the verification to the reader. A

We now complete the proof of Proposition 5.1. Lemmas 5.7 — 5.8
establish the existence of 1) with the required properties. We complete
the proof by proving uniqueness. Let ¢) and 1’ be isotopic maps from
My to M satisfying (5.1) for arbitrary paths. This equation implies
that ¢y~ 01}’ preserves the holonomy of paths and is thus a translation
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equivalence. Since the maps 1 and v’ are isotopic the map ¢~ o ¢/
is isotopic to the identity. The identity map is the unique translation
equivalence of M, isotopic to the identity so we have ¢! o)/ = I and
v =y O
Proposition 5.9. Suppose that for i = 0,1, ¢; are marked translation
surfaces represented by the marking maps p; : S — M;. Suppose Gy, 1
belong to the same horospherical leaf, and there is a homeomorphism
Y+ My — M isotopic to oy 0 g for which the conclusion of Lemma
5.7 holds. Then qi = tremg(go) for some non-atomic foliation cocycle

B € Tg-

Since we will not be using this result in this paper, we only outline
the argument.

Sketch of proof. Since o, q; belong to the same horospherical leaf and
1 is isotopic to ¢ o ¢yt holg\% = hol% (¢ (7)) for any path ~ joining
singular points. We will define a non-atomic signed transverse measure
v satisfying

hol() (¥(7)) = hol() (v) + f v. (5.11)

This will show that (5.1) holds (with ¢t = 1,9 = 1), for any path
joining singular points, thus showing that ¢; = tremg, (qo).

Let ¢ > 0 be such that horizontal straightline flow is defined on
all points of both v and ¥(v), to time s, for all |s|] < e. We define
the horizontal diameter of a topological disc in a translation surface
to be the supremum of horizontal holonomies of any curve contained
in Y. We can cover the image of v by topological discs U such that
the horizontal diameter of both U and ¢ (i) is smaller than e. The
subarcs 7' of v contained in such a topological disc U generate the
Borel o-algebra on «y. For each such 7" we define

| v = w6 - o))

Using the Carathéodory extension theorem, one can show that this
defines v as a signed measure on 7. By linearity, v satisfies (5.11),
and one can check using (5.10) that v defined in this way is invariant
under holonomy along horizontal lines, and thus defines a transverse
measure. U

Remark 5.10. [t is instructive to compare our discussion of tremors,
using Proposition 5.1, with the discussion of the Rel deformations in
[ , 86]. Namely in | , Pf. of Thm. 6.1], @ map f; : My —
Rely(My) is constructed but the definition of this map involves some
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arbitrary choices. In particular it is not unique and is not naturally
contained in a continuous one-parameter family of maps.

6. PROPERTIES OF TREMORS

In this section we will derive further properties of tremors.

6.1. Composing tremors and other maps. Recall from Proposi-
tion 4.14 that we have

tremg, 1.5, (q) = tremg, (tremg, (). (6.1)

Here, and in the rest of this section, we have in mind the identification
of T3 with T, for all g1, g2 in the same horospherical leaf; in particular,
on the left-hand side of (6.1), B> belongs to T,, and on the right-
hand side, to T,, for ¢, = tremg, (¢), and these spaces are identified by
choosing appropriate lifts ¢, ;. With this convention recall also from
(4.17) that tremg(uq) = wtremg(q), for any u € U.

Note that the identification of 73 with 73, in Proposition 4.12 need
not send balanced tremors to balanced tremors. However, the horocycle
flow commutes with horizontal straightline flows, and therefore for u €
U and € T, = T,y we have Ly(3) = Ly,(5). From (6.1) and (4.17)
we deduce:

Corollary 6.1. Let 5 €T, and s L,(B). Then

o §—s(dy)q € Tuyq is balanced.
o If 3 is balanced in T, then B is balanced in Ty, for any we U.

Recall that B < G denotes the upper triangular group. We now
discuss the interaction between the B-action and tremors. Note that
while an element b € B maps horospherical leaves to horospherical
leaves, it does not necessarily preserve individual horospherical leaves,
so we cannot use Proposition 4.12 to identify 7, with 7ps. Instead, we
use the derivative of the affine comparison map v, defined in §2.4 to
identify 77 with 7y,. Note that the subgroup of B preserving horo-
spherical leaves is U, and for u € U the map 1, acts on H*(S,3;R,)
trivially, and thus this identification coincides with the identification
via parallel transport that is used in Proposition 4.12.

The interaction of tremors with the B-action is as follows.

Proposition 6.2. Let g€ H and let

b = (8 ai) € B, with a = a(b) > 0. (6.2)
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Let M, and My, be the underlying surfaces, and let ¢ € 7~*(q). The
above identification Tz — Teg multiplies the canonical transverse mea-
sure dy by a=' (where a = a(b) is as in (6.2)), preserves the subsets
of atomic and balanced foliation cocycles, and maps c-absolutely con-
tinuous foliation cocycles to ac-absolutely continuous foliation cocycles.
Furthermore,

b tremgs(q) = trem, 3(bg), Dom(bgq, 3) = a~'-Dom(q, 3). (6.3)

Proof. Let ¢; = bg, denote the underlying surfaces by M = M,, M, =
M,, and write ¢ = ¢, : M — M, for the affine comparison map.
Since the linear action of b on R? preserves horizontal lines, ¢ sends
the horizontal foliation on M to the horizontal foliation on M;. As in
Proposition 4.12, 1) sends transverse measures to transverse measures,
non-atomic transverse measures to non-atomic transverse measures,
and the induced map ¢* on cohomology sends 7, to T, and C;/ to C.
Since 1 is an affine map with derivative b, the canonical transverse
measure (dy), on M, is sent to its scalar multiple a(b)™' - (dy),, on
M,,. Hence c-absolutely continuous foliation cocycles are mapped to
ac-absolutely continuous foliation cocycles. To prove equation (6.3),
let t — g; be the affine geodesic in H,, with ¢y = ¢ and %|t:0g7t = [,
so that ¢ = tremg(g). The new path ¢t — ¢ = bg; is also an affine
geodesic and satisfies o = bg. Now (6.3) follows from the fact that
%|t:0(jt = a(b)- 3, since T, is embedded in the real space H'(S,%; R,).

We now show that our affine comparison map sends 7;(0) to 7;(10), that
is, preserves balanced foliation cocycles. Since the horizontal direction
is fixed by b and scaled by a factor of a = a(b), (dz),, is obtained

from (dz), by multiplication by a. Now suppose 8 € ’771(0) so that
holff) u B = 0. By naturality of the cup product we get

0=a"holl) w8 = ()" (holl?) L v*B) = hol U ¥*B.
O

6.2. Relations between tremors and other maps. We will now
prove commutation and normalization relations between tremors and
other maps, which extend those in Proposition 6.2. These results will
not be used in the sequel, but we hope they will be useful in the future.
We will simultaneously discuss the interaction of tremors with the ac-
tion of B, all possible tremors for a fixed surface, real-Rel deformations,
and the R*-action on the space of tremors.

We will use the notation and results of | | in order to discuss real-
Rel deformations. Let Z be the subspace of H*(S,3; R,) of cohomology
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classes which evaluate to zero on closed loops. Thus Z represents the
subspace of real rel deformations of surfaces in H (see | , §3] for
more information).

Let ¢ € H, M, the underlying surface, ¢ : S — M, a marking map
and ¢ € H,, the corresponding element in 77! (¢). We define semi-direct
products

SPEBRT,  SYEBx(T02),
where the group structure on S\ is defined by
(b1, v1,21).(b2, v2, 22) = (biba, a”*(ba)vy + va,a” " (ba)z1 + 22)
where
bie B, veT; 2z €Z,
a(b) is defined in (6.2). Also define the group structure on S{“’) by

thinking of it as a subgroup of Sé“o). Define the quotient semidirect
products

= def & def
SO S/~ 5P

where ~ denotes the equivalence relation B 3 uy ~ s - holéy) eT;.
With this notation we have the following:

Proposition 6.3. Let q, M,, ¢ and q be as above, and suppose M,
has no horizontal saddle connections (so that tremors and real-Rel de-
formations have the mazximal domain of definition). Define

O . @ 4. (b, B) — btrems(q)

and

0¥ . S H.. (b, 8,2) — bRel tremgs (7).
Then the maps @Zm obey a ‘group action’ law

0" (4) = 09 (gugn) (i = 1,2). (6.4)

Moreover these maps are continuous, and descend to well-defined im-
mersions O : 59— 3.

We will only prove the statement corresponding to ¢ = 1. The case
1 = 2 will not be needed in the sequel and we will leave it to the reader.
Specifically, in case i = 2, the comparison map v, appearing in (6.4)
is defined up to isotopy in | ], see the map f; in Remark 5.10.

Proof. The fact that the map @g“”) satisfies the group action law (6.4)
with respect to the group structure on Sf“o) is immediate from Propo-

sitions 4.14 and 6.2. The fact that (:)530) is well-defined on gfp) follows
from (4.10) and (4.17). The maps @@, éﬁ“") are continuous because
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they are given as affine geodesics, and because of general facts on or-
dinary differential equations. The fact that (:)g‘P) is an immersion can
be proved by showing that when ¢, g» are two elements of Sfp) that
project to distinct elements of S’fp), then dev <(:)§“D) (q,)) are distinct,

i.e. the operations have a different effect in period coordinates. O

There is also a natural action of the multiplicative group R* = R~{0}
on Ty given by (p, ) — pf, where p € R* and € 75 This action

preserves the set of balanced tremors 7'(7(0). By Proposition 4.12 and
Proposition 6.2, ’7%(0) is a normal subgroup of 75 and Sf‘P). It is not
hard to show using Corollary 6.1 that B ’7:7(0) is a normal subgroup of

Sfp) isomorphic to the group 5’@. We define a third semidirect product
Séfa) o (R* x B) x 7}(0), where R* acts on 7;(0) by scalar multiplication

and B acts on 7'(7(0) as above. Arguing as in the proof of Proposition
6.3 we obtain:

Proposition 6.4. Let ¢, M,, ¢, q be as in Proposition 6.3. Then the
map

S o M, (p,b, B) = btrem,s(q),

obeys the group action law and is a continuous immersion.

Remark 6.5. Note that (as reflected by the notation) the objects Si(‘p)

and @Z@ discussed above depend on the choice of a marking map. This
is needed because the marking map was used to identify T, for different
surfaces q. On the other hand (4.17) makes sense irrespective of a
choice of a marking map.

Remark 6.6. In addition to the deformations listed above there is an-
other deformation that could be considered. In the spirit of [Ve2, §1]
(see also | , 82.1]), for each horizontally invariant fully supported
probability measure v on M,, there is a topological conjugacy sending
v to Lebesgue measure (on a different surface My ). This topological
conjugacy also induces a comparison map M, — My and correspond-
ing maps on foliation cocycles and on the resulting tremors, and it is
possible to write down the resulting group-action law which the map
obeys when combined with those of Propositions 6.3 and 6.4. This is
left to the assiduous reader.

6.3. Tremors and sup-norm distance. Let dist denote the sup-
norm distance as in §2.6.
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Proposition 6.7. If ¢ € H, v is a non-atomic absolutely continuous
signed transverse measure on the horizontal foliation of My, and 3 = 3,
then

dist(g, tremg(q)) < v an- (6.5)

Proof. Let q¢; = tremg(q) and let dy be the canonical transverse mea-
sure on ¢q. Let

{v(t) :te[0,1]}, where v d:eftremtﬂ(q),

be the affine geodesic from ¢ to ¢;. The tangent vector of ~ is repre-
sented by the class 3, and by specifying a marking map ¢, : S — M,
we can lift the path to H,,, and find ¢, ¢; and (), t € [0, 1] so that

m(q1) = q, 7(3(t)) = ~(¢) with 5(0) =g, (1) = q,
and (t) satisfies
dev(¥(t)) = dev(q) + t3, where 3 = (goal)* Be H'(S,3;R).

We will use this path in (2.10) to give an upper bound on the dis-
tance from ¢ and ¢;. For each t € [0, 1], write ¢; = ~(¢) and denote
the underlying surface by M;. Recall that we denote the collection of
saddle connections on a surface ¢ by A,. We let A} denote the saddle
connections in A, which are not horizontal on M,; for horizontal saddle

connections ¢ we have 3(¢) = 0. For any o € A,, we have (with the
notation of §2.1)

Ly (o) = [holy, (0)] = holi (o). (6.6)

By Proposition 4.12, we obtain transverse measures v; and (dy); on
each ¢;. Using this, for all ¢ € [0, 1] we have

Ol =18l = sup O g I

oehg, la(0)  senr la(0)

©  |3(o)] [§,du o

P = sup =~ < [V|rn.

0 T @
hol® (0)’ erg, |, (dy)el

O’EAth

Integrating w.r.t. t € [0,1] in (2.10) we obtain the bound (6.5). O

By moving along a horocycle orbit, small absolutely continuous tremors
can be realized by small balanced tremors. Namely:

Corollary 6.8. With the notations and assumptions of Proposition
6.7, there is ¢ € Uq and ' € ’7:;0) with |L|y(B") < 2|v|ry and

tremg(q) = tremg (q'). (6.7)
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Proof. This follows from Corollary 6.1, (6.5), and the triangle inequal-
ity. U

7. PROOF OF THEOREM 1.5

We will now deduce the three assertions of Theorem 1.5 from the
results of the preceding sections. Throughout this section we write ¢;
for tremg(q) where 5 € T(gq). The first assertion of the Theorem is
that, for 8 absolutely continuous, the distance between u,q and usq;
remains bounded.

Proof of Theorem 1.5(i). Let f = (3, be the signed foliation cocycle
corresponding to a signed transverse measure v. We first claim that
there is no loss of generality in assuming that v is c-absolutely con-
tinuous for some ¢ > 0. To see this, write v = v; + vy where v; is
aperiodic and v5 is supported on horizontal cylinders. By Lemma 4.7,
By, is ci-absolutely continuous for some ¢;. Now modify 15 so that for
any horizontal cylinder C' on M, the restriction of v, to C' is equal
to ac dy|c for some positive constant ac. Such a modification has no
effect on (,,, and will thus have no effect on 5 = ,, + 8,,. Thus, if
¢2 = maxc ac, then (after the modification), ||v|gy < ¢1 + 2. Now
using (4.17) and Proposition 6.7, we see that the left-hand side of (1.6)
is bounded by ¢; + 5. OJ

The second assertion of the Theorem is that if 3 is absolutely con-
tinuous and essential then the horizontal foliation of a surface in the
closure of the orbit Ug; is not uniquely ergodic. For this we will need
the following statement, which will also be useful in §10.

Proposition 7.1. Let F' < H be a closed set, and fix ¢ > 0. Then the

sets
e U U tremg(q) (7.1)

€F gecd N (o)

F”difU U tremg(q) (7.2)

geF BeT N (c)

and

are also closed.

Recall from §4.1.3 that C;"N(c) (respectively, T,V (c)) denotes the

set of absolutely continuous (signed) foliation cocycles 3, € 7, with
lvlry < ¢

Proof. We first prove that F’ is closed. Let ¢/, € F’ be a conver-
gent sequence with ¢’ = lim, ¢/,. We need to show that ¢’ € F’. Let
¢n € F and 8, € C"N(c) such that ¢, = tremg, (¢,). We will show
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that ¢ = tremg(q) where ¢ and  are accumulation points of the se-
quences (¢,) and (f3,). According to Proposition 6.7, the sequence
(¢n) is bounded with respect to the metric dist. Also, a computa-
tion similar to the one appearing in the proof of Proposition 6.7, gives
1Bully, < ¢, where | - |, is the norm given by the Finsler structure
defined in (2.7). By Proposition 2.5 the sup-norm distance is proper,
and hence the sequence (g, ) has a convergent subsequence. Thus pass-
ing to a subsequence and using the fact that F' is closed, we can as-
sume ¢, — q € F. Let M, be the underlying surfaces of ¢,. Choose
marking maps ¢, : S — M, and ¢ : § — M, so that the corre-
sponding points ¢, € H,, satisfy ¢, — ¢. Using these marking maps,
identify 3, with elements of H'(S,3;R?). By the continuity property
of the norms | - |, (see §2.6), this sequence of cohomology classes is
bounded, and so we can pass to a further subsequence to assume that
B, converges to 3 € H(S,%;R?). Applying Proposition 4.9 we get
that 8 = lim,, o B, € C;(C) and using Proposition 4.8 we see that
¢ = tremg(q) € F'. The proof that F” is closed is similar. O

Proof of Theorem 1.5(ii). Let ¢ = tremg(q) where 8 = (3, and v is
absolutely continuous. As in the proof of part (i) of the theorem, we can
assume that v is c-absolutely continuous for some ¢, i.e. § € C’; AN (),

and set F = Uq. By commutation of tremors and horocycles (see
(4.17)), for any s € R, we have usqy = tremg(usq). By Proposition
412, B e C (c) for all s, and so usq; € F', where F' is defined via

(7.1). By Proposition 7.1 we have that any g, € Uq; ~ £ also belongs
to F’, so is a tremor of a surface in L.

So we write g2 = tremg (gs) for ¢3 € £ and 8’ € T,,, and write My, M;
for the underlying surfaces. Our goal is to show that the horizontal
foliation on M, is not uniquely ergodic. Since £ is U-invariant and
¢2 ¢ L, 5" is not a multiple of the canonical foliation cocycle holflg), ie.
the horizontal foliation on M3 is not uniquely ergodic. By Proposition
4.12, neither is the horizontal foliation on M,. O

The third assertion is that when ¢ is generic for some U-invariant
ergodic measure , assigning zero measure to surfaces with horizontal
saddle connections, then ¢ is also generic for p (but note that ¢; need
not belong to supp ). A heuristic explanation of this phenomenon
is that for most values of s, the surface uyq is close to surfaces with a
uniquely ergodic horizontal foliation, which means that C; is a narrow
cone centered around the canonical transverse measure tangent to the
horocycle flow. By continuity of tremors, in this case usq is very close
t0 Usys,q for some sg.
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Proof of Theorem 1.5(iii). We first employ an argument of [L.\], to
prove the following:

Claim 1: For p-a.e. surface ¢, the horizontal foliation on the un-
derlying surface M, is uniquely ergodic.

