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ABSTRACT. The author proves a conjecture of the author: If G
is a semisimple real algebraic defined over Q, I' is an arithmetic
subgroup (with respect to the given Q-structure) and A is a diag-
onalizable subgroup admitting a divergent trajectory in G/T", then
dim A < rankgG.

The purpose of this paper is to prove the following result.

Theorem 1. Let G be a semisimple real algebraic group defined over
Q, let T be an arithmetic lattice (with respect to the given Q-structure),
and let m : G — G/T be the natural map. For any g € G and any R-
diagonalizable subgroup A with dim A > rankgG, there is a compact
K C GJT such that for any T > 0 there is Y € a = Lie(A) satisfying
IY||=T and exp(Y)n(g) € K.

This immediately implies:

Corollary 2 ([W], Conjecture 4.11A). If G, T' are as above, A is an
R-diagonalizable subgroup of G and dim A > rankqoG' then there are no
divergent trajectories for the action of A on G/T.

The case rankgG = rankgG + 1 of Corollary 2 follows from [ToWe,
Thm 1.4]. The case rankgG = 1 is easy, see [W, Prop. 4.12]. In
[ChMo], Chatterjee and Morris obtained a partial result toward Corol-
lary 2 in arbitrary rankqG, and settled the case rankgG = 2.

The result has the following geometric interpretation (see [Mo, ChMo]
for more details): if X is a finite-volume locally symmetric space, then
the rational rank of the corresponding lattice is equal to the maximal
dimension of a closed simply connected flat in a finite cover of X.

We will be using standard terminology and notation from the theory
of algebraic groups and arithmetic subgroups, see e.g. [Bol, Bo2|. By a
real algebraic group we mean a finite index subgroup of the real points
of a semisimple real algebraic group defined over Q. Throughout this
paper, G, I, and 7 : G — G/I are as in the statement of Threorem 1.
There is an action on G/I" by G (and any of its subgroups) defined by
90m(9) = m(g0g)-

The Lie algebra g of G can be equipped with a Q-structure which is

compatible with the Q-structure on G. This means that we may choose
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a (linear) basis of g such that by definition g(Z) is the Z-span of this
basis, and, possibly after replacing I' with a commensurable subgroup,
we have Ad(T")g(Z) = g(Z). For x = w(g) € G/T, let

g, = Ad(g9)g(2)
(which is independent of the choice of g € 771(z)).
We now record some useful facts, proved in [ToWe].

Proposition 3 ([ToWe|, Proposition 3.3). There is a bounded open neigh-
borhood W of 0 in g such that for any v € G /T, the subalgebra generated
by W N g, is unipotent.

By definition, rankgG is the dimension of a maximal Q-split Q-
torus in G. Let B be a minimal (3-parabolic subgroup, and denote by
Py, ..., P, the distinct maximal Q-parabolic subgroups containing B.
It is known that r = rankgG.

For i = 1,...,r denote by u; the Lie algebra of Rad,(P;). Let R;
be the collection of all Lie algebras of unipotent radicals of maximal
Q-parabolics which are conjugate to u;, and let R = |J;_, R;.

A finite subset of g is called horospherical if it linearly spans a subal-
gebra of g which is conjugate to one of the u;’s, and contains no proper
subsets with this property.

Proposition 4 ([ToWe], Proposition 3.5). A subset X C G/T is pre-
compact if and only if there exists a neighborhood W of 0 in g such that
forall z € X, g, "W does not contain a horospherical subset.

We denote the unipotent radical of an algebraic group H by Rad, (H).

Proposition 5 ([ToWe|, Proposition 5.3). Let B C G be a minimal
Q-parabolic in G and for j = 1,2 let U; C Rad,(B) be a unipotent
radical of a Q-parabolic. If Uy, Us are conjugate then Uy = Us.

