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Abstract. We prove a number of results on the metric and non-metric theory of
Diophantine approximation for Yu’s multidimensional variant of Mahler’s classific-
ation of transcendental numbers.

1. Introduction

In [11], Mahler introduced a classification of transcendental numbers in terms of
their approximation properties by algebraic numbers. More precisely, he introduced
for each k ∈ N and each α ∈ R the Diophantine exponent

ωk(x) = sup{ω ∈ R∶ ∣P (x)∣ ≤H(P )−ω

for infinitely many irreducible P ∈ Z[X],deg(P ) ≤ k}. (1)

Here, H(P ) denotes the naive height of the polynomial P , i.e. the maximum absolute
value among the coefficients of P .

Mahler defined classes of numbers according to the asymptotic behaviour of these
exponents as k increases. More precisely, let

ω(x) = lim sup
k→∞

ωk(x)
k

.

The number x belongs to one of the following four classes.

● x is an A-number if ω(x) = 0, so that x is algebraic over Q.
● x is an S-number if 0 < ω(x) <∞.
● x is a T -number if ω(x) =∞, but ωk(x) <∞ for all k.
● x is a U -number if ω(x) =∞ and ωk(x) =∞ for all k large enough.

All four classes are non-empty, with almost all real numbers being S-numbers. Every
real number belongs to one of the classes, and the classes are invariant under algebraic
operations over Q.

In analogy with Mahler’s classification, Koksma [10] introduced a different classi-
fication based on the exponent

ω∗k(α) = sup{ω∗ ∈ R∶ ∣x − α∣ ≤H(α)−ω∗ for infinitly many α ∈ Q ∩R,deg(α) ≤ k}.
In this case, H(α) denotes the naive height of α, i.e. the naive height of the minimal
integer polynomial of α. In analogy with Mahler’s classification, one defines w∗(x)
and A∗-, S∗-, T ∗- and U∗-numbers.

The reader is referred to the monograph [4] for an excellent overview of the classific-
ations and their properties. A particular property is that the classifications coincide,
so that A-numbers are A∗-numbers, S-numbers are S∗-numbers and so on. The indi-
vidual exponents however need not coincide.
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In [16], Yu introduced a classification similar to Mahler’s for d-tuples of real num-
bers. In brief, the classification is completely similar, except that the exponents ωk(x)
are now defined in terms of integer polynomials in d variables.

An analogue of Koksma’s classification was introduced by Schmidt [14]. However,
the relation between the two classifications is not at all clear, and it is conjectured
that the two classifications do not agree [14].

It is the purpose of the present note to study the Diophantine approximation prob-
lems arising within Yu’s classification. We recall the simple connection between the
questions arising from Mahler’s classification, and the problem of diophantine approx-
imation with dependent quantities. A classical problem in Diophantine approxima-
tion, given x = (x1, . . . , xd) ∈ Rd, is to to find ω for which

∥q ⋅ x∥ ≤ (max
1≤i≤d

∣qi∣)−ω for infinitely many q = (q1, . . . , qd) ∈ Zd, (2)

where as usual ∥ ⋅ ∥ denotes the distance to the nearest integer. Comparing (1) and
(2), one sees that one can define Mahler’s exponents ωk by restricting the classical
problem to a consideration of vectors x belonging to the Veronese curve

Γ = {(x1, . . . , xk) ∈ Rk ∶ x ∈ R} .
Similarly, in order to understand the exponents arising in Yu’s classification, one
should once more consider the corresponding problem of a single linear form, but
replace the Veronese curve by the variety obtained by letting the coordinates consist
of the distinct monomials in d variables of degree at most k, say. The resulting
Diophantine approximation properties considered in this case would correspond to
the multidimensional analogue of ωk, i.e.

ωk(x) = sup{ω ∈ R∶ ∣P (x)∣ ≤H(P )−ω for infinitely many

P ∈ Z[X1, . . . ,Xd],deg(P ) ≤ k}.