Indeed, from | ] we find that there is a compact subset K < H
such that any surface ¢ with no horizontal saddle connections satisfies

1 1
liminff\{se [0,T] : usq € K}| > 5

T—o0

(where |A| denotes the Lebesgue measure of A < R. Then by the
Birkhoff ergodic theorem, any U-invariant ergodic measure v on H,
which gives zero measure to surfaces with horizontal saddle connec-
tions, satisfies v(K) > 1/2. If the claim is false, then by ergodicity
p-a.e. surface has a minimal but non-uniquely ergodic horizontal foli-
ation. Applying Masur’s criterion (see e.g. | ]) to the horizontal
foliation, we find that for p-a.e.q, the ray {g;q : t < 0} is divergent.
Thus for p-a.e.q there is ty = to(q) such that for all t > ¢y, g_1q ¢ K.
Moreover, we can take t; large enough so that u({q : to(q) < t1}) > 1/2
and hence v = (g_¢, )« satisfies v(K) < 1/2. Since v is also U-ergodic,
and also gives zero measure to surfaces with horizontal saddle connec-
tions, this gives a contradiction. The claim is proved. A

Let p be the measure on L, let ¢ € £ be generic for u, and let
q1 = tremg(q) for some 5. We need to show that ¢, is generic. Let f
be a compactly supported continuous test function and let ¢ > 0. Let
so = Ly(B) and let ¢2 = us,q. Since g2 and ¢ are in the same U-orbit,
@2 is also generic. For this pair ¢, g2, we now claim:

Claim 2: For every € > 0, every 6 > 0 and for all large enough 7'
there is a subset A < [0,7] with |A| = (1 — )T so that for all s € A,
dist (usqy, usq) < 0.

We first use Claim 2 to conclude the proof of the Theorem.
By the uniform continuity of f, there is ¢ so that whenever dist(z,y) <

6 we have |f(x) — f(y)] < £. Apply Claim 2 with 77T, 1o place of e.

Since ¢y is generic, for all large enough 7" we have

T
'% fo F(usgs) ds — f fdu‘ <%
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Using the triangle inequality, we see that for all large enough T

‘1J¢fmgnds—ffm4
‘1 fo ) ds - | fdu‘

‘ Jf Usqr) S__JfUSQ2 )ds| +

S
—fu wa) = floglds + 7 [ 2flads ]
[0,T]\A

<_ —_ —_ =
4+4+2 c

This shows that ¢; is generic.

It remains to prove Claim 2. For this we use | ] again. Let
Q) < H be a compact set such that for all large enough T,

A
‘Tl‘ 1—5, where A; = {s € [0,T] : usq € Q}.

Let Q < M. be compact such that W(@) = (). Fix some norm on
H'(S,%;R). Since () is compact, and by the continuity in Proposition
4.8, there is ¢’ such that for any ¢ € @, and (31,5, € C’~/ for which

(7/(61) = §/</B2) = Sp, We have
|81 = Ba]| < &' = dist (tremg, (7'), tremp, (7')) < 0. (7.3)

Let £" denote the collection of surfaces in £ with no horizontal saddle
connections and for which the horizontal foliation is uniquely ergodic.
By Claim 1, u(L£") = u(£) = 1, and by Corollary 4.3 there is a neigh-
borhood U of 7~1(L’) such that

gel,Bely, Ly(B) =s0 = [B—so(dy)y] <7 (7.4)

Clearly 7(U) is an open set of full u-measure. Since ¢ is generic, for all
sufficiently large T' there is a subset Ay < [0, 7] with

|T—2’> 1—% and s € Ay = wu,qem(U).
Now set A = A; n As, so that |A] > (1 —¢)T. Suppose s € A. Then

there is ¥ € U N Q with 7(q) = usq. We can view [ as an element
of C;f , and with respect to the marked surface ¢’ this corresponds to
B e C’qi, and we have

usqr = trempg(usq) = m(tremg (q')) and usqs = ugq = w(tremgya, (7))

By (7.3) and (7.4), we find dist(usq1, usq2) < 0, and the claim is proved.
U
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8. POINTS OUTSIDE A LOCUS £ WHICH ARE GENERIC FOR W

In this section, after some preparations, we prove Theorem 1.6. At
the end of the section we also discuss how tremored surfaces behave
with respect to the divergence of nearby trajectories under the horocy-
cle flow.

8.1. Tremors and rank-one loci. We now recall the notions of Rel
deformations and of a rank-one locus. Define W < H'(S,X;R?) to
be the kernel of the restriction map Res : H'(S,%) — H'(S) which
takes a cochain to its restriction to absolute periods. For any q € H,
and any lift € 7 !(q), as in §2.2 we have an identification Tj(H,,) =
H'(S,%;R?), and the subspace of T,(H) corresponding to W is called
the Rel subspace and is independent of the marking (see | , §83]
for more details). Let g = g, denote the tangent space to the G-orbit
of ¢ (we consider this as a subspace of T,(H) for any ¢). A G-orbit-
closure L is said to be a rank-one locus if there is a subspace V < W
such that for any ¢ € £, the tangent space T,(L) is everywhere equal
to g, @ V. Rank-one loci were introduced and analyzed by Wright in
[Wr1], and the eigenform loci Ep in H(1,1) are examples of rank-one
loci. The following result, which can be seen as a strengthening of an
infinitesimal statement given in Corollary 4.5, is valid for all rank-one
loci.

Proposition 8.1. Suppose L is a rank-one locus. Then for any com-
pact set K < L there is an € > 0 such that if ¢ € K s horizontally
aperiodic, and B € T, is an essential tremor satisfying |L|,(8) < e,
then tremg(q) & L. If q is horizontally minimal and Uq = L, then no
essential tremor of q belongs to L.

Proof. We leave it as an exercise to the reader to show that in rank-
one loci, by Proposition 2.4 and (4.9), a small essential tremor of an
aperiodic surface ¢ cannot have the same absolute periods as a surface
obtained by applying a small element of G to q. This establishes the
first claim.

For the second assertion, suppose by contradiction that tremg(q) € £
for some ¢ € £ with £ = Ug and B € 7, an essential tremor. Let K be
a bounded open subset of £ and let € > 0 be as in the first assertion.
The translated set ¢;Uq is also dense in £, and gyutremg(q) € £ for any
uw e U. By Proposition 6.2, g_,utremg(q) = trem.—g(g_,uq). Taking ¢
large enough so that |L|,(e73) < &, and choosing u so that g_,uq € K,
we get a contradiction to the choice of €. U
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Corollary 8.2. Suppose L is a rank-one locus, qi,q2 € L are hori-
zontally minimal and have dense U-orbits, and for i = 1,2 there are
Bi € Ty, such that tremg, (q1) = tremg,(q2). Then there is u € U such
that uqy = qo. Furthermore, if 81 and (s are balanced then ¢ = qo and
By is obtained from [s by applying a translation equivalence.

Proof. Let g3 = tremg,(¢;), let M3 be the underlying surface, and let
¢ : S — M3 be a marking map representing g3 € 7 !(g3). For i = 1,2,
let

Bi = 0¥ (i) € H(S,Z; R,)

be the cohomology classes for which

tremp (§) = @5 and G € 7' (q:),

By Proposition 4.14 we have tremy 3, (1) = Go. It follows from Propo-

sition 8.1 that f; — [y = so(dy)q, for some s € R, ie. tremy 3 (q1) =
Us,q1 and ug,q1 = qo. If By, B2 are balanced then

So = f dx A sody =J dz A (B — B2) = Lg, (B1) — Ly, (B2) = 0,
M M

q1 q1

and this implies that ¢ = ¢2. Now considering the expression (4.9)
giving dev(tremg(q)), we see that the only possible ambiguity in the

~

choice of 3; for which tremy (q) = tremg, (q) is if By, B € HY(S,2;R,)
are exchanged by the action of ¢~ o h o ¢, where h is a translation

equivalence of the underlying surface M,. This gives the last assertion.
O

We can use Proposition 8.1 to construct examples fulfilling prop-
erty (III) in the discussion preceding the formulation of Theorem 1.6;
namely we will show there is g € £L = £ and ¢; ¢ L, where ¢; is an
essential tremor of g. We remark that in the introduction we explicitly
required that ¢ admit a tremor which is both essential and absolutely
continuous. In fact this assumption is redundant, that is for surfaces
in &, foliation cocycles are absolutely continuous. More precisely we
have:

Lemma 8.3. For each aperiodic g € €, and any B € Ty,
|L|,(8) <1 = [ is 2-absolutely continuous. (8.1)
Recall that (4.6) gives that if 5 € 7, (2) then |L|,(53) < 2.
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Proof. First suppose 3 = 3, € C with L,(3) = 1. By Proposition 3.4
there is ¢; such that v + v, v = ¢1(dy),. Since

J dx/\dyzlqu(B)zf dx/\uzf dx A diyr,
M, M,

q Mq q
we must have ¢; = 2, i.e.

1 1
(dy), = §dy + §dL*V.

This implies that 5 € C;’RN(C) for ¢ = 2. For a general § € 7,
with [L[,(8) < 1, write 3 = B,+ — B,-, with 3+ € Cf and repeat
the argument. For any transverse positive arc v we have Sv dvt e

[0, 2 Sv dy] , which implies (4.4) with ¢ = 2.
U

8.2. Nested orbit closures. Theorems 1.6 and 1.8 both exhibit one-
parameter families of distinct orbit-closures for the U-action (see (1.7)
and (1.9)). This property is proved using the following general state-
ment.

Proposition 8.4. Let F = &, let ¢ > 0, and let F" be the set defined
by (7.2). Let qo be a surface in €& whose U-orbit is dense in €, and
let §1 be a subset of F" containing an essential tremor of qo. For each

p >0 define

Sp dof {trempg(q) cqeé&, Be 7;(0), tremg(q) € 31} ) (8.2)
Then for 0 < p; < ps we have §p, # §py-
Proof. By Corollary 6.1, replacing gy with an element in its U-orbit,

there is no loss of generality in assuming that §; contains an essential
balanced tremor of gy. Thus if we define

T (o) {5 e ToY < trems(ao) € 5,1}

then 7.’ (1) contains a nonzero vector. Clearly for all p > 0 we have
7.0 (p) = pﬁgo)(l), so each of the sets 7, (p) contain nonzero vectors
as well. By (7.2) and Corollary 8.2, the sets 7;%0) (p) are bounded for

each p. Now suppose by contradiction that for p; < p, we have §,, =
Spo- Then

q0 q0 q0

T () = T (p2) = 2T (1)
1

But ;Lf > 1 and a bounded subset of 7('15)0) cannot be invariant under a
nontrivial dilation if it contains nonzero points. This is a contradiction.

O



64 JON CHAIKA, JOHN SMILLIE, AND BARAK WEISS

Proof of Theorem 1.6. We will find a surface satisfying conditions (I),
(IT) and (III) of the theorem. It was shown by Katok and Stepin
[IXS] that there is a surface ¢ € £ with a horizontal foliation which is
not uniquely ergodic and has no horizontal saddle connection (Veech
[Vel] proved an equivalent result on Zy-skew products of rotations, see
[ ]). Thus the underlying surface M, satisfies condition (II). To see
that ¢ satisfies condition (III) we apply Proposition 8.1 to the rank-one
locus £.

To see that ¢ satisfies condition (I), we use | , Thm. 10.1], which
states that the U-orbit of every point in £ is generic for some measure;
furthermore, the result identifies the measure. In the terminology of
[ |, the G-invariant ‘flat” measure on £ is the measure of type 7.
The last bullet point of the theorem states that a surface is equidis-
tributed with respect to flat measure if it has no horizontal saddle
connection and is not the result of applying a real-Rel flow to a lattice
surface. However lattice surfaces without horizontal saddle connections
have a uniquely ergodic horizontal foliation ([Ve4]) and the horizontal
foliation is preserved under real-Rel deformations. This implies that ¢
cannot be a real-Rel deformation of a lattice surface.

For the proof of the second assertion, equation (1.7), we combine
Propositions 6.4 and 8.4. Namely, we let ¢, = trem, 3(q) be as in the
statement of the Theorem and define

@ dfoqp and Sp {trempg( ):q€eé, 667;(0), trempg(q) e§1}-

Recall the R*-action multiplying elements of 7, by positive scalars (see
§6.2). Since g, is obtained from ¢; using the R*-action with parameter
r, by naturality of the R*-action (see Proposition 6.4) we obtain that
Sp Sp- So Srl on STQ for r; < ry, and (1.7) follows by Proposition
6.4. O

Remark 8.5. As we remarked in the introduction (see Remark 1.7),
Theorem 1.6 remains valid for other eigenform loci Ep in place of
E = &,. Indeed, the results of | | used above are valid for all eigen-
form loci, and to prove the existence of surfaces in Ep whose horizontal
foliations are minimal but not ergodic, one can use [CN] in place of
[IKS]. Thus the proof given above goes through with obvious modifica-
tions. Finally we note that Lemma 8.3 is also true for other eigenform
loci, provided the constant 2 on the right hand side of (8.1) is replaced
with an appropriate constant depending on the discriminant D. We
leave the details to the reader.

8.3. Erratic divergence of nearby horocycle orbits. A crucial
ingredient in Ratner’s measure classification theorem is the polynomial
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divergence of nearby trajectories for unipotent flows. As we have seen in
Corollary 2.7 there is a quadratic upper bound on the distance between
two nearby horocycle trajectories in a stratum H, with respect to the
sup-norm distance. Such upper bounds can also be obtained in the
homogeneous space setting, but in that setting they are accompanied
by complementary lower bounds. Namely, Ratner used the fact that if
{us} is a unipotent flow on a homogeneous space X, for some metric d
on X we have (see e.g. [\, Cor. 1.5.18)):

(%) for any € > 0 and every K < X compact, there is § > 0 such
that if x1, 29 € X and for some T > 0 we have

[{s €[0,T] : d(uszy,usxs) < 0,usxy € K}| >

Y

2o

then for all s € [0, T] for which uszy € K we have d(usxy, usxs) < €.

Our proof of Theorem 1.6 shows that (x) fails for strata and in fact
we have:

Theorem 8.6. There is a stratum H, a compact set K < H, € > 0,
and q1,q2 € H, so that for any 6 > 0,

1 1
liminff [{s € [0,T] : dist(usq1, usqz2) < 9, usqy € K}| > Y (8.3)

T—0o0

but the set
{s = 0:usq € K and dist(usqr, usqe) = €} (8.4)
18 nonempty.

Proof. Take ¢, € L for some L as in the proof of Theorem 1.6, where ¢;
admits an essential tremor, and is generic for the G-invariant measure
on L, and let ¢g» be a balanced essential tremor of ¢;. Let 0 < ¢ <
dist(q1, g2), so that (8.4) holds. Claim 2 in the proof of Theorem 1.5(iii)
implies (8.3). O

Remark 8.7. The construction in §10 exhibits a stronger contrast to
assertion (=): it gives examples in which equation (8.3) holds while the
set in equation (8.4) is unbounded.

9. EXISTENCE OF NON-GENERIC SURFACES

In this section we will prove Theorem 1.4. Let B be the upper-
triangular group. We will need the following useful consequence of the
interaction of tremors with the B-action.
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Theorem 9.1. Let H be a stratum of translation surfaces and let L &
H be a G-invariant locus such that there is q € £ with Gq = L and such
that q admits an essential absolutely continuous tremor which does not
belong to L. Then the closure of the set

U {tremg(q') : B € C is an essential absolutely continuous tremor}
q'eBq
(9.1)
is G-invariant and contains a G-invariant locus £ with dim L' >
dim L.
In particular, if L = & < H(1,1), then the set in (9.1) is dense in
H(1,1).

Proof. Let §2 be the set in equation (9.1), and let F' be the closure
of €). By assumption there is ¢ € £ and an absolutely continuous
B e Cf \T,(L), and hence for ¢ > 0 sufficiently small, the curve

t—q(t) o tremys(q), te (—¢,¢)

satisfies ¢(t) € @\ L for t # 0 and ¢ = limy_,¢q(¢); i.e., ¢ € QN L.
By Proposition 6.2, 2 is B-invariant, and hence so is F'. According to
[ , Thm. 2.1}, any B-invariant closed set is G-invariant, and is a
finite disjoint union of G-invariant loci. This implies that £ = Bq < F,
and also that we can write F' = F; L --- u F), where each F; is a closed
G-invariant locus supporting an ergodic G-invariant measure, and for
© # j we have F; & Fj;. There is an ¢ so that £ < F}, and we claim
L & F;. Suppose L = F; and let ¢(t) as above. Then for sufficiently
small ¢ > 0 we have ¢(t) ¢ F;. So there is some j such that F; contains
a sequence ¢(t,) with t,, > 0 and ¢, — 0. Since Fj is closed we find
that ¢ € F;. But since F; = Gq and F; is G-invariant and closed, we
obtain that F; < F}, a contradiction proving the claim.

Thus if we set £’ difFi we have £ & £, and since both £ and £’
are manifolds and each is the support of a smooth ergodic measure, we
must have dim £ < dim £’, as claimed. To prove the second assertion,
that £ = H(1,1) we note that by McMullen’s classification | 1,
there are no G-invariant loci £’ satisfying £ ¢ £’ ¢ H(1,1). O

Proof of Theorem 1.j. First we claim that a dense set of surfaces in
H(1,1) are generic for p; = pe, the natural measure on €. By The-
orem 1.5(iii) it suffices to show that tremors of surfaces in £ with no
horizontal saddle connections are dense in #(1,1). By Theorem 9.1
it suffices to show that there exists a surface in £ with no horizon-
tal saddle connections that admits an essential tremor. Theorem 1.6
establishes this, and the claim is proved.
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We now use a Baire category argument. Let po be the natural flat
measure on the entire stratum (1, 1). Let f be a compactly supported
continuous function with { fdu; # { fdus, and let ¢ > 0 be small

enough so that
[ saw — | sae

e 1 ("
Cir def {q e H(L,1) : ‘TJ flusq)ds — ffduj
0
(which is an open subset of #(1,1)), and let

= MU cnr

neNT>=n

2e <

For j =1,2and T > 0 let

<e}

If ¢ is generic for p; then ¢ € C;r for all T' sufficiently large. Since
generic surfaces for 41; are dense in #(1,1), each C; is a dense Gs-subset
of H(1,1). By definition, for ¢ € C; we have a subsequence T,, — oo such
that 7- Sg" f(usq)ds converges to a number L with |L—§ fdu;| < e. In
particular, any ¢ € C; n Cy satisfies (1.2). For the last assertion, note
that the set of surfaces with a dense orbit under the diagonal group
{g:}, in either forward or backward time, is also a dense G5 subset, and
so intersects C; N Cy nontrivially. ]

10. A NEW HOROCYCLE ORBIT CLOSURE

In this section we will prove Theorem 1.8. We first show the inclusion
between the two subsets of (1, 1) described in equation (1.8), namely
we show that

{tremg(q) : ¢ € € is aperiodic, B € T, |L|,(8) < a}
c{tremg(q) : g€ &, e Ty, |L|,(B) <al.

