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Abstract. Curt McMullen showed that every compact orbit for
the action of the diagonal group on the space of lattices contains
a well-rounded lattice. We extend this to all closed orbits.

1. Introduction

Let n ≥ 2 be an integer, let G
def
= SLn(R), let A ⊂ G be the subgroup

of diagonal matrices with positive entries and let Ln
def
= G/ SLn(Z) be

the space of unimodular lattices in Rn. The dynamics of the A-action
on Ln is a well-studied topic in view of applications to number theory.
For instance, McMullen [McM05] studied this action in connection with
his fundamental work on Minkowski’s conjecture. A lattice x ∈ Ln is
called well-rounded if the nonzero vectors of shortest length in x span
Rn, and McMullen proved that any compact A-orbit contains a well-
rounded lattice. We show:

Theorem 1.1. Suppose x ∈ Ln and Ax is closed. Then Ax contains
a well-rounded lattice.

The proof of Theorem 1.1 closely follows McMullen’s strategy; namely
McMullen deduced theorem 1.1 from a covering result regarding covers
of the torus Tn, while we deduce it from a different covering result.

McMullen also showed that any bounded A-orbit contains a well-
rounded lattice in its closure. It is natural to inquire whether this re-
sult could be strengthened, by removing either of the italicized phrases.
As we show in Proposition 2.2, this strengthening holds for almost ev-
ery A-orbit, but whether or not it holds for every A-orbit is an open
question. Our result could be seen as a partial step in this direction.
Our proofs rely on results of Tomanov and the authors [TW03,SW13b]
classifying closed orbits for the A-action, as well as a covering result
which is of independent interest. For another perspective on this and
related questions, see [PS].

1.1. Acknowledgements. A preliminary version of this paper ap-
peared on arXiv as a chapter of the manuscript [SW13a]. We thank
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Roman Karasev for enlightening remarks. The authors’ work was sup-
ported by ERC starter grant DLGAPS 279893 and ISF grants 190/08,
357/13, and the Chaya Fellowship.

2. Preliminaries

2.1. The behavior of almost every lattice. Let WR ⊂ Ln denote
the set of well-rounded lattices. Suppose x ∈ WR and v1, . . . , vn are
linearly independent shortest vectors of x. We will say that x is a
generic well-rounded lattice if for any v ∈ xr {0,±v1, . . . ,±vn}, ‖v‖ >
‖vi‖. For instance the lattice Zn is generic well-rounded. We have:

Proposition 2.1. If x ∈ Ln is a generic well-rounded lattice, then
there is an open U ⊂ Ln such that WR∩ U is a submanifold of Ln of
codimension n− 1.

Proof. The fact that x is generic implies that there is a neighborhood
V of the identity in G, such that for g ∈ V , any shortest vector of
gx is gvi for some i. Making V smaller if necessary we obtain that the
multiplication map g 7→ gx is a homeomorphism of V onto U = Vx, and
we obtain that WR∩ U = {gx : ‖gv1‖ = · · · = ‖gvn‖}. Since {g ∈ G :
‖gv1‖ = · · · = ‖gvn‖} is a subvariety of G cut out by n−1 independent
equations, WR∩ U is a submanifold of codimension n− 1. �

Proposition 2.2. For almost every x ∈ Ln, the orbit Ax contains a
well-rounded lattice.

Proof. Let x0 be a generic well-rounded lattice, with shortest vectors
v1, . . . , vn, and let U be the neighborhood of x0 as in Proposition 2.1.
Suppose in addition that derivatives of the maps a 7→ ‖avi‖, i =
1, . . . , n− 1 are linearly independent (seen as linear functionals on the
Lie algebra a). A simple computation shows that this condition is sat-
isfied for the lattice x0 = Zn. This condition implies that the orbit
Ax0 and the manifold WR∩U intersect transversally at x0. In partic-
ular there is a neighborhood U0 ⊂ U such that if x ∈ U0 then there is
a ∈ A such that ax ∈ WR. Thus any A-orbit entering U0 contains a
well-rounded lattice. By Moore’s ergodicity theorem (see e.g. [Zim84])
the A-action on Ln is ergodic, and hence almost every A-orbit enters
U0. �

2.2. The structure of closed orbits. The following statement was
proved by the authors in [SW13b, Cor. 5.8], using earlier results of
[TW03].
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Proposition 2.3. Suppose Ax is closed. Then there is a decomposition
A = T1 × T2 and a direct sum decomposition Rn =

⊕d
1 Vi such that

the following hold:

• Each Vi is spanned by some of the standard basis vectors.
• T1 is the group of linear transformations which act on each Vi by

a homothety, preserving Lebesgue measure on Rn. In particular
dimT1 = d− 1.
• T2 is the group of diagonal matrices whose restriction to each
Vi has determinant 1.
• T2x is compact and T1x is divergent; i.e. Ax ∼= T1 × T2/(T2)x,

where (T2)x
def
= {a ∈ T2 : ax = x} is cocompact in T2.

