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Abstract Our theme is the following: when it is known that a certain property
holds for almost every point in a manifold, we want to know whether the property
holds for almost every point in a submanifold or fractal subset. Such results were
proved by Kleinbock and Margulis for Diophantine approximation via dynamics on
homogeneous spaces, and by Masur and Veech for interval exchanges via dynamics
on quadratic differential spaces. We survey some recent work along these lines, and
also prove some new results, including a generalization of the convergence case of
Khinchin’s theorem to a class of fractals in R

1 Introduction

In recent years, through the work of H. Masur, W. Veech, A. Eskin, and oth-
ers, a remarkable bridge has developed between work in two areas: dynamics
of subgroup actions on homogeneous spaces, with applications to number
theory, and dynamics of the SL(2, R) action on the moduli space of quadratic
differentials on a surface, with applications to interval exchange transfor-
mations and rational polygonal billiards. Eskin’s recent survey [3] describes
work in this vein, and focuses on counting problems which have been tackled
in both contexts by similar methods. In this survey we describe more work
bringing out some of the interaction between these fields.

Our focus however will be on questions of a different type, which may all
be seen as offsprings of a famous question of K. Mahler. Say that a vector
s € R? is not very well approzimable (NVWA) if for all § > 0 there is ¢ > 0
such that for all p € Z? ¢ € Z we have ||gs — p|| > ¢|q|” /49, It is easily
seen that almost every vector in R? is NVWA. In 1932 Mahler asked whether
almost every vector on the curve

{(t,t%,...,t) . t e R}

is NVWA (with respect to the natural measure on the curve). The conjec-
ture, settled affirmatively by V. Sprindzhuk in the ’60s, spawned interest in
questions of the following general form. Let P be a property of points in R?,
which holds for Lebesgue almost every point in R, and let i be a measure on
R?. We say that j inherits P if ;1 almost every point satisfies P. The general
problem is:
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Problem: Suppose it is known that P holds for Lebesque almost every point
in R?. Describe the measures which inherit P.

To make the discussion more concrete, let us mention three influential
papers in which questions of this type were addressed. The work we will
describe can be seen as an effort to clarify the relationship between these
results.

Kleinbock and Margulis: Diophantine approzimation on submanifolds. Let
V C R* be open, and let f : V — R? be a C™ function, m > 1. We say
that f is nondegenerate if for almost every s € V, R? is spanned by the
partial derivatives of f, up to some order, at s. In 1996, D. Kleinbock and
G. Margulis applied the theory of flows on homogeneous spaces to prove that
if £ is nondegenerate and p is the natural smooth measure on f(V) then
p-almost every s is NVWA. In other words, the smooth measure class on
a nondegenerate submanifold in R¢ inherits the property of being NVWA.
These and stronger results are contained in [7]. For further developments, see

[1]-

Kerckhoff, Masur and Smillie: ergodicity of rational billiards. A foliation of
a surface S is called uniquely ergodic if there exists a unique measure (up
to scaling), on segments transverse to the foliation, which is invariant under
holonomy. Let Q be the moduli space of unit area holomorphic quadratic
differentials on S. This space, which will be described in more detail below, is
an orbifold on which SL(2, R) acts in a natural way, and each ¢ € Q determines
two transverse measured foliations of the complement of a finite set in S; these
are called the horizontal and vertical foliations of ¢. It is known by work of
Masur [12] that Q carries a natural finite smooth invariant measure, and that
with respect to this measure, for almost every ¢, the vertical foliation of ¢ is
uniquely ergodic. Let rp € SL(2,R) be the rotation matrix corresponding to
an angle 6. In 1980, as part of their pioneering work on ergodicity of rational
billiards, S. Kerckhoff, H. Masur and J. Smillie [5] proved that for any ¢ € Q,
the smooth measure on {ryq : § € R} inherits the unique ergodicity of the
vertical foliation.

Veech: decaying measures and uniquely ergodic foliations. Let u be a measure
on R? let F: R, — R, be continuous, and let B(x,r) denote the Euclidean
ball of radius r around =z € R. We say that p is F'-decaying if for any =z € R,
every 0 < r < 1 and every 0 < € < 1 we have:

p(B(x,er)) < F(e)u(B(x,r)) .