Fori: =1,...,r let d; = dimu;, let V; = /\‘fig and let p; : G —
GL(V;) be the d;-th exterior power of the adjoint representation. Let
D be a maximal connected R-diagonalizable subgroup of G' and let 0
denote its Lie algebra. Any connected R-diagonalizable subgroup of G
is conjugate to a subgroup of D. Let ¥; C 0* be the weights of p;, that
is, V; = @Xe\h V., where

Vi ={veV;:VY €, p;(Y)v =XV}
and
U, ={x v :V, #{0}}.
For a finite M C g let (M) denote the vector space spanned by M.

For h € R; let vy,...,uq be a set of generators (over Z) of h(Z) and
let py = v1 A--- Ay, be the corresponding vector in V;.
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Proposition 6. For any x = 7w(g) € G/I" there is a neighborhood W
of 0 in g with the following property. For any b € R;, i € {1,...,r},
there is x € U; such that if M is a horospherical subset with (M) = b
andY € 0 is such that Ad(exp(Y)g)M C W N gexp(v)a, then x(Y) < 0.

Proof. For i = 1,...,r, let || - ||; be a norm on V; which is the max
norm with respect to a fixed basis of eigenvectors for the p;(D)-action
on V;. By discreteness of V;(Z) there is a neighborhood W; of 0 in V;
such that W; N p;(9)Vi(Z) = {0} and hence p;(g)py ¢ W; for h € R,.
There is a small enough ¢ > 0 such that each W; contains the e-ball
centered at 0 in V.

Now choose a neighborhood W of 0 in g small enough so that if
V1, ... ,0q; € W then

||Ul/\"'/\vdi”i <Ee.

Given h € R; let p = p;(g)py and choose x € ¥; so that ||p||; is equal
to the absolute value of the coefficient corresponding to an eigenvector
with weight x.

Suppose M' = {vy,...,v4,} C g, and Y € 0 are such that

Ad(exp(Y))M'c W

and (M) = b, where M = Ad(g~')M' C g(Z).
Then by the definition of W; and W we find that

lpi(exp(Y))plli <& and |lpll; > e.
Thus by definition of || - ||;; x(Y) < 0. O

The following topological result is crucial for the proof of Theorem
1. Despite its simplicity we were unable to find it in the literature.

Proposition 7. Let S be an n-dimensional sphere centered at 0 in
R*1. Suppose V is a cover of S by open sets such that for any V € V
there is a linear functional x : R*! — R such that x(s) < 0 for any
s € V. Then there is s € S such that

#{VeV:iseVi>n+1.

Proof. Since S is compact we can assume that V = {Vj,... V;} is
finite. We recall the standard construction of the nerve of V. Let
eq,...,e; be the vectors of the standard basis of R* and let C be the
simplicial complex whose vertices are ej,...,e; and whose (£ — 1)-
dimensional subsimplices are the convex hulls of any set of vertices
€,,...,e;, for which V;, N---NV;, # &. Suppose by contradiction that
the proposition is false; then dimC < n — 1.
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Let fi,..., fr be a partition of unity subordinate to V), i.e. each
fi + S —[0,1] is continuous, Y f; =1 and

supp fi = {s € S: fi(s) # 0} C V..
For each s € S define F': S — C by

F(s) =) _ fi(s)es.

_ We claim that we can modify C and F' to obtain a simplicial complex
C and F': § — C with the following properties:

(i) dimC < dimC.

(ii) F is onto. N

(iii) For any b € C there is ¢ such that for any simplex A of C,

beA = FY(A)cCV.

Let us assume the validity of this claim and complete the proof of
the proposition. Let B be the closed ball centered at 0 such that
S = 0B. We define g : C — B as follows. For each vertex b of C
let g(b) € F~'(b) (note that F~'(b) # @ by (ii)). All other points of
C are convex combinations of vertices and we extend g to all of~5 in
an affine manner. Note that 0 ¢ ¢(C); in fact, for every b € C, by
(iii) there is ¢ such that g(b) is a convex combination of elements of V;,
and in particular x(g(b)) < 0 for the linear functional x which assumes
negative values on V;. Moreover, for every s € S there is 7 such that
s € V; and ¢g(F(s)) is contained in the convex hull of V;. Thus, applying
radial projection to the image of g we obtain a continuous function
G : C — S such that for each s € S, s and G o F(s) are in the same
(open) hemisphere. In particular s and G o F(s) determine a unique
great circle, and moving along it defines a homotopy between G o F
and the identity map S — S. We have shown that a map homotopic to
the identity map from the n-sphere to itself factors through a simplicial
complex of dimension at most n — 1. Thus the identity map induces
the zero map on the nontrivial n-th dimensional homology group of S,
a contradiction.