To see this note that Proposition 7.1 and Lemma 8.3 imply that the
first set is contained in the closed set

{tremg(q) : g€ &, Be T™(2a)}.

Corollary 4.4 implies that any limit point must satisfy |L|,(3) < a.

For the last assertion of the Theorem, note that the inclusion in
equation (1.9) is obvious from the first line of equation (1.8), and the
naturality of the R*-action (Proposition 6.4). The inclusion is proper
by Theorem 1.6.

(10.1)
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It remains to show the existence of a surface ¢; for which we have
equality in equation (1.8), namely for which

Uq: = {tremg(q) : q € € is aperiodic, S € T,, |L|,(f) <a}. (10.2)

Before doing this, we set up some notation to be used throughout this
section and describe our strategy. We partition £ into the following
subsets:

E®er) — {4 e £ : M, is horizontally periodic},
EWr) — (g e £ : M, is two tori glued along a horizontal slit} ~ £®e),
g min) =&~ ((c: per) U g(tor )

= {q € £ : all infinite horizontal trajectories are dense}.

Note that the set of aperiodic surfaces in £ is precisely £t y £min),
It is easy to check that the sets £P) and £ are both dense in &;
this follows easily from | , Thms 4.1 & 1.8]. The set £(°Y is also
dense — this can be derived from | ], or in a more elementary
fashion from Proposition 3.5(2), see the proof of Proposition 10.2. We
further partition £t according to the length of the slit:

glton ) _ {q ¢ glton) Mq is made of two tori glued along a }

horizontal slit of length exactly H |’

Although the individual sets £°"#) are not dense in &, for each Hy > 0
the union | J;. ;, £4") is dense in &.
Now for positive parameters a and H we define subsets of H(1,1):

SFI — {tremy(q) : g € €7, B Ty, |LI,(8) < a)

<a)

S]-"(tor {trem[g (q) :qe 5(t°r), BeTy |Ll,(B) < a}
SF(cwy = SFIY U SF

(<a) (<a)

SFL = {wems(q) € SFZ) s g e €00}

(<a)

To lighten the notation, in the remainder of this section we will denote
the closure SF(<q) by SF. The letters SF stand for ‘spiky fish’, and
one can think of SF \ &£ as the spikes of the spiky fish. For ¢ €
Etor) , £min) - denote by C°'8 the extreme rays in the cone of foliation
cocycles. If the horizontal direction is not uniquely ergodic on M, then
Proposition 3.4 shows that C*® consists of two rays interchanged by
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the involution ¢. Further denote
S}"(mm) = {tremg(q) : g € gmin) 3 ¢ Cree, Ly(B) = a}
S]-"(tor) {tremgs(q) - g € gtor) e Cl, Ly(B) = a}
SFea = SF(M) L SF)
8.7-" (tor H) {tremg q):qe 5(tor,H)’ﬁ e CHo® Lo(B) = a} .

Note that for BeCres, Ly(B) = |L|(B).
With this terminology it is clear that equation (10.2) (and hence
Theorem 1.8) follows from:

Theorem 10.1. For any a > 0 there is q; € S}"Eii;), such that Ugq, =
SF = SFn

(<a)

The proof of Theorem 10.1 will make use of the following interme-
diate statements. Throughout this section, dist refers to the sup-norm
distance discussed in §2.6. We will restrict dist to SF, in particular
the balls which will appear in the proof are subsets of SF.

(min)
(<a)

Proposition 10.2. For any q € SF
SF < tor) such that dist(q,q) <

and any € > 0 there is ¢’ €

Proposition 10.3. For any a > 0, any q € S]-"(tor) and any € > 0

there is an Hy such that for each H > Hy there is a ¢’ € 8.7: torH
that dist(q,q') <

Such

Note that the approximation described in Proposition 10.3 needs to
accomplish two goals: approximate a tremor with total mass at most

a by tremors of total mass exactly a; and do so with a prescribed slit
length H.

Proposition 10.4. For positive constants a and H and any q € S]—"(tor H)

the set Uq contains all of SFEZ’;)H .

Proof of Theorem 10.1 assuming Propositions 10.2, 10.3 and 10.4. The
equality SF = ﬁgg% is clear from Proposition 10.2. We will prove:
(i) There is ¢; € SF for which the orbit Ug, is dense in SF.

(ii) Any ¢; as in (i) satisfies ¢; = tremg(q) for some ¢ € £M™ and
B e CHee with Ly(f) = a.

To prove (i), we will use the Baire category theorem. In this
argument we will consider SF as a metric space in its own right, with
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respect to the restriction of the metric dist. Since SF is closed and
U-invariant, this is a complete metric space on which the U-action is
continuous. Given ¢ > 0 and a compact set K — SF, let Vi - denote
the set of points in SF whose U-orbit is e-dense in K. By continuity of
the horocycle flow and compactness of K, one sees that Vi . is relatively
open. We will show that Vg . is not empty. To see this, note that by
Proposition 10.2, given a compact K < SF and € > 0 there is a finite
set F' ¢ S]-"Egg which is €/2-dense in K. For p e F, let Hy = Hy(p) be
the constant given in Proposition 10.3, where we substitute p for ¢ and
replace ¢ with /2. Let H > maxyer Ho(p). Then for each p there is

q, € S.FELO;’)H) such that dist(p, q,) < &/2. Finally by Proposition 10.4,

for any q € SF Efé)H), the closure of Uq contains all of the ¢;,. Thus the
orbit Uq comes within distance /2 of each p € F' and in particular is
e-dense in K. We have now shown that for any ¢ > 0 and K < SF,
VK,E a @ .

We additionally claim that Vi . is dense for all K compact and € > 0.
To see this, first observe that

KcKand0<e <e = Vg.>Vg..

Given z € SF and ¢ > 0, assume with no loss of generality that ¢ < e

and apply the preceding statement, to &’ instead of € and K’ Ry {x}
instead of K. The U-orbit of any point in Vg o intersects B(x,¢’), and
since Vg o is contained in Vg and is U-invariant, we have found that
Vi e intersects B(x,¢’). Since €’ was arbitrary, this shows that Vi . is
dense.

Now let K; ¢ K, < --- be an exhaustion of SF by compact sets
and g1 > g2 > ... > 0 with lime; = 0. By the Baire category theorem,
and since all sets of the form Vi . are open and dense in SF,

e e]
() Vi,en # D

n=1

Clearly, any point in this intersection has a U-orbit which is dense in
SF. We have proved (i).

To prove assertion (ii), recall from (10.1) that SF (<, is contained
in the set

Sicay & {trems(q) : g€ €, Be Ty, [Ll4(8) < a}.

Thus ¢; is of the form tremg(q) for some ¢ € £ and § € 7, with
|L],(8) < a. We cannot have g € £t U £P) since in both of these
cases M, would have a horizontal saddle connection of some length H,
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hence so would ¢y, and hence any surface in Ug; would have a horizontal
saddle connection of length at most H. This would contradict the fact
that Uq, is dense in SF (<,). So we must have g € £ (min) “and moreover
q has no horizontal saddle connection. Similarly, 5 is not a multiple
of the canonical foliation cocycle (dy),, because this would imply via
(4.10) that Ugq; < £. In particular M, is not horizontally uniquely
ergodic.

Let v; and v = 1417 be the ergodic transverse measures for the
horizontal straightline flow on M, normalized so that L,(5;) = 1, where
B dﬁfﬁ,,i for i = 1,2 and write § = a151 + a3y where |a;| + |as| < a.
We can assume with no loss of generality that as > a;. Since g is not
a multiple of (dy), = %Vl + %VQ, we have as > a;. Defining s = 2a; and
using (4.17) we get

tremg(q) = tremg, g, +a,8,(q)
= tremal (2h01§y>—ﬁ2)+a252 <q) (103)

= trem(@ —a1)pf2 (U’S Q)

and this shows that we may replace ¢ with usq and 5 with (ay — ay) s,
which is an element of ;8. So we assume that 3 € C® and L,(8) <
a. Suppose Ly(B) = a’' < a, then writing p = % > 1 and letting

q1 = tremg(q) and g, = trem,3(q) € SF(<q) = Uq,
Proposition 6.4 implies that
Sf(gpa) = U_QQ (@ U_ql = Sf(ga) (e Sf(gpa),

and thus SF(<p) = SF(<q)- This contradicts Proposition 8.4, and
hence L,(8) = a. We have shown that there is ¢; € SF with Ug; = SF,

and moreover ¢; must be in SF EI:;;), proving the theorem. U

We proceed with the proofs of Propositions 10.2, 10.4 and 10.3. As
we will see now, the main ingredient for proving Proposition 10.2 is
Proposition 3.5.

Proof of Proposition 10.2. By Proposition 4.8, it is enough to show
that for any ¢ in £ any 8 € 7,, and any & > 0, there is ¢, € £tV
and 3, € Cf, such that dist(q,q1) < ¢’ and |3 — p1]| < €. Here | - |
is some norm on H'(S,%;R,), and we identify the cones C; and CF
with subsets of this vector space by choosing a marking and using pe-
riod coordinates. We would like to use Proposition 3.5 (iii) and take
q1 = T_g;q, Where r_gy. is the rotation of M, which makes the slit o;
horizontal, and for 3; take the cohomology class corresponding to re-

striction of Lebesgue measure to a torus on M, which is a connected



72 JON CHAIKA, JOHN SMILLIE, AND BARAK WEISS

component of the complement of the horizontal slit; i.e. the rotation of
Aj. It is clear that for large j this choice would fulfill all our require-
ments, except perhaps the requirement that ¢, € £, Namely it could
be the case that the two translation equivalent slit tori which appear
in Proposition 3.5 are periodic in direction ;. If this were to happen,
we recall that M, is presented as two tori glued along a horizontal slit,
but the tori are horizontally periodic, so a small perturbation of these
tori (in the space of tori H(0)) will make them horizontally aperiodic.
Pulling back to &£, i.e. regluing the aperiodic tori along the same slit,
we get a new surface ¢ which is not horizontally periodic and can be
made arbitrarily close to ¢;. The cohomology class (] corresponding
to the restriction of Lebesgue measure to one of the two aperiodic tori
can be made arbitrarily close to 1, completing the proof. U

Proposition 10.4 follows from a classical result of Hedlund [H] assert-
ing that any horizontally aperiodic surface has a dense U-orbit in the
space of tori H(0) = SLy(R)/SL2(Z).

S e S
— —

FIGURE 8. A surface M, € £ obtained by gluing two
identical horizontally aperiodic tori along a horizontal
slit (in blue).

Proof of Proposition 10.4. Note that each surface ¢ in £t"#) has a
splitting into two translation equivalent tori A; and Ay glued along a
horizontal slit of length H, and interchanged by the map ¢ of Propo-
sition 3.1. The two rays in C;*'® correspond, up to multiplication by
scalars, to the restriction of the transverse measure (dy), to each of the

two tori. Thus if we set s = 2a, then each ¢’ € SF Etzoi)H) is obtained

by a ‘subsurface shear’ of a surface in £¢°"#) namely by applying u,
to one of the tori A; and not changing the other torus — see Figures

8 and 9. The reason for taking s = 2a is that the area of each of the
tor,H)
—a)

A; is exactly 1/2. This description implies in particular that SF E
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FIGURE 9. Applying a tremor in C® to M, amounts
to applying a horocycle shear to one of the two tori. The
resulting surface is not in £. Note that the length of the
slit is unchanged.

is the image of £t"1) under a continuous map commuting with the
U-action. So it suffices to show that the U-orbit of any ¢ € £tnH) is
dense in EtorH),

We do this by defining a U-equivariant inclusion of H(0)®") the
set of tori that are horizontally aperiodic, into %) and using the
previously mentioned theorem of Hedlund. Note that any surface in
EtorH) ig obtained from a surface My for ¢ € H(0)*") by forming two
copies of My and gluing them along a slit of length H starting at the
marked point (the fact that the surface is aperiodic ensures that the slit
exists). This defines a U-equivariant map #(0)t°") — gtonH) wwhich is
continuous when H(0)®" is equipped with its topology as a subset of
H(0). Thus to complete the proof it suffices to show that any surface
in H(0)®*") has a U-orbit which is dense in #(0) — which is Hedlund’s

theorem. O

10.1. Controlling tremors using checkerboards. In order to prove
Proposition 10.3 we will (among other things) have to deal with the
following situation. Given ¢ € £ and 3 € C*'®, with Ly(83) < a, we
would like to find a surface M, and (' € C’;?’erg, such that Ly (f') = a
and tremg(q) is close to tremg(¢’). We find ¢’ close to the horocycle
orbit of q. More specifically, we will choose s so that ¢y = u_sq and
Bo=0+s holgy) satisfy tremg(q) = tremg,(qo) and Ly, (5o) = a, and
take ¢’ close to qg. This transforms our problem into finding 3’ € C ;7 e
which closely approximates £y € C;, where f is not ergodic but rather
is a nontrivial convex combination of holgg) and an ergodic foliation
cocycle.
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Controlling such convex combinations is achieved using what we will
refer to informally as a ‘checkerboard pattern’. A checkerboard on a
torus T' is a pair of non-parallel line segments o; and o, on T which
form the boundary of a finite collection of polygons, which can be
colored in two colors so that no two adjacent polygons have the same
color (see Figures 10 and 11). If we equip two identical tori 77,75
with checkerboard patterns defined by the same lines oy, 09, and in
which the colors in the coloring are swapped, we can form a surface
M in &€ by gluing T} to T, in two different ways, namely along each
of the o;. Both of these gluings give the same surface M, but it is
decomposed as a union of two tori glued along a slit in two different
ways (see Proposition 3.2). One decomposition is into the original tori
Ty and Ty, and the other is into the unions 77,7, of parallelograms
of a fixed color. Our interest will be in the ‘area imbalance’ of the
checkerboard, which is the difference between the areas of T} n 7] and
Ty n T]. Informally, the area imbalance tells us how close these two
decompositions are to each other.

In our application the lines o7 and o, will both be nearly horizon-
tal. Taking the normalized restriction Leb|z; to one of the tori in the
decomposition M = T] u Ty gives an ergodic foliation cocycle for the
flow in the direction of o9, and the checkerboard picture shows that
it closely approximates a nontrivial convex combination of the two er-
godic components of the other foliation cocycle, in the direction of o4,
namely the one coming from the normalized restrictions Leb|r, , Leb|z,.
Controlling the coefficients in this convex combination amounts to con-
trolling the area imbalance parameter, and this will be achieved below
in Lemma 10.6, item (IV).

Checkerboards were originally introduced by Masur and Smillie in or-
der to provide a geometric way to understand Veech’s examples of sur-
faces with a minimal and non-ergodic horizontal foliation, see | ,
p. 1039 & Fig. 7]. We now proceed to a more precise discussion.

Let p € H(0,0) be a torus with two marked points & and &. Let
T =T, be the underlying surface. Let o1, o2 be two non-parallel saddle
connections on p from & to &. Let 5 be the segment obtained by
reversing the orientation on oy, and let o be the concatenation of o,
and o9 so that ¢ is a closed loop on T'. We have:

Lemma 10.5. The following are equivalent:

(i) The loop o is homologous to zero in H\(T;7/27).

(11) It is possible to color the connected components of T'\.o with two
colors so that components which are adjacent along a segment
formaing part of o have different colors.
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FI1GURE 10. A checkerboard: when the o; (drawn in
black) are long and orthogonal, the torus will be par-
titioned into small rectangles of alternating colors. The
difference between the areas occupied by the colors is the
area imbalance.

FIGURE 11. A key feature of this checkerboard is that
the non-horizontal black segment crosses the horizontal
segment immediately adjacent to its previous crossing,
leading to strips of equal width and length.
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(i1i) Fori = 1,2 let M; be the surface obtained from the slit construc-
tion applied to o; (asin §3.1). Then My and My are translation
equivalent.

Proof. The equivalence of (i) and (iii) follows from Proposition 3.2. We
now show that (ii) is equivalent to the triviality of the class represented
by o. Consider the Z/27 valued 1-cochain Poincaré dual to ¢. This
cochain represents a trivial cocycle if and only if it is the coboundary
of a Z/27Z-valued function. Associating colors to the values of such a
function as in Figure 10 we have the checkerboard picture. Specifically
being a coboundary with Z/27 coefficients means that two regions have
the same color iff a generic path crosses o an even number of times to
get from one to the other. U

Assume that o; and o9 cross each other an odd number of times
and satisfy the conditions of Lemma 10.5, let A be the area of T" and
let Ay, A5 be the areas of the regions colored by the two colors in the
coloring in (ii) above, so that A;+ As = A. We will refer to the quantity
[A1=42] 25 the area imbalance of the subdivision given by o1, 09 (note
that when 7}, has area one this is the same as |4; — As).

We will need the following two lemmas on tori.

Lemma 10.6. Suppose T is a torus for which the horizontal direction
is aperiodic. Given c € |0,1), a horizontal segment o1 on T, and n > 0,
there is Hy such that for any H > Hy, there is a second segment oo on
T joining the two endpoints of o1 for which the following hold:

(1) The segments o1,09 on T intersect an odd number of times and
satisfy the conditions of Lemma 10.5;
(II) Let 0 € (—m, ) be the direction of o3. Then || < n and the
flow in direction 6 is aperiodic on T’;
(III) the length of oo is in the interval (H, (1 +n)H);

(IV) the area imbalance of 01,09 is in the interval (¢ —n,c+n).

Lemma 10.7. Let T be a horizontally minimal torus, and let o1 be a
horizontal segment on T'. Let aék) be a sequence of straight segments
in T in direction 0, # 0, connecting the endpoints of o1, so that the
loop o above satisfies the conditions in Lemma 10.5, and satisfying
limy_o 0 = 0. Let T™®) be any one of the two monochromatic regions,
in the checkerboard coloring described in Lemma 10.5(i1). Then for
any piecewise smooth bounded curve v < T, which is transverse to the
horizontal foliation, we have

1 1
lim —— | dylpw = ——— | dy. 10.4
k0 Leb(T™) L Ylre Leb(T) L Y (10.4)
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We will give the proof of Lemmas 10.6 and 10.7 at the end of this
section. First we conclude the proof of Proposition 10.3 assuming their
validity.