Note that Lebesgue measure is F-decaying for F(z) = x. In 1999 it was
proved by Veech [21] that if y is an F-decaying measure on R, where F is
any function satisfying F'(¢) —._¢ 0, then for any ¢ € Q, the pushforward of
uto Q via

0 — roq
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inherits unique ergodicity of the vertical foliation.

In this paper we describe some conjectures and results concerning Dio-
phantine approximation on fractal sets and unique ergodicity of foliations.
The paper is organized as follows. In Sect. 2 we state the results and con-
jectures. The proofs of the results are contained in several papers, some of
which are complete and some of which are still under construction. In Sect. 3
we define, hopefully in a user-friendly manner, the dynamical systems with
which we will work. In Sect. 4 we describe the interactions between work on
homogeneous spaces and on quadratic differential spaces, emphasizing the
similar dynamical strategies which are used to prove the results. We close
in Sects. 5, 6 with some apparently new applications of the Borel-Cantelli
lemma, including a Diophantine result which interpolates the convergence
case of Khinchin’s theorem on metric to measures on fractal sets, and a re-
sult about quadratic differentials which shows that the natural measure on
any Teichmiiller horocycle inherits the upper logarithm law for geodesics.

2 Conjectures and Results

Fix a permutation o on d 4+ 1 symbols which is irreducible, i.e., for all 1 <

k <d,
o({1,...,k}) #{1,... k}.
Let Ay be the open d-dimensional simplex, namely:

Aqg ={(a1,...,aq) 1 a; >0, Zai<1}.

Any a = (ai,...,aq) € A, defines an interval exchange transformation
J€s,(a) : [0,1) — [0,1) by cutting [0, 1) into d + 1 adjacent intervals whose
lengths respectively are a1, as,...,aq4,1 — Y a; and rearranging them by ori-

entation preserving isometries according to o. In 1982 Masur [12] and Veech
[19] settled a conjecture of M. Keane, proving that for Lebesgue almost every
choice of a € Ay, I€,(a) is uniquely ergodic (i.e., the Lebesgue measure is
the only J€,(a)-invariant measure on [0, 1)). Masur’s strategy — reducing
the question to a question about quadratic differential dynamics — will be
described in Sect. 4.

It is natural to ask which measures on A, inherit unique ergodicity of
JE,(+). First let us state some conjectures regarding this question.

Conjecture 2.1 Let V. C RF be open, let f : I — Ay be nondegenerate
and let o € Sqi1 be irreducible. Then the natural smooth measure on f(V)
inherits the unique ergodicity of J€,(-).

Recall that an interval exchange is called minimal if the orbit of every
point is dense. Conditions for minimality are well understood (see e.g. [4]).
In particular, the set

{a€ A:J&,(a) is not minimal}
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is a countable union of affine subspaces of A which may be explicitly de-
scribed.

Conjecture 2.2 For any affine subspace L C R?, let L = L N A. Then one
of the following holds:

1. The natural measure on L inherits unique ergodicity of 1€, (-);
2. For every a € L, J€,(a) is not minimal.

In [23], we obtain, following Masur’s strategy, partial results supporting
these conjectures from corresponding results about measures on Q which
inherit uniquely ergodic vertical foliations. The results supporting Conjecture
2.2 are applications of:

Theorem 2.3 ([17, Corollaries 2.8, 2.9]) Let q € Q, and let ;1 be

e cither the natural length measure on the Teichmiiller horocycle hiq, t € R;
or,

e more generally, the pushforward, under the map t — hiq, of a measure
on R which is F-decaying for some F satisfying F(g) —<—0 0.

Then  inherits the unique ergodicity of the vertical foliation.

This result is analogous to those of Kerckhoff, Masur and Smillie (resp.
Veech) described above, with trajectories of the Teichmiiller horocyclic flow
{hs : t € R} replacing trajectories under the circle group action {rp : 6 € R}.

A related result about logarithm laws for Teichmiiller geodesics along
Teichmiiller horocycle paths is given in Sect. 6.

