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ABSTRACT. Let G be a real algebraic group defined over Q, let
T" be an arithmetic subgroup, and let T' be any torus containing
a maximal R-split torus. We prove that the closed orbits for the
action of T on G/T" admit a simple algebraic description. In par-
ticular we show that if G is reductive, an orbit T'zI" is closed if and
only if 27Tz is a product of compact torus and a torus defined
over Q, and is divergent if and only if the maximal R-split subtorus
of z7 1Tz is defined over Q and Qsplit. Our analysis also yields
the following:

o there is a compact K C G/T" which intersects every T-orbit.

o if rankgG < rankrG, there are no divergent orbits for T'.

1. INTRODUCTION

Let G be the group of real points of a connected Q-algebraic group G,
and let I be an arithmetic subgroup of G (i.e. 'NG(Z) has finite index
in both I" and G(Z)). Any subgroup H of G acts on the homogeneous
space G/I" by left translations:

hm(g) = m(hg),
where 7 : G — G/I is the natural quotient map.

A celebrated conjecture of M. S. Raghunathan, proved in full general-
ity by M. Ratner in the early 1990’s, implies that when H is connected
and generated by unipotents elements, every orbit closure is homoge-
neous, i.e. it coincides with the orbit of a bigger group. The resulting
reduction of certain dynamical questions to algebraic questions has had
many deep applications in number theory and geometry. We refer the
reader to [KIShSt| for an up to date survey of these developments.

The most general conjecture regarding dynamics of such actions on
homogeneous spaces was formulated by G. A. Margulis. According
to Margulis’ conjecture, unless the action of H admits natural factors
on which H acts nontrivially as a one-parameter non-unipotent group,
the orbit closures are homogeneous for groups H generated by R-split
elements [M, Conjecture 1]. (Recall that an element g € G is R-split if

all of its eigenvalues are real.) A very interesting and highly nontrivial
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special case of this conjecture is when H is a maximal real R-split
algebraic torus in G, that is, when dim H > 2 and H is a maximal
abelian subgroup of G generated by R-split elements. In this paper we
give an explicit algebraic description of all (topologically) closed orbits
for this action. More specifically, we prove that all closed orbits are
‘standard’ — they correspond to Q-subtori in G (Theorem 1.1).

Consider the simplest case in which G = SL(2,R), I' = SL(2,Z)
and 7 is the subgroup of positive diagonal matrices. The action of T’
is then the geodesic flow on the unit tangent bundle to the modular
surface H/I'. This is a noncompact manifold, with one cusp whose lifts
correspond to all rational numbers. Any closed orbit for this flow is
either periodic or divergent (an orbit T'w(z) is divergent if the orbit
map t +— tmw(x) is proper, or equivalently, if {¢,7(z)} leaves compact
subsets of G/I' whenever {t,} leaves compact subsets of T"). Since
a divergent orbit must go ‘into the cusp’, a geodesic goes to infinity
in both directions if and only if one (hence any) of its lifts to H has
both endpoints on Q U {oo}. Equivalently, T'm(g) is divergent if and
only if ¢g7'Tg is diagonalizable over Q. An orbit T'w(z) is periodic if
and only if Stab(w(x)) = 2 'Tz N SL(2,Z) is a cocompact subgroup
of  'Tx. Therefore Tr(x) is periodic if and only if z 'Tx is defined
over Q and it does not admit nontrivial Q-rational homomorphisms to
R*, i.e. 27Tz is a Q-anisotropic torus.

Our work shows that a similar description of closed and divergent
orbits is valid in the general case. For example, as a special case of
Theorems 1.4 and 1.5 below, we obtain:

Theorem 1.1. Let G be a reductive Q-algebraic group, T an R-torus
containig a mazimal R-split torus, T = T(R) and let z € G. Then:

e Tn(z) is a closed orbit if and only if x*Tx is a product of a
Q-subtorus and an R-anisotropic R-subtorus;

e Tn(z) is a divergent orbit if and only if the mazimal R-split
subtorus of x~'Tx s defined over Q and Q-split.

According to a result of Prasad and Raghunathan [PrRa, Theorem
2.13] the set of closed T-orbits is not empty if the torus T is maximal.
This result does not hold in general for a smaller torus.

Theorem 1.1 generalizes the following (unpublished) result of Mar-
gulis, proved in 1997 in response to a question of the second-named
author.

Theorem 1.2 (Margulis). Let G = SL(n,R), I = SL(n,Z), and let T
be the group of all diagonal matrices. Then Tn(g) is divergent if and
only if g~ *Tg is a real Q-split torus.
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We include the proof of Theorem 1.2 in the appendix.

Earlier work of S. G. Dani [Da] showed that no algebraic description
of divergent trajectories is possible for the action of one-parameter
diagonalizable subgroups on SL(n,R)/SL(n,Z), n > 3, or more gen-
erally, for actions on G/I" when rankg(G) > 2. Dani discusses trajec-
tories rather than orbits, that is, the action of T' = {d(t) : t € R} is
replaced by the action of the semigroup {d(¢) : ¢ > 0}. In [Da] actions
of multidimensional semigroups or groups were not considered.

We now state our main result:

Theorem 1.3. Let G be a Q-algebraic group and let T be a torus
defined over R which contains a maximal R-split torus and a mazimal
Q-split Q-torus S. Let G = G(R), T = T(R), S = S(R), and let T’
be an arithmetic subgroup of G. Then there exists a compact subset
K C G/T such that:

(1) Tn(z)N K # 0 for any z € G.
(2) One of the following holds:
(i) x € Zg(S)G(QRL(G), where R,(G) is the unipotent
radical of G and Zg(S) is the centralizer of S in G;
(ii) the ‘set of recurrence’

{deT:dr(z) € K}

1s unbounded in T.

We apply Theorem 1.3 in order to describe the divergent orbits for
T on G/T.

Theorem 1.4. Let the notation be as in Theorem 1.8, and let x € G.
The following are equivalent:

(1) The orbit Tw(x) is divergent.

(2) z € Zg(S)G(QR.L(G) and rankyG = rankgG.

(3) There is u € Ry(G) such that the mazimal R-split R-torus of

(zu) ™' Tau is a mazimal Q-split Q-torus of G.

In particular, if rankgG < rankgG then G/T" does not contain diver-
gent orbits for T.

Our results about divergent orbits also yield information about all
closed orbits.