Proof of Proposition 10.3. Let q be as in the statement of Proposition
10.3, that is ¢ is obtained from p € #H(0) with minimal horizontal
foliation, and from parameters H; > 0 and sy, s5 € R satisfying

|s1] + |s2] < 2a, (10.5)

as follows. First put a horizontal segment o; of length H; on the
underlying torus 7' = T, giving rise to a surface in #(0,0). Then
apply the slit construction described in §3.1 to obtain a surface My, for
qo € £ which is a union of two tori 7} and T3 with minimal horizontal
foliations, glued along a horizontal slit of length H;. Rescale so that
this surface has area one, i.e. each T; has area 1/2. Then for i = 1,2,
apply the horocycle shear map uy, to 73, and glue the resulting aperiodic
tori to each other to obtain M,. In light of the factor 2 appearing in
(10.5), ¢ = tremg(qo) for § € Ty, satistying |L|, (8) < a,so g€ SF)

(<a)’
and all surfaces in SF mr% can be described in this way.

By swapping the roles of T} and T5, replacing p with u_sp, where

s = 2a — (s1 + s2), and replacing s; with s; + s for some s € R, we can
assume that

0 < s; < sy and s + sy = 2a. (10.6)

Let
def S2 — 51

c=—5— (10.7)
Let M, € £%" be the surface constructed as in the above discussion
(starting with 7" and o as in the paragraph above equation (10.6)).
This means that ¢ = tremg, g, +5,8,(¢0), where 5; = 3, is the coho-
mology class corresponding to the transverse measure v; obtained by
restricting the canonical transverse measure (dy),, to the torus T;, and
the tori are glued along a horizontal slit of length H;. Let U denote
the (dist) e-ball around ¢g. Our goal is to show that ¢ contains some ¢
which is also a tremor of a surface ¢ € £t but for which the param-
eters s; and sy and the slit length H are prescribed. More precisely
My, is built from two minimal tori 7" and 7" glued along a horizontal
slit of length H, M, is obtained by applylng the horocycle flow usy, to
T’ and leaving T” ﬁxed (since T" has area = thls will give a tremor of
total variation exactly a), and we need to carry the construction out
for all H > Hy where Hj is allowed to depend on /.
We obtain ¢ as follows. Using Lemma 10.6, we find oy satisfying
conditions (I-1V), for n sufficiently small (to be determined below).
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Define ¢ © 4o where g € SLy(R) is the (unique) composition of a
small rotation and small diagonal matrix, satisfying

gholr(oq) = (H,0).
By swapping 7" and T"” if needed, we will assume
A2 = Leb(ﬁ)gfl (T/) N Tg) = Al = Leb(¢gf1 (T,) M Tl), (108)

where -1 : My — M,, is the comparison map. Note that in light of
(I) and (III), ¢ is close to the identity in the sense that we can bound
the norm |¢g — Id| with a bound which goes to zero as n — 0, so that
by choosing 7 small we can make dist(q, ¢) as small as we wish.
Recall ¢ is obtained from ¢y by shearing the two tori T; (for i = 1,2)
by us,. Define ¢’ to be the surface obtained from ¢} by shearing the
torus T by ug,. We now show using (II) and (IV) that by making n
small and H large we can ensure that ¢’ € U. To see this, we will work
in period coordinates, which by Proposition 2.5 gives the same topology
as dist. We will choose a marking map ¢ : S — M, and use it to define
an explicit basis for H;(S, X), by pulling back a basis of Hy(M,,,%,,).
Then we will show that for all n small enough and H large enough, when
evaluating hol, and hol, on the elements « of this basis, the differences
|hol,(a) — holy ()| can be made as small as we wish. The basis is

described as follows. For ¢ = 1,2, let a&i), ag) be straight segments in

T; generating the homology, so that {agi) 2, ) =1, 2} u {a1} form a

basis for Hy(My,,Xq;7Z). We now compute the holonomy vectors of

these elements, corresponding to ¢ and ¢'.
By the description of ¢ from the preceding paragraph, and since
](.l) < T;, we have

' : : W) @)
o (o) = it () = () - (P

«

J
(10.9)
and
hol, (¢1) = holy, (71). (10.10)
Now let v/ be the transverse measure given by restricting the canonical

transverse measure (dy)% to T". Then by the description of ¢’ from the
preceding paragraph we also have that

, , N0
hol, (aﬁ”) = holg (04?) + 2a (V <aj )) (10.11)
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and

holy (31) = holy (51) + 2 (V’ <051)> , (10.12)

We want to show that by making 1 small, we can make the difference
between (10.9) and (10.11), as well as the difference between (10.10)
and (10.12), as small as we like.

Let 1/ be the restriction of Lebesgue measure to 7" so that, in the
notation of Proposition 2.3, we have p/ = p,,, a (positive) measure with
total variation % Using the definition of the area imbalance and (10.8),
we see that the area imbalance is 44, — 1 = 1 — 4A;. This implies

1 .
W(T) = A; = 2 (1+ (=1)" - area imbalance) (i = 1,2).

Therefore, using equation (10.6), the choice of ¢ in (10.7), along with
(IV), we have

i + So :So — §1
4ap/(T;) = a (1 —1)e) = (Sl —1Z—>:i
() = a (L (~1)ie) = a (02 4 (122 =
where by A = B we mean that A can be made arbitrarily close to B by
choosing 1 small enough. By (II), choosing n small forces 6 to be close

to 0, which is a uniquely ergodic direction on 7;. We apply Lemma

10.7, with T' = T}, v = ay), and with 7™ any sequence of T" as above
corresponding to n — 0. We obtain that the second summands on the
right hand sides of equations (10.9) and (10.11) can be made arbitrarily
close to each other by taking 7 sufficiently small.

Furthermore, since dist(q, ¢)) = 0, we have

noly, () = oly, (af")] = [noly, (1) ~ hol,, (31)]

Thus for 1 small enough we can make the difference between the quan-
tities (10.9) and (10.11) as small as we like. We also have

V(o) < j (dy)y, = |sin(0)[6(51),

o

where £(1) denotes the length of ;. Thus by (II) and (10.12),
Iholyy (1) — holy (1)) = 0.

Putting these estimates together we see that the difference between
(10.10) and (10.12) can also be made as small as we like. O

Proof of Lemma 10.6. Let Ty be the standard torus R?/Z?, and let
VT — Ty
be an affine homeomorphism. Since the horizontal direction is aperiodic

on T, v maps o; to a segment on &y difw(a) on Ty with holonomy
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(x,ax) for some a ¢ Q and = > 0. Let &,& be the endpoints of 7,
in Ty. We will choose k an even positive integer, and a simple closed
curve ¢ from & to &, and let 65 be the shortest curve homotopic to
the concatenation of k copies of ¢, followed by one copy of ;. Also
we will denote oy = 17'(63). Since k is even, the curve o of Lemma
10.5 is homologous to an even multiple of ¢~ !(¢) and thus (I) holds.
The choice of the curve ¢ corresponds to the choice of (m,n) € Z* with
ged(m,n) = 1. Since « is irrational, the linear form (m,n) — ma —n
assumes a dense set of values on pairs (m,n) € Z* with ged(m,n) = 1
(see [C'H] for a stronger statement). We choose m,n so that

lz(ma —n) — (1 —c)| <n. (10.13)

We can make this choice with m, n large enough, so that the direction of
¢ approaches the direction of slope . Note that for all k, the direction
of &4 is closer to the direction of 4; than the direction of ¢, and this
means that the direction 6 of oy is nearly horizontal. Hence for such
(m,n) and all large k, || is small. Because a ¢ Q the slope of o3 is
irrational and so we have (II). As we incrementally increase k € 2N,
the length of g5 increases by approximately twice the length of ¢. So
for all large enough H, we can find k so that (IIT) holds.

We now verify (IV), which requires describing the region and color-
ing given by o7 and 03 as in Lemma 10.5. (It may be helpful to consult
Figure 11, which has 15 intersections between the curves, counting the
intial and terminal points, 7 red strips and 6 white strips.) We will
work in T instead of T'. The holonomy of &9 is k(m,n) + (x,za). The
curves ¢; and &y intersect in k + 1 points (including &;,&;) and these
intersection points divide each &; into k equal length pieces. Consec-
utive pieces of the division of 65 bound strips of the coloring given
by Lemma 10.5. So we obtain a region R composed of k — 1 strips
of alternating color where each strip is a flat parallelogram with sides
2(k(m,n) + (z,za)) and 7 (z,z@). As k—1is odd, the areas of all but
one of these strips cancel out. This gives that the contribution of R to
the area imbalance of R is equal to the area A of one strip. We have

m+2< Z |ma — n|
a-loe (g L)

The complement of R has one color and area 1 — (k—1)A. This implies
that the total area imbalance is

1—-(k—1)A-A=1—-kA=1—-2zlma—n|

So (IV) follows from (10.13), and the proof is complete. O



TREMORS AND HOROCYCLES 81
Proof of Lemma 10.7. Let g = #(T)Leb be normalized Lebesgue mea-
sure on T'. Since we have assumed that 7" is horizontally minimal, and
minimal straightline flows on tori are uniquely ergodic, pg is the unique
Borel probability measure on 7" invariant under horizontal straightline
flow.

For each k define a measure p, = the normalized restriction

e
of Lebesgue measure to 7). We claim that p; converges weak-* to
to, as k — oo. Indeed, let T,(f)(t) denote the image of x € T under
straightline flow in direction 6 to time t. We can write u; as a convex
combination of normalized length measures along segments

{1 telo 81},

for x € o7 and with S the first return time of x to oy along its orbit
in direction 6, (that is, segments passing parallel to the long sides in
the parallelograms of the checkerboard pattern). The length of these
segments goes to infinity and their direction becomes more and more
horizontal as k — oo. By unique ergodicity, for any continuous test
function f on T, any ¢ > 0, and any sufficiently large S (independent

of z),
= fo f (v ) at - f fdpo

and by uniform continuity of f, for any fixed S and all large enough £,

! F f (T(“‘)(t)) it — 1 JS f (T“)(t)) dt| < ©
S J 0 S J k 2’
Putting these together we get p — .
We can now recover the integrals appearing in equation (10.4) from

po and pg, as follows. Let 4 < T denote the image of v, and let r > 0
be small enough so that for all large enough k, the maps

g
<§,

75 (0] =T, (1) = T (1)
are injective, and their image does not intersect o,. For k£ > 0, let
A {T,(f)(t) te [0,7“]}.
TEY

Then by Fubini’s formula for Lebesgue measure, we have

1 1 1 .
Leb(T) Ldy = ;ﬂo(Ao) and W Ldy|T(k) = ;Mk(Ak).
(10.14)
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The Lebesgue measure of 0 Ay is zero, and hence by weak-+ convergence,
lim 4 (Ao) = po(Ao).
k—o0

Also, the symmetric difference AgAAy satisfies g (AgAAr) —k—o O,
as can be shown by an elementary argument which we leave to the
reader. This shows that

lim fu,(Ay) = po(Ao).
k—o0
Together with equation (10.14), this implies equation (10.4). O

11. NON-INTEGER HAUSDORFF DIMENSION

The purpose of this section and the following one is to prove Theorem
1.9. Throughout this section we use the notation of §10. We briefly
explain the basic idea of the proof. We can think of a neighborhood
of £ as being modelled on a neighborhood of the zero section in the
total space of the normal bundle .4 (£) (see Corollary 3.3). Thus we
can think of SF (<, as a subset of the total space of A4(£). For all
g € &, the intersection of (A(£)), with SF (<4 is either a point or
a line segment, contained in the two-dimensional space (A%(€)),. By
[ | the set of ¢ € £, for which this set is not a point has Hausdorff
dimension 4.5.

Obtaining the lower bound is easier, and we use Proposition 11.1
to say that the Hausdorff dimension is at least 4.5 +1. Obtaining the
upper bound is more involved, occupying §11.2 and §12. We denote
the Hausdorff dimension of a subset A of a metric space X by dim A.
We will use the following well-known facts about Hausdorff dimension

(see e.g. [Fa, E

Proposition 11.1. Let X and X' be metric spaces.

(1) If f: X — X’ is a Lipschitz map then dim X > dim f(X). In
particular, Hausdorff dimension is invariant under bi-Lipschitz
homeomorphisms.

(2) For a countable collection X1, Xs, ... of subsets of X we have
dim | J X; = sup, dim X.

(8) Let A and B be subsets of Euclidean space and let X < A x B
be such that for alla € A, dim{b€ B : (a,b) € X} = d. Then

dim X > dim A + d. (11.1)
In particular dim(A x B) > dim A + dim B.

Note that when stating Theorem 1.9 we did not specify a metric on
H(1,1). For concreteness one can take the metric to be the metric dist
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defined in §2.6, but note that in view of items (1) and (2) of Proposition
11.1, the Hausdorff dimension of a set with respect to two different
metrics on H(1,1) is equal, as long as they are mutually bi-Lipschitz
on compact sets. We will use this fact repeatedly.

The next definition fixes an identification of an open set in the stra-
tum with cohomology via period coordinates. This is helpful for work-
ing with the metric dist. Formally, let &/ < H be an open set and
m: Hm — H be the forgetful map of §2.1. In this section, we say that
U is an adapted neighborhood if it is precompact, and there is a trian-
gulation of S such that a connected component of 71 (2{) is contained
in V;, where V, is described in §2.2. Additionally we will say that a
relatively open U < & is an adapted neighborhood (in £) if it is the
intersection of an adapted neighborhood in #H(1, 1), with the locus £.

11.1. Proof of lower bound. We use the notation introduced in §10,
and begin with the proof of the easier half of the theorem.

Proof of lower bound in Theorem 1.9. For each 6 > 0, we will define
a subset Xg © SF(<q), subsets X; < £, Xy < R, and a surjective
Lipschitz map f : Xg — X1 x X5, where dim X; > 4.5—0 and dim X5 =
1. The statement will then follow via Proposition 11.1.

Let U < H(1,1) be an adapted neighborhood, so that we can identify
U with an open subset of H'(S,%;R?). Fix anorm |- | on H(S,¥;R,,)
which is invariant under translation equivalence arising from the orb-
ifold group of &, as in Proposition 2.1. According to Corollaries 6.1

and 8.2, for any ¢ € SF EZ;I;) there is a unique ¢ = ¢(q’) € £™™ and

a unique [ = f(¢) € 7:,(0) (up to translation equivalence) such that
q' = trem, 3. Define

FrSFEY — £t R by f(¢)= (o). 18W@)]).  (11.2)

Note that because translation equivalences preserve || - | this is well-
defined. By Corollaries 4.5 and 3.3 we have that 8(¢') € A4;(€) for all
¢, where A4,(€) is a flat subbundle.

We claim that by making I/ small enough, f restricted to U is a
Lipschitz map (where we use the metric arising from dist on the domain
and first summand of the range of f). Indeed, by the continuity of the
map in (2.9), and the fact that U is precompact, the metric dist is

bi-Lipschitz to the metric dist’(¢1, g2) o |hol(qy) —hol(g2)|| arising from
period coordinates and the chosen norm |- | (when ¢; € 77*(¢;) belong
to some fixed connected lift of ¢). Furthermore, if ¢ is small enough,
then for the projections introduced in §2.3, we have from Corollary 3.3
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that
hol(q(q")) = P*(hol(¢')) and hol(8(¢")) = P~ (hol(¢'));

that is, in period coordinates on U, f is obtained by writing a vector in

H'(S,3;R?) in terms of its coordinates with respect to the two factors

in a direct sum decomposition, composed with taking the norm on the

second coordinate. This is clearly a Lipschitz map with respect to dist’.
Fix n > 0 and set

) def {qe &) thereis B e 7;( with |L|,(8) < a and |B] = n},

X g e SFED - q(q') e X7, 18(4)] <0}

(<a)
X2 o [07 77]7

and define
fiXo— X" x Xy, fYfx.

Then f is Lipschitz on the intersection of X, with any compact set,
and the definitions ensure that f is surjective. So it remains to show
that for n > 0 small enough we have

dim X" > 45— 4. (11.3)
Let
X, = {q e £ - horizontal flow on M, is not uniquely ergodic} .

Since X1 =, -0 X ) by Proposition 11.1 (2) it suffices to show that
dim X; > 4.5. ThlS is deduced from work of Cheung, Hubert and Ma-
sur as follows. By the general theory of local cross-sections (see e.g.
[ ]), the action of the group {ry : § € S'} on £ admits a cross-
section, that is, we can parameterize a small neighborhood in & by
(q,0) — req, where g ranges over a 4-dimensional smooth manifold V,
0 ranges over an open set in S!, and the parameterizing map is Bi-
Lipschitz. Thus these coordinates identify a neighborhood in £ with a
Cartesian product ¥V x I where I is an interval in S!. It is shown in
[ | that V contains a Borel subset A of full measure, such that for
each g € A there is a subset ©, = S' so that for ¢ € A, § € ©, we have
roq € X1, and dim©, = 0.5. Proposition 11.1, item (1) and formula
(11.1) now imply (11.3). O

Remark 11.2. We remark without proof that the map f introduced in
(11.2) would not be Lipschitz if we defined the second coordinate to be
\L|,(8). Indeed, if we were to define f in this way and extend it to

tor

tremors of surfaces in S]-" , then Proposition 10.3 would show that
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f is not even continuous. Also, it is likely that f is not bi-Lipschitz,
and this is part of the challenge in proving the upper bound.

11.2. Proof of upper bound. We now begin the proof of the upper
bound, starting with a brief guide to its proof. In order to cover SF <)
efficiently, we will view a subset of this set as lying in a product space,
namely a local trivialization of the bundle A47(£) as in the proof of the
lower bound. To efficiently cover SF (<, in this product space we find
convex sets J; < £ so that the fixed-size tremors of points in J; vary in
a controlled way.

Proposition 11.3 gives an upper bound for the Hausdorff dimension
that fits this strategy. The remainder of this section is devoted to prov-
ing the upper bound assuming this result. We prove the Proposition
in §12.

11.2.1. Preparations for the upper bound: general result for efficient
covers. We begin with our general result for exploiting efficient covers
of convex sets. Let Y < R? and let |Y| denote the Lebesgue measure
of Y. Let N©(Y) denote the e-neighborhood of Y, that is N©(Y) =
U,ey B(y;€). The inradius of Y < R? is defined to be the supremum
of r = 0 such that Y contains a ball of radius 7.