The following result concerns Diophantine approximation on fractal sets.
We say that p is a~decaying if it is cz®-decaying for some c. In [21], Veech
gave conditions guaranteeing that a measure supported on a compact subset
of the real line is a-decaying for some 0 < e < 1. For instance it turns out that
the natural coin tossing measure on Cantor’s middle thirds set is a-decaying
for a = log(2)/log(3) (the same as its Hausdorff dimension). Similarly, many
measures arising naturally on dynamically defined fractal sets are a—decaying
for some a.

In [22] we prove:

Theorem 2.4 If i is an a-decaying measure on R, then u inherits NVWA.

The proof of this statement is very simple. An indication of the proof is
given in Sect. 5, along with somewhat weaker results about measures on R?.

There is an intimate connection between Theorem 2.4 and the preceding
theorems: it can be proved by specializing some of the arguments of [21]
and [17] to the case in which S is the torus! In this case, Q coincides with
SL(2,R)/SL(2,Z) and thus has applications to Diophantine approximation
on the real line. Of course, as this is a somewhat degenerate case, most of
the difficulties disappear and one is left with a very easy argument.
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Now suppose that p is an a-decaying measure on R, so that the decay
of lengths of subintervals is controlled from above, and that in addition, the
following condition (sometimes called the Federer condition) holds: there are
positive a3 and ¢; such that for every = € suppu, every 0 < r < 1 and every
O0<e<l,

w(B(z,er)) > c1e* p(B(x,r)).
In joint work with E. Lindenstrauss [11], the following was proved:

Theorem 2.5 Suppose i is a measure on R for which the conditions above
hold, and let £ : I — R? be a nondegenerate curve. Then the pushforward of
i via the map s — f£(s) inherits NVWA.

The proof of this result combines the arguments of [7] with simple argu-
ments as in [22].

An interesting and apparently difficult project is to unify the results of
Kleinbock and Margulis with Theorems 2.4 and 2.5, by specifying a purely
measure-theoretic condition on a measure 1 on R? (encompassing both non-
degeneracy and decay) which would ensure that p inherits NVWA.

3 A Gentle Reminder Regarding Dynamics
on Homogeneous / Quadratic Differential Spaces

Homogeneous spaces. Let G = SL(n,R), T' = SL(n,Z), and 7 : G — G/I'
be the projection map 7(g) = gI'. The homogeneous space G/I" carries the
following structure:

e It is a manifold parameterizing the set of cocompact discrete subgroups
A C R™ such that the Lebesgue measure of a fundamental domain for A
in R™ is 1;

e Any subgroup H < G acts naturally by

hr(g) = 7(hg);

e The Haar measure of a fundamental domain for I" in G is finite. Since G
is unimodular, the Haar measure defines a finite measure on G/I" which
is invariant under the action of G (and any of its subgroups);

e Mabhler’s compactness criterion. For X € G, 7n(X) C G/I' is com-
pact if and only if

inf{||lz-v||:z€ X, veZ”—{0}} >0.

These features can of course be generalized to a more general context
in which G is a Lie group and I' is a nonuniform lattice. Besides its own
intrinsic interest, the study of dynamics of the actions of various subgroups
of G on G/I" has been of fundamental importance in various applications.
There are many excellent survey papers about these matters. Among them,
we recommend the recent and very detailed survey [9].
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Spaces of Quadratic differential. We now describe the space of quadratic
differentials. To the best of our knowledge, all of the features above have
their counterparts in this context. Even the notorious problem of the lack of
a suitable survey was recently addressed by Masur and S. Tabachnikov [16],
survey of which the author became aware while preparing this paper.

Let S be a closed surface of genus g > 1. Informally, the space of quadratic
differentials describes the possible constructions of S out of flat pieces of pa-
per, in which the paper is checkered with vertical and horizontal straight lines
and the construction is required to respect this pattern and the orientation.
By the Gauss—Bonnet’s formula no such construction is possible for a surface
of genus greater than 1, so we allow a finite set of points in which several
pieces of paper are attached, giving a total angle which is more than 27. Note
that in general S may also be allowed to have finitely many punctures but this
case introduces some technicalities and will be omitted from the discussion.