Theorem 1.5. Let the notation be as in Theorem 1.3. Giwen x € G
we denote by T, the connected component of the identity in the Zariski
closure of z7'Tx NT in G. Then the orbit Tn(z) is closed if and only
if there exists an element u € Ry(Zg(Ty)) such that (xu) 'Tzu is a
product of a Q-subtorus and an R-anisotropic R-subtorus.
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We remark that it is not difficult to explicitly describe all closed or-
bits of T on G /T in the case when I is any lattice in G and rankzg G = 1.
(See, for example, [Da, §5].) In view of Margulis’ arithmeticity theo-
rem, our assumption that [' is arithmetic entails no loss of generality
when rankr G > 2.

As a further application, we deduce from the first statement in The-
orem 1.3:

Corollary 1.6. Any closed T-invariant subset of G/T contains a min-
imal (w.r.t. inclusion) closed invariant subset.

Let us briefly describe our proof of the main result, Theorem 1.3,
assuming for simplicity that G is reductive. Following Margulis, we
establish (1) by a ‘push out’ argument: we show that there is a finite
subset ' C T and a neighborhood W of 0 in the Lie algebra G of
GG such that for any g € G, there is t € F such that all elements of
W N Ad(g)Gy are enlarged by applying Ad(t) (see Proposition 4.1 for a
precise formulation). Then, applying successively elements of F, after
finitely many steps we obtain ¢y € T such that Ad(tog)Gz N W = {0},
which implies that ty7(g) is in a compact subset of G/I" depending only
on W.

Note that a statement similar to Proposition 4.1 is established in
[KaMa), where it is shown that F' as above exists in G. We show that
F' can be found inside 7'.

We then show that in case a compact C C T is given and z ¢
Zc(S)G(Q) then an element ¢, as above can be found, which fur-
thermore does not belong to C. In the case SL(n,R)/SL(n,Z), us-
ing Mahler’s compactness criterion, Margulis showed this by proving
Proposition A.2: For g ¢ T'SL(n,Q), any finite set L of nonzero vectors
in gZ", and any neighborhood W of 0 in R", there is t; € T \ C such
that tocLL N W = 0.

In the general case, an analogue of Proposition A.2 in which the
action of SL(n,R) on R™ is replaced with the adjoint representation of
G on G, turns out to be false. Remedying this is one of the difficult
parts of the proof, and requires a more subtle compactness criterion
involving what we call ‘horospherical subsets’ — finite sets of vectors
spanning the unipotent radical of a maximal Q-parabolic subalgebra —
rather than individual vectors (see Definition 3.4 and Proposition 3.5).
We prove Proposition 5.1, which is an analogue of Proposition A.2
for horospherical subsets. Thus it appears that horospherical subsets
share some of the advantageous properties of the individual vectors in
the proof of Theorem 1.2 for SL(n,R)/SL(n,Z).
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In the concluding section of this paper we give some examples illus-
trating the necessity of our hypotheses, and formulate some questions
for further research.

The results of this paper were announced in [To].
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2. PRELIMINARIES

2.1. Notation and terminology. As usual C, R, Q and Z denote
the complex, real, rational and integer numbers, respectively.

We shall use freely the standard notions of the theory of linear alge-
braic groups [Bol].

We use boldface letters in order to denote the k-algebraic groups
(where £ is a field) and if £ C R we will use the corresponding uppercase
letters to denote the group of R-rational points of these k-algebraic
groups. So, we have H = H(R) where H is a k-algebraic group. The
group H is called a real algebraic group.

In this paper G denotes a Q-algebraic group, S a maximal Q-split
subtorus in G and T denotes an R-torus containing both a maximal
R-split subtorus in G and S. Note that T is an almost direct product
(over R) of a R-split subtorus and a R-anisotropic subtorus and the
group of R-points of the latter is compact. Also recall that if H is any
R-torus in G then H contains a unique maximal (in H) Q-subtorus
and H contains a unique maximal (in H) R-split subtorus.

We consider G as a Q-subgroup of GL(n, C) and we denote by G(Z)
the group of integer matrices of G. If k£ is a subfield of C then the
k-rank of G (notation: rank;G) is by definition the dimension of the
maximal k-split subtori of G. We denote by R,(G) (resp., R,(G)) the
(real points of) the unipotent radical of G.

If H is a Lie group we denote the identity component of H by H°. We
preserve the same notation for the identity component of an algebraic
group H (with respect to the Zariski topology). The above notation
does not lead to confusion because if H C GL(n,C) then the identity
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component of the Lie group H coincides with the identity component
of the algebraic group H.

If H and L are subgroups of G then N (H) denotes the normalizer
of H in L and Z;(H) denotes the centralizer of H in L.

The Lie algebra Lie(G) of G is equipped with a Q-structure which is
compatible with the Q-structure of G [Bol, Theorem 3.4]. We denote
G = Lie(G)(R) and Gz = Lie(G)(Z). We have G = Lie(G). We fix a
norm || - || on G and use the same notation for the restriction of || - || to
any subalgebra of G. We say that a Lie subalgebra U of G is unipotent
if it corresponds to a Zariski closed unipotent subgroup of G.

Let I" be an arithmetic subgroup of G. Then Ad(T") is an arithmetic
subgroup of Ad(G) (cf. [Bo3]). So there is an arithmetic subgroup
[y C G such that Ad([y)Gz = Gz. Since I and 'y are commensurable
(that is, [ N I'y is of finite index in both I' and Iy) and the validity
of all assertions we will prove is unaffected by a passage from I' to a
commensurable subgroup (see Lemma 6.1 below), from now on we will
(as we can) assume that

Let 7 : G — G/T be the natural quotient map. For a closed subgroup
H of G, we let

FH:FHH, andﬂH:H—>H/FH

be the natural quotient map.
For any z = m(g) € G/, we will let

(which makes sense in view of the above hypothesis).

2.2. k-roots. The facts of this subsection will be essential for the proof
of Proposition 5.2. Let k£ be any field, H be a reductive k-algebraic
group and S a maximal k-split algebraic torus. Let ® be the set of k-
roots with respect to S, ®* the set of positive k-roots (corresponding
to a chosen minimal k-parabolic subgroup B containing S) and A the
subset of simple k-roots in ®*.(When £ is not clear from the context
we will write @y, ®; and Ay, instead of ®, @+ and A, respectively.) We
refer to [Bol, §21] for the standard definitions related to the k-roots.
Let

1
It is well known that ®g is a reduced root system and the root systems

® and @, have the same Weyl chambers, bases of simple roots and Weyl
group (cf. [ViO, ch. 4, §2]).
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For every o € A we define a projection 7, : ® — Z by m,(\) = n,
where A =}, \ ngf.

Let P be a standard parabolic subgroup, i.e. B C P. There exists
¥ C A such that P is a semi-direct product of R, (P) and of its Levi
subgroup Za(Sw), where Sy = [,ca\v ker(a). Denote by G, the root—
space corresponding to x € ®. Recall that

(1) Lie(R,(P)) = Q) G-
Jaev, ma(x)>0
and
(2) Lie(Zc(Sv)) =Lie(Zg(S))® B Gy

Yae¥, ma(x)=0

cf. [Bol, §21.12].