Proposition 11.3. Let P, ¢ RY, P, « R? be balls. Let Z < P, x P,
and {Z(t) : t € N} be a collection of subsets of Py x Py, such that for
any T >0, Z < |2 Z(t). Assume furthermore that there are positive
constants ¢y, co, and & < 1 and that for each t € N, Z(t) is a finite
disjoint union of sets X;(t) x Y;(t), with X;(t) < Py, Y;(t) < P, for
which the following hold:

(1) Each X;(t) is contained in a convez set J;(t) such that the J;(t)
are pairwise disjoint, and each has inradius at least cie™2.
(i1) Each Y;(t) is a rectangle whose shorter side has length at most
coe 2t
(iii) |, N (Xi(t))| < cpe.
Then

5
dimZ <d+1- (11.4)

To obtain an upper bound on the Hausdorff dimension of SF <),
we will verify the assumptions of Proposition 11.3, with d = 5. In our
setup, a small adapted neighborhood U4 <= &£ will play the role of a
neighborhood in R’ and the 2-dimensional subspace A, (&) will play
the role of R2.
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11.2.2. Preparations for upper bound: transverse systems. In order to
verify hypotheses (i) and (ii) of Proposition 11.3 we need to choose
convex sets in £ so that the 4 (€) fibers intersected with SF(<,) vary
in a controlled way. To do this, we now get good approximations for
the cone of foliation cocycles which will be constant on our convex
subsets of £. Our strategy will be to define convex regions, on which
the horizontal flow is combinatorially similar up to some fixed time.
Arguments like this are standard when using Rauzy-Veech induction.
In our setup it will be more convenient to use transverse systems, which
we now introduce. The advantage of transverse systems is that they
have a more transparent interaction with the geodesic flow {g;}. See
[ , §2] for a related construction.

Let ¢ € H, and let M, be the underlying translation surface. A
transverse system on M, is a finite collection of disjoint arcs of finite
length which are transverse to the horizontal foliation on M,, do not
contain points of ¥, and intersect every horizontal leaf (see | ,
Fig. 2.1]). The arcs may contain points of 3 in their closure. For
example, if the horizontal foliation on M, is minimal then o could be
any short vertical arc not passing through singularities, and if M, is
aperiodic and ¢ is an arbitrary positive number, o could be the union of
vertical arcs of length ¢ intersecting the horizontal saddle connections,
along with downward pointing vertical prongs of length ¢ starting at
all singular points (and where the singular points at their extremities
are not considered a part of the prong).

We now define some structures associated with a transverse system.
We mark one point on each connected component of 0. A o-almost
horizontal segment is a continuous oriented path ¢ from ¢ to o, which
starts and ends at marked points, is a concatenation of an edge along
o, a piece of a horizontal leaf in M, \ X, which does not intersect
o in its interior, and another edge along o. The orientation of a o-
almost horizontal segment is the one given by rightward motion along
horizontal leaves. Two o-almost horizontal segments are said to be iso-
topy equivalent if they are homotopic with fixed endpoints, and where
the homotopy is through o-almost horizontal segments. Up to isotopy
equivalence there are only finitely many o-almost horizontal segments.
A o-almost horizontal loop is a continuous oriented loop which is a
concatenation of g-almost horizontal segments, where the orientation
of the loop is consistent with the orientation of each of the segments.
We say that a g-almost horizontal loop is reduced if it intersects each
connected component of o at most once. With each o-almost hori-
zontal loop v we associate a cohomology class 3, € H'(M,,%,;R) via
Poincaré duality.
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We will need the following:

Lemma 11.4. Let M, be a surface with no horizontal saddle con-
nections. Then for any transverse system o, the cohomology classes
corresponding to all o-almost horizontal loops generate H'(M,,%; 7).

Proof. The union of o-almost horizontal segments in one isotopy equiv-
alence class is the union of sub-arcs of ¢ and a topological disc foli-
ated by parallel horizontal segments. The union of these topological
discs gives a presentation of M, \ ¥ as a cell complex. We call it the
cell complex associated with o (see | , §2.4]). This generalizes the
well-known Veech zippered rectangles construction [Ve3]; namely the
zippered rectangle construction arises when o has one connected com-
ponent which intersects all the horizontal saddle connections of M,
and the two endpoints of ¢ are mapped by the horizontal straightline
flow to singular points in forward time. In the zippered rectangle case,
a proof of the Lemma is given in [Y, §4.5].

Since we have assumed that M, is horizontally minimal, any open
subinterval ¢/ o can serve as a transverse system. We choose ¢’ < o
so that it satisfies the conditions mentioned above, namely, the cell
complex associated with ¢’ is a zippered rectangle construction. Since
the o’-almost horizontal loops are a subset of the o-almost horizontal
loops, the statement for o follows from the statement for o’ O

Given a marking map S — M, we can think of each 3, as an element
of HY(S,%;R). We denote by C; (o) the convex cone over all of the
By, that is

Cr (o) = conv ({tf, : v is a o-almost horizontal loop on M, and t > 0}).

Note that C; (o) is a finitely generated cone. Indeed, if we let £ =
“Z4.0 denote the reduced o-almost horizontal loops, then C;f (o) is the
convex cone generated by 3,, v € Z. Since 3, only depends on the
homotopy class of v, and there are only finitely many isotopy classes
of o-almost horizontal segments, this shows the finite generation of
Ci(o).

Let C;f be the cone of foliation cocycles as in §2.5. Clearly, if o < o
are transverse systems then C;(0) = CF(0'). We have the following
standard fact.

Proposition 11.5. Suppose M, has no horizontal saddle connections
and let 01 D 09 D --- be a nested sequence of transverse systems for
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the horizontal foliation on M,, with total length going to zero. Then
o0
Cy = () Cf (an)- (11.5)
n=1

Remark 11.6. In fact we have equality in (11.5). In this paper we only
need the inclusion stated above. The reverse inclusion can be proved
along the lines of | , Proof of Thm. 1.1]; for similar results in the
context of interval exchange transformations and measured foliations
see [Ve2, Lemma 1.5] and [Mos, Theorem 5.1.1] respectively.

Proof of Proposition 11.5. We need to show that C = Cf (0,) for ev-
ery n. We use the Birkhoff ergodic theorem. Take an ergodic invariant
probability measure p for the straightline flow on M, let v be a trans-
verse measure corresponding to u as in Proposition 2.3, and let £, be
the corresponding foliation cocycle. Since M, has no horizontal saddle
connections, v is non-atomic, the horizontal straighline flow on M, is
minimal, and C" is the convex cone generated by the foliation cocycles
B, arising in this way. Take a horizontal leaf ¢ which lies on a generic
horizontal straightline trajectory for p. This implies that ¢ intersects
any transverse system infinitely many times. Genericity means that
for a transverse arc v, v(v) = limg_o s#(y N Ls), where (g is a piece
of the leaf starting at some fixed point on ¢ and of length S (and the
limit exists). Let o], be a connected component of o,, which intersects ¢
infinitely many times. Then we can find a sequence of intersections of
¢ and o/, such that the horizontal lengths of subsegments of ¢ between
consecutive intersections grow longer and longer. Closing up these seg-
ments along o/, gives longer and longer o,,-almost horizontal loops, and
taking the Poincaré dual of a renormalized sum of a large number of
them gives a sequence approaching v (as can be seen by evaluating
these sums on closed loops ). This implies 3, € C (0,). O

11.2.3. Transverse systems in € and H(1,1). We now specialize to
H(1,1) and specify the collection of transverse systems {c,} explicitly.
Recall our convention that singularities for a surface in H(1, 1) are la-
beled. Each ¢ € H(1,1) has two vertical prongs issuing from the first
singular point in a downward direction, and we denote by &; the union
of the corresponding vertical segments of length e™*. On any compact
subset of #H(1,1) there is a lower bound on the length of a shortest
saddle connection, and so for ¢ large enough the vertical prongs do
not hit singular points and so o, is well-defined. If M, is horizontally
minimal then each horizontal leaf intersects ; and in particular each
horizontal separatrix starting at a singularity has a first intersection



TREMORS AND HOROCYCLES 89

(as seen along the separatrix) with ;. Denote by ¢ = £(q,t) the maxi-
mal length, along ;, of a segment starting at a singularity and ending
at the first intersection of some horizontal separatrix £ with &;. Let
0y < 0 be the union of the two vertical prongs taken of length €. Note
that 6, is a transverse system on M, if M, is horizontally minimal, but
some non-minimal surfaces have horizontal leaves that miss &;.

Fix an adapted neighborhood U, and recall that by choosing a con-
nected component of 7~ 1(U), we can equip all ¢ € U with a marking
map (up to equivalence), and this identifies each C with a cone in
H'(S,%;R,). For those ¢ € U for which M, has no horizontal saddle
connections, the marking map also determines the cone Cf(6¢) as a

cone in H'(S,%;R,). We denote it by 5’; (t) in order to lighten the
notation. Since ¢; is invariant under the map ¢, this identification does
not depend on the choice of the marking map (within its equivalence
class). As in Corollary 3.3 let H*(S,%;R?) = T(€) @ A (€) be the
decomposition into ¢ invariant and anti-invariant classes. By Corollary
4.5, a balanced signed foliation cocycle belongs to A,(€). As in the
proof of Proposition 3.5, let 7 : £ — H(0) be the projection which maps
a surface ¢ € £ to the torus M,/{t), and forgets the marked point (one
of the two endpoints of the slit) corresponding to the second singular
point of M,.

The area-one condition in the definition of £ means that £ is not a
linear space. For our proof we will need to cover £ by convex subsets,
and in order to make the notion of convexity meaningful we work lo-
cally, as follows. Recall that U — & is an adapted neighborhood (in
€) if it is the intersection of £ with an adapted neighborhood in the
stratum. In this case there is a triangulation 7 of S such that any
connected component of 7! () is contained in the intersection of the
set V, (as in §2.2) with the fixed point set of the involution described
in Proposition 3.1, and with the locus of area-one surfaces. Let ¢ € U
and fix a marking map of ¢ : S — ¢ representing a surface ¢ € V.
Let & = ¢, be the map which sends x € T,(€) to the surface ¢’ sat-
isfying hol(q’) = c(hol(q) + x), where ¢ is given by the marking map
determined by ¢ and 7 (see §2.2) and the rescaling factor ¢ is chosen
so that the surface ¢’ has area one. A convex adapted neighborhood of
q is (W) where W is an open convex subset of T,(£) so that |y
is a homeomorphism onto its image, which is contained in &/. When
discussing diameters, convex sets, etc., we will do this with respect to
the linear structure on WW. We say that a collection J of convex sub-
sets of a convex adapted neighborhood is a weak convex partition if the
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interiors {J° : J € J} are disjoint, and the union of closures | ., J
covers all horizontally minimal surfaces in i.
It is clear from definitions that for ¢t € R,

Gt (0) =g (6; (t)) . (11.6)

Let &, = 71(E), and let gm’t denote the surfaces in &, which have
no vertical saddle connections of length at most e~*, and for which every
horizontal straightline leaf intersects ;. Note that for these surfaces,
the cone C; (t) is well-defined, that the set of horizontally minimal

marked surfaces in (‘,N'm is contained in Ut>0 g’m,t, and that a collection
of horizontally minimal marked surfaces belonging to a compact subset

of 5~m is contained in gm,t for all ¢ small enough. For each t we define

a partition J; of gm,t into t-equivalence classes, with the property that
t-equivalent surfaces qi, @ have G;-almost horizontal segments which
are homotopic and have the same intersection pattern with &;.

Let &1(q), - .., &k(q) be the paths made by concatenating a horizontal
and vertical segment on M, as follows. The ;(¢) begin from ¥ and
move along horizontal separatrices until the first intersection with ay,
and are continued vertically along 6, so that they end at points of ¥. In
the situation at hand, of surfaces in H(1,1), we have k = 8 since there
are four horizontal prongs issuing from each of the two singularities.
By choice of the orientations, we have

holf]y) (&;(q)) > 0 for each j. (11.7)

Since 6y and the collection of &;(q) is invariant under the involution
L, there are two indices j realizing the maximum in the definition of
(g, t), and we permute indices so that & = ¢(&;) and

holf? (€4(a)) = hol(? (€2(a) = maxbol(&(a)) <. (11

We add two more segments &g, £19 which are horizontal continuations
of &1, &, starting from the endpoints of &1, & on 6; and end at the next
intersection point with ;, and we switch the orientation of &g, &1g so
that (11.7) continues to hold.

We choose an equivalence class of marking maps § € 7~ *(¢q). By «-
invariance we can think of the £;(q) as representing paths on the topo-
logical marking surface (S,%). We say that §; and ¢, are t-equivalent
if, possibly after permuting the indices j, for ¢ = 1,2 the paths &;(q;)
represent the same homotopy classes when pulled back to S, (11.7) and
(11.8) continue to hold, and the order of intersections of the &; with
each connected component of ; is the same.
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Recall the cell complex associated with 6, discussed in the proof of
Lemma 11.4. This complex gives a polygon decomposition of M, into
rectangles, with vertical and horizontal sides being subsegments of &;
and concatenations of some of the §;. From this it is easy to see that any
o-almost horizontal segment on M, is homotopic to a concatenation of
some of the ;. This implies that if ¢}, ¢> are t-equivalent then there is a
bijection between the homotopy classes represented by their 6,-almost
horizontal segments, which preserves the order in which they intersect
the transverse system.

Note that the definition of t-equivalence only involved the intersec-
tion pattern of certain horizontal and vertical lines on the surface. From
this, and the rescaling properties of the geodesic flow, we obtain the
equivariance property

GgeJeJ, <= gqeg(J)e . (11.9)

Lemma 11.7. Let U < £ be a convexr adapted neighborhood, and let
V < & be a connected component of 7= (U). Then for all large enough
t, the partition

{r(VnlJ):JeF} (11.10)

is a weak convex partition of U. For J € J;, surfaces in the boundary
J~N(J)° have horizontal saddle connections, and are either horizontally
non-minimal, or horizontally uniquely ergodic.

Lemma 11.7 gives some geometrical control over the elements of the
partition J;; and in light of Proposition 11.5, the same partition can
also be used in order to control the direction of foliation cocycles.

Proof. Since U is precompact, there is a lower bound on the length of
a vertical saddle connection of surfaces in U, so for all large enough
t, U A m(Epy) contains the set of horizontally minimal surfaces in .
Since the sets J € J; give a partition of &,,,, in order to show that
the sets in (11.10) form a weak convex partition of I, we only need to
show that each of the sets in (11.10) is convex, and that the interiors
of these sets are disjoint.

By construction of V and U, the map =«|, : V — U is injective,
modulo the local group, and for each ¢ € U we denote by ¢ its pre-
image in V. Then ¢ belongs to the t-equivalence class J of ¢ if the
following hold:

e all horizontal leaves on the underlying surface M, intersect the
transverse system 6y;
e formulas (11.7), (11.8) hold for ¢’ (possibly up to permutation);
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o for all 7, 7,
hol (&) > hol{(¢;) = hol(&) > hol¥ (). (11.11)

The first of these conditions holds if the horizontal foliation on M, is
minimal, which holds for a dense set of surfaces. Conditions (11.7) and
(11.11) involve inequalities between holonomies and thus give convex
conditions in period coordinates. Therefore the set (J)° is precisely the
set of surfaces satisfying the inequalities in (11.7) and (11.11). This
implies that the sets {J : J € J;} are convex, and their interiors {(.J)° :
J € Ji} are disjoint.

For the last assertion, let ¢ € J ~ (J)°. Then on M, there are
two &;, &; with the same vertical holonomy; their concatenation gives a
horizontal saddle connection. Applying the translation automorphism
v we get at least two horizontal saddle connections on M,, and now
results about surfaces in eigenform loci, summarized in | , Thm.
7.13], show that there are three possibilities for the horizontal foliation:
M, could have a horizontal cylinder decomposition, could be made of
two horizontally minimal tori glued along a slit, or could be horizontally
uniquely ergodic. 0

We note that the first assertion in Lemma 11.7 remains true, with
a very similar proof, if £ is replaced by any G-invariant locus, and
0y is replaced with any transverse system satisfying the equivariance
property (11.9). We now use the additional structure of £ in order
to state and prove bounds on the objects associated with a transverse
System.

Lemma 11.8. Let U < & be a convex adapted neighborhood, let J;
be the partitions as in Lemma 11.7, let K1 < H(0) be compact, and
let a > 0. If g € U n E™M s horizontally minimal then there are
positive constants ¢y and ¢y (depending on q) such that if t > 0 satisfies
g-7(q) € Ky (where @ : € — H(0) is the projection defined at the
beginning of §11.2.3), then the following hold:
(a) The length of each G-almost horizontal loop is at least cre, and
the inradius of J is at least cie™%, where J € J, is the partition
element containing q.

Suppose furthermore that q is not horizontally uniquely ergodic, let
P~ be the projection onto the orthocomplement of involution invari-
ant classes as in §2.3, and let Cf(t) = C7(64) as above. Then

(b)
P <{6 e G (1) Ly(B) < a}) (11.12)

is contained in a rectangle with diameter in the interval [cq, co].
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(c) The rectangle in (b) can be chosen so that one of its sides has
length bounded above by coe™?t.

Proof. In order to obtain the bounds in (a), note that the existence of a
short g-almost horizontal segment implies the existence of a short sad-
dle connection. Note also that the transverse system 6, is the preimage
under 7 of a transverse system o on the torus 7 (M, ). Using the affine
comparison map 1, , corresponding to g_; as in §2.4, we can consider
the image of this transverse system on g_,7(q). If g_;7(q) € K; there
exists ¢} depending only on K; so that any almost-horizontal loop,
with respect to a transverse system of bounded length, has length at
least ¢}. Considering the effect of the map %’fﬁ, we obtain the required
lower bound on the length of a 6;-almost horizontal segment on M,.
Now take some lower bound ¢/ for the inradius of an element J in the
partition Jo, satisfying 7o 7(J) n K3 # @. Such a lower bound exists
because K is compact and the collection Jj is locally finite. By (11.9),
we can pull back to J; using ¢; and use (2.12) to obtain the lower bound
of dfe™?" on the inradius of elements of ;. Taking ¢; = min(c}, ) we
obtain (a).

We now prove assertion (b). Note that here ¢, ¢y are allowed to
depend on ¢. The continuity of L,, the fact that 5’; (t) is a finitely
generated convex cone, and the fact that L,(5) > 0 when 3 is a o-

almost horizontal loop, imply that the set {B € CN’;(t) cLy(B) < a} is

compact. Hence so is the set appearing in (11.12). Boundedness follows
from the properness of the metric dist. Since ¢ admits an essential
tremor, there is [ € 6‘; for which P~(fy) # 0 and this implies the
lower bound in (b).

