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Abstract. We study infinite translation surfaces which are Z-covers of compact translation
surfaces. We obtain conditions ensuring that such surfaces have Veech groups which are
Fuchsian of the first kind and give a necessary and sufficient condition for recurrence of their
straight-line flows. Extending results of Hubert and Schmithüsen, we provide examples of
infinite non-arithmetic lattice surfaces, as well as surfaces with infinitely generated Veech
groups.

1. Introduction

The geometry of translation surfaces has been intensively studied in recent years (see
[MT02] and [Zor06] for definitions and a survey of recent work). While most of the work
was concerned with compact surfaces, in several recent papers non-compact surfaces were
also considered. For instance, in [CGL06], the horseshoe and baker’s transformations were
realized by an affine transformation; [Hoo08] is a study of the geometry and dynamics of
an infinite translation surface which arises as a geometric limit of compact lattice surfaces;
in [HW08], a connection was made to Z-valued skew products over 1-dimensional systems,
and in [Val], the topology of the unfolding surface for an irrational billiard was determined.
Removing the restriction that the surface is compact gives a flexible setup and many phe-
nomena, absent in the compact case, may be observed. For example, in the recent paper
[HS09], Hubert and Schmithüsen made the surprising discovery that there are infinite square
tiled surfaces whose Veech group is infinitely generated.

The examples studied in [HW08, HS09] are Z-covers of compact translation surfaces.
Although this class is much smaller than the general case, it already displays many surprising
features. It may be hoped that it provides a good starting point for a study of the geometry
and dynamics of infinite translation surfaces. In this paper we begin the systematic study

of these surfaces. Our analysis yields a bijection between Z-covers M̃ →M , ramified over a
finite set P ⊂M , and projective classes of elements w ∈ H1(M,P ; Z) (Proposition 7). Under
this bijection, recurrent Z-covers, i.e. covers on which the straightline flow is recurrent in
almost all directions, correspond to homology classes with vanishing holonomy (Proposition
15). Utilizing a theorem of Thurston which appeared in the unpublished manuscript [Thu98],

we obtain a sufficient condition ensuring that the Veech group of a cover M̃ is Fuchsian of
the first kind (Theorem 22). This result implies that any recurrent Z-cover of a square tiled
surface in genus 2 has a Veech group which is of the first kind (Corollary 23), extending the
results of [HS09]. We also obtain necessary and sufficient conditions for a (finite power of
a) parabolic element in the Veech group of M to lift to the Veech group of every recurrent

Z-cover M̃ (Theorem 27). Using it one may reprove some of the results of [HS09] in a
more general setting. We illustrate the use of our results in the last section, where we
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provide an example of an infinite lattice translation surface with a non-arithmetic Veech
group (Proposition 31), and answer a question of Hubert and Schmithüsen (Section 7.2).

2. Regular covers of translation surfaces

Let M denote a compact translation surface and P ⊂M denote a finite (possibly empty)
subset. We consider P to be a collection of punctures of the surface M and will use M◦ to
denote M r P .

Recall that the translation surface M◦ comes equipped with local charts to R2 defined
away from a discrete set of singularities, such that the transition functions are all transla-
tions [MT02] [Zor06]. An affine automorphism of M◦ is a homeomorphism f : M◦ → M◦

which preserves the underlying affine structure of M◦. The local charts identify the tangent
plane TPM

◦ of every non singular point P with the plane T0R2 = R2. If f is an affine auto-
morphism, then the induced actions on the tangent planes TPM

◦ → Tf(P )M
◦, as identified

with R2, are the same. We call this induced map the derivative of f , D(f) : R2 → R2. Note
that D(f) ∈ GL(2,R), and if M is compact then D(f) has determinant ±1. The collection
of all affine automorphisms of M◦ forms the affine automorphism group Aff(M◦). The group
Γ(M◦) = D

(
Aff(M◦)

)
⊂ GL(2,R) is called the Veech group of M◦.

Covering space theory associates covers of a space with the subgroups of its fundamental
group. A cover is called regular if it is associated to a normal subgroup. We consider a

normal subgroup N ⊂ π1(M◦), and consider the associated cover π : M̃ → M◦. The group

∆ = π1(M◦)/N acts on M̃ as the automorphisms of the cover, with M̃/∆ = M◦.
We have the following from covering space theory.

Proposition 1.

(1) An element f ∈ Aff(M◦) lifts to an f̃ ∈ Aff(M̃) if and only if f∗(N) = N .

(2) An element f̃ ∈ Aff(M̃) descends to an f ∈ Aff(M◦) if and only if f̃ normalizes the

deck group ∆. That is, f̃∆f̃−1 = ∆.

Definition 2. The affine automorphism group of a cover M̃ → M◦ is the group of pairs

of elements (f̃ , f) ∈ Aff(M̃) × Aff(M◦) for which π ◦ f̃ = f ◦ π. We denote this group by

Aff(M̃,M◦). A necessary condition for (f̃ , f) ∈ Aff(M̃,M◦) is that D(f̃) = D(f). Thus

we have a canonical definition of the derivative D : Aff(M̃,M◦) → GL(2,R). We call the

image of the group homomorphism D the Veech group of the cover, and denote it by Γ(M̃).

Let GN = {f ∈ Aff(M◦) : f∗(N) = N}. For an f ∈ GN the action of f∗ on π1(M◦)
induces an action on ∆ = π1(M◦)/N . The following is an immediate consequence:

Corollary 3. Aff(M̃,M◦) ∼= ∆ o GN , with GN acting on ∆ as mentioned above. Indeed,
we have a short exact sequence

1→ ∆ ↪→ Aff(M̃,M◦) � GN → 1.