3. HOROSPHERICAL SUBSETS AND COMPACTNESS CRITERION

In this section G is a connected reductive Q-algebraic group.

3.1. Siegel sets. Let us fix a minimal parabolic Q-subgroup P of G
and a maximal Q-split Q-subtorus S of P. Denote by M the connected
component of the identity in the (unique) maximal Q-anisotropic sub-
group of Zg(S), by K a maximal compact subgroup of G and by A the
set, of simple Q-roots of G corresponding to the choice of P. For every
r >0 we denote B, = {x € G : ||z|| < r}. Also for every n > 0 we put

(3) Sy={s€eS:VaeA, afs) <n}.

Following [Bo2, 12.3], by a Siegel set with respect to K, P and S we
mean the set

(4) ¥ = ZW’W = KSnw

where w is a compact neighborhood of e in MR, (P).

The Siegel sets are related to the fundamental sets. A subset ¥ C
G is fundamental for an arithmetic subgroup I' of G if the following
conditions are fulfilled : K¥ = ¥, ¥I' = G and, for each b € G(Q),
the set

{yeT:Sbn Ty # 0}

is finite.
Recall the following classical result [Bo2, Theorem 15.5]:
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Theorem 3.1 (Borel and Harish-Chandra). With the above notations
there exists a Siegel set o and a finite subset C C G(Q) such that
Q = 3XC s a fundamental subset for 1" in G. Furthermore, 2 is compact
if and only if rankgG = 0 and it has finite Haar measure if and only
if GY does not admit non-trivial Q-characters.

Note that if A is a precompact subset of R,(P) and n > 0 then
{sus™':s € S,, ue€ A} is also precompact [Bo2, Lemma 12.2]. Since
S centralizes M it follows from (4), the definition of S, and Theorem
3.1 that the following assertion holds.

Proposition 3.2. There exist ng > 0, a compact subset Ly C G and a
finite subset Cy C G(Q) such that

G =%,I', where ¥y = LyS,,Co.

The next proposition represents an infinitesimal analog (in the arith-
metic case) of the classical result of Zassenhaus and Margulis-Kazhdan
[Ra, Theorem 8.16].

Proposition 3.3. There exists a compact neighborhood W of 0 in G
such that for every x € G/I' the subalgebra generated by W N G, is
unipotent.

Proof. Let P~ be the parabolic subgroup of G opposite to P. Then
(5) G=UDZOU"
where U = Lie(Ry(P)), U~ = Lie(R,(P~)) and Z = Lie(Z(9)).
Note that the decomposition in (5) is defined over Q and therefore,
after replacing Gz with a finite index lattice,
(6) Orn=UsD Zz0U,,

where Uy, Zz, U, are the lattices of integer vectors in U, Z, U~
respectively.
We choose the norm || - || in such a way that

(7) [o]] = max{]Ju]l, [|2]], lu”I}

forallv=u+z2+u"€G,ueld,ze€ Zandu™ € U".
Since Ad(q)Gyz is commensurable with G if ¢ € G(Q), there exists
a positive integer n such that

®) 0,5 Ad(9)02
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for all g € Cy.
Using Proposition 3.2 and (3) one can easily prove the existence of
a constant 0 < ¢ < 1 such that

) [Ad(h)w]| = ¢f|w]]

ifweGand he€ Ly,orifweld~ & Z and h € 5,,.

Let » > 0 be such that B, N Gz = {0} and W = B, where € < %
Let x = w(g), where g = ksq, k € Ly, s € S,, and ¢ € Cp, and let
Ad(g)v € W, where v € Gz, v # 0. Write Ad(¢)v = vy + v, where
vi €EU” @ Z and vy € U. By (6) and (8) we have nv; € Gz, i = 1,2.
Assume that v; # 0. By the choice of r we then have ||v{|| > r/n and
in view of (7) and (9),

[Ad(g)v[| = [Ad(ks)(v1 + vo)]
> c[[Ad(s)(v1 + v

2> cf|Ad(s)vy|
> ¢|lu|
rc?
> — > ¢
n
a contradiction. Therefore v; = 0, i.e. Ad(q)v = v, € U for all
v € W N G,, which completes the proof. O

3.2. Horospherical Subsets. Let us introduce the following

Definition 3.4. By a horospherical subset we mean a minimal (with
respect to inclusion) finite subset of G which spans a subalgebra conju-
gate to the unipotent radical of a maximal parabolic Q-subalgebra of

g.

Proposition 3.5 (Compactness Criterion). A subset A C G/T is pre-
compact if and only if there exists a neighborhood W of 0 in G such
that for all x € A, G, "W does not contain a horospherical subset.

Proof. Suppose first that A is precompact. Thus there is a compact
subset K C G such that A C 7(K). From the continuity of Ad, there
is a neighborhood W of 0 in G such that Ad(K)(Gz) N W = {0}. In
particular for any z € A, G,NW = {0} does not contain a horospherical
subset.

Now suppose A is not precompact. In view of Theorem 3.1 and
Proposition 3.2 there exists a sequence {g,} such that 7(g,) € A, g, =
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knsnfn where k, € Ly, s, € Sy, and f,, € Cp, and g,, — 00. Passing to
a subsequence, we find a simple Q-root « such that a(s,) — —oo, and
assume that f, = f for some fixed f € C,. Let P, be the maximal Q-
parabolic corresponding to «, and let V, be the Lie algebra of R, (P,).
It follows from (1) that Ad(s,)u — 0 for every u € V,. Let uq,...,u,
be a basis for V, which is contained in Gz. Multiplying all of the wu;
by the common denominator of the coordinates of Ad(f™!), we may
assume that Ad(f~')u; € Gz for all t = 1,...,7. Since Ly is compact
we get
Jim Ad(g,) (Ad(/ ) = 0

for2=1,...,r. In particular any neighborhood W of 0 in G contains
the horospherical subset {Ad(g,)(Ad(f Yu1), ..., Ad(gn)(Ad(f 7 )u,)}
for all sufficiently large n. O

Remark 3.6. Let us compare Proposition 3.5 with other compactness
criteria, retaining the same notation. Mahler’s compactness criterion
(cf. [Ra, Corollary 10.9]) is the statement that for G = SL(n,R) and
I' = SL(n,Z), a subset m(A) C G/T is precompact if and only if there
is a neighborhood W of 0 in R” such that for all z € A, zZ"NW = {0}.

