DIVERGENT TRAJECTORIES AND Q-RANK

BARAK WEISS

ABSTRACT. The author proves a conjecture of the author: If G is a semisimple real algebraic defined over \mathbb{Q} , Γ is an arithmetic subgroup (with respect to the given \mathbb{Q} -structure) and A is a diagonalizable subgroup admitting a divergent trajectory in G/Γ , then $\dim A \leq \operatorname{rank}_{\mathbb{Q}} G$.

The purpose of this paper is to prove the following result.

Theorem 1. Let G be a semisimple real algebraic group defined over \mathbb{Q} , let Γ be an arithmetic lattice (with respect to the given \mathbb{Q} -structure), and let $\pi: G \to G/\Gamma$ be the natural map. For any $g \in G$ and any \mathbb{R} -diagonalizable subgroup A with dim $A > \operatorname{rank}_{\mathbb{Q}}G$, there is a compact $K \subset G/\Gamma$ such that for any T > 0 there is $Y \in \mathfrak{a} = \operatorname{Lie}(A)$ satisfying $\|Y\| = T$ and $\exp(Y)\pi(g) \in K$.

This immediately implies:

Corollary 2 ([W], Conjecture 4.11A). If G, Γ are as above, A is an \mathbb{R} -diagonalizable subgroup of G and $\dim A > \operatorname{rank}_{\mathbb{Q}}G$ then there are no divergent trajectories for the action of A on G/Γ .

The case $\operatorname{rank}_{\mathbb{R}}G=\operatorname{rank}_{\mathbb{Q}}G+1$ of Corollary 2 follows from [ToWe, Thm 1.4]. The case $\operatorname{rank}_{\mathbb{Q}}G=1$ is easy, see [W, Prop. 4.12]. In [ChMo], Chatterjee and Morris obtained a partial result toward Corollary 2 in arbitrary $\operatorname{rank}_{\mathbb{Q}}G$, and settled the case $\operatorname{rank}_{\mathbb{Q}}G=2$.

The result has the following geometric interpretation (see [Mo, ChMo] for more details): if X is a finite-volume locally symmetric space, then the rational rank of the corresponding lattice is equal to the maximal dimension of a closed simply connected flat in a finite cover of X.

We will be using standard terminology and notation from the theory of algebraic groups and arithmetic subgroups, see e.g. [Bo1, Bo2]. By a real algebraic group we mean a finite index subgroup of the real points of a semisimple real algebraic group defined over \mathbb{Q} . Throughout this paper, G, Γ , and $\pi: G \to G/\Gamma$ are as in the statement of Threorem 1. There is an action on G/Γ by G (and any of its subgroups) defined by $g_0\pi(g) = \pi(g_0g)$.

The Lie algebra \mathfrak{g} of G can be equipped with a \mathbb{Q} -structure which is compatible with the \mathbb{Q} -structure on G. This means that we may choose

a (linear) basis of \mathfrak{g} such that by definition $\mathfrak{g}(\mathbb{Z})$ is the \mathbb{Z} -span of this basis, and, possibly after replacing Γ with a commensurable subgroup, we have $\mathrm{Ad}(\Gamma)\mathfrak{g}(\mathbb{Z}) = \mathfrak{g}(\mathbb{Z})$. For $x = \pi(g) \in G/\Gamma$, let

$$\mathfrak{g}_x = \mathrm{Ad}(g)\mathfrak{g}(\mathbb{Z})$$

(which is independent of the choice of $g \in \pi^{-1}(x)$).

We now record some useful facts, proved in [ToWe].

Proposition 3 ([ToWe], Proposition 3.3). There is a bounded open neighborhood W of 0 in \mathfrak{g} such that for any $x \in G/\Gamma$, the subalgebra generated by $W \cap \mathfrak{g}_x$ is unipotent.

By definition, $\operatorname{rank}_{\mathbb{Q}}G$ is the dimension of a maximal \mathbb{Q} -split \mathbb{Q} -torus in G. Let B be a minimal \mathbb{Q} -parabolic subgroup, and denote by P_1, \ldots, P_r the distinct maximal \mathbb{Q} -parabolic subgroups containing B. It is known that $r = \operatorname{rank}_{\mathbb{Q}}G$.