More precisely, let Q be the set of all atlases of charts q of the following
type. Away from a finite set X' C S, every point on S has a neighborhood
with a chart to R?, so that the transition maps are of the form s — +s + c.
Thus the Euclidean metric, the Euclidean area form, and the set of lines of
any given slope in R? are preserved by the transitions, and make sense on
S — X as well. The preimages of the horizontal lines and the vertical lines are
called the horizontal and vertical foliations of q. We normalize our atlases
by requiring that the total area of the surface with respect to the Euclidean
area form is 1. In general the vertical and horizontal foliations do not admit
an orientation. If they do, q is said to be orientable.

Around a singular point x € X there is a neighborhood U and a k-fold
branched cover (k = k(z) > 3) from U to R?/+ which is compatible with
the charts around nonsingular points. Thus both the horizontal and vertical
foliations have a k-pronged singularity at =, and the metric in a neighborhood
is inherited from k Euclidean halfplanes glued cyclically together along rays.

Let Homeo, (S) denote the group of orientation-preserving homeomor-
phisms of S, Homeog(S) its identity component, and let

Mod(S) = Homeo. (S)/Homeo. (S)

denote the mapping class group. The natural action of Homeo, (S) by com-
position of each chart in an atlas, gives us quotients

Q= Q/Homeo! (S)
Q = Q/Homeo (S) = Q/Mod(S).

The data consisting of the number of singularities, the set of singularity
types {k(z) : x € X'}, and the orientability of the foliations, make sense on
an equivalence class modulo Homeo' (S). There are finitely many possible
values for these data, and a level set for these data is called a stratum.



Dynamics on Parameter Spaces 431

There is a standard description of Q as a bundle of holomorphic tensors
over the Teichmiiller space, which may be used to equip Q with a manifold
topology, in which the strata are locally closed submanifolds of various di-
mensions. Alternatively, each stratum M can be given a manifold topology,
as follows. Let M be the subset of Q projecting to M, let q € M, and as-
sume first that we are in the orientable case. Any differentiable path « on
S has a g-length, defined by integrating the local projections of da to the
x and y axes in each chart. It can be checked that this length is constant
on a suitable homology class in S rel Y. This defines a map from M into a
cohomology group (depending on M), which is Homeo! (S)-invariant, hence
descends to a well-defined map on M, and which can be shown to be a local
homeomorphism, (see [20] for details). In the non-orientable case, there is a
double cover of S by a surface of higher genus 5’, which is ramified precisely
at {x € X : k(z) is odd}, and by pullback we get for each quadratic differ-
ential in M an orientable quadratic differential on S. This produces a map
of M into a stratum of orientable quadratic differentials over S, which can
be checked to be an immersion (note that for different strata one obtains
different surfaces S — see [10] for more details, and for a description of the
connected components of the orientable strata). Thus in both cases M is a
manifold.

The action of Mod(S) on Q and on each stratum is properly discontinuous,
and this gives Q = Q/Mod(S) the structure of an orbifold. Let 7 : Q — Q be
the quotient map. The space Q is stratified by projections of strata, that is,
the immersed sub-orbifolds (M) for all strata M C Q. There is an open and
dense stratum in Q corresponding to the maximal number of singularities. It
is called the principal stratum.

We have:

e Q is an orbifold parameterizing the (essential) ways in which S can be
constructed out of pieces of paper as above, for which the total area of
S is 1. The projection of each stratum in Q is an immersed sub-orbifold
parameterizing the constructions above in which the number and type of
singular points, and the orientability of the construction, is fixed;

e There is a natural action on Q by SL(2,R): for any q € Q and A €
SL(2,R), replace each chart ¢ of q by A o ¢ where A acts linearly on
R2. This preserves the compatibility condition and commutes with the
action of Homeo (5), hence descends to a well-defined action on Q. The
action {hs} (resp. {g:}) of the one-parameter group of upper triangular
unipotent matrices (resp. positive diagonal matrices) in SL(2,R) defines
the Teichmiiller horocycle flow (resp., the Teichmiiller geodesic flow);

o As shown by Masur [12] for the principal stratum and by Veech [20] in
general, on the projection of each stratum there is a smooth finite measure
which is SL(2, R)-invariant;
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e Mumford’s compactness criterion. For X C Q, 7(X) C Q is compact
if and only if
inf{{,)(q) : [v], ¢ € X} >0,

where [7] ranges over free homotopy classes on S and £},)(q) is the length
of the shortest representative of [y] w.r.t. the Euclidean metric defined

by q.