�
Note that the projection p : Aff(M̃,M)→ Aff(M̃) may not be injective. However, we do

not miss much.

Proposition 4. If M◦ is not an unpunctured torus, then p
(
Aff(M̃,M◦)

)
is a finite index

subgroup of Aff(M̃).
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Proof. Consider the group T ⊂ Aff(M̃) of elements ι for which D(ι) = I, i.e. the group of

translation automorphisms of M̃ . We claim that T acts properly discontinuously on the set

of non-singular points of M̃ . To see this, let Q denote the union of the singularities of M with
P . By assumption Q is non-empty. The surface M◦ has a Delaunay decomposition relative

to the points in Q. See [MS91, §1] for background. The Delaunay decomposition of M̃
relative to the lifts of Q is the lift of the decomposition of M◦. A translation automorphism
must permute the cells in the Delaunay decomposition, and hence is properly discontinuous.

The deck group ∆ is a finite index subgroup of T , because Area(M̃/∆) = Area(M) <
∞. The group ∆ is finitely generated because it is a quotient of π1(M◦), which is finitely
generated. T is also finitely generated as it contains ∆ as a finite index subgroup. An element

f̃ ∈ Aff(M̃) acts on T by conjugation, and preserves the index of subgroups. There are only
finitely many subgroups of T with index [T : ∆], because T is finitely generated. Thus, a

finite index subgroup of Aff(M̃) normalizes ∆. The conclusion follows by Proposition 1. �

Presumably, nearly every countable subgroup of GL(2,R) arises as a Veech group of some
infinite translation surface. (See [PSV09] for an investigation of Veech groups of tame trans-
lation surfaces homeomorphic to the Loch Ness monster.) However, because Veech groups of
compact translation surfaces are discrete [Vee89], we have different answer for normal covers.

Corollary 5. If M◦ is not an unpunctured torus, the Veech group Γ(M̃) is a discrete subgroup

of ŜL(2,R), the group of 2× 2 real matrices of determinant ±1.

3. Z-covers

We use H1(M,P ; Z) to denote the relative homology of M with respect to the set of punc-
tures, and H1(M◦; Z) denotes the absolute homology of the punctured surface. Intersection
number is a non-degenerate bilinear form

i : H1(M,P ; Z)×H1(M◦; Z)→ Z.

Definition 6. The Z-cover of M◦ associated to a non-zero w ∈ H1(M,P ; Z) is the cover
associated to the kernel of the homomorphism

ϕw : π1(M◦)→ Z, γ 7→ i(w, JγK),

where JγK denotes the homology class of γ. We denote this cover by M̃w.

If A is a free abelian group, we use PA to denote (Ar {0})/ ∼, where a ∼ b if there are
non-zero m,n ∈ Z for which ma = nb. By non-degeneracy of the bilinear intersection form,
we have:

Proposition 7. The Z-covers M̃w and M̃w′ are the same if and only if w ∼ w′.

Thus, the space of Z-covers of M◦ is naturally identified with PH1(M,P ; Z). Statement
(1) of proposition 1 can be restated as follows.

Proposition 8. An f ∈ Aff(M◦) lifts to an f̃ ∈ Aff(M̃w) if and only if f∗(w) = ±w, where
f∗ denotes the action of f on H1(M,P ; Z).

We conclude this section with some remarks on the topology of Z-covers. Since we will
not be using these results in the sequel, they will be stated without proof.
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Loosely speaking, we think of M̃w as a cover of M ramified over points of P . To make
this intuition precise, recall that by pulling back the Euclidean metric, we may endow a
translation surface with a metric, and consider its completion. The completion of M◦ is M ,

and the map π extends to a map π̄ : M̄ → M , where M̄ is the completion of M̃w. It is
natural to inquire whether π̄ is a covering map. To this end we have:

Proposition 9. For each p ∈ P , let Up ⊂ M be an open disk with boundary curve γp such
that Up ∩ P = {p} and γp ∩ P = ∅. Let Ūp = π̄−1(Up). Then π̄|Ūp

is a covering map if and
only if i(w, JγpK) = 0.

Thus, π̄ is a covering map if and only if i(w, JγpK) = 0 for all p ∈ P . The following is
equivalent.

Corollary 10. The map π̄ is a covering map if and only if w is an element of H1(M ; Z),
viewed as a subset of H1(M,P ; Z).

In case i(w, JγpK) 6= 0, there is no multiple of γp which lifts to M̃w as a closed loop. In
this case we call any p̄ ∈ π̄−1(p) an infinite singularity, since the map π̄ : M̄ → M in a
neighborhood of p̄ has the structure of an ‘infinite cone angle singularity’ or a ‘logarithmic
singularity’. To compute the number of such points on M̄ , we have:

Proposition 11. Assume w is a primitive element of H1(M,P ; Z). Suppose p ∈ P is
such that i(w, JγpK) 6= 0. Then |π̄−1(p)| = |i(w, JγpK)| . In particular the number of infinite
singularities is finite.