For i = 1, ..., r denote by \mathfrak{u}_i the Lie algebra of $\operatorname{Rad}_u(P_i)$. Let \mathcal{R}_i be the collection of all Lie algebras of unipotent radicals of maximal \mathbb{Q} -parabolics which are conjugate to \mathfrak{u}_i , and let $\mathcal{R} = \bigcup_{i=1}^r \mathcal{R}_i$.

A finite subset of \mathfrak{g} is called *horospherical* if it linearly spans a subalgebra of \mathfrak{g} which is conjugate to one of the \mathfrak{u}_i 's, and contains no proper subsets with this property.

Proposition 4 ([ToWe], Proposition 3.5). A subset $X \subset G/\Gamma$ is precompact if and only if there exists a neighborhood W of 0 in \mathfrak{g} such that for all $x \in X$, $\mathfrak{g}_x \cap W$ does not contain a horospherical subset.

We denote the unipotent radical of an algebraic group H by $Rad_u(H)$.

Proposition 5 ([ToWe], Proposition 5.3). Let $B \subset G$ be a minimal \mathbb{Q} -parabolic in G and for j = 1, 2 let $U_j \subset \operatorname{Rad}_u(B)$ be a unipotent radical of a \mathbb{Q} -parabolic. If U_1, U_2 are conjugate then $U_1 = U_2$.

For $i=1,\ldots,r$ let $d_i=\dim\mathfrak{u}_i$, let $V_i=\bigwedge_1^{d_i}\mathfrak{g}$ and let $\rho_i:G\to \mathrm{GL}(V_i)$ be the d_i -th exterior power of the adjoint representation. Let D be a maximal connected \mathbb{R} -diagonalizable subgroup of G and let \mathfrak{d} denote its Lie algebra. Any connected \mathbb{R} -diagonalizable subgroup of G is conjugate to a subgroup of D. Let $\Psi_i\subset\mathfrak{d}^*$ be the weights of ρ_i , that is, $V_i=\bigoplus_{\chi\in\Psi_i}V_{\chi}$, where

$$V_{\chi} = \{ v \in V_i : \forall Y \in \mathfrak{d}, \ \rho_i(Y)v = e^{\chi(Y)}v \}$$

and

$$\Psi_i = \{\chi \in \mathfrak{d}^* : V_\chi \neq \{0\}\}.$$

For a finite $M \subset \mathfrak{g}$ let $\langle M \rangle$ denote the vector space spanned by M. For $\mathfrak{h} \in \mathcal{R}_i$ let v_1, \ldots, v_{d_i} be a set of generators (over \mathbb{Z}) of $\mathfrak{h}(\mathbb{Z})$ and let $\mathbf{p}_{\mathfrak{h}} = v_1 \wedge \cdots \wedge v_{d_i}$ be the corresponding vector in V_i .

П

Proposition 6. For any $x = \pi(g) \in G/\Gamma$ there is a neighborhood W of 0 in \mathfrak{g} with the following property. For any $\mathfrak{h} \in \mathcal{R}_i$, $i \in \{1, \ldots, r\}$, there is $\chi \in \Psi_i$ such that if M is a horospherical subset with $\langle M \rangle = \mathfrak{h}$ and $Y \in \mathfrak{d}$ is such that $\operatorname{Ad}(\exp(Y)g)M \subset W \cap \mathfrak{g}_{\exp(Y)x}$, then $\chi(Y) < 0$.

Proof. For i = 1, ..., r, let $\|\cdot\|_i$ be a norm on V_i which is the max norm with respect to a fixed basis of eigenvectors for the $\rho_i(D)$ -action on V_i . By discreteness of $V_i(\mathbb{Z})$ there is a neighborhood W_i of 0 in V_i such that $W_i \cap \rho_i(g)V_i(\mathbb{Z}) = \{0\}$ and hence $\rho_i(g)\mathbf{p}_{\mathfrak{h}} \notin W_i$ for $\mathfrak{h} \in \mathcal{R}_i$. There is a small enough $\varepsilon > 0$ such that each W_i contains the ε -ball centered at 0 in V_i .

Now choose a neighborhood W of 0 in \mathfrak{g} small enough so that if $v_1, \ldots, v_{d_i} \in W$ then

$$||v_1 \wedge \cdots \wedge v_{d_i}||_i < \varepsilon.$$

Given $\mathfrak{h} \in \mathcal{R}_i$ let $\mathbf{p} = \rho_i(g)\mathbf{p}_{\mathfrak{h}}$ and choose $\chi \in \Psi_i$ so that $\|\mathbf{p}\|_i$ is equal to the absolute value of the coefficient corresponding to an eigenvector with weight χ .