It remains to prove the claim. Consider the sets U; = C\ F(S \V}),
1=1,...,k. These are open sets since S \ V; is compact, they cover C
and F~1(i4;) C V;. Take a decomposition of C into simplices sufficiently
small so that for any b € C there is ¢ such that for any simplices A, A/,

beA, ANA£2 = A CU,. (1)
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We write the simplices in this decomposition of C as Aq,..., Ay,
where dim A; > dim A, whenever j < ¢, and inductively define simpli-
cial complexes Cy, ... ,C; with each C, a union of simplices of C, and
Fy: S — Cy, as follows. We first set F' = Fy, C = Cy, and supposing F
and C; have been defined, consider three cases. If A,y C Fy(S) then
Cg_H = Cg and Fg+1 = Fg. If Fg(S) ﬂAg_H = @ then Cg+1 = Cg Nint Ae+1
and Fy = Fyle,,,. Finally, if Apyy ¢ Fy(S) then by compactness of S
there is § € int Agyq N\ Fy(S) and we set Copq1 = Cp N intAy, 1 and de-
fine Fy,1 on F[l(int Ay;1) by radially retracting from § to 0A, 1, and
without changing the map Fy outside of F, ' (int Ayy;). We set F=F
and C = C,. It is clear that (i) holds for F. To verify (ii), suppose
y € C~ F(S), and let j be the largest index for which y € int A;.
Then by construction y ¢ F;(S). This implies by construction that
intA;NC; = @, s0y ¢ C, a contradiction. Finally, to prove (iii), let
be 5, let i satisfy (1) and suppose b € A. By induction one sees that
if F(s) € A’ then also F(s) € A/, so if F(s) € A and F(s) € A’ then
ANA # 3 ie.

F'ayc | Fa),
ANA/£D

and (iii) follows from (1). O

Proof of Theorem 1. Let A be as in the statement of the theorem. Ap-
plying a conjugation we may assume that A C D. Let x = 7(g) for
g € G, and let W be a small enough neighborhood of 0 in g so that
the conclusions of Propositions 3 and 6 are satisfied. Let

K ={ze€ G/T : g,NnW does not contain a horospherical subset},

a compact subset of G/T' by Proposition 4. Thus if Y € a with
exp(Y)r ¢ K then for some M C g(Z) we have (M) € R and
Ad(exp(Y)g)M C W N Gexp(v)a-

Let a denote the Lie algebra of A, equipped with a Euclidean norm.
Assume the theorem is false; then for some 7" > 0, the (dim A — 1)
dimensional sphere

S={Yea:|Y|=T}
is covered by the sets V = {V(h) : h € R}, where
V(b)) ={Y €a:IM C g st. (M)="5, Ad(exp(Y)g)M C W N Gexp(v)z }-

Applying Propositions 6 and 7 we find that there is Yy € S which is
contained in V(1) N---NV (hy41) with b; distinet for j =1,...,r+1.
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After re-ordering the indices, this means that for j = 1,2 and some
go € G there are M; C g such that

b1 # bo, Ad(go)hl = bho, where bh; = <M]> (2)

and
Ad(z)M; C W N gr;y  where z = exp(Yp)g.

Let f be the Lie algebra spanned by W N g, (). By Proposition 3 it is
unipotent. Note that ' = Ad(z7!)f is generated by elements of g(Z),
therefore it is contained in the Lie algebra §” of the unipotent radical
of a minimal Q-parabolic. Then by construction we have h; C §’ and
Ad(go)b1 = by C . Hence by Proposition 5 we have that h; = by, a
contradiction to (2). O
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