• Setting Λi
def
= Vi ∩x, each Λi is a lattice in Vi, so that

⊕
Λi is of

finite index in x.

2.3. Some preparations. Let e1, . . . , en denote the standard basis of
Rn. For 1 ≤ d ≤ n, let

Ind
def
= {1 ≤ i1 < · · · < id ≤ n}

denote the collection of multi-indices of length d and for J = (i1, . . . , id) ∈
Ind let eJ

def
= ei1∧· · ·∧eid be the corresponding vector in the d-th exterior

power of Rn. We equip
∧d

1 Rn with the inner product with respect to
which {eJ} is an orthonormal basis, and denote by Ed,n the quotient

of
∧d

1 Rn by the equivalence relation w ∼ −w. Note that the product
of an element of Ed,n with a positive scalar is well-defined. We will
(somewhat imprecisely) refer to elements of Ed,n as vectors. Given a
subspace L ⊂ Rn with dimL = d, we denote by wL ∈ Ed,n the image of

a vector of norm one in
∧d

1 L. If Λ ⊂ Rn is a discrete subgroup of rank
d, we denote by wΛ ∈ Ed,n the image of the vector v1 ∧ · · · ∧ vd, where

{vi}d1 forms a basis for Λ. The reader may verify that these vectors
are well-defined (i.e. independent of the choice of the vj) and satisfy
wΛ = |Λ|wL where L = span Λ and |Λ| is the covolume of Λ in L, with
respect to the volume form induced by the standard inner product on
Rn. We denote the natural action of G on Ed,n arising from the d-th
exterior power of the linear action on Rn, by (g, w) 7→ gw. Given a
subspace L ⊂ Rn and a discrete subgroup Λ we set

AL
def
= {a ∈ A : awL = wL} and AΛ

def
= {a ∈ A : awΛ = wΛ}.

Note that AL = AΛ when Λ spans L. Note also that the requirement
awL = wL is equivalent to saying that aL = L and det(a|L) = 1. Given
a flag

F = {0  L1  · · ·  Lk  Rn} (2.1)
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(not necessarily full), let AF
def
=
⋂
iALi

. The support of an element
w ∈ Ed,n is the subset of Ind for which the corresponding coefficients of

an element of
∧dRn representing w are nonzero, and we write supp(L)

or supp(Λ) for the supports of wL and wΛ. For J = (i1 < · · · < id) ∈ Ind ,

set RJ def
= span (eij) and define the multiplicative characters

χJ : A→ R∗, χJ(a)
def
= det(a|RJ ).

Then for any subspace L ⊂ Rn,

AL =
⋂

J∈supp(L)

kerχJ (2.2)

(and similarly for discrete subgroups Λ).
We fix an invariant metric d on A. We will need the following lemma

(cf. [McM05, Theorem 6.1]):

Lemma 2.4. Let T ⊂ A be a closed subgroup and let x ∈ Ln be a
lattice with a compact T -orbit. Then for any C > 0 there exists R > 0
such that for any collection {Λi} of subgroups of x, there exists b ∈ A
such that

{a ∈ T : ∀i, ‖awΛi
‖ ≤ C} ⊂ {a ∈ A : d (a, b (∩iAΛi

)) ≤ R} . (2.3)

Proof. In the argument below we will sometimes identify A with its Lie
algebra a via the exponential map, and think of the subgroups AΛ as
subspaces. By (2.2) only finitely many subspaces arise as AΛ. In partic-
ular, given a collection of discrete subgroups {Λi}, the angles between
the spaces they span (if nonzero) are bounded below, by a bound which
is independent of the {Λi}. Therefore there exists a function ψ : R→ R
with ψ(R)→R→∞ ∞, such that{

a ∈ A : ∀ J ∈ ∪i supp(wΛi
), ψ(R)−1 ≤ χJ(a) ≤ ψ(R)

}
⊂ (2.4)

{a ∈ A : d(a,∩iAΛi
) ≤ R} .

Since Tx is compact, there exists a compact subset Ω ⊂ T such that
for any a ∈ T there exists b = b(a) ∈ T satisfying bx = x and b−1a ∈ Ω.
It follows that there exists M ≥ 1 such that:

(I) for any subspace L, ||bwL|| ≤M ||awL||.
(II) for any multi-index J , χJ(ba−1) ≤M .