Let G be an arbitrary semisimple Q-algebraic group. Then the fol-
lowing holds: A subset 7(A) C G/I" is precompact if and only if there
is a neighborhood W of 0 in G such that for all x € A, G, N W = {0}.
This may be seen by identifying (up to commensurability) G/I" with
Ad(G)/Ad(G) NGz C SL(G)/ SL(Gz) and applying Mahler’s compact-
ness criterion to SL(G)/SL(Gz).

For the problems considered in this paper, we need to use the ob-
servation that G, contains a “small” vector (i.e. m(z) is “far” from
7(e)) if and only if G, contains a finite set of “small” vectors spanding
the unipotent radical of a parabolic -subalgebra. Thus we arrive to
Proposition 3.5 which reflects better than the above criteria the alge-
braic structure of G.

4. PUSHING OUT
In the present section we assume that T is a maximal R-split torus.

Proposition 4.1. Suppose G is a reductive Q-group. Then there exist
a compact neighborhood W of 0 in G, a constant ¢ > 1 and a finite
subset F' of T° such that for every x € G/T there is f € F such that
for all v € span(W N G,),

[Ad(f)v]] = ef|v]]
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Let Uy C G be a maximal unipotent subgroup normalized by 7.
Let Uy be the Lie algebra of Uy and r = dimU,. Let A"G be the r-th
exterior power of G, P(A"G) the linear projective space corresponding
to A"G and Gr,(G) the Grassmannian subvariety of P(A"G). Gr,(G) is
compact and its points correspond bijectively to r-dimensional linear
subspaces of G. We fix a nonzero vector a € A"U, and denote by
[a] the point in Gr,(G) corresponding to Uy. The group G acts on
Gr,(G) via the adjoint representation. Put X, = Ad(G)[a]. From
the fact that all minimal parabolic subgroups are conjugate, it follows
that Xy is the space of all maximal unipotent subalgebras of G. Since
Py, ={g € G: Ad(g)[a] = [a]} is a (minimal) parabolic subgroup, the
quotient G /P, is compact and therefore so is Xo. A simple argument
using the continuity of the action of G on Gr,(G) proves the following

Lemma 4.2. Let g € G and U € Xy. Assume that there exists ¢ > 1
such that
[Ad(g)v]l = c|v]]

for all vectors v € U, and let 1 < ¢’ < c.
(i) Then there exists a neighborhood W of U in X, such that for all
U e W and allv' e’

|Ad(g)v'[| > ¢[|lv']I;
(1) Assume in addition that U = lirf Ad(g™)Uy where Uy € Xp.
n—-+0o0o
Then for every c¢; > 1 there exists ny > 0 such that
[Ad(g")v1| = o]
for all n > ny and all v1 € U;.

We also need

Lemma 4.3. Let U € X, and ¢ > 1. Then there exists t € T° such
that

[Ad(@)v]] = c]l]]
forallvel.

Proof. Let Uy and a be as above. We choose an order on the roots
Oy (equivalently, a basis of simple roots Ag), so that U is spanned by
the root subspaces corresponding to all positive roots. Let

(10) NG =aWy

be the decomposition of A"G into a direct sum of weight subspaces,
where Ao is the highest weight in (10). Then a spans V,,. There
exists ¢ € G such that Ad(g)Uy = U. Let g = unp, where u € Uy,
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n € Ng(T) and p € Py be the Bruhat decomposition of g. Denote by
w the projection of n into the Weyl group Ng(T')/Zs(T'). Clearly, the
element vy = Ad(np)a belongs to Vi,-

Let us say that a vector v € A"G dominates vg if v = vy + v1, where

U1€V: @ V,\.

A>wAo

We now claim that if v dominates vy then so does Ad(u)(v).

To see this, we write u = ujus - - - us, where each u; belongs to a root
subgroup, that is, u; € exp(Gy,), xi > 0. By induction on s it suffices
to prove our claim in case s = 1, that is in case u = exp(X) with
X € Gy, x > 0. From the representation theory of sl(2) we know that
for v’ € Vi, ad%(v') € Vi gy

Now we compute:

Ad(u)(vo + 1) = Ad(exp (X)) (vo) + Ad(exp(X))(v1)

1 1
= -+ Z Ha‘d])‘}(’l}o) + Z Ead{;{(vl)
E>1 k>0
= g + Vo,

where v, € V. This proves our claim. In particular we obtain that
Ad(g)(e) = Ad(u)(vy) dominates vy.

Let t be an element from the interior of the Weyl chamber corre-
sponding to wAg. The highest weight for the action of Ad(t) on A"G is
wg. Therefore [vg] is an attracting fixed point for the induced action
of t on P(A"G). The basin of attraction consists of all [v] for which
v € A"G has a nonzero V,,,, component. Since we have proved that
Ad(g)(a) dominates vp, it has a nonzero V,,,, component, and hence

lim Ad(t™)(Ad(g)[a]) = Ad(n)[a]

m—+0o0

in Xy. Now the lemma follows from Lemma 4.2 (ii). O

Proof of Proposition 4.1. Using Lemma 4.3, Lemma 4.2 (i), and
the compactness of Xy, we obtain for any ¢ > 1 a finite subset F' C T
such that for each unipotent subalgebra U C G there exists an f € F
with

[Ad(f)vll = cllv]

for all v € U.
The proposition now follows by taking W as in Proposition 3.3. [
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5. CHARACTERIZATION OF Zg(S)G(Q)
The goal of this section is the proof of

Proposition 5.1. Let G be a reductive Q-algebraic group, and let g €
G with Stabg(mw(g)) finite. Suppose there are a compact subset C C
G and r > 0 such that the following holds: for every d € S with
|d|| > r there ezists a horospherical subset H C Ad(g)GzNC such that
Ad(d)H C C. Then g € Zg(S)G(Q).

The proof of the proposition relies on two propositions about para-
bolic subgroups, true in the context of any reductive k-algebraic groups,
and on a certain rationality criterion.

5.1. Intersections of Parabolic Subgroups. In the following two
propositions we suppose that G is a connected reductive algebraic
group defined over an arbitrary field k. We use the notation from
2.2.

Proposition 5.2. For every minimal parabolic k-subgroup B contain-
ing S we fix a proper parabolic k-subgroup Py containing B. Then

(11) (P& = Za(S).

Proof. Let J be the subgroup of G defined by the left-hand side of
(11). First we will show that Lie(J) = Lie(Zg(S)) which means that
Zc(8S) has finite index in J.

Note that Lie(J) is a sum of root spaces with respect to S (because
S C J). Suppose by contradiction that A is a nontrivial root with
G C Lie(J). Let B be a minimal parabolic k-subgroup, and let B~
be the opposite minimal parabolic k-subgroup. Then G, is contained
in the Levi factor of either Lie(Pg) or Lie(Pg), otherwise A would be
simultaneously positive and negative with respect to the order deter-
mined by B.