Throughout, let n = (k+d
d
)−1 be the number of nonconstant monomials in d variables

of total degree at most k. In addition to the usual, naive height H(P ), we will also
use the following modification H̃(P ), which is the maximum absolute value of the
coefficients of the non-contant terms of P . The following is a slight re-statement of
[16, Theorem 1].

Theorem 1. For any x = (x1, . . . , xd) ∈ Rd, there exists c(k,x) > 0 such that for all
Q > 1, there is a polynomial P ∈ Z[X1, . . . ,Xd] of total degree at most k and height
H(P ) ≤ Q, such that

∣P (x)∣ < c(k,x)Q−n.

Replacing the condition H(P ) ≤ Q by H̃(P ) ≤ Q, we may always choose c(k,x) = 1.

The proof is essentially an application of the pigeon hole principle, and is com-
pletely analogous to the classical proof of Dirichlet’s approximation theorem in higher
dimension. As a standard corollary, one obtains the first bounds on the exponents
ωk(x).

Corollary 2. For any x = (x1, . . . , xd) ∈ Rd, there exists a c(k,x) > 0 such that

∣P (x)∣ < c(k,x)H(P )−n,
for infinitely many P ∈ Z[X1, . . . ,Xd] of total degree at most k. In particular, ωk(x) ≥
n.



SOME REMARKS ON MAHLER’S CLASSIFICATION IN HIGHER DIMENSION 3

The corollary tells us what the normalising factor in the multidimensional definition
of ω(x) should be, namely the number of non-constant monomials in d variables of
total degree at most k.

Inspired by the above result, we will define the notions of k-very well approximable,
k-badly approximable, k-singular and k-Dirichlet improvable. We will then proceed to
prove that the set defined in this manner are all Lebesgue null-sets and so are indeed
exceptional. In the case of k-badly approximable results, we will also show that these
form a thick set, i.e. a set whose intersection with any ball has maximal Hausdorff
dimension. In fact, many of our results are somewhat stronger than these statements.
The properties are all consequences of other work by various authors (see below).
Finally, we will deduce a Roth type theorem from Schmidt’s Subspace Theorem [13].

2. Results and proofs

In each of the following subsections we introduce a property of approximation of d-
tuples of real numbers by alebraic numbers, and prove a result about it which extends
previous results known in case d = 1.

2.1. k-very well approximable points. A point x = (x1, . . . , xd) ∈ Rd is called
k-very well approximable if there exists ε > 0 and infinitely many polynomials P ∈
Z[X1, . . . ,Xd] of total degree at most k, such that

∣P (x)∣ ≤H(P )−(n+ε). (3)

In other words, x is k-very well approximable if the exponent n on the right hand
side in Corollary 2 can be increased by a positive amount. We will prove that this
property is exceptional in the sense that almost no points with respect to the d-
dimensional Lebesgue measure are k-very well approximable. In fact, we will show
that this property is stable under restriction to subsets supporting a measure with
nice properties.

We recall some properties of measures from [7]. A measure µ on Rd is said to be
Federer (or doubling) if there is a number D > 0 such that for any x ∈ supp(µ) and
any r > 0, the ball B(x, r) centered at x of radius r satisfies

µ(B(x,2r)) <Dµ(B(x, r)). (4)

The measure µ is said to be absolutely decaying if for some pair of numbers C,α > 0

µ (B(x, r) ∩L(ε)) ≤ C (ε
r
)
α

µ(B(x, r)), (5)

for any ball B(x, r) with x ∈ supp(µ) and any affine hyperplane L, where L(ε) denotes
the ε-neighbourhood of L. A weaker variant of the property of being absolutely
decaying is obtained by replacing r in the denominator on the right hand side of (5)
by the quantity

sup{c > 0∶µ({z ∈ B(x, r) ∶ dist(z,L) > c}) > 0}.
In this case, we say that µ is decaying. If the measure µ has the property that

µ(L) = 0, (6)

for any affine hyperplane L, µ is called non-planar. Note that an absolutely decaying
measure is automatically non-planar, but a decaying measure need not be non-planar.
Finally, µ is called absolutely friendly if it Federer and absolutely decaying, and is
called friendly if it is Federer, decaying, and non-planar.
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Theorem 3. Let µ be an absolutely decaying Federer measure on Rd. For any k ∈ N,
the set of k-very well approximable points is a null set with respect to µ. In particular,
Lebesgue almost-no points are k-very well approximable.