Fix a stratum M. By passing to a finite cover of M, we may assume that
Y = ¥(q) isindependent of ¢ € M —i.e. that the singularities are enumerated.
For any pair of points x1,x2 € X, the shortest path in the homotopy class in
S fixing the endpoints x1, z2 is called a saddle connection (we allow z1 = x2
but do not allow homotopically trivial paths from z; to itself). It consists of
finitely many straight segments « : [0,1] — S such that {0,1} = a=(X).
Every ¢ € M assigns to each saddle connection ¢ a length ¢5(¢), and so we
obtain a length function {5 : M — R,

e Compactness criterion on the projection of a stratum. For X C
M, (M) N7 (X) is a compact subset of Q if and only if

inf{¢5(q) : ¢ is a saddle connection, g € X} > 0.

4 Quantitative Nondivergence and Applications

In this section we explain what quantitative nondivergence results are and
how they are used to prove results such as those mentioned above. We start
with another list of features which are common to the papers described in
Sect. 1.

Visits outside large compact sets. The first step in the argument of [7] is a
reduction (developed first in work of S. G. Dani [2] and extended recently by
Kleinbock and Margulis in [8]) in which Diophantine properties of vectors in
R™! are related to dynamical properties of flows on G/I'. First we define
the compact sets

K. =7n({g € G : for all nonzero v € Z",||g - v|| > ¢}).

By Mabhler’s compactness criterion the sets {K. : € > 0} give an exhaustion
of G/TI.
We then have:

Proposition 4.1 ([7, §2]). There is a one-parameter diagonalizable sub-
group {g; :t € R} C G, and a map 7 : R"! — SL(n,R), such that if for all
6 > 0, and for all large t we have

gtﬂ-(T(v)) € Kexp(ftst) s (1)
then v is NVWA.
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Thus to ensure NVWA one must rule out infinitely many visits outside a
sequence of compacts growing at a certain rate.
Very similarly, for the space of quadratic differentials we define

K. =n({q € Q: for every saddle connection &, £5(¢) > }).

The sets { K. : ¢ > 0} are again an exhaustion of Q, this time by Mumford’s
criterion. Moreover their intersections with the projection of each stratum
are an exhaustion of it.

In analogy with Proposition 4.1, we have the following reduction devel-
oped by Masur:

Proposition 4.1 ([12], [14], [21]) Given a permutation o € Sqi1 there is
a surface S, a stratum M C Q = Q(S) and a map 7 : Ay — M, such
that JE,(a) is uniquely ergodic if and only if the vertical foliation of T(a) is
uniquely ergodic.

For any q € Q, if the vertical foliation of q is not uniquely ergodic then
the trajectory {g:q : t > 0} is divergent in the projection of its stratum in Q.
That is, for any € > 0 there is tg such that for all t > to, g:q ¢ K-..

Thus to ensure unique ergodicity one must rule out trajectories which
eventually leave every large compact set in the projection of a stratum.

Quantitative nondivergence. Let X be a space and let f : R¥ — X be a map.
Let B be the ball in R*. For K C X we set

_ HteB:f(t) € K}
a |1B| "

AVgB,f(K)

where | - | is the Lebesgue measure. By a quantitative nondivergence result
we mean a result which gives a lower bound on Avgp ¢(K.) in terms of an
expression which depends on ¢, is independent of B and depends only weakly
on f. Such a result is the main tool of 7], sharpening earlier results of Dani,
Margulis and N. A. Shah [18] on the nondivergence of trajectories under the
action of a unipotent subgroup. With the work of Kleinbock and Margulis as
a model, we prove in [17] similar results for quadratic differentials.
For example we have:

Theorem 4.2 ([17, Theorem 6.3]) For any q € Q, let £,(s) = hyq. There
are positive constants C,«, oo (depending only on S) such that if ¢ € Q, an
interval B C R, and 0 < ¢ < gg have the property that:

for any saddle connection ¢ there is s € B such that ¢5(hsq) > 0, (2)

then for any 0 < ¢ < o we have:

Avgpe (Ko)21-C (g) .
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Using nondivergence results. We illustrate the use of quantitative nondiver-
gence results by explaining how the first part of Theorem 2.3 is deduced from
Proposition 4.1 and Theorem 4.2. By Proposition 4.1, we must rule out the
possibility that the set

{s € R: {gthsq : t > 0} is divergent in the projection of its stratum}

has positive measure. If it did, there would be an interval B C R and 6 > 0
such that for all £ > 0,

{s € B: gihsq ¢ K. for all large enough t}| > 6.