Given C > 0, let C ′
def
= MC and consider the finite set

S
def
= {Λ ⊂ x : ||wΛ|| ≤ C ′} .

For any Λ ∈ S write wΛ =
∑

J∈supp(wΛ) αJ(Λ)eJ . Let

0 < ε < min {|αJ(Λ)| : Λ ∈ S , J ∈ supp(wΛ)} ,
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and choose R large enough so that ψ(R) > C ′/ε. We claim that for
any {Λi} ⊂ S ,

{a ∈ T : ∀i ‖awΛi
‖ ≤ C} ⊂ {a ∈ T : d(a,∩iAΛi

) ≤ R} . (2.5)

To prove this claim, suppose a is an element on the left hand side
of (2.5). By (2.4) it is enough to show that for any J ∈ ∪i supp(Λi)
we have ψ(R)−1 ≤ χJ(a) ≤ ψ(R). Since the coefficient of eJ in the
expansion of awΛi

is χJ(a)αJ(Λi) and since ||awΛi
|| ≤ C, we have

χJ(a) ≤ C

|αJ(Λi)|
≤ C

ε
≤ ψ(R).

On the other hand, letting b = b(a) we have bΛi ∈ S from (I), and

ε ≤ |αJ(bΛi)| = χJ(b)|αJ(Λi)| =⇒ χJ(b−1) ≤ C/ε

(II)
=⇒ χJ(a−1) = χJ(a−1b)χJ(b−1) ≤ C ′/ε ≤ ψ(R),

which completes the proof of (2.5).
Let {Λi} be any collection of subgroups of x and assume that the

set on the left hand side of (2.3) is non-empty. That is, there exists
a0 ∈ T such that for all i, ||a0wΛi

|| ≤ C. Let b = b(a0) ∈ T , and set

Λ′i
def
= bΛi. It follows that {Λ′i} ⊂ S and so

{a ∈ T : ∀i ‖awΛi
‖ ≤ C} = b

{
a ∈ T : ∀i

∥∥awΛ′
i

∥∥ ≤ C
}

(2.5)
⊂ b

{
a ∈ T : d(a,∩iAΛ′

i
) ≤ R

}
= {a ∈ T : d(a, b (∩iAΛi

)) ≤ R} ,
where in the last equality we used the fact that AΛ′

i
= AΛi

because A
is commutative. �

Lemma 2.5. Let F be a flag of length k as in (2.1) and let AF be its
stabilizer. Then AF is of co-dimension ≥ k in A.

Proof. Given a nested sequence of multi-indices J1  · · ·  Jk it is
clear that the subgroup

k⋂
i=1

kerχJi

is of co-dimension k in A. In light of (2.2), it suffices to prove the
following claim:

Let F be a flag as in (2.1) with di
def
= dimLi. Then there is a nested

sequence of multi-indices Ji ∈ Indi such that Ji ∈ supp(Li).

In proving the claim we will assume with no loss of generality that
the flag is complete. Let v1, . . . , vn be a basis of Rn such that Li =
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span {vj}ij=1 for i = 1, . . . , n − 1. Let S be the n × n matrix whose

columns are v1, . . . , vn. Given a multi-index J of length |J |, we denote
by SJ the square matrix of dimension |J | obtained from S by deleting
the last n− |J | columns and the rows corresponding to the indices not
in J . Note that with this notation, each wLd

is the image in Ed,n of a
vector proportional to

v1 ∧ · · · ∧ vd =
∑
J∈Ind

(detSJ)eJ . (2.6)

In particular, J ∈ supp(Ld) if and only if detSJ 6= 0.
Proceeding inductively in reverse, we construct the nested sequence

Jd by induction on d = n, . . . , 1. Let Jn = {1, . . . , n} so that S = SJn .
Suppose we are given multi-indices Jn ⊃ · · · ⊃ Jd+1 such that Ji ∈
supp(wLi

) for i = n, . . . , d + 1. We want to define now a multi index
Jd ∈ supp(wLd

) which is contained in Jd+1. By (2.6), detSJd+1
6= 0.

When computing detSJd+1
by expanding the last column we express

detSjd+1
as a linear combination of {detSJ : J ⊂ Jd+1, |J | = d}. We

conclude that there must exist at least one multi-index Jd ⊂ Jd+1 for
which detSJd 6= 0. In turn, by (2.6) this means that Jd ∈ supp(wLd

).
This finishes the proof of the claim. �

3. Reduction to a topological statement

We will require the following topological result which generalizes
Theorem 5.1 of [McM05]. Let s, t be non-negative integers, and let
∆ denote the s-dimensional simplex, which we think of concretely as
conv(e1, . . . , es+1), where the ej are the standard basis vectors in Rs+1.