Our proof relies on results of [7], in which the case d = 1 was proved.

Proof. Let f ∶ Rd → Rn be defined by f(x1, . . . , xd) = (x1, x2, . . . , xd−1xk−1d , xkd), so that
f maps (x1, . . . , xd) to the n distinct nonconstant monomials in d variables of total
degree at most k. Clearly, f is smooth, and by taking partial derivatives, we easily
see that Rn may be spanned by the partial derivatives of f of order up to k.

From [7, Theorem 2.1(b)] we immediately see that the pushforward f∗µ is a friendly
measure on Rn. We now apply [7, Theorem 1.1], which states that a friendly measure
is strongly extremal, i.e. for any δ > 0, almost no points in the support of the measure
have the property that

n

∏
i=1

∣qyi − pi∣ < q−(1+δ),

for infinitely many p ∈ Zn, q ∈ N. Clearly, this implies the weaker property of ex-
tremality, i.e. that for any δ′ > 0, almost no points in the support of the measure
satisfy

max
1≤i≤n

∣qyi − pi∣ < q−(
1
n
+δ′), (7)

for infinitely many p ∈ Zn, q ∈ N.
To get from the above to a proof of the theorem, we need to re-interpret this in terms

of polynomials. We apply Khintchine’s transference principle ([5, Theorem V.IV]) to
see that (7) is satisfied infinitely often if and only if

∣q ⋅ y − p∣ <H(q)−(n+δ′′), (8)

for infinitely many q ∈ Zn, p ∈ Z, where δ′′ > 0 can be explicitly bounded in terms of
n and δ′. Now, y lies in the image of f , so that the coordinates of y consist of all
monomials in the variables (x1, . . . xd), whence any polynomial in these d variables
may be expressed on the form P (x) = q ⋅ y − p. The coefficients of P include all the
coordinates of q and hence H(P ) ≥ H(q), so that if (3) holds for infinitely many
P with ε = δ′′, then (8) holds for infinitely many q, p. Since the latter condition is
satisfied on a set of µ-measure zero, it follows that µ-almost all points in Rd are not
are not k-very well approximable.

The final statement of the theorem follows immediately, at the Lebesgue measure
clearly is Federer and absolutely decaying. �

Some interesting open questions present themselves at this stage. One can ask
whether a vector exists which is k-very well approximable for all k. We will call such
vectors very very well approximable. It is not difficult to prove that the set of k-very
well approximable vectors is a dense Gδ-set, so the question of existence can be easily
answered in the affirmative. However, determining the Hausdorff dimension of the set
of very very well approximable vectors is an open question. When d = 1, it is known
that the Hausdorff dimension is equal to 1 due to work of Durand [6], but the methods
of that paper do not easily extend to larger values of d.

Taking the notion one step further, one can ask whether vectors x ∈ Rd exist such
that for some fixed ε > 0, for any k ∈ N, there are infinitely many integer polynomials
P in d variables of total degree at most k, such that

∣P (x)∣ ≤H(P )−(n+ε),
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where as usual n = (n+d
d
)−1, i.e. in addition to x being very very well approximable, we

require the very very very significant improvement in the rate of approximation to be
uniform in k. We will call such vectors very very very well approximable. Determining
the Hausdorff dimension of the set of very very very well approximable numbers is an
open problem.