If M̄ has an infinite singularity p̄, its metric topology is not proper. Indeed, the closure

of any small ball around p̄ is not compact. Therefore it is natural to consider M̂ , the

complement in M̄ of the infinite singularities. That is, M̂ is the largest subset of M̄ such

that the restriction of π̄ to M̂ is a covering map. Repeating the arguments of [Val] and

recalling terminology of [Ric63], we may understand the topology of M̂ . We have:

Proposition 12. If M̄ has infinite singularities, then M̂ has only one end and is in the
homeomorphism class of the ‘Loch Ness monster’, the orientable infinite genus surface with
a single end. If M̄ has no infinite singularities then it has two ends. In this case, M̄ is either
a cylinder or is homeomorphic to the orientable infinite genus surface with two non-planar
ends.

4. Recurrent Z-covers

A translation surface has a holonomy map hol : H1(M,P ; Z)→ R2, obtained by developing
a representative of the class into R2 and taking the difference of the starting and end points.
For dynamical reasons, we are especially interested in Z-covers with the following property.

Definition 13 (Recurrent Z-covers). The Z-cover M̃w is called recurrent if hol(w) = 0.

Although not explicitly stated, square-tiled covers of this type were studied before in
[HW08] and [HS09]. One reason for restricting attention to recurrent Z-covers is that non-

recurrent Z-covers have few affine symmetries. A discrete subgroup of ŜL(2,R) is called
elementary if it contains a finite index abelian subgroup and non-elementary otherwise. Con-

versely, a non-elementary subgroup of ŜL(2,R) contains the free group with two generators
[MT98, Theorem 2.9]. We have the following corollary of Proposition 8.
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Corollary 14. If there is an A ∈ Γ(M̃w) ∩ SL(2,R) with trace(A) 6= ±2, then M̃w is a

recurrent Z-cover. In particular, if Γ(M̃w) is non-elementary, then M̃w is a recurrent Z-
cover.

Proof. We prove the contrapositive. Suppose hol(w) 6= 0. By Proposition 8, (f̃ , f) ∈
(M̃w,M

◦) implies that f∗(w) = ±w. Then D(f)
(
hol(w)

)
= hol

(
f∗(w)

)
= ±hol(w). Thus,

Γ(M̃w) ⊂
{
A ∈ ŜL(2,R) : A

(
hol(w)

)
= ±hol(w)

}
∼= (R o Z/2Z)⊕ Z/2Z.

We conclude Γ(M̃w) is abelian or contains an index two abelian subgroup. Moreover, all

elements A ∈ Γ(M̃w) ∩ SL(2,R) have trace ±2. �

We will now justify the term recurrent Z-cover. Let F θ
t : M →M denote the straight-line

flow in direction θ ∈ S1. Similarly, we will use F̃ θ
t : M̃ → M̃ to denote the straight-line flow

on a Z-cover M̃ in direction θ. Recall that a measure preserving flow Ft is called recurrent
if for any measurable set A, for a.e. x ∈ A there is tn →∞ such that Ftnx ∈ A.

Proposition 15 (Recurrence of the straight-line flow). Let M̃ be a Z-cover of M◦. Then

M̃ is a recurrent Z-cover if and only if for any θ for which F θ
t is ergodic, F̃ θ

t is recurrent.

Proof. We will reduce the statement to a classical result of K. Schmidt [Sch77, Theorem
11.4] in infinite ergodic theory. Suppose (X,µ) is a finite measure space and T : X → X is
a measurable transformation preserving µ which is ergodic. For a measurable f : X → Z,
f ∈ L1(X,µ), define Xf = X × Z and

Tf : Xf → Xf , Tf (x, k) = (Tx, k + f(x)) .

Then Tf is recurrent if and only if
∫
f dµ = 0.

Given θ, we reduce to the above statement as follows: choose a segment α in M , which

is in the direction θ′ perpendicular to θ. Define α̃ in M̃ to be the union of all lifts of α to

M̃ . Denote by T (resp. T̃ ) the Poincaré return map to the section α (resp. α̃), so that T
is an interval exchange transformation. The ergodicity of T is equivalent to that of F θ

t and

the recurrence of F̃ θ
t is equivalent to the recurrence of T̃ . Since continuous maps have Borel

sections, we may (measurably) identify M̃ with M × Z. In these coordinates T̃ = Tf where

f = f (θ) : α→ Z, f(x) = i(w, JβxK),

and βx is the curve from x to Tx along the F θ
t orbit of x, and then from Tx to x along α. Let

µ be the length measure on α. Up to scaling, Lebesgue measure on M can be represented as
dµdt, where dt denotes the length measure along the orbits of F θ

t . Since f assumes finitely
many values, one on each interval of continuity of T , it is in L1(α, µ).

Label by I1, . . . , I` be the partition of α into intervals of continuity for T . By refining this
decomposition we assume that the flow in direction θ starting from the interior of Ij does
not hit a puncture in P . For each j, let βj be a closed loop βxj

as above, corresponding to
some xj ∈ Ij; the particular choice of xj does not affect JβjK. Now write β =

∑
µ(Ij)JβjK ∈

H1(M ; R). We claim that for a path γ on M representing an element of H1(M,P ; Z),

i(γ, JβK) = holθ′(γ),

i.e. the holonomy vector orthogonally projected onto the one-dimensional vector space in
direction θ′. Indeed after homotoping γ off α, each positive crossing of `j means γ has crossed
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the rectangle above Ij, and contributes µ(Ij) to holθ′(γ). Therefore∫
f (θ) dµ =

∑
j

µ(Ij)i(w, JγjK)

= i(w, JβK) = holθ′(w).

The main theorem of [KMS85] guarantees the existence of two independent ergodic θ. We
see that

∫
f (θ) dµ = 0 for any ergodic direction θ on M , if and only if hol(w) = 0. �

A similar argument was employed by Conze and Gutkin in [CG10] to prove recurrence of
the billiard flow on some infinite billiard tables.