It follows from the above and (2) that for any base of simple roots
A there is # € A such that 7m3(\) = 0. But all roots of a given length
are conjugate [Hu, 10.4, Lemma C and 10.3, Theorem]. Therefore
there is a basis of simple roots A, for which A is a maximal long or a
maximal short root in the reduced root system ®;. In order to obtain
a contradiction it is enough to show that in this case mg(\) # 0 for
all B € Ag. If A is a maximal long root the fact is proved in [Hu,
10.4, Lemma A]. Let A be a maximal short root. Then its dual \Y
is a maximal long root in the dual root system ®y [Hu, Ex.11, p.55].
Applying again [Hu, 10.4, Lemma A], we get that mgv(AY) # 0 for all



14 GEORGE TOMANOV AND BARAK WEISS

BY € AV. Since vV = &—% for any character v of S, we obtain that
mg(A) # 0 for all 5 € Ay, as required.

To prove that J = Zg(S) we make the following observation: if P and
Q are parabolic k-subgroups of G and S C PNQ then (PNQ)R,(P) is
a parabolic k-subgroup [Bol, Prop. 14.22 (i)] and PNQ contains a Levi
k-subgroup of (P N Q)R,(P) containing S. Applying the observation
successively to the subgroups Pg we obtain that there exists a parabolic
k-subgroup Bg such that By D J and J contains a Levi subgroup of
By. Since Lie(J) = Lie(Zg(S)) and Zg(S) is a connected reductive
group [Bol, Cor. 11.12], Zg(S) is a Levi subgroup of By, that is
By is the semi-direct product of Zg(S) and R,(By). In particular
[Bol, Corollary 14.19] its action on R,(By) by conjugation has no
fixed points. On the other hand, it normalizes the finite subgroup
J N R,(By), and by connectedness centralizes it. So J N R,(By) is
trivial and therefore, J = Zg(S). O

Proposition 5.3. Let B be a minimal parabolic k-subgroup of G and
P be a parabolic subgroup of G such that P is conjugate to a k-subgroup
of G and R,(P) C B. Then:

(i) BCP and P is a k-group.

(11) If g € G and gR,(P)g ! C B then g € P.

Proof. Let Q be a parabolic k-subgroup containing B and conjugate
to P. Since Q D R,(P) it follows from [Bol, Prop. 14.22 (iii)] that
P = Q. This proves assertion (i).

Now let g be as in (ii). From (i) we have B C P and applying (i) to
gPg~! in place of P we obtain B C gPg~'. It follows from [Bol, Cor.
11.17 (i)] that P = gPg~!, hence g € Ng(P) = P. O

5.2. Rationality Criterion. Because of lack of reference we provide a
short proof of the following apparently well known rationality criterion.

Proposition 5.4. Let V be an affine Q-algebraic variety and W be an
Aut(C)-invariant closed algebraic subvariety of V. Then W is defined
over Q.

Proof. It follows from the classical Hilbert basis theorem that W is
defined over a finite extension of the field of rational functions of r vari-
ables Q(t) where ¢t = (¢, ...,t,). Since the restriction homomorphism
Aut(C/Q(t)) — Gal(Q(t)/Q(t)) (where Q(¢) is the algebraic closure of
Q(t) in C) is surjective, in view of the proposition hypothesis W (Q(%))

is Gal(Q(t) /Q(t))-stable. It follows from [Bol, AG.14.4] that W is de-
fined over Q(¢). Let V C C" and let f € Q(t)[z], where x = (z1, ..., T,),
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be a polynomial which vanishes on W. Multiplying f by a polynomial
from Q[t] we can (and will) assume that f € Q[t,z]. In order to prove
the proposition it is enough to show that

{zo € C" : f(t,x0) =0} = {a0 € C" : f(to,w0) =0, Vto € @ }.

The inclusion “C” is obvious. On the other hand, if f(¢,z) # 0 for
some zo € C" then, since Q7 is Zariski dense in C", there exists zo € &
such that f(to,zo) # 0. This proves the opposite inclusion. O

We also record the following well known fact.

Proposition 5.5. [Bo2, Proposition 7.7] Suppose H is a reductive Q-
subgroup of G. Then there is a Q-representation p: G — GL(V) and
v € V(Q) such that H={g € G : p(g9)v =v}. In particular, p(G(Z))v
is closed in'V and Hn(e) is a closed orbit.

Proof of Proposition 5.1. Let B be a minimal parabolic Q-
subgroup containing S and B be its Lie algebra. We claim that B N
Ad(g)Gz contains a horospherical subset H. Indeed, let d € S be an
element in the interior of the positive Weyl chamber correpsonding to
B. This means that for any v ¢ B we have

(12) lim Ad(d")v = occ.

n—+00

Let r and C be as in the statement of the proposition. For every
n with ||d"|| > r there is a horospherical subset H,, C Ad(g)Gz N C
with Ad(d™)H,, C C. Since Ad(g)GzNC is finite, the family of subsets
{H, : n € N} is finite. Therefore there is a horospherical subset
H C Ad(g)Gz N C such that Ad(d")H C C for infinitely many n € N.
Now, using (12), we get that # C B, as claimed.

Let V denote the subalgebra generated by #, and let o € Aut(C).
Since B is defined over Q, % C B. On the other hand, Ad(¢~})H C
Gz and o acts trivially on Gz. Therefore, “H = Ad(°gg *)(H). So,
Ad(°gg™")V C B. Denote by Py the normalizer of V in G. Then, in
view of Proposition 5.3, B C Pg, Pg is defined over Q, and “gg~! €
Py for every minimal parabolic Q-subgroup B. Using Proposition
5.2 we get that “gg~' € Zg(S). Hence, 7(g7'Sg) = g 'Sg for all o €
Aut(C). Therefore g~'Sg is defined over Q (Proposition 5.4). It follows
from Proposition 5.5 that SgI" is closed. Since Stabg(7(g)) is finite (by
assumption) we get that ¢g7'Sg is a maximal Q-split torus. By [Bol,
Theorem 20.9] there exists an h € G(Q) such that ¢7'Sg = h~'Sh,
ie. g € Ng(S)G(Q). Recall that (Ng(S) NG(Q))Za(S) = Na(S) (cf.
[BoT, Theorem 5.3]). Therefore, g € Z¢(S)G(Q). O
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6. PROOF OF THEOREM 1.3

We first make some reductions toward the proof of the theorem. The
following standard proposition justifies passing from [' to any commen-
surable subgroup:

Lemma 6.1. Let I' and I'" be discrete commensurable subgroups of G,
' G — G/I' the natural quotient map, and H be a closed subgroup
of G. Then the following hold:

(1) For any subset A C G, w(A) C G/T is precompact if and only
if ™(A) C G/I'" is precompact.