2.2. k-badly approximable points. A point x = (x1, . . . , xd) ∈ Rd is called k-badly
approximable if there exists C = C(k,x) such that

∣P (x)∣ ≥ CH(P )−n,

for all non-zero polynomials P ∈ Z[X1, . . . ,Xd] of total degree at most k. In other
words, a point x ∈ Rd is k-badly approximable if the approximation rate in Corollary
2 can be improved by at most a positive constant in the denominator. Let Bk be the
set of k-badly approximable points. Note that each set Bk is a null set, which is easily
deduced from the work of Beresnevich, Bernik, Kleinbock and Margulis [2]. We will
now show:

Theorem 4. Let B ⊆ Rd be an open ball and let M ∈ N. Then

dimB ∩
M

⋂
k=1

Bk = d.

This statement is deduced from the work of Beresnevich [1], who proved the case
d = 1.

Proof. Let nk = (k+d
d
)−1 as before, but with the dependence on k made explicit in nota-

tion. Let f ∶ Rd → RnM be given by f(x1, . . . , xd) = (x1, x2, . . . , xd−1xM−1
d , xMd ), with the

monomials ordered in blocks of increasing total degree. Let rk = ( 1
nk
, . . . , 1

nk
,0, . . . ,0) ∈

RnM , where the non-zero coordinates are the first nk coordinates, so that rk is a prob-
ability vector.

We define as in [1] the set of r-approximable points for a probability vector r to be
the set

Bad(r) = {y = (y1, . . . , ynM
) ∶ for some C(y) > 0,

max
1≤i≤nM

∥qyi∥1/ri ≥ C(y)q, for any q ∈ N}.

Here, ∥z∥ denotes the distance to the nearest integer, and we use the convention that
z1/0 = 0.

Let 1 ≤ k ≤M be fixed and let x ∈ Rd satisfy that f(x) ∈ Bad(rk). From [1, Lemma
1]) it follows, that there exists a constant C = C(k,x), such that the only integer
solution (a0, a1, . . . , ank

) to the system

∣a0 + a1x1 + a2x2 + ⋅ ⋅ ⋅ + ank−1xd−1x
k−1
d + ank

xkd∣ < CH−1,max
i

∣ai∣ <H1/nk

is zero. Here, the choice of rk and the ordering of the monomials in the function f
ensure that the effect of belonging to Bad(rk) will only give a polynomial expression
of total degree at most k. Indeed, writing out the full equivalence, we would have the
first inequality unchanged, with the second being maxi ∣ai∣ <Hrk,i , where the exponent
is the i’th coordinate of rk. If this coordinate is 0, we are only considering polynomials
where the corresponding ai is equal to zero.
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Rewriting this in terms of polynomials, for any non-zero P ∈ Z[X1, . . . ,Xd] with
H(P ) <H1/nk and total degree at most k, we must have

∣P (x)∣ ≥ CH−1 > CH(P )−nk .

It follows that x ∈ Bk, and hence f−1(Bad(rk)) ⊆ Bk. The result now follows by ap-
plying [1, Theorem 1], which implies that the Hausdorff dimension of the intersection
of the sets f−1(Bad(rk)) is maximal. �

Again, an interesting open problem presents itself, namely the question of uniform-
ity of the constant C(k,x) in k. Is it possible to construct a vector in Bk for all k
with the constant being the same for all k? And in the affirmative case, what is the
Hausdorff dimension of this set? A weaker version of this question would be to ask
whether there is some natural dependence of C(k,x) on k, i.e. whether one can choose
C(k,x) = C(x)k or a similar dependence. We do not at present know the answer to
these questions.

2.3. (k, ε)-Dirichlet improvable vectors and k-singular vectors. Let ε > 0. A
point x is called (k, ε)-Dirichlet improvable if for any ε there exists a Q0 ∈ N, such
that for any Q ≥ Q0 there exists a polynomial P ∈ Z[X1, . . . ,Xd] with total degree at
most k,

H̃(P ) ≤ εQ and ∣P (x)∣ ≤ εQ−n.