Suppose $M' = \{v_1, \ldots, v_{d_i}\} \subset \mathfrak{g}_x$ and $Y \in \mathfrak{d}$ are such that

$$Ad(\exp(Y))M' \subset W$$

and $\langle M \rangle = \mathfrak{h}$, where $M = \operatorname{Ad}(g^{-1})M' \subset \mathfrak{g}(\mathbb{Z})$.

Then by the definition of W_i and W we find that

$$\|\rho_i(\exp(Y))\mathbf{p}\|_i < \varepsilon \text{ and } \|\mathbf{p}\|_i \ge \varepsilon.$$

Thus by definition of $\|\cdot\|_i$, $\chi(Y) < 0$.

The following topological result is crucial for the proof of Theorem 1. Despite its simplicity we were unable to find it in the literature.

Proposition 7. Let S be an n-dimensional sphere centered at 0 in \mathbb{R}^{n+1} . Suppose \mathcal{V} is a cover of S by open sets such that for any $V \in \mathcal{V}$ there is a linear functional $\chi : \mathbb{R}^{n+1} \to \mathbb{R}$ such that $\chi(s) < 0$ for any $s \in V$. Then there is $s \in S$ such that

$$\#\{V\in\mathcal{V}:s\in V\}\geq n+1.$$

Proof. Since S is compact we can assume that $\mathcal{V} = \{V_1, \ldots, V_k\}$ is finite. We recall the standard construction of the *nerve* of \mathcal{V} . Let $\mathbf{e}_1, \ldots, \mathbf{e}_k$ be the vectors of the standard basis of \mathbb{R}^k and let \mathcal{C} be the simplicial complex whose vertices are $\mathbf{e}_1, \ldots, \mathbf{e}_k$ and whose $(\ell - 1)$ -dimensional subsimplices are the convex hulls of any set of vertices $\mathbf{e}_{i_1}, \ldots, \mathbf{e}_{i_\ell}$ for which $V_{i_1} \cap \cdots \cap V_{i_\ell} \neq \emptyset$. Suppose by contradiction that the proposition is false; then $\dim \mathcal{C} \leq n-1$.

Let f_1, \ldots, f_k be a partition of unity subordinate to \mathcal{V} , i.e. each $f_i: S \to [0, 1]$ is continuous, $\sum f_i \equiv 1$ and

$$\operatorname{supp} f_i = \{ s \in S : f_i(s) \neq 0 \} \subset V_i.$$

For each $s \in S$ define $F: S \to \mathcal{C}$ by

$$F(s) = \sum f_i(s)\mathbf{e}_i.$$

We claim that we can modify \mathcal{C} and F to obtain a simplicial complex $\widetilde{\mathcal{C}}$ and $\widetilde{F}:S\to\widetilde{\mathcal{C}}$ with the following properties:

- (i) $\dim \widetilde{\mathcal{C}} \leq \dim \mathcal{C}$.
- (ii) \widetilde{F} is onto.
- (iii) For any $b \in \widetilde{\mathcal{C}}$ there is i such that for any simplex Δ of $\widetilde{\mathcal{C}}$,

$$b \in \Delta \implies \widetilde{F}^{-1}(\Delta) \subset V_i$$
.

Let us assume the validity of this claim and complete the proof of the proposition. Let B be the closed ball centered at 0 such that $S = \partial B$. We define $g: \widetilde{\mathcal{C}} \to B$ as follows. For each vertex b of $\widetilde{\mathcal{C}}$ let $g(b) \in \widetilde{F}^{-1}(b)$ (note that $\widetilde{F}^{-1}(b) \neq \emptyset$ by (ii)). All other points of $\widetilde{\mathcal{C}}$ are convex combinations of vertices and we extend g to all of $\widetilde{\mathcal{C}}$ in an affine manner. Note that $0 \notin g(\widetilde{\mathcal{C}})$; in fact, for every $b \in \widetilde{\mathcal{C}}$, by (iii) there is i such that g(b) is a convex combination of elements of V_i , and in particular $\chi(g(b)) < 0$ for the linear functional χ which assumes negative values on V_i . Moreover, for every $s \in S$ there is i such that $s \in V_i$ and g(F(s)) is contained in the convex hull of V_i . Thus, applying radial projection to the image of q we obtain a continuous function $G:\widetilde{\mathcal{C}}\to S$ such that for each $s\in S$, s and $G\circ \widetilde{F}(s)$ are in the same (open) hemisphere. In particular s and $G \circ \widetilde{F}(s)$ determine a unique great circle, and moving along it defines a homotopy between $G \circ \widetilde{F}$ and the identity map $S \to S$. We have shown that a map homotopic to the identity map from the n-sphere to itself factors through a simplicial complex of dimension at most n-1. Thus the identity map induces the zero map on the nontrivial n-th dimensional homology group of S, a contradiction.