(2) Forany g € G the orbit Hr(g) C G/T is divergent (respectively,
closed) if and only if the orbit Hr'(g) C G/T" is divergent (re-
spectively, closed).

Proof. Since I' and IV are commensurable it is enough to prove
the lemma for I' C I'. Note that the natural map ¢ : G/T' — G/T",
¢(m(g)) = 7'(g), is proper and G-equivariant. This implies all the
statements of the lemma, except the implication

Hr'(g) is closed = Hm(g) is closed.

In order to prove this implication note that HgI"” is closed and HgI” =
UnyI" Hgr is a countable union of right cosets of H. It follows from
Baire’s category theorem that one, and therefore each, of these cosets
is open in HgI"”, and hence the complement of Hgl" in Hgl" is open.
This implies that Hm(g) is closed.

O

The following will be useful in reducing the proofs of Theorems 1.3
and 1.4 to the case that G is reductive.

Proposition 6.2 (Levi decomposition over Q). Let G be a connected
Q-algebraic group, and let H be a reductive Q-algebraic subgroup. Then
there is a reductive Q-subgroup L containing H such that G is a semidi-
rect product defined over Q of L and R,(G).

Proof. See [BoS]|, Proposition 5.1. O

Applying Proposition 6.2 and using the facts that T is contained in
a maximal Q-subtorus of G (cf. [PrRal) and I'y is cocompact in N for
any unipotent Q-group N [Ra, Chap. 3], we deduce:

Proposition 6.3. Let 7 : G — L be the natural map, and let U =
Ru(G). Possibly after passing to a finite index subgroup, we have the
following commutative diagram:
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U——G
A
Uly—sG/I L
4
LT,

Furthermore:
o [',T'y is of finite index in I
e G/T carries the structure of a fiber bundle, with L/T;, as base
and U/Ty as a compact fiber.
e The orbit Tm(x) is divergent in G/T' if and only if the orbit
Trp(7(x)) is divergent in L/Tp.

Proof of Theorem 1.3. The torus T is a product of a compact
real torus 7, and a maximal R-diagonalizable real torus 7;. Assume
that the theorem is true for 7; and let K be the corresponding compact
subset. Then replacing K by 7, K one easily sees that the theorem is
also true for T'. Therefore we may (as we will) assume with no loss of
generality that T is R-split.

Assume first that G is a reductive group. Let W, ¢ and F be the
same as in the formulation of Proposition 4.1. Let W, C G be a ball
centered at 0 and contained in ﬂ Ad(f)W. Tt is easy to see that:

feF

(*) IfveGand v ¢ W then Ad(f)v ¢ W, for any f € F.
Let K be the closure of
{z € G/T : G, N W, does not contain a horospherical subset}.

In view of Proposition 3.5, K is compact. We will prove that K satisfies
the conclusions of Theorem 1.3.

For every real r > 0 we denote by 7, the ball of radius r in 7°
centered at 1 and by C, the smallest closed ball in G centered at 0
which contains

wu (J Ad@mw).
deT 'F
(Recall that G and T° are endowed with norms. See §2.1.)

Let us fix an element z € G/T". Note that only the following three

mutually exclusive cases are possible :
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(a) Stabg(z) is finite and there exists r > 0 such that for every
d € S° with ||d|| > r, G, N C, contains a horospherical subset H such
that Ad(d)H C C;;

(b) Stabg(z) is finite and for every r > 0 there exists d(r) € S° with
|d(r)|| > r such that Ad(d(r))* ¢ C, for every horospherical subset
H of G, NCy;

(c) Stabg(x) is infinite.

Now let us prove that K N Tx # 0. Let r > 0. In each of the
cases (a), (b) and (c¢) we will construct inductively a finite sequence
do,dy,-..,d, in T°. (In fact, the sequence we construct will depend on
r, only in case (b).) We put dy = 1 in the cases (a) and (c) and we
put dy = d(r) in the case (b). If dpx € K our sequence consists only of
do, i.e. n = 0. Now assume that do,...,d;, 7 > 0, have already been
chosen. Let d; = d;d;_ - - - dy. Using Proposmon 4.1, we fix an element
di+1 € F such that for every w € W N Ad(d;)(G,) we have

(13) [Ad(di11)w]] = cf|w]l.

It follows from (*) and (13) that if w; (resp. w;y1) is a shortest
nonzero vector in Wy N Ad(d;)(G,) (resp. Wo N Ad(diy1)(G.)) then
|lwi+1ll > cl|lwi]|. Therefore, there exists an index n with the property:
d,, is the first element in our sequence such that Wy N Ad(d,)(G,) does
not contain a horospherical subset (equivalently, n is the first natural
number for which d,z € K). This proves that Tz N K # 0.

Now to complete the proof let us consider the cases (a), (b) and (c)
separately and show that in each case at least one of the conditions (i),
(ii) holds. In case (a), applying Proposition 5.1 (with C' = C,), we get
that ¢ € Zg(S)G(Q). Thus (a) implies (i). It remains to show that
(b) implies (ii) and that (c) also implies (ii).

For case (b), since d,o € K and r > 0 is arbitrary it is enough to
show that d, ¢ T,. If n = 0 then d, = d(r) and there is nothing
to prove. Let n > 0. Assume that d, € 7T,. By the choice of n,
Wy N Ad(dn,l)(gw) contains a horospherical subset 7. Denote 'H1 =
Ad(d )H. Then H; is a horospherical subset of G,. Since d, !, =
d.'d, € T.'F and H C W, it follows from the definition of C, that
'H1 C C,. In view of the choice of dy and the definition of C,, we
have that Ad(dp)H; € W. On the other hand, it follows from (*),
(13) and the choice of the d;’s that if v € G, and Ad(dy)(v) ¢ W then
Ad(d,_1)v ¢ W,. Therefore, H = Ad(d,_1)H; is not a subset of Wj.
Contradlctlon
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Finally, suppose (c) holds (note that it is possible to construct ex-
amples where (c¢) holds using [To, Proposition 3.2]). Then there exists
an element of infinite order ¢ € Stabg(z). The sequence

{d,t*: k eZ}

is unbounded in T and satisfies d,t*z € K for all k. This completes
the proof of the theorem in case G is reductive.