Note that we are now using H̃ as a measure of the complexity of our polynomials.
In view of Theorem 1, if ε ≥ 1, all points clearly have this property, and so the

property is only of interest when ε < 1. A vector is called k-singular if it is (k, ε)-
Dirichlet improvable for every ε > 0.

We will need a few additional definitions before proceeding. For a function f ∶ Rd →
Rn, a measure µ on Rd and a subset B ∈ Rd with µ(B) > 0, we define

∥f∥µ,B = sup
x∈B∩suppµ

∣f(x)∣.

Let C,α > 0 and let U ⊆ Rd be open. We will say that the function f is (C,α)-good
with respect to µ on U if for any ball B ⊆ U with centre in suppµ and any ε > 0,

µ{x ∈ B ∶ ∣f(x)∣ < ε} ≤ C ( ε

∥f∥µ,B
)
α

µ(B).

We will say that a measure µ on Rd is k-friendly if it is Federer, non-planar and the
function f ∶ Rd → Rn given by f(x1, . . . , xd) = (x1, x2, . . . , xd−1xk−1d , xkd) is (C,α)-good
with respect to µ on Rd for some C,α > 0.

We have

Theorem 5. Let µ be a k-friendly measure on Rd. Then there is an ε0 = ε0(d,µ)
such that the set of (k, ε)-Dirichlet improvable points has measure zero for any ε < ε0.
In particular, the set of k-singular vector has measure zero.

In the case when d = 1, k ≥ 2 and µ being the Lebesgue measure on R, the result
is immediate from work of Bugeaud [3, Theorem 7], in which an explicit value of ε is
given, namely ε = 2−3k−3. Our proof is non-effective and relies on [9, Theorem 1.5].

Proof. Under the assumption on the measure µ, [9, Theorem 1.5] implies the existence
of an ε0 > 0 such that for all ε̃ < ε0

f∗µ(DIε̃(T )) = 0 for any unbounded T ⊆ a+.
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Here, f is the usual function f(x1, . . . , xd) = (x1, x2, . . . , xd−1xk−1d , xkd), a+ denotes
the set of (n + 1)-tuples of (t0, t1, . . . , tn) such that t0 = ∑n

i=1 ti, ti > 0 for each i, and
DIε̃(T ) denotes the set of vectors y = (y1, . . . , yn) ∈ Rn for which there is a T0 such
that for any t ∈ T with ∥t∥ ≥ T0, the system of inequalities

{∣q ⋅ y − p∣ < ε̃e
−t0

∣qi∣ < ε̃eti i = 1, . . . , n,

has infinitely many non-trivial integer solutions (q, p) = (q1, . . . , qn, p) ∈ Zn+1 ∖ {0}.
Our result follows by specialising the above property. Indeed, we apply this to

ε = ε̃n+1 < εn+10 and the central ray in a+,

T = {(t, t
n
, . . . ,

t

n
) ∶ t = log (Q

ε̃
)n,Q ≥ [ε0] + 1,Q ∈ N} .

The measure f∗µ is the pushforward under f of the k-friendly measure µ. It follows
that the set of x ∈ Rd for which their image under f is in DIε̃(T ) is of measure zero
for all ε̃ < εn+10 . From the definition of DIε̃ and the choice of a+ and T , f(x) ∈ DIε̃
if and only if there is a Q0 ≥ max{[ε0] + 1, ε̃eT0/n} such that for Q > Q0 there exists
q0, q1, . . . , qn ∈ Z with max1≤i≤n ∣qi∣ < ε̃et/n = Q such that

∣(q1, . . . qn) ⋅ f(x) + q0∣ < ε̃e−t = εQ−n.

Reinterpreting the right hand side of the above as a polynomial expression in x, this
recovers the exact definition of x being (k, ε1/(n+1))-Dirichlet improvable. �

Note that the proof in fact yields a stronger statement. Namely, by adjusting the
choice of a+, we could have put different weights on the coefficients of the approximat-
ing polynomials, thus obtaining the same result, but with a non-standard (weighted)
height of the polynomial.