By a simple calculation [17, Claim 7.5], we find ¢ > 0 such that for all ¢ > 0,
and any saddle connection 0, there is s € B such that ¢5(g:hsq) > 0. This
guarantees that (2) holds uniformly for all ¢ > 0. Now taking ¢ small enough
so that C'(e/0)* < 0/2, and t large enough so that

{s € B:ghsq¢ K.}| >0/2,

we obtain a contradiction with Theorem 4.2.

5 Khinchin’s Convergence Case for Fractals

In this section we present a simple result along the lines of Theorem 2.4.
Let ¢ : Z, — R, be a decreasing function. A vector s € R? is said to be
Y—approzimable if there are infinitely many p € Z¢ and ¢ € Z, for which

lgs — pl < ¥(q). 3)

Note that s € R is NVWA iff it is not ¢—(1/¢+9) _approximable for some
6 > 0. Khinchin [6] proved the famous result that the Lebesgue measure of
the (complement of the) 1-approximable vectors is zero if

Y bl <o (4)

(resp., if the series diverges). In this section we show that an analogue of the
convergence case of Khinchin’s theorem holds for certain measures satisfying
a decay condition.

Let 1 be a measure on R%. Extending the previous definition, we say that
 is a-decaying if there exists C' such that for every s € R?, every 0 < r < 1
and every 0 < € < 1 we have

p(B(s,er)) < Ce®u(B(s,r)).

Note that Lebesgue measure is d-decaying.
We prove:

Theorem 5.1 If ji is a-decaying and ) 1(q)* < oo then p-almost every s
is mot Y-approxrimable.
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Notation: In the sequel, the notation x < y means that = and y are quantities
depending on some parameters, and there is some C' > 0, independent of these
parameters, such that z < Cl.

For a vector w € Q¢, the notation w = p/q means that p = (p1,...,pd) €
Zda AS Z+7 and ng(Q:pla s apd) =1

Proposition 5.2 Let J C R? be a bounded open set and let B1, B, ... be
disjoint finite subsets of Q¢ such that

QinJ = GBT.
r=1

For each r, let
L, =min{q: p/q € By}
and let
D, = min{dist(s, B, — {s}) : s € B;.}.
Suppose that p is a-decaying and that

Z(%’i”)apﬂ < 0. (5)

T

Then 1 almost every s € J is not Y¥-approrimable.

Proof. Since the general term in (5) tends to zero, we have for large r that
¥(q)/(¢Dy) < 1/2, whenever p/q € B,. With no loss of generality we may
assume that this holds for all r. This implies, by our assumption that pu is
a-decaying, that for every ¢ € Z_ and every p € Z¢, we have:

V(q)/q
D,/2

u(B(p/0.6(0)/0) < (“SU5) n(Bo/a.D,/2).

The definition of D, implies that the B(p/q, D,/2), p/q € B, are pairwise
disjoint, and are all contained in a fixed neighborhood of .J. Therefore the
quantity

S u(B(p/a, D,/2))

p/q€B,

is bounded uniformly in r.

It is enough to prove the theorem for any open set J' compactly contained
in J, in which case, for all large enough ¢, if (3) holds for s € J’, p € Z% and
q, then p/q € |J B,. Therefore we may assume with no loss of generality that
whenever (3) holds, p/q € | By
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We obtain

Z,u{s € J:3p e 24 s.t. p, g satisfy (3)}

q=1

=> p{se€J:IpeZ secB(p/e.v(q)/e)}

q=1

<> > wBp/e.v()/2))

r=1p/qeB,

<> (5% 3 o/

CORER
r=1

In view of Borel-Cantelli, this proves the theorem. 0

Theorem 5.1 follows, taking
B,={p/q:p€ZnJ

for any ball J C R

Note that there are some fractal sets with Hausdorff dimension «, which
support a natural a-decaying measure. For such measures, the expression in
Theorem 5.1 naturally interpolates (4) for non-integer dimensions.