We will discuss covers of M
def
= ∆×Rt, and give conditions guaranteeing

that such a cover must cover a point at least s + t + 1 times. For
j = 1, . . . , s + 1 let Fj be the face of ∆ opposite to ej, that is Fj =

conv(ei : i 6= j). Also let Mj
def
= Fj × Rt be the corresponding subset

of M . Given R > 0 and a positive integer k, we say that a subset
U ⊂ Rt is (R, k)-almost affine if it is contained in an R-neighborhood
of a k-dimensional affine subspace of Rt.

Theorem 3.1. Suppose that U is a cover of M by open sets satisfying
the following conditions:

(i) For any connected component U of any element of U there exists
j such that U ∩Mj = ∅.

(ii) There is R so that for any connected component U of the inter-
section of k ≤ s+ t distinct elements of U , the projection of U to
Rt is (R, s+ t− k)-almost affine.
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Then there is a point of M which is covered at least s+ t+ 1 times.

The case s = 0 is McMullen’s result, and the case t = 0 is known as
the Knaster-Kuratowski-Mazurkiewicz theorem (see e.g. [Kar]). Note
that hypothesis (ii) is trivially satisfied when k ≤ s, since any subset
of Rt is (1, t)-almost affine. We will prove Theorem 3.1 in §4. In this
section we use it to prove Theorem 1.1.

Given a lattice x ∈ Ln let α(x) denote the length of a shortest
nonzero vector in x. Given δ > 0 let

Minδ(x)
def
= {v ∈ xr {0} : ‖v‖ < (1 + δ)α(x)}

Vδ(x)
def
= span Minδ(x)

dimδ(x)
def
= dim Vδ(x).

Finally, for ε > 0, let U (ε) =
{
U

(ε)
j

}n
j=1

be the collection of open subsets

of A defined by

Uj = U
(ε)
j

def
= {a ∈ A : for all δ in a neighborhood of jε, dimδ(ax) = j}.

(3.1)
Note that these sets depend on x ∈ Ln but in our application x will be
considered fixed and so we suppress this dependence from our notation.
By [McM05, Thm. 7.2], U (ε) is an open cover of A.

Lemma 3.2. For any n there is a compact K ⊂ Ln such that if x ∈ Ln
and a ∈ U (ε)

n for ε < 1, then ax ∈ K.

Proof. If a ∈ U (ε)
n and ε < 1 then ax has n linearly independent vec-

tors of length at most (n + 1)α(ax). Since ax is unimodular, there
is a constant C (depending only on n) such that α(x) ≥ C. The set

K
def
= {x ∈ Ln : α(x) ≥ C} is compact by Mahler’s compactness crite-

rion, and fulfills the requirements. �

Proof of Theorem 1.1. It suffices to show that for each ε > 0, U
(ε)
n 6= ∅.

Indeed, if this is the case, then letting εj be a sequence of positive

numbers such that εj → 0, for each j, we let aj ∈ U
(εj)
n . By Lemma 3.2,

the lattices ajx belong to a fixed compact set K, so there is subsequence
converging to some x0 ∈ K; we continue to denote the subsequence by

(ajx). For each j there are linearly independent v
(j)
1 , . . . , v

(j)
n ∈ x such

that
∥∥∥av(j)

i

∥∥∥ ≤ (1 + εj)α(ajx). The angle between each ajv
(j)
i and

the space spanned by the other ajv
(j)
` , ` 6= i is bounded from below

independently of j. Passing to a subsequence we can assume that each

ajv
(j)
i converges to a nonzero vector vi ∈ x0. Since α is a continuous
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function, the vi all have length equal to α(x0), and by the lower bound
on the angles between them, they are linearly independent; that is, x0

is well-rounded.
In order to prove that U

(ε)
n is non-empty, we will apply Theorem 3.1.

The first step is to find a decomposition A ' Rn−1 = Rs × Rt and a
simplex ∆ ⊂ Rs, so that the restriction of the cover to ∆×Rt satisfies
the two hypotheses of Theorem 3.1.