Corollary 16. If hol(w) = 0, the straightline flow F̃ θ
t on M̃w is recurrent for a.e. θ.

Proof. Combine Proposition 15 with the famous result of Kerckhoff, Masur and Smillie
[KMS85]. �

5. Veech groups of recurrent Z-covers

Let H ⊂ R2. We define K(H) to be the smallest extension field of Q for which there is an
A ∈ GL(2,R) such that A(H) ⊂ K(H)2 ⊂ R2. The holonomy field of a translation surface
M is the field k = K

(
hol(H1(M ; Z))

)
. The holonomy field was first introduced and studied

by Gutkin and Judge [GJ00]. We will follow the treatment of the holonomy field given in the
appendix of [KS00]. It is known (see [KS00], Theorem 28) that if M is compact and there is
a pseudo-Anosov homeomorphism in Aff(M), then k is a field extension of Q of degree at
most the genus g of M . Moreover, the image hol

(
H1(M ; Z)

)
is a Z-module of rank 2[k : Q].

It follows from the work of Kenyon and Smillie that if Aff(M◦) contains a pseudo-Anosov
homeomorphism then K

(
hol(H1(M ; Z))

)
= K

(
hol(H1(M,P ; Z))

)
. We unambiguously de-

clare this the holonomy field in this case, and we use k to denote this field.

Definition 17 (Holonomy-free subspaces). The holonomy-free subspaces of homology are
W = ker hol ⊂ H1(M,P ; Z) of relative homology, and W0 = W ∩ H1(M ; Z) of absolute
homology.

The Z-modules W0 and W have ranks given by the following equations.

rk W0 = rk H1(M ; Z)− 2[k : Q] = 2(g − [k : Q]).

rk W = rk H1(M,P ; Z)− 2[k : Q] =

{
2(g − [k : Q]) + #P − 1 if P 6= ∅
2(g − [k : Q]) otherwise.

The affine automorphism group Aff(M◦) acts on homology and preserves the subspaces
W0 and W . Thus, we have the following group homomorphisms.

ψ0 : Aff(M◦)→ Aut(W0), f 7→ f∗|W0 .

ψ : Aff(M◦)→ Aut(W ), f 7→ f∗|W .
The following statement follows immediately from Proposition 8. It explains our interest in
these homomorphisms.
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Proposition 18. Let f ∈ ker ψ. For each w ∈ W , there is an f̃ ∈ Aff(M̃w) such that

(f̃ , f) ∈ Aff(M̃w,M
◦). The subgroup

{(f̃ , f) ∈ Aff(M̃w,M
◦) : f ∈ ker ψ}

is normal inside Aff(M̃w,M
◦).

The elements of Aff(M◦) permute the punctures. Let ρ : Aff(M◦)→ Sym(P ) be the map
which assigns to an f ∈ Aff(M◦) the permutation induced on P . We have the following.

Proposition 19. ψ(ker ψ0∩ker ρ) is abelian of rank at most (rk W0)(rk W −rk W0). Thus,
there is an exact sequence

1→ ker ψ ↪→ ker ψ0 � A→ 1

where A ⊂ Z(rk W0)(rk W−rk W0) o Sym(P ) has a finite index free abelian subgroup.

Proof. Enumerate P = {p1, . . . , pn}, and let γi ∈ H1(M◦; Z) be the homology class of a loop
which travels clockwise around pi for i = 1, . . . , n. Let J : W → Zn denote the function

J(w) =
(
i(w, γ1), . . . , i(w, γn)

)
∈ Zn.

Note that for all f ∈ Aff(M◦) we have J ◦ f∗(w) = ρ(f) ◦J(w), where the permutation ρ(f)
is acting as a permutation matrix. In addition, J(w) determines the coset of W/W0 which
contains w. The following statements follow from this discussion.

(1) ker J = W0.
(2) If f ∈ ker ρ, then f∗(w)− w ∈ W0 for all w ∈ W .

By definition, if f ∈ ker ψ0, then f∗(w0) = w0 for all w0 ∈ W0. For f ∈ ker ψ0 ∩ ker ρ, let
hf : W/W0 → W0 denote the map w + W0 7→ f∗(w)− w. This is well defined by the above
discussion. Moreover, we can recover ψ(f) = f∗|W via the formula ψ(f)(w) = w+hf (w+W0).
If f, g ∈ ker ψ0 ∩ ker ρ,

ψ(g ◦ f)(w) = ψ(g)
(
w + hf (w +W0)

)
= w + hf (w +W0) + hg

(
w + hf (w +W0) +W0

)
= w + hf (w +W0) + hg(w +W0).

So ψ(ker ψ0∩ker ρ) is abelian group. Moreover, an element ψ(f) of this group is uniquely de-
termined by the linear map hf : W/W0 → W0. It can be observed that W/W0

∼= Zrk W−rk W0

and W0
∼= Zrk W0 . Hence, the space of all possible hf is isomorphic to Z(rk W0)(rk W−rk W0). �

If G is a discrete subgroup of GL(2,R), we will use ΛG ⊂ RP1 to denote the limit set of
the projection of G to PGL(2,R) = Isom(H2). A subgroup G of GL(2,R) or PGL(2,R) is
elementary if and only if ΛG contains two or fewer points. See [MT98] for background on
the limit set and for the following.

Lemma 20 (Limit sets of normal subgroups). Suppose G is a non-elementary discrete sub-
group of GL(2,R) or PGL(2,R). If N is a non-trivial normal subgroup of G, then ΛN = ΛG.