Now let G be an arbitrary Q-algebraic group and T and S be as
in the formulation of the theorem. Let G' = G/R,(G), ¢ : G — G
be the natural Q-rational homomorphism, I'" = ¢(T"), T' = ¢(T) and
S’ = ¢(S). We will also use the notation ¢ for the restricted map
¢ : G — G'. The homomorphism ¢ induces a natural surjective G-
equivariant map ¢ : G/T — G'/T’. Let K' be a compact subset of
G’ /T which satisfies the conclusions of the theorem for the reductive
group G’ and the tori S’ and T". Since 'NR,(G) is a cocompact lattice
of R, (@), the map 1 is proper. Furthermore, ¢(G(Q)) = G'(Q) (see
6.2). This implies readily that the compact K = ¢ !(K’) has the
required properties.

Proof of Corollary 1.6. Let Z be a closed T-invariant subset and
let Z1 D Z5 D --- be a descending sequence of closed invariant subsets
of Z. By Zorn’s lemma it suffices to show that Zo, =, Z; # 0. To see
this, let K be the compact subset as in the first statement of Theorem
1.3. Then KNZ; is nonempoty for every ¢. So KNZ; D KNZy; D --- isa
descending sequence of compact sets. Therefore ) # (), (KN Z;) C Zo,
as required.

O

7. PROOFS OF THEOREMS 1.4 AND 1.5

Proof of Theorem 1.4. Since the maximal R-split torus of T is
cocompact, we will assume without loss of generality that T is R-split.

Using the facts that maximal Q-split Q-tori in G are conjugate under
G(Q), and that Ng(S) C Z¢(S)G(Q) we obtain that (2) and (3) are
equivalent. Let us prove the equivalence of (1) and (2).

Using Proposition 6.3 we may assume in proving the theorem that
G is reductive. Suppose first that z € Zg(S)G(Q) and rankgG =
rankgG. Then S =T, and Ty = 27! Tz is defined over Q and Q-split.
By Proposition 5.5 TyI is closed, and hence the orbit map Tp/ToNT —
G /T is proper. Since Ty is Q-split, and using the fact that x(ToNT) C
{#£1} for any Q-rational character x on Tj, we see that 7, NI is finite.
Hence Tym(e) is divergent. Therefore so is Tw(z) = zTym(e).



20 GEORGE TOMANOV AND BARAK WEISS

Now suppose that T'r(z) is divergent. Let H = Zg(S). Since alter-
native (ii) in the second statement of Theorem 1.3 does not hold, we
have x € HG(Q). Let us write x = hg where h € H and ¢ € G(Q).
The groups I' and ¢I'¢! being commensurable, we get that Tw(h) is
also divergent in G/I'. Since H is a reductive Q-group, Hn(e) is closed
in G/I' and therefore T'my (h) is divergent in H/T'y. Note that H is
an almost direct product over Q of S and a Q-anisotropic subgroup
H'. Put T = ST, where T’ is a maximal R-split torus of H'. Write
h =ys where y € H and s € S. Then "7y (y) is divergent in H' /T .
By Theorem 3.1, H' /T’y is compact and hence T"'7g/(y) is a compact
divergent orbit. This can only occur if T’ is finite, thus S = T. This
completes the proof. O

Proof of Theorem 1.5. Let H = Zg(T,) where T, is as in the
statement of the theorem. Let H; = H/T,, ¢ : H — H; be the
natural Q-homomorphism of @Q-algebraic groups and I'y = ¢(I'y). Note
that T'; is an arithmetic group (cf. [Bo2]). Also let T, = ¢(z~!Txz),
7 : Hy — H;/I'; the natural projection and ¢ : H/I'y — H;/T'; the
natural map induced by ¢. Since I' N T}, is a cocompact lattice in T},
the map ¢ is proper.

Since @ is proper and 2Tz (€) = ¢~ (Ti7: (e)), the orbit x~ Tz (€)
is closed in H/T'y if and only if the orbit Tim;(e) is closed in Hy/T';.
Also, by the definition of T, the orbit Tim (e) is divergent if it is
closed. Applying Theorem 1.4 we get that Tim(e) is closed if and
only if there exists u; € R, (H;) such that u]'Tiu; is a product of
a Q-torus and an R-anisotropic R-torus. Since T, is defined over
Q and ¢(R,(H)) = Ru(H;) (because T, is a torus), we obtain that
z'Tamg(e) is closed if and only if there exists u € R, (H) such that
(zu)~'Tzu is a product of a Q-torus and an R-anisotropic R-torus. It
is easy to see (by using, for example, Proposition 5.5) that the nat-
ural map H/T'y — G/T is proper and injective. Therefore, T'r(x)
is closed if and only if x7*T a7y (e) is closed which, in view of of the
above equivalences, implies that T'w(x) is closed if and only if there
exists u € R, (H) such that (zu) ' Tzu is a product of a Q torus and
an R-anisotropic R-torus. U

8. EXAMPLES AND OPEN QUESTIONS

In this section G is always a semisimple Q-algebraic group and T is
a maximal R-split torus.
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Example 1. First we define a quaternion division algebra A over Q
(0 -1\ . (V3 0 0 V3

as follows. Put ¢ = (1 0 ),]— ( 0 _\/§>,k— (\/3 0 >,and

let 1 denote the identity matrix in M (2, R).

Then it is easy to see by direct computation that A = Q.1 + Qi +
Q7 + Qk is a division algebra over Q and O = Z.1+Zi+ Zj + Zk is a
ring. Since A ®gR = M (2, R) the matrix algebra M (2, A) is naturally
imbedded in M (4,R) and M (2,A) ®y R = M(4,R). Denote by G the
Q-algebraic group defined by G(Q) = {z € M(2,A) : det(z) = 1}.
Then G(R) = SL(4,R). Note that Gz = {a € M(2,0) : trace(a) = 0}
and I' = SL(4,R) N M (2, O) is an arithmetic subgroup of G(R).

In view of the above identifications the set of all matrices

, T € R,

oK O
gé|

represents the group S(R) where S is a maximal Q-split Q-subtorus of
G. Let

10 0 O 0010
00 -1 0 0 0 01
°=lo1 0 0% |oo00 0|9
00 0 1 0 00O
Denote g(z) = od(x). Then

0 —z2 0 0

0O 0 0 0

0O 0 0 0

Let O(z) be the orbit Sw(g(x)). Since Ad(S) fixes Ad(g(z))a, it follows
from the Mahler compactness criterion (see Remark 3.6) that if K is
a compact in G/T" then there exists a positive € depending on K such
that O(z) N K = () for all 0 < |z| < €. Therefore if we act on G/I" with
S instead of T' then in contrast to Theorem 1.3 there is no compact
K C G/T which intersects all S-orbits. The example also shows that
the conclusion of Proposition 4.1 is generally false for the action of S
instead of 7.