Let A = T1 × T2 and Rn =
⊕d

1 Vi be the decompositions as in

Proposition 2.3, and let s
def
= dimT1 = d − 1. For a ∈ T1 we denote

by χi(a) the number satisfying av = eχi(a)v for all v ∈ Vi. Thus each
χi is a homomorphism from T1 to the additive group of real numbers.
The mapping a 7→

⊕
i χi(a)IdVi , where IdVi is the identity map on Vi,

is nothing but the logarithmic map of T1 and it endows T1 with the
structure of a vector space. In particular we can discuss the convex
hull of subsets of T1. For each ρ we let

∆ρ
def
= {a ∈ T1 : max

i
χi(a) ≤ ρ}.

Then ∆ρ = conv(b1, . . . , bd) where bi is the diagonal matrix acting
on each Vj, j 6= i by multiplication by eρ, and contracting Vi by the
appropriate constant ensuring that det bi = 1.

Let Pi : Rn → Vi be the natural projection associated with the
decomposition Rn =

⊕
Vi. Since

⊕
Λj is of finite index in x, each

Pi(x) contains Λi as a subgroup of finite index and hence is discrete
in Vi. Moreover, the orbit T2x is compact, so for each a ∈ T2 there
is a′ belonging to a bounded subset of T2 such that ax = a′x. This
implies that there is η > 0 such that for any i and any a ∈ T2, if v ∈ ax
and Pi(v) 6= 0 then ‖Pi(v)‖ ≥ η. Let C > 0 be large enough so that
α(x′) ≤ C for any x′ ∈ Ln. Let ρ be large enough so that

eρη > 2C. (3.2)

We restrict the covers U (ε) (where ε ∈ (0, 1/n)) to ∆ρ × T2 and apply

Theorem 3.1 with t
def
= dimT2 = n− d.

Let U be a connected subset of U
(ε)
k ∈ U (ε). By [McM05, §7],the k-

dimensional subspace L
def
= a−1Vkε(ax) as well as the discrete subgroup

Λ
def
= L ∩ x are independent of the choice of a ∈ U . By definition of

U
(ε)
k , for any a ∈ U , aΛ contains k vectors vi = vi(a), i = 1, . . . , k which

span aL and satisfy

‖vi‖ ∈ [r, (1 + kε)r], where r
def
= α(ax). (3.3)
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In order to verify hypothesis (i) of Theorem 3.1, we need to show that
there is at least one j for which U∩Mj = ∅. Since kerP1∩· · ·∩kerPd =
{0} and dimL = k ≥ 1, it suffices to show that whenever U ∩Mj 6= ∅,
L ⊂ kerPj. The face Fj of ∆ρ consists of those elements a1 ∈ T1 which
expand vectors in Vj by a factor of eρ. If U ∩Mj 6= ∅ then there is
a ∈ T2, a1 ∈ Fj so that a1a ∈ U . Now (3.2), (3.3) and the choice of η
and C ensure that the vectors vi = vi(a1a) satisfy Pj(vi) = 0. Therefore
L ⊂ kerPj.

It remains to verify hypothesis (ii) of Theorem 3.1. Let U be a
connected subset of an intersection Ui1 ∩ · · · ∩ Uik ∩ (∆ρ × T2) and let

Lij
def
= a−1Vijε(ax) and Λij

def
= Lij ∩ x. As remarked above, Lij ,Λij are

independent of a ∈ U .
By the definition of the Lij ’s we have that Lij  Lij+1

and so they
form a flag F as in (2.1). Lemma 2.5 applies and we deduce that

AF = ∩kj=1ALij
is of co-dimension ≥ k in A. (3.4)

For each a ∈ U and each j let
{
v

(j)
` (a)

}
∈ aΛij be the vectors spanning

aLij which satisfy (3.3). Let u
(j)
` (a)

def
= a−1v

(j)
` ∈ Λij . Observe that:

(a) spanZ

{
u

(j)
` (a)

}
is of finite index in Λij and in particular, u

(j)
i1

(a)∧

· · · ∧ u(j)
ij

(a) is an integer multiple of ±wΛij
. As a consequence∥∥∥awΛij

∥∥∥ ≤ ∥∥∥v(j)
i1

(a) ∧ · · · ∧ v(j)
ij

(a)
∥∥∥.

(b) Because of (3.3) we have that
∥∥∥v(j)

i1
(a) ∧ · · · ∧ v(j)

ij
(a)
∥∥∥ < C for some

constant C depending on n alone.

It follows from (a),(b) and Lemma 2.4 that there exist R > 0 and an
element b ∈ T2 so that

U ⊂ ∆ρ×
{
a ∈ T2 : ∀ij,

∥∥∥awΛij

∥∥∥ < C
}
⊂ T1×{a ∈ T2 : d(a, bAF ) ≤ R} .