The proof of (¢) combines the upper bound in (b), the effect of renor-
malization by the flow ¢;, and the fact that the action of g, preserves
the Lebesgue measure on A, (), the real part of the normal bundle.
In the proof of (c¢) we will write A « B if A and B are two quantities
depending on several parameters and A < CB for some constant C'
(the implicit constant) independent of these parameters. In this proof
the implicit constant is allowed to depend on ¢ but not on t.

It follows from Proposition 2.2 and Corollaries 3.3 and 4.5, that
the projection P~ is defined over Q. This implies that P! maps the
lattice of Z-points H'(S;Z,) to a sublattice A in A,(E,7Z) déf,/l@(c‘f) N
HY(S,3; 7).

Let M; be the underlying surface of g_,q and denote by 1y : M, — M,
the affine comparison map defined in §2.4. Let Z(q) and Z(9-:q)
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denote respectively the set of reduced ;- (resp., 1¢(6;)-) almost hor-
izontal loops on ¢ (resp., on g_;q). By Lemma 11.4, for . equal to
either of .Z(q) and Z(g_.q), we have that {3, : v € £} contains a
basis of H'(S;Z), and hence the projection P~ ({3, : v € £}) gener-
ates A. Let ¥, be the map ¢ — ¢g_;q. By choosing a marking map
@S — M, and using ¢, o ¢ as a marking map for M, this induces a
map ¥, : H1(S,%;R?) — HY(S,3;R?). Since the map ¢ of Proposition
3.1 commutes with the map v, the map P~ commutes with ¥,, and
hence we have the following diagram:

HY(S, 5 R,) = TU —2s HY(S,SiR,) = T, M

b 2

il yze)

N2 (€) r Na(E)

The preceding discussion shows that ¥, (A) = A, and therefore
|det (Wy|s, )| = 1. (11.13)
Similarly to (11.6), we have an equivariance relation
Z(q) =V, (L (9-19))-
Also, as in Proposition 6.2, we have that for 5 € 7, if we set 5’ def U,(B3)
then L, ,,(8") = e *L,(B). This gives
P~ ({5 e G (1) : Ly(B) < a})
—U; o P oWy ({8 0 (1)« Ly(B) < a})

e (7 ot <6
cU ({8 e M (E) 8" « efa}),

where the bound in the last inclusion follows from Proposition 6.7 and
Lemma 8.3, and the fact that 7(g_,q) € K; and on compact sets, the
metric dist is bi-Lipschitz to any norm in period coordinates. Thus,
using (11.13), the set in the left hand side of (11.12) is a convex subset
of A;(E) of area « e~!. On the other hand, by (b), it contains a vector
of length » 1. This means that it is contained in a rectangle whose
small sidelength is « e™2!, as claimed. 0

N

11.2.4. Preparations for proving the upper bound: Nondivergence esti-
mates. Masur’s criterion states that if the vertical foliation on a surface
M, is not uniquely ergodic then g,g — 00 as ¢ — oo. In this paper we
are dealing with horizontal foliations so we have that if the horizontal
foliation on M, is not uniquely ergodic then g_,g — 00 as t — o; i.e.,
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the backward trajectory eventually leaves every compact set. The fol-
lowing result gives (for a fixed surface) an upper bound for the measure
of directions in which the orbit has escaped a large compact set by a
fixed time.

Proposition 11.9 (Athreya). For any stratum H there is 6 > 0, and
a compact subset K < H such that for any compact set (Q < H and
any Ty > 0 there is C' > 0 so that for all ¢ € Q and aoll T > 0, we have

{0 € S' : Vt e [To, Ty + T, g-sroq ¢ K}| < Ce™*".

The formulation given above is stronger than the statement of [At,
Thm. 2.2]. Namely, in [At], the constant C' is allowed to depend on g,
while we claim that C' can be chosen uniformly over the compact set Q).
One can check that the stronger Proposition 11.9 follows from the proof
given in [At]. Alternatively, one can derive it from | , Prop.

3

3.7]. Indeed, in the notation of | ], set 0 = 2, a < 275 (] 2
and C' = a=?10C(z), and note that C(x) is uniform when  ranges over

a compact set, and for N > @ we have
2
7 (XgM,N, 1, g) S {q:algq) <M for all Ty <t < N}.

Remark 11.10. Proposition 11.9 is convenient for our covering argu-
ments because if we take a compact set K' whose interior contains K,
and slightly larger, and if g_1q ¢ K' for all t € [Ty, T + To] ,then for ¢
in a small neighborhood of ¢ we have g_,q' ¢ K for all t € [Ty, T + Tp].
Applying Proposition 11.9 to K’ we have exponential decay (in T) of
the measure of a neighborhood of the set we are covering.

11.2.5. Proof of upper bound. We now prove the upper bound, assum-
ing Proposition 11.3, which will be proved in the next section.

Proof of the upper bound in Theorem 1.9. We divide the argument into
steps. .
Step 1: Reduction to S]-'EZ;I;) ~ NUE.

For each Hy > 0, the set | Jy .y, €tH) is a proper submanifold of
& with boundary (in the closure we pick up surfaces made of identi-
cal periodic tori glued along an embedded slit). On |y py, € (tor,H) " jf

Be 7,'1(0) satisfies | L|,(8) = s, the map (g, s) — tremg(q) performs sym-
metric horocycle shears in opposite directions corresponding to ug and
u_s on the two tori which are connected components of the comple-
ment of the slit. Therefore this map is locally Lipschitz for the metric
coming from any norm in period coordinates, and as in the proof of
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the lower bound (see the discussion of the map f), this means it is
locally Lipschitz for dist. Thus by Proposition 11.1, taking the union
over all Hy € N, the subset of SF (<, consisting of tremors of surfaces
in £tr)  £(Per) has Hausdorff dimension at most 5. So we need only
bound the Hausdorff dimension of the set of surfaces tremg(q) where
q is horizontally minimal and non-uniquely ergodic, i.e., bound the di-
mension of the essential tremors in SF (<q). Note that by Lemma 11.7,
the collections of such surfaces is covered by the sets {(J)° : J € J;}
for all sufficiently large t.

Step 2: A countable cover. In light of Proposition 11.1(2), it is
enough to cover SF <, by countably many subsets, and give a uni-
form upper bound on the Hausdorff dimension of each. The count-
able collection we will use, which is denoted below by Z, exhausts the
set of essential tremors SF E:Z;) N NUE, and depends on several pa-
rameters: the adapted subset in £ containing the surface ¢ for which
tremg(q) € SF, ((22;1) , the return time under g_; to a certain compact set
K’, and constants coming from Lemma 11.8.

To make this precise, define

g {q € & : M, admits an essential tremor},

and write H for H(1,1). Let 06 > 0 and K < H be a compact set as
in Proposition 11.9. We assume with no loss of generality that § < 1.
Let dist be the metric of §2.6 and let

K' g e H(1,1) : dist(¢, K) < 1}.

By Proposition 2.5, K’ is compact.

We can cover £ with countably many convex adapted neighbor-
hoods with compact closures. Given such a convex adapted neigh-
borhood U < &, and given a parameter Ty > 0, let C' = C(U,Tp)

be as in Proposition 11.9 with Qdifa. IfgelUnE and [ € 7;(0),
there are ¢; = ¢1(q), ca = ¢a(q) so the conclusions of Lemma 11.8 are
satisfied. Masur’s criterion | ] applied to the horizontal foliation
of M, implies that the trajectory {g_+q : t > 0} is divergent, and in
particular, there is 77(q) such that for all t > T(q), g_1q ¢ K’'. For
each U in the above countable collection, each Ty € N, and each ¢ € N

with ¢ = C(U,Ty) ™, let Z = Z(U, Ty, c) denote the set of tremors
tremg(q) where e N & and [ e 7;(0) satisfy the bounds

1

1Lg(B) <@ Ti(e) <To, exlg) <c alg) =
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Then in light of Proposition 11.1(2) it suffices to show that

dim Z < 6 — g (11.14)

Step 3: Applying Proposition 11.3.

Let Ky < H(0) be a compact set so that for each ¢ € H(0) for which
the horizontal foliation is aperiodic, the set of return times {t € N :
g—:q € K1} is unbounded. The choice of K ensures that for any 7' > 0,

ze |J 2,

teN, t=Tp

where
Z(t)E {tremgpe Z:qelUn &, e TV, g_i7(q) € K1}

and 7 : £ — H(0) is as in §3.2. Let

def

Xt)={qeZn& g m(q) e Ki}.

We now check that all the conditions of Proposition 11.3 are satisfied.
We first check (iii). By (2.12) and the definition of K’ we see that for
any qo € N(e%)(q) and t > T1(qo) we must have g_;qo ¢ K. Thus if ug
denotes the flat measure on £, Proposition 11.9 and a Fubini argument
show that for each t € N,

ILg (/\/(67%) {geUnE :Ti(q) < To})) < CedTo et (11.15)

where C' = C(U, Tp).
We now check conditions (i) and (ii). Using Lemmas 11.7 and 11.8,
for each t define finitely many convex sets J;(t) of inradius at least

cre” " which cover X (t) and for which the map q — CN'; (t) is constant
on J;(t), and set

Xi() ¥ X (1) A Ji(t)

and

Vi | P ({5 e CH (1) Ly(B) < a}) .

qeX; (t)

With these definitions, it follows from Lemma 11.8 (with ¢ = ¢ =
1/cy1) that all conditions of Proposition 11.3 are satisfied and the result
follows. U



98 JON CHAIKA, JOHN SMILLIE, AND BARAK WEISS

12. EFFECTIVE COVERS OF CONVEX SETS

In this section we prove Proposition 11.3. First, we briefly outline
the idea of the proof. The main difficulty is to find efficient covers of
U, Xi(t) by small balls of a fixed radius. If the intersection of a ball
with one of the sets J;(t) appearing in (i) has significant measure, it will
contribute significantly to our cover, and it follows from (iii) that the
number of such balls is not too large (see (12.7)). The subset of |, X;(?)
not covered by such balls requires more work, and in particular, the
key technical result Corollary 12.3.

In this section the notation |A| may mean one of several different
things: if A = R? then |A| denotes the Lebesgue measure of A. Let S*~!
denote the d — 1 dimensional unit sphere in R?, then for A = S?°1, |A|
denotes the measure of A with respect to the unique rotation invariant
probability measure on S471. If A = R? x S9!, then |A| denotes the
measure of A with respect to the product of these measures.

The next Proposition contains the main geometric idea, and implies
Corollary 12.3 via standard covering arguments for Euclidean spaces.
The Proposition provides power law savings for the measure of the
subset of a convex set K for which the ball centered at such a point
intersects K in small measure.

Proposition 12.1. For any d > 2 there are positive constants ¢, C,
depending only on d, such that for any compact conver set K < R?
with inradius R > 0, and any € € (0, 1), the set

KO {1 e K |B(z,eR) n K| < c(=R)"}

satisfies
|K©)| < Ce*|K]|.

We briefly discuss the proposition and its proof. Observe that the
condition of being in K () is more restrictive than being near the bound-
ary of K. For example, if K is a line segment then K is empty for
small enough ¢. It turns out to be useful to think of convex sets in two
dimensions, and the main idea of the proof is to reduce the problem to a
two-dimensional statement via polar coordinates. The two-dimensional
case is proved by comparing the measure of a ‘bulk’ (which is denoted
by K’ in the proof) to a quantity that bounds K.

Since the statement of Proposition 12.1 is invariant under homoth-
eties, we can and will assume that R = 1. For ¢ € S9!, and z € R,
let 7, (x) o {z + s1 : s € R} be the line through z in direction 1, and
let

KO@W) Y {ze KO : |ry(x) n K| <e}.
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Lemma 12.2. For any d > 2 there is a positive constant ¢ so that for

any ¢ € (0,1), there is 1 € S*1 such that

(12.1)
Proof. Let ¢ = 5745, and suppose x € K&, so that |B(z,e) n K| < ce?.
For each 6 € S*!, we write

To(x) = |m9(x) n K| and p(f) =sup{s >0:x+ sf € K}.

Then max(p(8), p(—6)) = TGQ(I). Computing the volume of B(z,e) n K

in polar coordinates, we have

p(6)
ce® > |B(x,e) n K| = J f rtdr df
si-1 Jo

Ty(x)
2

1 d—1 1 d
== > — T .
5 Ldl L r*tdrdf Sirig Ldl p(x)%do

So by Markov’s inequality and the choice of c,

{0 e ST Ty(x) < e}| = % (12.2)
Now consider the set
AL {(2,0) e KO x ST Ty(z) < ¢}
From (12.2) and Fubini we have
@ <Al = L |K©)(9)] do.
Thus for some 1) € S*! we have (12.1). O

Proof of Proposition 12.1. Let ey, ..., ey4 denote the standard basis of
R? and let py be a point for which B(py, 1) = K. Applying a rotation
and a translation, we may assume that po = 0 and ¥ = e,4, where ¢ is as
in Lemma 12.2. We will make computations in cylindrical coordinates,
i.e. we will consider the sphere S?~2 as embedded in span (ey, ..., eq_1)
and write vectors in R? as rf + ze4. In these coordinates, d-dimensional
Lebesgue measure is given by ar®?dr df dz, where df is the rotation
invariant probability measure on S92 and o = ag_; is a constant. For
each 0 € S2, define

po =sup{r e R:rf e K} and fp(r) = |7e,(r0) n K|,
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i.e., fo(r) is the length of the intersection with K of the vertical line
through r6. Let

K =Kn {T0+zed:re l&,%]}.
3 3
Since K is convex, the function fy is concave, and since B(0,1) ¢ K,
fo(0) = 1. This implies that whenever rf+zeq € K (ey), 7 = (1—¢)py.
Furthermore, whenever rf + ze; € K’ we have fo(r) > 3. Clearly
fo(r) < & whenever there is z for which 70 + z € K©), and hence

po
|K9(eq)| < ozf J er®2dr d
Sd=2 J(1—¢)pe

2pg

Po -3
<a5f J pa2dr df = C'ae® r2dr do
Sd=2 J(1—€)pg sd-2 J 22
2&
3
<C’a523f fo(r)r®~2dr do = 3C"* K|,
§d—2 P?H
where i
C/ _ 3 B (d B 1)
o241
Since K’ < K, we have shown
|K9(eq)| < 3C"*|K]. (12.3)
Now taking C' = 6C", recalling that ¢ = e;, and combining Lemma
12.2 with (12.3) we obtain the desired result. O

Let N(A, R) denote the minimal number of balls of radius R needed
to cover A = R4

Corollary 12.3. For any d > 2 there exist positive constants ¢, C' so
that if K < R? is a convex set with inradius R then the set

K€ fr e K |B(x,eR) n K| < ¢|B(z,eR)|} (12.4)

satisfies
N (K®9 eR) < C|K|e* R

Proof. Let K©) ¢, C be as in Proposition 12.1, and let ¢ be small enough
so that

¢ |B(z,eR)| < ¢ (g R)d.

This choice ensures that if 2 € K9 and y € B (2, $R) then y € K©/%;
ie, B (z,5R) « K&/, Let By,..., By be aminimal collection of balls
of radius eR which cover K9 and have centers x1,...,zy in K©9.
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Then for each i, |B; N K(a/Q)‘ > ‘B (xi7 %R)| = ke?R? for a constant &
depending on d. By the Besicovitch covering theorem (see e.g. [Mat,
Chap. 2]), each point in K (=:2) is covered at most Ny times, where Ny

is a number depending only on d. Therefore,

N N
NkelR? = Z ‘B <$z, %R)‘ < Z ‘Bi A K2
i=1 i=1

2
<N |K®?| < NCT|K],

NC

where we used Proposition 12.1 for the last inequality. Setting C' = i

we obtain the required estimate.
We are now ready for the

Proof of Proposition 11.5. For each t € N we will find an efficient cover
of Z(t) by balls of radius e_(2+g>t, from which we will derive the Haus-
dorff dimension bound. We will lighten the notation by writing N (P, t)
for N <P, 67(2+g)t> . We will continue with the notation A « B used in

the proof of Lemma 11.8, and write A = Bif A « Band B « A. In this
proof the implicit constant is allowed to depend on d, ¢y, ¢, 6, Py, Ps.
We claim that

N(Z(t),t) « el(2r8)@D-3)t, (12.5)

To prove (12.5), we will find an efficient cover for each set X;(¢) and each
Y;i(t), and combine them. By assumption (i), N(Y;(t),t) < e(213)t o3t —
e+t for each i. Indeed, the first term in this product comes from cov-
ering the long side, of length « 1, and the second term is needed for
covering the short side of length « e=2t. So it suffices to show

SN(X(), 1) « el3)a-0)e, (12.6)
With the notation of (12.4) define
8y
(1) J(e ’C>.

We will consider the sets X;(t) = X;(t) \ J{(t) and X;(t) n J{(t) sepa-
rately, finding efficient covers for each. If z € X;(t) then

‘B (x e*(2+%)t) A Ji(t) n M) ()

_ ‘B <$ e—(2+%)t> (12.7)

d(2+3)t

=e
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Let {BJ@} ~be a minimal collection of balls of radius e~ (2+5)t centered
i _

at points in X;(t) needed to cover X;(t). By the Besicovitch covering

theorem, the collection {BJ@} has bounded multiplicity, i.e. for each
x and i, # {j cx € B@} « 1. Since the J;(t) are disjoint, the collec-
tion B; = { N Ji(t )} is also of bounded multiplicity. Taking into

Z?j
account (12.7), we have

—2t) 1<1<1) o(d(2+3)-3)t

ZN t) < #B, « (245

(12.8)
We also have from Corollary 12.3 (with R = ¢~ and ¢ = ¢~ 3") that

ZN J/ <<Z€2d 2)t 2dt‘J<>‘

12.9
<<e((2+§)d—6)t ( )

t)] « e((2+3)d-0)t.

Combining the estimates (12.8) and (12.9), we obtain (12.6), and thus
(12.5).
We now prove (11.4). Let

1)
d+1— =
s> a+ 5
and set
S AN
3—2 <2+2> 5>O (12.10)

(where we have used 6 < 1). We need to show that for any n > 0,
we can cover Z by a collection of balls B of radius at most 7, so that

Y e diam(B)* « 1. To this end, choose T so that e~ (212)T — ) For

each t = T let B, be a collection of N(Z(t),t) balls of radius e (2+o)t
covering Z(t) and let B = | J, B;. Then by (12.5) we have

3 diam(B)* « Y N(Z(t), t)e (+3)*

BeB t=T
< Z (d+1 7*7(24’ )(d‘l’l*%))t _ Z e—s,t — o 0
t=T t=T

So for large enough 7" we have our required cover. 0
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13. ATOMIC TRANSVERSE MEASURES

In this section we complete the proofs of Proposition 4.1 and Corol-
lary 4.4. We recall that in §4.2, these results were already proved in
a special case (namely assuming (4.11), that the transverse measure is
absolutely continuous), and that this special case is sufficient for the
proofs of Theorems 1.5, 1.8 and 1.9. In this section we give a more
robust treatment that does not assume absolute continuity.