It remains to prove the claim. Consider the sets $\mathcal{U}_i = \mathcal{C} \setminus F(S \setminus V_i)$, $i = 1, \ldots, k$. These are open sets since $S \setminus V_i$ is compact, they cover \mathcal{C} and $F^{-1}(\mathcal{U}_i) \subset V_i$. Take a decomposition of \mathcal{C} into simplices sufficiently small so that for any $b \in \mathcal{C}$ there is i such that for any simplices Δ , Δ' ,

$$b \in \Delta, \ \Delta \cap \Delta' \neq \varnothing \implies \Delta' \subset \mathcal{U}_i.$$
 (1)

We write the simplices in this decomposition of \mathcal{C} as $\Delta_1, \ldots, \Delta_t$ where dim $\Delta_i \geq \dim \Delta_\ell$ whenever $j < \ell$, and inductively define simplicial complexes $\mathcal{C}_0, \ldots, \mathcal{C}_t$ with each \mathcal{C}_ℓ a union of simplices of \mathcal{C} , and $F_{\ell}: S \to \mathcal{C}_{\ell}$, as follows. We first set $F = F_0$, $\mathcal{C} = \mathcal{C}_0$, and supposing F_{ℓ} and \mathcal{C}_{ℓ} have been defined, consider three cases. If $\Delta_{\ell+1} \subset F_{\ell}(S)$ then $\mathcal{C}_{\ell+1} = \mathcal{C}_{\ell}$ and $F_{\ell+1} = F_{\ell}$. If $F_{\ell}(S) \cap \Delta_{\ell+1} = \emptyset$ then $\mathcal{C}_{\ell+1} = \mathcal{C}_{\ell} \setminus \operatorname{int} \Delta_{\ell+1}$ and $F_{\ell+1} = F_{\ell}|_{\mathcal{C}_{\ell+1}}$. Finally, if $\Delta_{\ell+1} \not\subset F_{\ell}(S)$ then by compactness of S there is $\delta \in \operatorname{int} \Delta_{\ell+1} \setminus F_{\ell}(S)$ and we set $\mathcal{C}_{\ell+1} = \mathcal{C}_{\ell} \setminus \operatorname{int} \Delta_{\ell+1}$ and define $F_{\ell+1}$ on $F_{\ell}^{-1}(\operatorname{int}\Delta_{\ell+1})$ by radially retracting from δ to $\partial\Delta_{\ell+1}$, and without changing the map F_{ℓ} outside of $F_{\ell}^{-1}(\operatorname{int} \Delta_{\ell+1})$. We set $\widetilde{F} = F_{\ell}$ and $\widetilde{\mathcal{C}} = \mathcal{C}_t$. It is clear that (i) holds for \widetilde{F} . To verify (ii), suppose $y \in \widetilde{\mathcal{C}} \setminus \widetilde{F}(S)$, and let j be the largest index for which $y \in \operatorname{int} \Delta_i$. Then by construction $y \notin F_j(S)$. This implies by construction that int $\Delta_i \cap \mathcal{C}_i = \emptyset$, so $y \notin \widetilde{\mathcal{C}}$, a contradiction. Finally, to prove (iii), let $b \in \mathcal{C}$, let i satisfy (1) and suppose $b \in \Delta$. By induction one sees that if $F(s) \in \Delta'$ then also $F(s) \in \Delta'$, so if $F(s) \in \Delta$ and $F(s) \in \Delta'$ then $\Delta \cap \Delta' \neq \emptyset$, i.e.

$$\widetilde{F}^{-1}(\Delta) \subset \bigcup_{\Delta \cap \Delta' \neq \varnothing} F^{-1}(\Delta'),$$

and (iii) follows from (1).