By (3.4) we deduce that if p2 : A → T2 is the projection associated
with the decomposition A = T1×T2 then p2(U) is (R′, s+ t−k)-almost
affine, where R′ depends only on R, ρ. This concludes the proof. �

4. Proof of Theorem 3.1

In this section we will prove Theorem 3.1. Our proof gives an el-
ementary alternative proof of McMullen’s result. Moreover it shows
that McMullen’s hypothesis that the inradius of the cover is positive,
is not essential.

Below X will denote a second countable locally connected metric
space. We will use calligraphic letters like U for collections of sets.
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The symbol mesh(A) will denote the supremum of the diameters of
the sets in A. The symbol Leb(A) will denote the Lebesgue number of
a cover A, i.e. the supremum of all numbers r such that each ball of
radius r in X is contained in some element of A. The symbol ord(A)
will denote the largest number of distinct elements ofA with non-empty
intersection.

Definition 4.1. Let {Xj}j∈J be a collection of subsets of X. We
consider each Xj as an independent metric space with the metric in-
herited from X, and say that the collection is uniformly of asymptotic
dimension ≤ n if for every r > 0 there is R > 0 such that for every
j ∈J there is an open cover Xj of Xj such that

• mesh(Xj) ≤ R.
• Leb(Xj) > r.
• ord(Xj) ≤ n+ 1.

As an abbreviation we will sometimes write ‘asdim’ in place of ‘as-
ymptotic dimension’.

Recall that a cover of X is locally finite if every x ∈ X has a neigh-
borhood which intersects finitely many sets in the cover. We call the
intersection of k distinct elements of A a k-intersection, and denote
the union of all k-intersections by [A]k. We will need the following two
Propositions for the proof of Theorem 3.1. We first prove Theorem 3.1
assuming them and then turn to their proof.

Proposition 4.2. Let A be a locally finite open cover of X such that
ord(A) ≤ m and the collection of components of the k-intersections of
A, 1 ≤ k ≤ m, is uniformly of asdim ≤ m− k. Then A can be refined
by a uniformly bounded open cover of order at most m.

Note that McMullen’s theorem, namely the case s = 0 of Theo-
rem 3.1, already follows from Proposition 4.2, since by a theorem of
Lebesgue, a uniformly bounded open cover of Rt is of order at least
t+ 1.

Proposition 4.3. Let ∆1 and ∆2 be simplices, X = ∆1 × ∆2, pi :
X → ∆i the projections and A a finite open cover of X such that for
every A ∈ A and i = 1, 2 the set pi(A) does not meet at least one of
the faces of ∆i. Then ord(A) ≥ dim ∆1 + dim ∆2 + 1.

Proof of Theorem 3.1. Let m
def
= dimM = s + t, and suppose by con-

tradiction that ord(U) ≤ m. Since every cover of M has a locally finite
refinement, there is no loss of generality in assuming that U is locally
finite. Replacing U with the set of connected components of elements
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of U , we may assume that all elements of U are connected. For any r0,
and any bounded set Y , the product space Y × Rd can be covered by
a cover of order d + 1 and Lebesgue number greater than r0. Hence
our hypothesis (ii) implies that for each k = 1, . . . ,m, the collection
of connected components of intersections of k distinct elements of U
is uniformly of asymptotic dimension at most m − k. Therefore we
can apply Proposition 4.2 to assume that U is uniformly bounded and
of order at most m. Take a sufficiently large t-dimensional simplex
∆1 ⊂ Rt so that the projection of every set in U does not intersect at
least one of the faces of ∆1. We obtain a contradiction to Proposition
4.3. �

For the proofs of Propositions 4.2, 4.3 we will need some auxiliary
lemmas.

Lemma 4.4. Let {Gi : i ∈ I } be a locally finite collection of open
subsets of X, and let Z be an open subset such that for each i 6= j,
Gi∩Gj ⊂ Z. Then there are disjoint open subsets Ei, i ∈ I , such that
for any i

Gi r Z ⊂ Ei ⊂ Gi.

Proof. Let G =
⋃
i∈I Gi. Without loss of generality we can assume

that X = G∪Z. Define Fi
def
= GirZ, F

def
= GrZ. Then the sets Fi are

closed and disjoint, and since the collection {Gi} is locally finite, the
sets F r Fi are closed as well. Denote by d the metric on X as well as
the distance from a point to a closed subset. Then it is easy to verify
that the sets

Ei
def
= {x ∈ Gi : d(x, Fi) < d(x, F r Fi)}

satisfy the requirements. �

We denote the nerve of a cover A by Nerve(A), and consider it
with the metric topology induced by barycentric coordinates. Given a
partitition of unity subordinate to a cover A of X, there is a standard
construction of a map X → Nerve(A); such a map is called a canonical
map.