Theorem 21. If D
(
Aff(M◦)

)
is non-elementary and D(ker ψ0) is non-trivial, then

ΛD
(
Aff(M◦)

)
= ΛD(ker ψ0) = ΛD(ker ψ).

In this case, ΛΓ(M̃w) = ΛD
(
Aff(M◦)

)
for all recurrent Z-covers M̃w of M◦.
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Proof. If D(ker ψ0) is non-trivial, then by a direct application of Lemma 20, ΛD
(
Aff(M◦)

)
=

ΛD(ker ψ0). In particular, D(ker ψ0) is non-elementary and thus contains a free group with
two generators [MT98, Theorem 2.9]. By Proposition 19, D(ker ψ) is a finite index subgroup
of the kernel of a map from D(ker ψ0) to an abelian group. Hence, D(ker ψ) is non-empty.
By another application of Lemma 20, we see ΛD(ker ψ) = ΛD(ker ψ0). �

A Fuchsian group of the first kind is a discrete subgroup Γ of Isom(H2) (or some other
linear group which acts isometrically on H2) for which ΛΓ = RP1.

Theorem 22. Suppose D
(
Aff(M◦)

)
is a lattice and that rk W0 ≤ 2. Then D(ker ψ) is a

Fuchsian group of the first kind. In particular, for any w ∈ W , Γ(M̃w) is Fuchsian of the
first kind.

Proof. By Theorem 21, it is sufficient to show that D(ker ψ0) is non-trivial. Note that rk W0

is even. If rk W0 = 0, then ker ψ0 = Aff(M◦). The more difficult case is when rk W0 = 2.
We will assume that ker ψ0 is empty and derive a contradiction.

By the Selberg lemma, the group D
(
Aff(M◦)

)
contains a finite index subgroup Γ which

is torsion free [MT98, Theorem 2.29]. As observed by Veech [Vee89], H2/D
(
Aff(M◦)

)
is not

co-compact. Therefore, Γ is isomorphic to the fundamental group of the punctured surface
H2/Γ, which is a free group. This free group Γ pulls back to a free group F ⊂ Aff(M◦) such
that D|F is injective.

Since rk W0 = 2, ψ0 : F → ŜL(2,Z), where ŜL(2,Z) denotes the set of 2 × 2 matrices of
determinant ±1. By our assumption from the first paragraph, ψ0|F is injective. Without
loss of generality, we may assume that ψ0(F ) ⊂ SL(2,Z). (If not, replace F by the index
two subgroup for which this is true.)

Summarizing the previous two paragraphs, we have two faithful representations, D|F and
ψ0|F , of F into SL(2,R). We will derive a contradiction from properties of these representa-
tions. These representations satisfy the following statements for all f ∈ F .

(1) If D(f) is parabolic, then ψ0(f) is also parabolic.
(2) If D(f) is hyperbolic, then 2 ≤ |tr ψ0(f)| < |tr D(f)|.

Statement 1 is true because if f ∈ Aff(M◦) is a parabolic, then some power of f is a multi-
twist of M◦. All eigenvalues of the action of a multi-twist on homology are 1. In particular,
the eigenvalues for the action of f on homology are all of modulus 1. Thus, ψ0(f) is either
elliptic or parabolic. But, if ψ0(f) is elliptic, then ψ0 is not faithful. If D(f) is hyperbolic,
then f ∈ Aff(M◦) is a pseudo-Anosov homeomorphism. Let λ be the eigenvalue of D(f)
with largest magnitude. A theorem of Fried implies that λ is also the eigenvalue with largest
magnitude of the action of f∗ on H1(M◦; Z), and also that λ occurs with multiplicity one
[Fri85]. In particular, the eigenvalues of ψ0(f) = f∗|W0 have modulus strictly less than |λ|.
Again, ψ0(f) is not elliptic since ψ0 is assumed to be faithful.

Now consider the quotient surfaces S1 = H2/D(F ) and S2 = H2/ψ0(F ). For i = 1, 2,
let gi denote the genus of Si and let ni ≥ 1 denote the number of ends. We have F =
π1(S1) = π1(S2), so this induces a homotopy equivalence φ : S1 → S2. Thus, we have that
rk F = 2gi + ni − 1 for each i. By statement 1 above, we have n1 ≤ n2. We will show that
g1 = g2 and n1 = n2.

An element of the fundamental group of a surface is called peripheral if it is homotopic
to a puncture. Assume that n1 < n2. Let γ1, . . . , γn1 ∈ π1(S1) denote disjoint peripheral
curves. Note that the homology classes of these curves are linearly dependent. Let γ′j =
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φ∗(γj) ∈ π1(S2). Note that since S2 has n2 > n1 punctures, the homology classes of the curves
γ′1, . . . , γ

′
n1

are linearly independent. This contradicts either the fact that φ is a homotopy
equivalence, or that n1 < n2. Thus, n1 = n2.

By the previous two paragraphs, we may take the homotopy equivalence φ : S1 → S2 to
be a homeomorphism. In addition, these surfaces have the same number of parabolic cusps.
Thus ψ0(F ) is a lattice in SL(2,Z). For non-peripheral β ∈ π1(S1) let `1(β) denote the
length of the geodesic representative on S1, and let `2(β) denote the length of the geodesic
representative of φ∗(β). Theorem 3.1 of [Thu98] states that

sup
β∈π1(S1)

`2(β)

`1(β)
≥ 1,

with equality only if S1 = S2. (This holds for any pair of complete, finite area, hyperbolic
structures on the same surface.) This contradicts statement (2). �

The following immediate consequence illustrates the use of Theorem 22.