We note that in the literature there are several different conventions
regarding atomic transverse measures. Recall from the second para-
graph of §2.5 that in this paper, atomic transverse measures can only
be supported on loops of a certain kind. As we will now see, these loops
arise on boundaries of cylinders, but also arise as ‘ghosts of departed
cylinders’; that is loops comprised of finitely many horizontal saddle
connections, which are not boundaries of cylinders, but might represent
core curves of cylinders on nearby surfaces. We first define these loops
precisely, and then give our definition of atomic transverse measures,
and the associated cohomology classes. For defining the latter, we will
need to introduce ‘decorations’ of atomic transverse measures. It will
become evident in the course of the proof of Proposition 4.1 that our
definition is a useful and natural one.

We say that a finite, cyclically ordered collection of horizontal saddle
connections 41, ..., d; forms a loop if the right endpoint of d; is the left
endpoint of d;;; (addition mod t). Any singular point £ € ¥ of degree
a, is contained in a neighborhood U naturally parameterized by polar
coordinates (rcosf,rsinf), for 0 < r < o and 0 € R/(27(a + 1)Z),
where 7 = 0 corresponds to £ (see | , §2.5]). If £ € ¥ is a right
endpoint of §; and a left endpoint of d;,1, we can parameterize the
intersections of 9;, 0,41 with U using polar coordinates, and the i-th
turning angle is the difference in angle between d; and 9;,1. The turning
angle is well-defined modulo 27(a + 1)Z and is an odd multiple of .
We say that the loop is continuously extendable if for each i the i-
th turning angle is +7, and we say a continuously extendable loop is
primitive if whenever we have a repetition 6; = d;, ¢ # j, we must
have that the turning angle at both of the endpoints of ¢; differs in
sign from that of 6;. Thus on each surface there are only finitely many
primitive continuously extendable loops, and their number is bounded
by a number depending only on the stratum containing the surface.

One source of continuously extendable loops, are cylinders on nearby
surfaces; see Figures 12 and 13.
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FiGUuRrRE 12. In the 3-cylinder surface on the left, the
dotted line represents a thin cylinder. Collapsing it gives
rise to a continuously extendable loop. The presentation
of the same surface on the right helps show how the con-
tinuously extendable loop arises as a limit.

. T\

FiGure 13. This is the surface obtained by collapsing
the middle cylinder in Figure 12. The union of all hor-
izontal saddle connections on the resulting surface is a
continuously extendable loop. The half-circles extending
this curve to the punctured surface are shown. This ex-
tended curve is the ‘ghost of the departed cylinder’ from
Figure 12.

Recall from §2.5 that a non-atomic transverse measure is a collection
of non-atomic finite measures {v,} indexed by finite-length transverse
arcs v < M ~ X, satisfying the invariance and restriction condition.

By a closed horizontal leaf on M we mean a loop contained in one
leaf of the horizontal foliation on M ~ Y. Given a closed horizontal
leaf A\, and a finite length transverse arc «y, the number of intersection
points #(\ N 7y) is finite, and we define measures fo‘) by
N (A) L (X A A).

v
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It is clear that the collection of measures {09)} satisfies the invari-

ance and restriction conditions. Now given a primitive continuously
extendable loop ¢, obtained as a concatenation of horizontal saddle
connections 4y, ...,d; (possibly with repetition), and a finite length
transverse arc 7y, the number of intersection points #(d; N ) is again

finite for each ¢, and we define a collection of measures {9 } by

9(A) = i#((si N A). (13.1)

For each  let V7 ) denote the restriction of v, to its atoms, and let
at) def { at)} na) def V'(yat and v (na déf {V’(Yna)} )

Here is the definition of transverse measures which we will use in this
paper.

Definition 13.1. A transverse measure (to the horizontal foliation on
M) is a family of measures {v,}, indezed by finite length transverse
arcs in M ~ X, such that

o The non-atomic part v™ satisfies the invariance and restric-
tion conditions given in §2.5;

e there are at most finitely many primitive continuously extend-
able loops L., at most finitely many closed horizontal leaves g,
and positive weights a,,bs such that the atomic part v satis-
fies that for each transverse arc 7,

v = a,d 4+ ) b0, (13.2)

Our next goal is to define the cohomology class 8, € H'(M,, ¥,;R)
associated with a transverse measure v, extending the assignment given
in Proposition 2.3 to atomic transverse measures with atoms. To this
end, given a continuously extendable loop £ = (01, ...,0;), a continuous
extension ¢ of ¢ is a continuous closed curve homotopic to ¢ with all its
points in S\ Ugez Ug, which is the same as ¢ outside the neighborhoods
Ug, and such that for each i, the intersection of 0;,0;11 with U is
replaced with a curve on dlf; corresponding to r = ry and ¢ in an
interval of length 7. See Figure 13. If A is a closed horizontal leaf on
M,, we let A denote the corresponding curve oriented in the direction
of increasing z coordinate. Both ¢ and A are closed oriented loops
avoiding ¥,, and thus represent elements of H; (M ~\ X). By Poincaré-
Lefschetz duality, these loops represent elements of H*(M, 3; R), which
we will denote by [f] , [5\]
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We would like to use these cohomology classes in order to define
the cohomology class associated with an atomic transverse measure. A
complication is that the objects defined above are not uniquely deter-
mined by the measure.

Example 13.2. We list some examples which are related to lack of
uniqueness in our discussion above.

(1) If € € ¥ is a removable singularity (singularity of order 0) and
0;, 0;11 are horizontal saddle connections which meet at & and
are consecutive along an extendable loop ¢, there are two pos-
sibilities for a continuous extension ¢, corresponding to taking
angles +m or —m for the i-th turning angle.

(2) If M, has a horizontal cylinder C, Ay and Ay are two parallel
closed horizontal leaves in the interior of C', we have [5\1] =
[\2] (as elements of Hi(M, \ %,)). Moreover, if h > 0 is
the height of C' and ve s the restriction of Lebesque measure
to C' and Be s the cohomology class corresponding to vo as in
Proposition 2.3, then [\;] = +Bc. Finally, the class [\;] can also
be obtained from the two continuously extendable loops forming
the top and bottom boundary of C'.

(3) Two different surfaces My, , My,, each with a horizontal cylinder
Cy ¢ My, Cy © M,,, can be deformed into a surface M, on
which the height of the cylinders C; has been taken to zero.
This results in the same continuously extendable loop ¢ on My,
for which the C; on M,, correspond to two different continuous
extensions 01, 0s. Such examples can be found using imaginary
Rel deformations of horizontally periodic surfaces, see | ].
In Figure 1/ we show an example giving the same € as in Figure
13, via a different cut and paste operation involving cylinders.

In order to deal with the lack of uniqueness exhibited in these exam-
ples, we will make the following definition.

Definition 13.3. Let v = v® + @Y be o transverse measure, let
(4,), (Ns), (ay), (bs) be as in (13.2), and for each L., let £, be a continuous
extension of (.. We refer to the quintuple [v, (,), (\s), (a), (bs)] as a
decorated transverse measure. The quadruple [((,), (As), (a,), (bs)] will
be referred to as a decoration of v.

We now define the cohomology class £, € H 1(]\/[q, Y, R) associated
with a decorated transverse measure v = [v, (¢,), (\,), (a), (bs)] . The
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FIGURE 14. The figure on the left is another 3-cylinder
surface obtained by deforming the surface in Figure 13.
This deformation creates another cylinder. The solid line
in the figure on the right represents the corresponding
continuously extendable loop.

reader should note that whereas the definition of ™ involves con-
structing an explicit cochain, we will only give [, as a cohomology
class.

Let v = v 4 p(@Y bhe the decomposition of v into its non-atomic
and atomic parts. As explained in §2.5, v determines a 1-cochain
B ma) € Hl(Mq, by ) We define

def
V(dt) == Z a‘T‘ + Z b and /617 é /By(na) + ﬁl—,(at).

As reflected by the notation, the reader will notice that this depends
not only on v but also on the choice of its decoration v. Nevertheless
we will sometimes abuse notation by writing (3, instead of ;. Clearly
we have equality when v is non-atomic or when the atomic part »(®%
is supported only on closed horizontal leaves, and not on continuously
extendable loops.

Recalling from §4.1.2 that L,(3,) is our notation for the evaluation
of the cup product holém) U By on the fundamental class of M, the
reader can check that

Ly (o) = ZW \+Zb Al (13.3)

where |£,|, |\s| denote respectively the horizontal length of ¢, and ;.
In particular, this number does not depend on the decoration v of v.
In addition, the positivity property L,(5,) > 0 (see the first paragraph
of §4.1.2) extends to foliation cocycles arising from atomic transverse
measures, and we have a continuity property

vy " vy = Ly(B,) =% Ly(Buy), (13.4)
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where by weak-+ convergence we mean weak-+ convergence of the cor-
responding measures on each closed transverse finite length arc.

Let a — f,(a) be the evaluation map. It is clear from the definition
in §2.5, that if v is non-atomic and « is represented by a concatenation
of horizontal saddle connections, then §,(a) = 0. With our definition
of B, we also have f3,(«) = 0 if v is atomic and « is a cycle represented
by a closed horizontal leaf, because the leaf may be homotoped away
from horizontal saddle connections. However it is possible to have
continuously extendable loops a and ¢ such that for the decorated
atomic foliation cocycle 3, associated with ¢ we have 3,(a) # 0.

In case « is represented by an oriented horizontal saddle connection
on M,, / is the continuous extension of a continuously extendable loop ¢
on M, which has a nontrivial intersection with «, and v is the decorated

transverse measure corresponding to ¢ , then the tremor g of tremsg, (q)

will not be defined for all 5. Indeed, using (4.9), for sy = —=— , where

()’
L is the (oriented) length of o, we would have hol,, (a) = [((]), 0), which
is impossible. For instance, in Figure 13, this situation will arise if
a is the class represented by the horizontal saddle connections in the
middle of the diagram. This shows why the requirement in Proposition

4.13 that the tremor is non-atomic, is essential.

Remark 13.4. We do not define a version of a TCH for atomic trans-
verse measures (note the assumption of non-atomicity in Proposition
5.1). There is a natural surgery, associated with a decorated atomic
transverse measure, in which the surface is cut along a continuously ex-
tendable loop ¢ and reglued after a twist. One can show that for limits
as i Figures 13 and 1/ this discontinuous map is the pointwise limit of
cylinder twists, which are the corresponding TCH’s on nearby surfaces.
Furthermore, in some cases, including those shown in the figures, for
small enough values of the twist parameter, this map coincides with a
real Rel deformation.

13.1. Refining an APD. Our discussion of atomic transverse mea-
sures will rely on the construction in §4.2. Recall from §4.2 that an
APD for ¢ is a polygon decomposition of the underlying surface M,
into triangles and quadrilaterals, without horizontal edges, and such
that the quadrilaterals contain a horizontal diagonal. We consider all
edges of an APD as open, i.e., they do not contain their endpoints. In
order to pay attention to atomic measures, we further subdivide each
edge of an APD into finitely many subintervals by removing the points
that lie on horizontal saddle connections. We will denote by J; these
open intervals lying on edges of an APD. We will refer to an APD
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whose edges have been additionally subdivided as above, as a refined
APD. For each ¢, each polygon P with J; € dP, and each z € J;, we
define the opposite point oppp(x) as in §4.2.

Let J = J;, for some iy, J < 0P, and let J" = oppp(J). Then J' is
a union of either one or two of the intervals J;, for ¢ # 7y, depending
on whether a point of J has an opposite point in . In the former
case we set Jy = J and in the latter case we set Jy to be one of the
two components of J . oppp'(X) and we replace J' with oppp(Jo).
With these definitions oppp|j, : Jo — J' is a bijection. Note that each
endpoint of .J lies on a horizontal saddle connection or in ¥, and each
endpoint of Jy is either an endpoint of some J; or lies on an infinite
critical leaf.

We say that a transverse measure v on M, does not charge extendable
loops if all of the atoms of v lie on closed horizontal leaves. That is, in
(13.2), the collection (¢;) is empty. We now extend Proposition 4.10 to
such measures:

Proposition 13.5. Let M, be a translation surface equipped with a
refined APD. The map which sends a transverse measure on M, to
its restriction to the edges of the refined APD, is a bijection between a
system of finite measures vy on the edges of the refined APD, satisfying
the invariance property (4.12), and transverse measures which do not
charge extendable loops.

Proof. If v is a transverse measure which does not charge extendable
loops, then it assigns a measure to each of the intervals J, J', Jy, and
by our condition that any atoms lie on closed horizontal leaves, the
restriction to J has the same mass as the restriction to J;. The mea-
sures will be denoted by v, v, v;,. Their non-atomic part satisfies the
invariance property (4.12) by Proposition 4.10, and their atomic part

is a finite combination of measures 99), and these measures are easily
seen to also satisfy (4.12).

Conversely, suppose we are given a collection of finite measures v;
on the edges J as above, satisfying the invariance property. Since an
infinite leaf has an accumulation point in one of the J, by the invariance
property, any atoms of the measures v; lie on closed horizontal leaves.
The points of M, lying on horizontal saddle connections are not in
any of the J’s, and thus we can reconstruct from the v; a transverse
measure which does not charge extendable loops. U

13.2. Beginning the proof of Proposition 4.1. We will use the
same proof strategy as in §4.2. Namely, we will use refined APD’s to
describe transverse measures as measures on the edges of the APD, and



110 JON CHAIKA, JOHN SMILLIE, AND BARAK WEISS

discuss what happens to measures when taking limits. In this section,
we will have to be more careful in treating limits of atomic measures.
We will give the proof in three stages, each dealing with a more general
case.

Proof of Proposition 4.1 under two simplifying assumptions. We will prove
the Proposition under two extra hypotheses, given below as equations
(13.5) and (13.8). Let g, — ¢ and /3, — [ be as in the statement of
the Proposition, let ¢, = 7(g,),q = m(q) be the projections to H, and
let M,,, M, be the underlying surfaces. Asin §4.2, we can assume that
gn and ¢ are represented by marking maps ¢, — M,,, ¢ : S — M,
such that ¢, o ¢~! is piecewise affine with derivative tending to Id as
n — 0. Choose a refined APD for ¢, and let K < M, denote any one
of the intervals J, J', Jy. We will sometimes use the same notation K
to refer to the corresponding arc on M, given by ¢, 0o !(K). By our
choice of marking maps, K is a straight segment which is a subset of
an edge of the same triangulation ¢, (7), on each of the surfaces M, ;
thus this inaccuracy should cause no confusion. Clearly we can pass to
convergent subsequences in the course of the proof, and we will do so
several times below.
Our first simplifying assumption is

each 3, is equal to f3,, for some transverse measure v,

which does not charge extendable loops. (13.5)

Let Vég) denote the measure on K given by the pushforward of v,|K
under ¢ o ¢!, and denote the total variation of 1/}?) by mg). This
number can be expressed as the evaluation of 3, on a path ¢ = oy
from singular points to singular points that is a concatenation of K
with segments contained in horizontal leaves. Since 3, — [, we have
m%) — e M = B(0). Let K = ¢ }(K) < S. Since K is open
and not horizontal, K has a natural compactification K in which we
add bottom and top endpoints z% % to K. Note that we consider K
abstractly, and not as a subset of S. Because the y}? do not charge
extendable loops, each measure V}?) can be viewed as a measure on
the compact interval K, assigning mass zero to endpoints. Passing to

n
further subsequences, we can assume each sequence (1/}()> converges
n

to a measure vz on K such that vg = vi|x. We have

mg = ve(K) = v (K) + % + e, (13.6)
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where we call the numbers
e Tvr{ak}), ek C vr({aic})
the escape of mass parameters to endpoints. We can concretely express
the e?(’t by subdividing K into two half-intervals K*, K* whose common
endpoint is an interior point of K which has zero measure under vg.
In these terms
el = lim V(KDY — v (KP) (13.7)

(and this limit does not depend on the decomposition K = K® u K*).

Since the collection of measures {v} satisfies the invariance prop-
erty, where all atoms that appear lie on closed horizontal leaves, it
defines a transverse measure which does not charge extendable loops,
and we let 3’ be the corresponding cohomology class.

Our second simplifying assumption is that there is no escape of mass,
ie.

all the numbers 2" are equal to 0. (13.8)

Using the fact that g, does not charge extendable loops, for each

edge E of the APD we have:

BIE) < Ba(E) = Y mit) — Y my = Y vk (K) = B(E),

where the sum ranges over open intervals K < FE covering all but
finitely many points of E, and the first equality follows from formulas
(13.6) and (13.8). In this case we have shown that 5 = /3’ corresponds
to a transverse measure, and we are done. This establishes the state-
ment under our simplifying assumptions (13.5) and (13.8). O

13.3. Using boundary-marked surfaces. We continue under as-
sumption (13.5) but without assuming (13.8). That is, the measures
v, do not charge extendable loops, but some of the e]}}’t are positive,
and the limit measures have atoms on the horizontal saddle connec-
tions at the endpoints of K. In order to treat this case, we will need to
record additional information about the invariance property satisfied
by the measures v5. Informally, if we have escape of mass to a point &
which is either a singularity, or the intersection of a horizontal saddle
connection with an edge of the refined APD, we will want to record
the angular sector of length 7 at &, bounded by horizontal sides, to
which the mass escaped. Recording this additional information will
give rise to continuous extensions of extendable loops. More precisely,
after passing to subsequences, the information encoded in the numbers
e]}’(’t will yield a limiting transverse measure as in Definition 13.1 and a
decoration as in Definition 13.3.
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In order to formalize this, it will be useful to use boundary-marked
surfaces (see [ , §2.5]). Let S — ¢ be a blown-up marked version
of the marked surface S — ¢. Let £ € ¥ and recall that ¢ replaces
¢ with a circle parameterized by an angular variable 6 taking values
in R/(2(a + 1)7Z), where a is the order of £&. Each 6 will be called
a prong at & which can be thought of as the tangent direction of an
infinitesimal line segment of angle # mod 27Z ending at £. The in-
finitesimal line is horizontal if and only if §# € 7nZ. In a similar way
we can blow up nonsingular points of S, replacing them with a circle
parameterized by R/27Z, and thus talk about the prongs at a regu-
lar point (this corresponds to a singularity of order a = 0). For each
ke Z/(2(a + 1)nZ), and each £, two prongs at £ are called bottom-
adjacent (resp. top-adjacent) if their angular parameter belongs to the
same interval [km, (k + 1)7] with k even (resp. odd), and adjacent if
they are either bottom- or top-adjacent. For example, two horizontal
prongs corresponding to two saddle connections meeting at a singular
point £ on a bottom component of the boundary of a horizontal cylin-
der are bottom-adjacent to each other, and are also bottom-adjacent
to any prong moving upward from £ into the interior of the cylinder.