Lemma 4.5. Let a locally connected metric space Y be the union of
two open subsets D and E, and let D and E be open covers of D and E
respectively, with bounded mesh and ord, and such that if C ⊂ D∩E is
a connected subset contained in an element of D, then it is contained
in an element of E. Then, there is an open cover Y of Y such that:

(1) The cover Y refines D ∪ E.
(2) mesh(Y) ≤ max (mesh(D),mesh(E)) .
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(3) ord(Y) ≤ max (ord(D) + 1, ord (E)).

Proof. Let ord(D) = n+ 1, let A
def
= Nerve(D), and let π : D→ A be a

canonical map. Take an open cover of A of A such that ord(A) ≤ n+1
and π−1(A) refines D. Let f : Y → [0, 1] be a continuous map such

that f |Y rE ≡ 0 and f |Y rD ≡ 1. Set C
def
= f−1 ([0, 1)) and

g : C→ B
def
= A× [0, 1] , g(c)

def
= (π(c), f(c)).

Since dim B ≤ n+ 1 there is an open cover B of B such that ord(B) ≤
n + 2, the projection of B to A refines A and the projection of B
to [0, 1] is of mesh < 1/2. Let C denote the collection of connected
components of sets {g−1(B) : B ∈ B}. By construction C refines D.
Moreover ord(C) ≤ n + 2 and no element of C meets both f−1(0) and
f−1

([
1
2
, 1
])
. Then for every C ∈ C which meets f−1

([
1
2
, 1
])

we have
that C ⊂ D ∩ E and there is an element D ∈ D such that C ⊂ D and
hence there is E ∈ E such that C ⊂ E. We choose one such E and say
that E marks C.

We now modify elements of E , defining

Ẽ
def
=

(
E ∩ f−1

((
1

2
, 1

]))
∪

⋃
E marks C

C.

Finally define Y as the collection of modified elements of E and the
elements of C which do not meet f−1

([
1
2
, 1
])

. It is easy to see that Y
has the required properties. �

Lemma 4.6. Let Y be a locally connected metric space and let D,Ei, i ∈
I be open subsets which cover Y . Assume that the Ei’s are disjoint,
connected, and are uniformly of asdim ≤ `. Let D be an open cover
of D which is of bounded mesh and ordD ≤ `. Then Y has an open
cover Y which refines the cover D ∪ {Ei : i ∈ I }, is of bounded mesh
and ordY ≤ `+ 1.

Proof. Using the assumption that Ei is uniformly of asdim ≤ ` we find
an open cover Ei of Ei which is of uniformly bounded mesh, such that
ord Ei ≤ `+ 1 and Leb Ei > meshD. We assume that the sets in Ei are
subsets of Ei and Leb(Ei) is determined with respect to the metric of
Y restriced to Ei. Let

E
def
=
⋃
i∈I

Ei and E def
=
⋃
i∈I

Ei.

Clearly it suffices to verify that the hypotheses of Lemma 4.5 are
satisfied. Indeed, by assumption the cover D is of bounded mesh and
order, and E is of bounded mesh because of the uniform bound on
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mesh(Ei). We also have that ordE ≤ ` + 1 because of the bounds
ordEi ≤ ` + 1 and the fact that the Ei are disjoint. For the last
condition, let a connected subset C ⊂ D ∩ E which is contained in an
element of D be given. By the connectedness and disjointness of the
Ei’s we conclude that there exists i with C ⊂ Ei. Because Leb Ei >
meshD we deduce that since C is contained in an element of D it must
be contained in an element of Ei and in turn, it must be contained in
an element of E . �

Proof of Proposition 4.2. Proceeding inductively in reverse order, for
k = m, . . . , 1 we will construct a uniformly bounded open cover Ak
of [A]k such that ord(Ak) ≤ m + 1 − k and Ak refines the restriction
of A to [A]k. The construction is obvious for k = m. Namely, our
hypothesis and Definition 4.1 with n = m− k = 0 mean that [A]m has
a cover of bounded mesh and order 1, that is, we can just set Am to be
the connected components of [A]m. Assume that the construction is
completed for k+1 and proceed to k as follows. First notice that for two
distinct k-intersections A and A′ of A the complements Ar [A]k+1 and
A′r [A]k+1 are disjoint. By Lemma 4.4, we can cover [A]kr [A]k+1 by a
collection {Ei : i ∈ I } of disjoint connected open sets such that every
Ei is contained in a k-intersection of A. In particular, the collection
{Ei : i ∈ I } is uniformly of asdim ≤ m − k. We can therefore apply

Lemma 4.6 with the choices Y = [A]k ,D = [A]k+1 ,D = Ak+1, the
collection {Ei : i ∈ I }, and ` = m− k, and obtain an open cover Y of

[A]k of order ≤ m−k+1 that refines D∪{Ei : i ∈ I } and in particular,
refines A|Y . This completes the inductive step.