Corollary 23. If M is any translation surface of genus 1 or 2 with non-elementary Veech
group, then the Veech group of any recurrent Z-cover has the same limit set. In particular,
if M is a square tiled surface of genus 1 or 2 then the Veech group of any recurrent Z-cover
is Fuchsian of the first kind.

6. Multi-twists

A multi-twist is an f ∈ Aff(M◦) which preserves the cylinders in a cylinder decomposition
and for which D(f) is parabolic with eigenvalue 1. It is well known that if M is compact,
and D(f) is parabolic then some power of f is a multi-twist. The action of a multi-twist f
on H1(M,P ; Z) is given by the formula

(1) f∗ : x 7→ x+
∑
j

i(x, γ◦j )tjγj,

where j varies over the cylinders in the preserved decomposition. Here γj ∈ H1(M,P ; Z) and
γ◦j ∈ H1(M◦; Z) denote the homology classes of the core curve in cylinder j (although the
curves are the same they represent elements in different homology spaces, and we will use
different notation to distinguish them). We denote by 〈γj〉 and 〈γ◦j 〉 the Z-module spanned
by these curves in their respective homology groups. The restriction of the action of f on
cylinder j is a Dehn twist. The number tj ∈ Z is the twist number of this Dehn twist. Each
tj is non-zero and they all have the same sign. If this sign is positive f is performing left
Dehn twists and if it is negative f is performing right Dehn twists.

Let φ = f∗ − I. That is,

(2) φ : H1(M,P ; Z)→ H1(M,P ; Z), x 7→
∑
j

i(x, γ◦j )tjγj.

A direct application of Proposition 8 yields the following.

Proposition 24. The multi-twist f ∈ Aff(M◦) lifts to an f̃ ∈ Aff(M̃w,M
◦) if and only if

φ(w) = 0.

A linear map g on a vector space V is called unipotent of index n if (g − I)n(V ) = 0.
Lemma 25.
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(1) f∗ : H1(M,P ; Z) → H1(M,P ; Z) is unipotent of index 2. In particular, ker φ =
Fix (fk∗ ) for all non-zero k ∈ Z.

(2) φ
(
H1(M,P ; Z)

)
is a submodule of 〈γj〉 of full rank. Moreover, this rank is bounded

from above by the genus of M .
(3) If D

(
Aff(M◦)

)
is non-elementary, then both hol ◦ φ

(
H1(M,P ; Z)

)
and hol(ker φ)

are Z-modules of rank [k : Q], where k is the holonomy field.

Proof. We prove these statements in order. For all x ∈ H1(M,P ; Z), φ(x) is a linear combi-
nation of the {γj}. But, i(γi, γ

◦
j ) = 0 for all i and j. This implies statement (1).

From equation (2), we infer that φ
(
H1(M,P ; Z)

)
⊂ 〈γj〉. Consider the map π : H1(M◦; Z)→

H1(M,P ; Z) induced by the inclusion of M◦ ↪→M . Define the map

η : H1(M,P ; Z)→ 〈γ◦j 〉, x 7→
∑
j

i(x, γ◦j )tjγ
◦
j .

Note that π ◦ η = φ. We claim that the image of η is a Z-module of rank equal to rk 〈γ◦j 〉.
If this is true, then the conclusion follows as π

(
〈γ◦j 〉

)
= 〈γj〉. We now prove this claim.

By non-degeneracy of i : H1(M,P ; Z) × H1(M◦; Z) → Z, it is equivalent to show that if
x ∈ ker(η) then i(x, γ◦) = 0 for all γ◦ ∈ 〈γ◦j 〉. We will prove the contrapositive of this
statement. Suppose i(x, γ◦) 6= 0 for some γ◦ ∈ 〈γ◦j 〉. Then i(x, γ◦k) 6= 0 for some k. We
compute

i
(
x, η(x)

)
= i
(
x,
∑
j

i(x, γ◦j )tjγ
◦
j

)
=
∑
j

tji(x, γ
◦
j )

2.

Recall that each tj is non-zero and has the same sign. In addition, i(x, γ◦k) 6= 0, so
i
(
x, φ(x)

)
6= 0. Therefore, η(x) 6= 0.

The inequality rk 〈γj〉 ≤ genus(M) follows from topology. Note that the core curves of
cylinders are disjoint. Cutting along g + 1 closed curves on a surface of genus g necessarily
disconnects the surface. Hence, the maximal rank of the span of the {γj} is genus(M),
because the γj have disjoint representatives.

Now we will consider statement (3). Since D
(
Aff(M◦)

)
is non-elementary we can conju-

gate f ∈ Aff(M◦) to obtain a new f ′ ∈ Aff(M◦) so that D(f ′) has an eigenvector distinct
from the eigenvector of D(f). By applying an element of SL(2,R) to M◦, we may assume
without loss of generality that the derivatives are of the form

D(f) =

[
1
√
µ

0 1

]
and D(f ′) =

[
1 0

±√µ 1

]
,

for some µ > 0. Then the surface M can be obtained from Thurston’s construction of flat
surfaces admitting pseudo-Anosov automorphisms [Thu88, §6]. In particular, the widths of
all horizontal cylinders (resp. vertical cylinders) appear as the entries of an eigenvector of a
Perron-Frobenius matrix with eigenvalue µ. So from the theory of such matrices, we know
µ ∈ k and

rk holx
(
H1(M,P ; Z)

)
= rk holy

(
H1(M,P ; Z)

)
= rk Z[µ] = [k : Q],

where holx(γ) and rk holy(γ) denote the x- and y-coordinates of the holonomy map respec-
tively, and Z[µ] is the Z-module generated by µ. For all γ ∈ H1(M,P ; Z), we have

hol ◦ φ(γ) = D(f)hol(γ)− hol(γ) =
(
µholy(γ), 0

)
.
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We conclude

rk hol ◦ φ
(
H1(M,P ; Z)

)
= rk holy

(
H1(M,P ; Z)

)
= [k : Q].