By definition of an APD, at each £ and each k, there is at least one
edge E with an endpoint in (k7, (k + 1)7). We have compactified the
line segments K corresponding to J, Jy, J' as above by abstract points
2% a%, and these points map to points in S by continuously extending
the embedding K — 5. We will denote these points in S by their
angular parameters 9}? and call them prongs of the APD. Any point
which is a regular point on the surface ¢, and which is on the interior
of an edge J (in the above notation, points of J \ Jy), will only be the
endpoint of one top prong and one bottom prong, and the adjacency
classes of these prongs will be singletons. In order to keep the notation
consistent we will still refer to these endpoints as prongs, although we
do not need to mark these points or blow up ¢ at these points.

Since the APD contains no horizontal segments, fo ¢ nZ. Note that
for k even (resp. odd), all prongs of the APD with angular parameter
in (km, (k+ 1)7) are of form 6% (resp. 6%). In the preceding discussion
(see formula (13.7)), we have associated to each of these prongs an

¢ ) : b,t
escape of mass’ quantity e, .

Claim 13.6. (1) The weights of prongs of the APD only depend on
their adjacency class. More precisely, if K, K' are edges of the
APD with bottom- (resp. top-) adjacent prongs 0%,0%, (resp.
0., 0%, ) then eb = eb., (resp. el = et ).
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(2) For any horizontal saddle connection o, let &1,& in S be con-
secutive points of o lying on edges of the APD (the & could
either be singular points or interior points of edges of the APD

which are endpoints of subintervals K ). For i = 1,2, let 01(0)
represent the two prongs of o at &, and let K; (resp. L;) be
intervals with prongs at & which are part of the APD, such that

Ok, (resp. 0r,) is bottom- (resp. top-) adjacent to 91?0). See
Figure 15. Then
e, +ep, =ex, Tel,. (13.9)

(8) If a horizontal prong adjacent to 9? s on an infinite critical
leaf then el;(’t = 0.

Ly
K

& 7 /&
KQ L2

F1GURE 15. If o is a horizontal saddle connection pass-
ing through a polygon P in a refined APD, then the total
mass lost to the intersection points of ¢ with edges of P
is the same.

Proof of Claim 13.6. Because adjacent prongs are in the same (k7, (k+
1)m) interval of direction, they are exchanged by oppp and so statement
(1) follows from (13.7) and the invariance property (4.12) which the
measures 1/%) satisfy. To see (2), note that the assumption that &; are
consecutive along o means that K, L; are both subintervals of an edge
of the APD, and similarly for K5, Ly, where the two edges are edges of

one polygon P, and with
oppp(K1) = Kz and oppp(Ly) = Le.
By (13.7) we have
e, + e, = Tim (W (&) + vfP(LD)) = (v (KD) + v, (L))
n—00 * v

for each i, and (13.9) follows from the invariance property of each of
the ng) on KP, LY, KP u Lt.
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For (3), any critical leaf ¢ intersects some interval J of the APD in
its interior infinitely many times. If e?(’t # 0 for a prong 9? adjacent to
a prong defined by an endpoint of ¢, we obtain infinitely many atoms
in the interior of J, and by the invariance property, they all have the
same vj-mass. This contradicts the finiteness of the measure v;. A

We can now interpret extendable loops for boundary-marked surfaces
using our notion of adjacency: an extendable loop £ is a loop formed as
a concatenation of saddle connections which are either bottom-adjacent
or top-adjacent at each of their endpoints. Moreover, if one of these
saddle connections passes through a singular point of order zero, a con-
tinuous extension £ of ¢ specifies a particular adjacency class. Thus each
meeting point £ of consecutive horizontal saddle connections d;, d;1
along a continuous extension ¢ of extendable loop ¢ represents an ad-
jacency class at & and we say that ¢ represents this class. A primitive
extendable loop can represent a given adjacency class at most once.
By item (1) of Claim 13.6, the escape of mass parameters el;(’t assign
numbers e 4 to each bottom/top adjacency class A. The following claim
shows that these numbers can be expressed in terms of extendable loops
(and in fact, explicit continuous extensions of these loops).

Claim 13.7. There is a finite collection ({s) of continuous extensions
of primitive extendable loops and finitely many positive real numbers by
such that for each adjacency class A,

ea= . b (13.10)

Oy represents A

Proof of Claim 15.7. The proof is by induction on the number of
adjacency classes A for which e4 # 0. When this number is zero, we
can take s = 0 and the claim holds vacuously. Choose the adjacency
class A; for which
ey, = min{ey : e4 > 0}.

For the induction step, we will show that A, contains a primitive ex-
tendable loop, such that all the adjacency classes A represented by this
loop satisfy e4 = e4,. To see this, let 0; be an outgoing (i.e., right-
pointing) prong in A;. According to item (3) of Claim 13.6, §; is the
initial point of a horizontal saddle connection ;. Let Ag’t be the two
adjacency classes of the terminal point of ;. Then according to (13.9),
at least one of ei’f,,t is positive, and hence is bounded below by ey4,.
We label this adjaéency class Aj, choose - to lie on an outgoing prong

representing A4,. Continuing, we find consecutive saddle connections
01, 09, . .., with turning angles +7, whose endpoints represent adjacency
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classes A; for which ey, > e4,. Eventually an adjacency class must be
represented twice along this sequence, which means that some subset
dig, - - -, 0j, of consecutive loops in 41,02, ... forms an extendable loop
¢, with ey, > ey, for each 7. The adjacency classes e4, equip ¢ with a
continuous extension ¢. We define

def . .
b= min{ey, :ip < i < Jol

Replacing ey, with ey, — b for each i € {ip,...,j0} we have a new
collection with a smaller number of adjacency classes for which e 4 # 0.
We can apply the induction hypothesis to this new collection, and
obtain our statement by induction. A

Proof of Proposition 4.1 under one simplifying assumption. We continue
with the notation used above, and we assume (13.5) but not (13.8). We
have that 8 = lim,, . (5, is a limit of cohomology classes corresponding
to transverse measures which do not charge extendable loops, and 3’ is
the cohomology class corresponding to the limiting transverse measure
on the interior of edges of the refined APD (see the paragraph before
equation (13.8)).

We now show

B—B=> bl (13.11)

where the /, and b, are provided by Claim 13.7. Indeed, it is enough
to check this identity by evaluating on the paths a = o introduced
in the paragraph above (13.6), since such paths represent cycles which
generate Hy(M,,>,). For such paths, (13.11) is immediate from (13.6)
and (13.10). Equation (13.11) completes the proof of Proposition 4.1,
under the assumption that the 5, do not charge extendable loops. [

13.4. Limits of extendable loops. Our next goal is to remove as-
sumption (13.5). To this end we prove the following Proposition, which
is another special case of Proposition 4.1:

Proposition 13.8. Suppose g, — ¢ is a convergent sequence of marked
translation surfaces, corresponding to marking maps ., p. Suppose v,
is an atomic transverse measure of the form a,0) on M,,, where
an > 0, 0, is a primitive continuously extendable loop, and ) is q
collection of measures on transverse arcs as in (13.1). For each n let
ln be a continuous extension of £, and let 3, € H'(S,%;R?) be the

cohomology classes corresponding to a,t,. Assume that B, — 3. Then
there is a decorated transverse measure v on M, such that 8 = (5.
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Proof. Let g, — ¢ be marked translation surfaces as in the preceding
discussion, corresponding to marking maps ¢, ¢, which are chosen so
that the transitions ¢, o p~! are piecewise affine and map the edges of
an APD on M, to edges of a triangulation on each M, . Let M,,, M,
be their boundary-marked versions; as before, these blow-ups allow us
to speak of each of the adjacency classes represented by ¢, on all of
the surfaces qu,Mq. Passing to a subsequence we can assume that
the cyclically ordered list of adjacency classes represented by £, is the
same for all n. We can also assume that a,, — a for some a > 0.

Case 1. Along a subsequence, the total horizontal length of 7, is
bounded on M,,. In this case, we will show that after passing to a
subsequence:

(i) for all n, the continuous extensions ¢, '(f,) are homotopic to
each other rel >;
(ii) if @ = 0 then the measures v, converge to 0.
(ili) there is a decorated atomic transverse measure 7 on My, sup-
ported on a continuously extendable loop whose extension is
also homotopic to £,, such that 8 = 3.

On M, there are only finitely many saddle connections of a bounded
length. Using the blown-up translation surface structure, each of them
is uniquely determined up to orientation with its initial prong. Each
of the saddle connections 55") comprising ¢, is a horizontal saddle con-
nection of bounded length on each M,,, and the corresponding prongs
converge to those on the boundary-marked surface Mq. This implies
that up to taking subsequences, we can assume that for all large enough
Ny, ng, the number of saddle connections comprising ¢, is the same as

that for £,,, and for every 4, the segments ¢! (6, gp;zl(éi("z)) are
homotopic to each other on S rel ¥. This means that for all large n,
the ¢, ' (¢,) are homotopic to each other, and after passing to a subse-
quence, (i) holds. We denote the homology classes represented by the
eventual value of ' (£,) by /.

Given our refined APD on M,, we see that in Case 1, the number
of intersection points of p o ¢ 1(¢,) with each edge of each polygon is
bounded above by a number independent of n. It follows from (13.1)
that the total mass of the pushforward (o 1),.0¢) to each edge of
the APD is bounded above, uniformly in n. From this (ii) follows.

In particular, in proving (iii), we can assume a > 0, and we can

replace each v,, by i v, to assume that v, = =), We see from (i) that

Bn = [{s] is a constant sequence. We now show that on M,, the loop

©({y) is homotopic to a continuous extension of an extendable loop.
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Note that for each ¢, the path §; oo ©1(8;) is a limit of horizontal
saddle connections of bounded length on nearby surfaces, so is either
homotopic to a horizontal saddle connection, or to a concatenation
of several horizontal saddle connections. Passing to subsequences we
can assume that on M,, ¢; is homotopic rel X to a concatenation of
horizontal saddle connections & ,...,d; ; for some j = j(i) > 1, and
we need to show that the turning angle at the terminal endpoints of
each of the saddle connections ¢;, is +m. This is clear if r = j(i),
because the terminal prong at d; ;) is the terminal prong of §; and
is represented by the extendable loop ¢, '(£,). If 1 < r < j(i) then
on the surface M, , the terminal endpoint of ¢, o ¢™'(d;,) is nearly

on the interior of 5@@), is either slightly below it or slightly above it,
and is not very close to other singular points. Passing to subsequences
we can assume that for all 4, j, the direction from which ¢, o ¢=(d; )

approaches the interior of (5§n) is the same for all n. This shows that
©({y) is homotopic to the continuous extension of an extendable loop
on M,, which we denote by ¢.
Define v = 6, and let 7 be its decoration by /. We find that
v=lim(poy Y, and By = [¢1(0)] = [ly] = lim B,.
n—0oo

n—0o0

This completes the proof in Case 1.

Case 2. The total length of 7, is a sequence tending to infinity as
n — .

For each edge K of the refined APD on M, fixed above, we continue
to denote its image under ¢, o ¢~! by K, repeating our plea to the
reader to overlook this inaccuracy. With this notation the measures
(/n)| i can all be considered as measures on the same interval K. Let

No(K) ¥ 4, nK), and N, % max N, ().

Then in Case 2 we have N,, — 0. Since the cohomology classes [,
converge, the sequence of numbers L, (/3,) is bounded, and using (13.3)
we find that

a = lim a, = 0. (13.12)

n—0

Fix an edge K of the refined APD and simplify notation by writing

T & ()| k- If N,(K) is a bounded sequence, then the measure 8%")

is bounded, and hence by (13.12), the sequence of measures 7, tends
to 0.
Now suppose

N, (K) — . (13.13)
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Passing to a subsequence (same subsequence for all K'), we have that
the measures (7,) converge to a limit measure 7y, = 74 (K) (perhaps
with a smaller mass than the liminf of the masses of 7,), and the
measures (7,) also determine the escape of mass parameters e]}’(’t via
formula (13.7). In order to complete the proof, following the strategy
used in Case 1, it suffices to prove the following:

(a) The measures 7., do not charge extendable loops, and the corre-
sponding system of measures (1., (K))x satisfies the invariance
property.

(b) The numbers €' satisfy the conclusions of Claim 13.6. In par-
ticular, they depend only on the adjacency class represented
by the bottom and top prongs of K respectively, and thus all
adjacency classes A of the refined APD are assigned numbers
€A.

(c) the collection (e4)4 satisfies the conclusion of Claim 13.7.

Here 7, and e];’t correspond respectively to the non-atomic and
atomic part of the limiting transverse measure.

To see that the measures 7, do not charge extendable loops, recall
that the interval K is open and does not intersect horizontal saddle
connections. This means that any measure supported on K does not
charge extendable loops.

For the invariance property we argue similarly to the proof of Claim
4.11. Namely, for a compact subinterval J of K we let K’ = oppp(K)
be the opposite interval on the refined APD on M,, and let oppg) :
J — K’ denote the map

oppy” (2) © 9 0 0, (0ppp, (1)),
where oppp,,(z) is the intersection (on M,,) of the horizontal line
through = with the edge opposite to K. Note that this map might
not be defined for given n, for some = near the endpoints of K, but is
defined for all x € J and all large enough n, depending on J. With this
notation we need to show that if f is a continuous compactly supported
function on K’, then

Jf o oppp dny = lim ff o oppgl)dnn, (13.14)
n—aoo

where the map on the right-hand side is well-defined for all large enough
n depending on oppp' (supp(f)). The left hand side of (13.14) is equal
to lim, o, § f o opppdn, by definition of 7., and, using the fact that
the maps f o oppgf) converge to f ooppp uniformly on K, this is equal
to the right-hand side of (13.14). We have proved (a).
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For the proof of Claim 13.6, we used the invariance property of the
measures z/ﬁ?). The measures 7, do not satisfy the invariance property
but they almost do so. Namely, let K be an edge of the refined APD,
and let K" = oppp(K) be the opposite edge for some polygon P. Any
connected component of ¢/, N P gives rise to two intersection points
with K and K’, which are images of each other under oppgl), unless the
connected component ends at a singular point at one of the endpoints
of K or K'. Thus, up to possible removing a bounded number of points

from K u K’, corresponding to endpoints and their image under oppgf),

the map oppgf) induces a matching between points of £,, n K and points
of £, n K'. Removing the contributions of these points from the formula
(13.1) we modify 7, slightly to obtain a new sequence of measures 7.,.
In view of (13.12) and (13.13), this new sequence (7,,) has the same
limit 7., and defines the same numbers e};(’t. Thus, we can replace 7,
by 7/, and the proof of Claim 13.6 goes through to prove (b). Finally
the proof of Claim 13.7 only uses the conclusions of Claim 13.6, so we
get (c). O

Completing the proof of Proposition 4.1. For each n let v, be a deco-
rated version of v, so that 3, = fB;,. We write each v, as a sum
v, + vy, where v}, does not charge extendable loops, and v, is a finite
linear combination, with positive coefficients, of measures 6+ sup-
ported on primitive continuously extendable paths ¢, ;. For each ¢, x,
the decoration 7, induces a decoration of 8=) . This amounts to choos-
ing a continuous extension Enk of each ¢, ;. Decompose f,, = 5/, + 51
where /3 and ] are the cohomology classes corresponding to v/, and
vy, Further decompose

Mn
def >
Br=> By where B % g [los],
k=1

for positive coefficients a,, ; and where m,, is the number of summands.
The sequence m,, is bounded since the number of primitive countinu-
ously extendable loops is bounded, and we will show below that the
cohomology classes 3, and f3, ; are all bounded. Assuming this, by
passing to further subsequences we can assume that m, = m is con-
stant, 8, — (' and ), — By for k =1,...,m, where ' + >}, B/ = S.
The measures v}, satisfy (13.5), and by the special case of Proposition
4.1 established in §13.3 we have 8’ € C;. The measures v, are finite
linear combinations of measures, each of which satisfies the conditions
of Proposition 13.8. By linearity, we obtain Proposition 4.1.
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It remains to show that the sequences (f3,), (8, ;) are bounded in

H'(S,3;R?). For this it suffices to find a basis vy, ..., vy of H(S,X)
such that the sequences of evaluations

(B3,(Vi)) e » (@Z,k(%‘))neN (13.15)

are bounded, for each ¢ and each k. The basis we will use consists of the
edges of a triangulation obtained from an APD, by adding horizontal
diagonals to quadrilaterals. From continuity of ¢ — L,, and from the
convergence 3, — [, we have that the terms appearing in (13.3) are
bounded. In particular, if v; is an edge of the APD then the sequence
(85, (vi)),.en is bounded. By definition, v, assigns mass zero to the
horizontal diagonals of the APD, and thus the sequence (5 (v;)),.cn
is bounded for every edge v; of our triangulation. For the sequence
( ka(vi))neN , as in the discussion in Case 2 of the proof of Proposition

13.8, we have that the number of intersections of vak with an edge of
the triangulation is bounded above by C?,, ; for some C' > 0. Thus the
boundedness of (13.3) implies that (3],(v;)),cy i bounded. O

Completing the proof of Corollary 4.4. The proof is almost identical to
the one we gave in §4.2, with the following modifications. In §4.2,
assumption (4.11) was used in order to be able to apply Proposition 4.1;
we now have Proposition 4.1 without this assumption. Additionally,
we invoked (4.13) and non-atomicity in order to say that the limiting
transverse measures v satisfy lim, B,x = 5”0%’ implying

which we needed in (4.15). In our case the limiting measures v might
have atoms, but (13.16) still holds by (13.4). Finally, the minimiza-
tion property of the Hahn decomposition was used in connection with
formula (4.14). Here we use the same minimization property, in con-
nection with formula (13.3). O
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