Taking
BT‘ = {p/q (paq) = 17 q S {27"27‘+1’...727‘+1 - 1}}7
we obtain the following statement, of which Theorem 2.4 is a special case.

Theorem 5.3 ([22]) If 1 is an a-decaying measure on R and v satisfies

> g% ()™ < oo, (6)

q=1

then u-almost every s € R is not Y—approximable.

Questions and Remarks:

1. Different choices of Bi, Ba, ... give different conditions on functions ).
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2. The fact that Theorem 5.1 is not strong enough to show that an a-
decaying measure, with a < d, inherits NVWA is not surprising; indeed, if
M c R%is a submanifold which is degenerate (e.g. M is a rational linear
subspace) then the natural measure on M does not in general inherit
NVWA. Nevertheless, it is possible to specify a stronger decay condition,
under which stronger conclusions may be obtained. Such questions are
addressed in [11].

3. It would be interesting to know whether the condition (6) is the best
possible for an a-decaying measure. This does not seem to be known
even for the coin tossing measure on Cantor’s ternary set.

6 Logarithm Laws on a Teichmiiller Horocycle

As before, let {hs} (respectively {g¢;}) denote the Teichmiiller horocycle (re-
spectively geodesic) flow. We say that q € Q satisfies the upper logarithm law
if for any & > 0, for all sufficiently large ¢ we have:

giq € Kt*(1/2+5) . (7)

Note that this contains finer information than (1): in terms of distance from
some fixed point in the space, it can be computed (cf. [8], [13]) that (1)
describes compacts growing at a linear rate whereas in (7) the rate is loga-
rithmic.

It was proved in [13] that almost every g € Q satisfies the upper logarithm
law, and in fact the following stronger statement holds:

Theorem 6.1 (Masur) For any q € Q, let u be the natural measure on
{roq : 0 € R}. Then p inherits the upper logarithm law.

In this section we show that Masur’s argument can be modified to yield:

Theorem 6.2 For any q € Q, let  be the natural measure on {hsq: s € R}.
Then p inherits the upper logarithm law.

Proof. Fix g € Q and let |- | denote Lebesgue measure on R. We need to show
that |L| = 0, where

L={se[-1,1]: 3, — o0, g1, hsq & K,—/2+5} .

Any saddle connection 1 and any ¢ € M determine a vector (z(q),y(q)) =
(z4(q),yn(q)) € R? by integrating the projection of dn to the horizontal and
vertical coordinates determined by ¢, in each coordinate patch. The coordi-
nates corresponding to all saddle connections form a discrete subset of R2. It
is easily checked that

Glona) = (5.2) (63) i) = (") - o
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Thus if (7) does not hold, for hq instead of ¢ and for some ¢, then for
some saddle connection 7, setting (z,y) = (2,(q),y,(q)) we have:

—t

e
|z +sy| < YTE (9a)
t
e
ly| < /255 (9b)

For each r € N, let
M, = {s € [-1,1] : for some 7 and ¢, (9a) and (9b) hold and |y| € [e",e" "]}

and let M, consist of those s which belong to infinitely many of the M,.
Since for every saddle connection there is at most one s for which |z+sy| = 0,
it follows using (9a) that L — M is countable. Thus it suffices to show that
|Ms| = 0.

Since s € [—1, 1], we have from (9a) that |z| < 1+|y|. We use the following
estimate, which follows immediately from Masur’s estimate [15]:

e The number of saddle connections is quadratic: For any ¢ € Q and
any r > 0,

#{n:lyl <€ |z| <1+yl} < e

For each 7, choose t(y) for which there is equality in (9b). We have ¢(y) >
In |y|. If (9a) and (9b) hold for some ¢ then they also hold for #(y). Multiplying
(9a) and (9b) we get

2

The left hand side of this inequality is a linear function in s with slope |y/?|
and thus for a fixed 7,

1 1
< )
ly[t(y) 20 = |y?|(In [y[)1+20

[{s € [-1,1]: (9a), (9b) hold for some t}| <

Summing on all possible 1 and using Masur’s estimate we obtain:

1
A D YR

n, |yl€leT,emt!
1

<.
r1+25

Therefore Y |M,| < oo and by Borel-Cantelli, | M| = 0. 0
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