As with the preceding results, some open problems occur. We do not at present
know if there exist a vector x, for which there are positive numbers εk > 0, such that
x ∈ DI(k, εk). If this is the case, determining the Hausdorff dimension of the set of
such vectors is another open problen. Additionally, the same questions can be asked
if we require ε to be independent of k, i.e. if we ask for the existence of a vector
x ∈ DI(k, ε) for all k.

Let us now say that x ∈ Rd is k-algebraic if there exists a nontrivial polynomial
P ∈ Z[X1, . . . ,Xd] of degree at most k, such that P (x) = 0. It is clear that if x is k-
algebraic, then it is k-singular. In light of Theorem 5, it is natural to inquire whether
all k-singular points are k-algebraic. In this direction we have:

Theorem 6. For d ≥ 2, for any k ≥ 1, there exists a k-singular point in Rd which is
not k-algebraic.

The proof relies on results of [8]. We do not know whether the conclusion of Theorem
6 is valid for d = 1.

Proof. Once more, for a fixed k, we take f as in the proof of Theorem 5. In the
notation of [8], it is clear that x ∈ Rd is k-singular if f(x) ∈ Sing(n). Also f(x) is
totally irrational in the notation of [8] if and only if x is k-algebraic.

Since the image of f is a d-dimensional nondegenerate analytic submanifold of Rn,
for d ≥ 2 we can apply [8, Theorem 1.2] to conclude that the intersection of f (Rd)
with Sing(n) contains a totally irrational point. �
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Theorem 5 does not give an explicit value of ε0, and indeed the value depends on
the measure µ. However we can at least push ε0 to the limit ε0 ↗ 1 in the case when
µ is the Lebesgue measure on Rd to obtain a result on the k-singular vectors.

Theorem 7. For any d, the set of x which are (k, ε)-Dirichlet improvable for some
ε < 1 and some k, has Lebesgue measure zero.

The proof relies on the work of Shah [15].

Proof. This is a direct consequence of [15, Corollary 1.4], where the set N is chosen
to be the diagonal N = {(N, . . . ,N) ∶ N ∈ N}. �

Note that once again, the result of Shah gives a stronger result in the sense that we
may take a non-standard height as in the preceding case and retain the conclusion.

2.4. Algebraic vectors. Our final result, which is again a corollary of known results,
is an analogue of Roth’s Theorem [12], which states that algebraic numbers are not
very well approximable. Schmidt’s Subspace Theorem, see e.g. [13], provides a higher
dimensional analogue of this result, and it is this theorem we will apply. We will say
that a vector α = (α1, . . . , αd) ∈ Rd is algebraic of total degree k if there is a polynomial
Pα ∈ Z[X1, . . . ,Xd] of total degree k with Pα(α) = 0 and if no polynomial of lower
total degree vanishes at α.

Theorem 8. Let α = (α1, . . . , αd) ∈ Rd be an algebraic d-vector of total degree more
than k. Then for any ε > 0 there are only finitely many non-zero polynomials P ∈
Z[X1, . . . ,Xd] of total degree at most k with

∣P (α)∣ <H(P )−(n+ε).

Proof. Since α in not algebraic of total degree at most k, by definition it follows that
the numbers 1, α1, α2, . . . , αd−1αk−1d , αkd are algebraically independent over Q. From a
corollary to Schmidt’s Subspace Theorem, [13, Chapter VI Corollary 1E], it follows
that there are only finitely many non-zero integer solutions (q0, . . . , qn) to

∣q0 + q1α1 + q2α2 + ⋅ ⋅ ⋅ + qn−1αd−1αk−1d + qnαkd ∣ < (max
1≤i≤n

∣qi∣)−(n+ε).

This immediately implies the result.
�
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