On the other hand, γ ∈ ker φ if and only if holy(γ) = 0. Thus

rk hol(ker φ) = rk holx
(
H1(M,P ; Z)

)
= [k : Q].

�

We first establish a corollary of statement (1) of the lemma.

Corollary 26. Let f ∈ Aff(M◦) be a multi-twist, and let w ∈ W . If f∗(w) 6= w, then

D
(
Aff(M̃w,M

◦)
)

is infinite index in D
(
Aff(M◦)

)
.

Recall the definition of the holonomy-free subspace W of H1(M,P ; Z). Proposition 8

stated that an element f ∈ Aff(M◦) lifted to an affine automorphism f̃ ∈ Aff(M̃w,M) if
and only if f∗(w) = ±w.

Theorem 27 (Lifting multi-twists). Assume f ∈ Aff(M◦) is a multi-twist and that D
(
Aff(M◦)

)
is non-elementary. Let the notation be as above.

(3) rk W − rk(W ∩ ker φ) = rk 〈γj〉 − [k : Q] ≤ g − [k : Q].

In particular, f∗ acts trivially on W if and only if rk 〈γj〉 = [k : Q].

Proof. By linearity of φ and statement (2) of Lemma 25,

rk(ker φ) = rk H1(M,P ; Z)− rk φ(H1(M,P ; Z)) = rk W + 2[k : Q]− rk 〈γj〉.

Now, note that W ∩ ker φ = ker hol|ker φ. By linearity of hol, we have

rk(ker φ) = rk(W ∩ ker φ) + rk hol(ker φ) = rk(W ∩ ker φ) + [k : Q],

with the last equality following from statement (3) of the lemma. Subtracting these two
equations gives (3). The inequality follows from statement (2) of the lemma. �

As an illustration of the use of Theorem 27, we deduce:

Corollary 28. Suppose M is square-tiled and has a cylinder decomposition in which all
cylinders are homologous in H1(M,P ; Z). Then the Veech group of any recurrent Z-cover is
Fuchsian of the first kind.

Proof. In this case rk〈γj〉 = 1 and k = Q, so f∗ ∈ ker ψ0. Since Df∗ is nontrivial, the result
follows from Theorem 21. �

Remark 29. In [HS08, Theorem 2], Hubert and Schmithüsen define a class of Z-covers of
square tiled surfaces O∞ → O. They show that if O has a one-cylinder decomposition, then
the Veech group of O∞ is Fuchsian of the first kind. Thus Corollary 28 is an extension of
the results of [HS09].
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Figure 1. The eierlegende Wollmilchsau surface. Horizontal edges are glued
together as indicated by the roman numerals. Vertical edges are glued to their
opposite (by horizontal translations).

7. Examples

7.1. Square tiled surfaces with homologous cylinders. We give a construction of a
square tiled surface with a horizontal cylinder decomposition all of whose cylinders are
homologous. (In fact the reader may verify that all such surfaces arise via this construction.)

Let C0, . . . , Ck−1 be cylinders all with the same rational circumference c, and each with
rational width. For each i = 0, . . . , k−1 pick a rational interval exchange of Ti : [0, c)→ [0, c).
Use Ti to identify the bottom edge of Ci to the top edge of Ci+1(mod k). Call the resulting
surface M , and let P ⊂ M be a finite set of points with rational coordinates. Then there
is a horizontal cylinder decomposition of M◦, all of whose cylinders are homologous. So, by
Corollary 28, any recurrent Z-cover of M◦ has a Veech group which is Fuchsian of the first
kind.

The term eierlegende Wollmilchsau refers to the square tiled surface, W , whose properties
were first studied by Herrlich and Schmithüsen [HS08]. It can be obtained by the above
construction. See figure 1. This is a surface of genus three with four cone singularities, each
with cone angle 4π. Let P denote the set of these singularities. The Veech group of W ◦ is

ŜL(2,Z), the group of integer matrices of determinant ±1.

Proposition 30. Any recurrent Z-cover of W ◦ has a Veech group that contains the congru-
ence 4 subgroup of SL(2,Z).

Proof. The horizontal direction has a multi-twist φ in a pair of homologous cylinders with

derivative D(φ) =

[
1 4
0 1

]
. For any B ∈ ŜL(2,Z) = Γ(W ◦), there is a multi-twist φB in

a pair of homologous cylinders with derivative D(φB) = BD(φ)B−1. By Corollary 28, each
φB lifts to any recurrent Z-cover. The derivatives of these elements generate the congruence
4 subgroup of SL(2,Z). �

7.2. A question of Hubert and Schmithüsen. We consider a surface defined in [HS09].
Let Z3,1 be as in figure 2, let w be the cycle marked on figure 2 and let Z∞3,1 be the correspond-
ing Z-cover. Since hol(w) = 0 this is a recurrent Z-cover. Hubert and Schmithüsen proved
that the Veech group of Z3,1 is not a lattice, but, since the genus of Z3,1 is 2, rk W0 = 2 so
Theorem 22 implies that the Veech group of Z∞3,1 is Fuchsian of the first kind. This answers
a question raised in [HS09].