Lemma 8.1. With the above notation assume that T is a Q-torus.
Then
Na(S)G(Q) N Ne(T) C Na(S).
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Proof. Let w = ng, where w € Ng(T), n € Ng(S) and ¢ € G(Q).
Then

w'Sw =¢"'Sq C T.

Hence w™'Sw is a maximal Q-split subtorus in T. Since T has only
one maximal Q-split subtorus [Bo2, 8.15] we get that S = w™'Sw. O

It is clear that if x € Zg(S)G(Q) then S7(z) is divergent. Using
Lemma 8.1, one can easily show that if rankgG # rankgG then, in
contrast with Corollary 1.1, there might exist divergent orbits S7(z)
such that * ¢ Z(S)G(Q) (equivalently, such that 'Sz is not a

Q-split Q-torus).

Example 2. Let G be a Q-algebraic group of type Ay or Go such that
rankgG = 2 and rankgG =1 (cf. [Ti]). We fix a maximal Q-subtorus
T in G such that T =S x S’, where S is a maximal Q-split subtorus
of G and S’ is a maximal Q-anisotropic subtorus of G. Let Wx be the
Weyl group with respect to the R-split torus T. It is well known (and
easy to see) that Wg contains an element which acts on the vector
space of roots R® as a rotation with an angle of Z. Therefore there
exists w € Ng(T) such that wSw™' ¢ SUS". In view of the above
lemma w ¢ Ng(S)G(Q). Since T is defined over Q the orbit T'r(e) is
closed and homeomorphic to T/T'r. But

T/Tr = S/Ts x S /T,

SNT is finite, and 7p(wSw™') C T/T'r is a closed non-compact sub-
group. Hence the orbit Sw(w) C G/I' is divergent although w ¢

Na(S)G(Q).

8.1. Questions. In view of Theorem 1.4 we have a satisfactory de-
scription of all divergent S-orbits if rankgG = rankg G. Let rankyG #
rankg G. Comparing Example 2 with [Da, Theorem 6.1] it remains pos-
sible that all divergent orbits for S admit a simple description. In order
to formulate a precise question we first make a definition generalizing
the one in [Da]:

Definition 8.2. Let D be a subgroup of GG, and let ¢ € G. We say
that the orbit Dm(g) is a degenerate divergent orbit if there is a finite
set of representations p; : G — GL(V;), i = 1,...,r, defined over Q,
and v; € V;(Q), such that for any divergent sequence {d,} C D there
is a subsequence {d,, } and i € {1,...,7} such that
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It is easy to see that a degenerate divergent orbit is divergent. Note
that the definition in [Dal is more restrictive as it describes explicitly
the representations which occur.

We now ask:

Question 1. Is every divergent orbit for the action of S on G/I' a
degenerate divergent orbit?

We have seen that if dimS < dim7" then there are no divergent
orbits for 7', where T is a maximal R-split torus. This raises:

Question 2. Suppose D is an R-split torus with dim S < dim D. Are
there any divergent orbits for D?

APPENDIX A. PROOF OF MARGULIS’ RESULT

We expose Margulis’ proof of Theorem 1.2. In this section G =
SL(n,R), T' = SL(n,Z), and T is the group of diagonal matrices in G.
We begin with two facts about the action of 7" on R".

Proposition A.1. There is a ball W C R", centered at 0, a finite set
F CT, and ¢ > 1 such that for every g € G there is f € F such that
for every w € gZ" "W we have:

Ifwll = clwl].

Proof. Every g € G has determinant equal to 1 and therefore
preserves the volume element in R™. It follows that there is a small
enough neighborhood W of 0 such that for every g, span(W N gZ")
is a proper linear subspace of R". So it suffices to show that there is
a finite F' C T and ¢ > 1 such that for every proper linear subspace
V C R" there is f € F such that for all v € V,

[fvll = efvll-

By the compactness of the Grassmannian variety it suffices to show
that for every proper subspace V' C R" there is ¢ € T such that for
every nonzero v € V we have |[tv]| > ||v||. This is a simple exercise. [

Proposition A.2. If g € G and g ¢ TSL(n, Q) then for any neighbor-
hood W of 0 in R™, any finite J C gZ" — {0} and any compact C C T,
there ist € T — C such that

tJNW = (.

Proof. Let {e;, i =1,...,n} be the standard basis of R”. It is easy
to verify that if g ¢ T'SL(n, Q) then there is some ¢ such that

]Rei N an = {0}
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Let o;(t) be the diagonal matrix with e~ (™~ V* in the i-th diagonal entry
and e’ in all other diagonal entries. Then for any nonzero w € gZ", we
have
a; (S)w =500 00.
Thus for all large enough s, we will have
a;(s)J N W = 0.
O

Proof of Theorem 1.2. It is well known (see, for example, Propo-
sition 5.5) that T'w(g) is divergent if ¢ € T'SL(n,Q). Suppose g ¢
T SL(n,Q). We will find a compact K C G/T such that for every com-
pact C C T, there is t € T — C such that tn(g) € K, contradicting
divergence.

Let W, F, ¢ be as in Proposition A.1. Suppose with no loss of
generality that 1 € F', and let

Woc () fW

fer-1
be a ball around 0. It satisfies

(14) VieF, veW,= fveW.

Define
K=n({z e G:2Z"nW, ={0}}).
By Mahler’s compactness criterion, K is a compact subset of G/T .

Let J = gZ"NC W, and using Proposition A.2, let ¢, be an element
of T — C such that t,J N W = {0}. Define inductively a sequence
to, t1,... as follows. If tg,...,t; have already been chosen, let £, =
titk_1 - - -to and using Proposition A.1 let 51 € F' be such that

weWNigZ" = |[tgriw] > cfjw]|-
It follows from (14) that
W() N t~k+1an C tk_|_1 (W N l?ngn)

and therefore the length of the shortest nonzero vector in Wy Nty419Z"
is at least ¢ times the length of the shortest nonzero vector in Wy N
txgZ™. Thus for large enough k, we will have £,gZ" N W, = {0}. Let k
be the smallest index for which this is true. Clearly #;7(g) € K, and
it remain to show that #; ¢ C. If k = 0 this follows from the choice of
to. Suppose k > 1 and t;, € C. By minimality of k, there is a nonzero
vector v € WyNi, 19Z™. By (14) and using induction on k, v = t;, 19,
for some nonzero vy € Wy N gZ™ and tjvg € Wy for j =0,1,...,k — 1.
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In particular tovg € Wy. Also by (14), tyv € W. So tpvy = tyv € W
and hence vy € C~'W. Thus vy € J and tyvy € Wy, contradicting the
choice of ;. O
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