Proof of Theorem 1. Let A be as in the statement of the theorem. Applying a conjugation we may assume that $A \subset D$. Let $x = \pi(g)$ for $g \in G$, and let W be a small enough neighborhood of 0 in \mathfrak{g} so that the conclusions of Propositions 3 and 6 are satisfied. Let

 $K = \{z \in G/\Gamma : \mathfrak{g}_z \cap W \text{ does not contain a horospherical subset}\},$

a compact subset of G/Γ by Proposition 4. Thus if $Y \in \mathfrak{a}$ with $\exp(Y)x \notin K$ then for some $M \subset \mathfrak{g}(\mathbb{Z})$ we have $\langle M \rangle \in \mathcal{R}$ and $\operatorname{Ad}(\exp(Y)g)M \subset W \cap \mathfrak{g}_{\exp(Y)x}$.

Let $\mathfrak a$ denote the Lie algebra of A, equipped with a Euclidean norm. Assume the theorem is false; then for some T>0, the $(\dim A-1)$ -dimensional sphere

$$S = \{Y \in \mathfrak{a} : \|Y\| = T\}$$

is covered by the sets $\mathcal{V} = \{V(\mathfrak{h}) : \mathfrak{h} \in \mathcal{R}\}$, where

$$V(\mathfrak{h}) = \{ Y \in \mathfrak{a} : \exists M \subset \mathfrak{g} \text{ s.t. } \langle M \rangle = \mathfrak{h}, \operatorname{Ad}(\exp(Y)g)M \subset W \cap \mathfrak{g}_{\exp(Y)x} \}.$$

Applying Propositions 6 and 7 we find that there is $Y_0 \in S$ which is contained in $V(\mathfrak{h}_1) \cap \cdots \cap V(\mathfrak{h}_{r+1})$ with \mathfrak{h}_j distinct for $j = 1, \ldots, r+1$.

After re-ordering the indices, this means that for j=1,2 and some $g_0 \in G$ there are $M_j \subset \mathfrak{g}$ such that

$$\mathfrak{h}_1 \neq \mathfrak{h}_2, \ \mathrm{Ad}(g_0)\mathfrak{h}_1 = \mathfrak{h}_2, \quad \text{where } \mathfrak{h}_j = \langle M_j \rangle$$
 (2)

and

$$\operatorname{Ad}(z)M_j \subset W \cap \mathfrak{g}_{\pi(z)}$$
 where $z = \exp(Y_0)g$.

Let \mathfrak{f} be the Lie algebra spanned by $W \cap \mathfrak{g}_{\pi(z)}$. By Proposition 3 it is unipotent. Note that $\mathfrak{f}' = \mathrm{Ad}(z^{-1})\mathfrak{f}$ is generated by elements of $\mathfrak{g}(\mathbb{Z})$, therefore it is contained in the Lie algebra \mathfrak{f}'' of the unipotent radical of a minimal \mathbb{Q} -parabolic. Then by construction we have $\mathfrak{h}_1 \subset \mathfrak{f}''$ and $\mathrm{Ad}(g_0)\mathfrak{h}_1 = \mathfrak{h}_2 \subset \mathfrak{f}''$. Hence by Proposition 5 we have that $\mathfrak{h}_1 = \mathfrak{h}_2$, a contradiction to (2).

Acknowledgements. I am very grateful to Curt McMullen and Michael Levin for explaining basic topology to me. The proof of Proposition 7 is due to Levin, and an earlier version of this paper used ideas of McMullen. I am also grateful to Dave Morris and George Tomanov for useful discussions, and to the Max Planck Institute in Bonn for its hospitality.

References

- [Bo1] A. Borel, Introduction aux groupes arithmetiques, Hermann, Paris, 1969.
- [Bo2] A. Borel, Linear algebraic groups, second enlarged edition. Springer, 1991.
- [ChMo] P. Chatterjee and D. Morris, Divergent torus orbits in homogeneous spaces of \mathbb{Q} -rank two, (2004), preprint.
- [Mo] D. (Witte) Morris, Introduction to arithmetic groups (preliminary version), available online at:
 - http://people.uleth.ca/~dave.morris/LectureNotes.shtml#ArithmeticGroups
- [ToWe] G. Tomanov and B. Weiss, Closed orbits for actions of maximal tori on homogeneous spaces, Duke Math. J. 119 (2003), no. 2, 367-392.
- [W] B. Weiss, Divergent trajectories on noncompact parameter spaces, Geom. Funct. Anal. 14 no. 1 (2004) 94–149.

BEN GURION UNIVERSITY, BE'ER SHEVA, ISRAEL 84105 barakw@math.bgu.ac.il