Since the Veech group of Z3,1 is of the first kind but is not a lattice, it is infinitely
generated. Note that a similar argument was employed in [HS04] and [McM03] to produce
compact translation surfaces with infinitely generated Veech groups, and again in [HS09] to



GENERALIZED STAIRCASES: RECURRENCE AND SYMMETRY 13

i

ii

i ii

Figure 2. The surface Z3,1 and the cycle w.
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Figure 3. The polygon X and the surface O.

proved the existence of non-compact square-tiled surfaces with infinitely generated Veech
group.

7.3. A double cover of the octagon. Let X denote the polygon shown on the left side of
figure 3. The translation surface O is obtained by applying the Zemlyakov-Katok unfolding
construction to X [ZK75]. The surface O is a double cover of the regular octagon with
opposite sides identified, as depicted on the right side of figure 3. The surface O is of genus
3 with two cone singularities, each with cone angle 6π.

Let P consist of the two singularities of O. The orientation preserving part of the Veech
group is generated by the derivatives of the following affine automorphisms.

• h ∈ Aff(O◦) is the right multi-twist in the horizontal cylinder decomposition. We

have D(h) =

[
1 2 +

√
2

0 1

]
.

• g ∈ Aff(O◦) is the right multi-twist in the cylinder decomposition in the direction of

angle π/4. We have D(g) =

[
−
√

2 1 +
√

2

−1−
√

2 2 +
√

2

]
.

• f ∈ Aff(O◦) is the right multi-twist in the cylinder decomposition in the direction of

angle π/8. D(f) =

[
−1−

√
2 4 + 3

√
2

−
√

2 3 +
√

2

]
.

• The two elements in Aff(O◦) with derivative −I.

The orientation preserving part of the Veech group D
(
Aff(O◦)) is an index two subgroup of

a (4,∞,∞)-triangle group.
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Proposition 31. For any w ∈ W ⊂ H1(O,P ; Z), there is a lift of f ∈ Aff(O◦) to

D
(
Aff(Õw, O

◦)
)
. In particular, D

(
Aff(Õw, O

◦)
)

is always a Fuchsian group of the first
kind.

Proof. The affine automorphism f is a multi-twist which preserves a cylinder decomposition
consisting of two cylinders. By the multi-twist theorem, it fixes all of W . By Theorem 21,

D
(
Aff(Õw)

)
is a Fuchsian group of the first kind. �

The following gives an example of an infinite translation surface with non-arithmetic Veech
group which is a lattice.

Proposition 32. There exists a w1 ∈ W for which D
(
Aff(Õw1 , O

◦)
)

is an infinitely gen-

erated Fuchsian group of the first kind, and a w2 ∈ W for which D
(
Aff(Õw2 , O

◦)
)

contains

the lattice 〈D(f), D(g), D(h)〉 ⊂ D
(
Aff(O◦)

)
.

Proof. We saw in the previous proposition that f always lifts. As O is genus 3, the multi-twist
theorem implies that FixW (g∗) and FixW (h∗) are at worst codimension 1 inside W . Note
that dim W = 3. Thus, we can find a non-zero w2 ∈ FixW (g∗) ∩ FixW (h∗). As D

(
Aff(O◦)

)
is generated by 〈D(f), D(g), D(h)〉, we see D

(
Aff(Õw2 , O

◦)
)

= D
(
Aff(O◦)

)
.

To see that there is a w1 ∈ W for which D
(
Aff(Õw1 , O

◦)
)

is infinitely generated, it is

sufficient to show that D
(
Aff(Õw2 , O

◦)
)

is infinite index in D
(
Aff(O◦)

)
. By Corollary 26

and the multi-twist theorem, it is sufficient to check that the span of the core curves of a
cylinder decomposition span a rank three submodule of H1(O,P ; Z). This is true for both
the horizontal direction and the direction of angle π/4. �

It turns out that there is only one non-zero w ∈ W up to scaling which is fixed by f∗, g∗
and h∗. This w is the homology class shown in grey in figure 3.

Acknowledgements. The first author would like to thank the Institute for Advanced
studies in Mathematics at Ben-Gurion University of the Negev for funding a trip to Israel
during which most of the ideas in this paper were worked out. Theorem 22 relies on a theorem
of Thurston proved in the unpublished manuscript [Thu98]. We thank Yair Minsky and Pete
Storm for explaining this theorem to us, and for further ideas which went into the proof of
Theorem 22. We thank Ferran Valdez for interesting remarks which led to Proposition 12,
and the referee for a careful reading.

References

[CG10] J. P. Conze and E. Gutkin, in preparation, 2010.
[CGL06] R. Chamanara, F. P. Gardiner, and N. Lakic, A hyperelliptic realization of the horseshoe and baker

maps, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1749–1768. MR 2279264 (2008j:37088)
[Fri85] D. Fried, Growth rate of surface homeomorphisms and flow equivalence, Ergodic Theory Dynam.

Systems 5 (1985), no. 4, 539–563. MR 829857 (88f:58118)
[GJ00] E. Gutkin and C. Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke

Math. J. 103 (2000), no. 2, 191–213. MR 1760625 (2001h:37071)
[Hoo08] W. P. Hooper, Dynamics on an infinite surface with the lattice property, preprint, 2008.
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