�

Proof of Proposition 4.3. For every A ∈ A choose a vertex vAi of ∆i

so that pi(A) does not intersect the face of ∆i opposite to vAi . Let

Y
def
= Nerve(A) and let f : X → X be the composition of a canonical

map X → Y and a map Y → X which is linear on each simplex of Y
and sends the vertex of Y related to A ∈ A to the point (vA1 , v

A
2 ) ∈ X.

Take a point x ∈ ∂∆1 × ∆2. Then p1(x) belongs to a face ∆′1 of ∆1

and hence for every A ∈ A containing x we have that vA1 ∈ ∆′1. Thus
both x and f(x) belong to ∆′1 ×∆2. Applying the same argument to
∆1 × ∂∆2 we get that the boundary ∂X is invariant under f and f
restricted to ∂X is homotopic to the identity map of ∂X. If ord(A) ≤
dim ∆1 +dim ∆2 then dimY ≤ dimX−1 and hence there is an interior
point a of X not covered by f(X). Take a retraction r : Xr{a} → ∂X.
Then the identity map of ∂X factors up to homotopy through the
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contractible space X which contradicts the non-triviality of the reduced
homology of ∂X. �

See §5 for another proof of Proposition 4.3.

5. Another argument for Theorem 3.1

In this section we will sketch another proof of Theorem 3.1. The
proof, suggested by Roman Karasev, proceeds by reducing the theorem
to its special case s = 0.

Let ∆CFK denote the Coxeter-Freudenthal-Kuhn simplex

{(x1, . . . , xn) ∈ Rn : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1},

and let Γ be the group generated by isometric reflections of Rn in the
facets of ∆CFK . Then it is known [Cox34] that Γ acts discretely on
Rn with fundamental domain ∆CFK (Γ is the so-called affine Coxeter
group of type Ãn). Using this fact, we prove Theorem 3.1 as follows.

Recall that the case s = 0 of the Theorem was proved by McMullen,
see [McM05, Thm. 5.1]. According to this result, a cover V of Rm with
Leb(V) > 0 has order at least m+ 1, provided it satisfies the following
analogue of (ii):

(ii)’ There is R so that for connected component V of the inter-
section of k ≤ m distinct elements of V is (R,m − k)-almost
affine.

We remark that McMullen assumed that V has positive inradius, i.e.
there is r > 0 such that for any x ∈ Rm, there is an element of V
containing the ball of radius r around x. However as we remarked
above, this hypothesis is not essential.

Setting m
def
= s + t, starting with a cover of M satisfying (i) and (ii)

we will form a cover of Rm satisfying (ii)’.
Clearly there is no loss of generality in assuming that ∆ = ∆CFK . Let

ϕ : Rm → ∆×Rt be the map which sends (x, y), where x ∈ Rs, y ∈ Rt
to (x′, y) where x′ is the representative of the orbit Γx in ∆. Let V be
the cover of Rs+t obtained by pulling back the cover U . For each j,
let xj be the vertex of ∆ opposite Fj and let Γj be the finite subgroup
of Γ fixing xj. Then Γj∆ is a polytope all of whose boundary faces
are images of Fj under Γj. In light of assumption (i), this implies that
any connected component of any V ∈ V is within a uniformly bounded
distance of {v} × Rt for some v ∈ V . Therefore (ii)’ holds for V , for
k ≤ s, while for k > s, (ii)’ for V is implied by (ii) for U . By McMullen’s
theorem, the order of V is at least s + t + 1, and therefore the same
holds for U .
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A similar argument, also suggested by Roman Karasev, gives another
proof of Proposition 4.3. Namely suppose that for i = 1, 2, ∆i ⊂
Rni is realized concretely as the Coxeter-Freudenthal-Kuhn simplex of
dimension ni. Let Γ = Γ1 × Γ2 where Γi is the group generated by
reflections in the facets of ∆i. Then a cover of ∆1 × ∆2 gives rise
to a cover of Rn1+n2 by open sets of uniformly bounded diameter, and
hence Lebesgue’s theorem implies that there is a point which is covered
n1 + n2 + 1 times.
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