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Abstract. We study dynamics of the horocycle flow on strata
of translation surfaces, introduce new invariants for ergodic mea-
sures, and analyze the interaction of the horocycle flow and real
Rel surgeries. We use this analysis to complete and extend results
of Calta and Wortman classifying horocycle-invariant measures in
the eigenform loci. We classify the orbit-closures and prove that
every orbit is equidistributed in its orbit-closure. We also prove
equidistribution statements regarding limits of sequences of mea-
sures, some of which have applications to counting problems.

1. Introduction

Translation surfaces arise naturally in many different mathematical
contexts, e.g. complex analysis, geometric group theory, geometry and
billiards. See [MaTa, Zo] for surveys. A stratum is a moduli space of
translation surfaces of a given topological type (detailed definitions will
be given below). Ideas from renormalization theory have been useful in
the study of translation surfaces, and these are encoded in the action
of the group G “ SL2pRq, and its subgroups, on strata. The study of
the dynamics of these actions has led to significant advances in the un-
derstanding of the geometry of translation surfaces and the dynamics
of flows on individual translation surfaces, and hence has been under
intensive study for over 30 years. A fruitful analogy for understanding
the dynamics, is an analogy between strata of translation surfaces and
homogeneous spaces of Lie groups (in fact the simplest stratum, namely
the stratum of tori with one marked point, is the homogeneous space
G{ SL2pZq, but other strata are not homogeneous). A celebrated set
of results in the homogeneous setting, due to Ratner, Margulis, Dani,
and others, is the classification of invariant measures, orbit-closures,
equidistribution of orbits, and additional equidistribution results. We
refer to [KSS] for a detailed survey of results and methods of homoge-
neous dynamics. These results, and the techniques employed in their
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proof, have been inspirational for many developments in the study of
dynamics on strata.

A central problem is to classify the invariant measures and orbit-
closures for the actions of G, and its subgroup U of unipotent matri-
ces, on strata. For the G-action, measure and orbit-closure classifi-
cation results were obtained by McMullen [McM3] in the genus two
strata Hp2q and Hp1, 1q. In arbitrary genus, Eskin, Mirzakhani and
Mohammadi [EMi, EMiMo] showed that invariant measures and orbit-
closures are of a geometrical nature, sharing many of the features of
the strata themselves, and subsequent and ongoing work of many au-
thors (see e.g. [F, W2]) has revealed a rich connection to arithmetic
and algebraic geometry. These results could be regarded as an ana-
logue of Ratner’s results for the action of G, and this analogy raises
the question of whether similar phenomena are also valid for the U -
action. However the U -action is not as well understood. The purpose
of this paper is to make a contribution to the study of the U -action,
building on previous work of Eskin, Marklof and Morris [EMaMo], and
Calta and Wortman [CW], who adapted some of Ratner’s arguments
to the non-homogeneous setting.

In the first part of this paper we discuss general features of the U -
action and in the second part, we give a complete picture in a restricted
setting, namely in the eigenform loci. These spaces are G-invariant loci
within the genus 2 stratum Hp1, 1q, which were discovered by Calta and
McMullen [C, McM2, McM3]. In these loci we extend the analogy with
homogeneous spaces by proving analogues of results proved by Ratner,
Dani, Margulis, and Shah.

First we describe our dynamical invariants for the U -action. Several
of these involve the real Rel vector fields, which correspond to local
motion in a direction in a stratum which moves one singularity hori-
zontally with respect to another, while fixing absolute periods of the
surface. As observed by Calta [C], these vector fields commute with
the U -action, and in particular send U -orbits to U -orbits, preserving
their parameterization. Combining these vector fields with the geo-
desic flow provides directions of motion which normalize the U -action,
sending U -orbits to U -orbits, while inducing a time-change on the or-
bits. Thus the centralizer and normalizer of the U -action are locally
modeled respectively on an abelian Lie group Z and a nilpotent Lie
group N .

There is a fundamental difference between homogeneous spaces and
strata of translation surfaces, in connection with these vector fields.
On homogeneous spaces, natural vector fields can be integrated to de-
fine group actions on the space, and the centralizer and the normalizer
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subgroups of the U -action play an important role in studying the dy-
namics. In the case of strata, motion in the real Rel directions is not
globally defined; i.e. the solution curves for the differential equation
defined by these vector fields may not be defined for all times. This
implies that the centralizer and normalizer of the horocycle flow make
sense locally but do not correspond to globally defined actions of Lie
groups (in [EMaMo] this is discussed using the terminology of “pseudo
group-actions”, which we will avoid favoring the language of geometric
structures and vector fields). The domain of well-defined motion in
the Z and N directions are invariants of a U -invariant ergodic mea-
sure µ, which we denote by Zpµq, N pµq (see §4). Moreover within these
domain of well-defined motion, are Lie groups Zµ, Nµ which do act on
suppµ and are the stabilizer subgroups of µ within the centralizer and
normalizer (see §4.1).

An additional invariant is a “horizontal data diagram” Ξpµq (see
§5), recording topological and geometric structure left invariant by the
U -action. This includes the number and length of horizontal saddle
connections, the topology of the complements, and the incidence of
these saddle connections at singularities.

Rigorous definitions of the invariants listed above require passing to
certain finite covering spaces of strata. To this end we begin in §2 with
a detailed discussion of “blow ups of translations surfaces” along with
their corresponding moduli spaces and mapping class groups. These
notions are useful throughout our discussion: for marking singularities,
marking distinguished horizontal prongs, distinguishing horizontal data
diagrams, resolving orbifold issues for both the stratum and for the
structure of individual rel leaves, and for discussing surgeries involving
a stratum and nearby boundary strata obtained from it as limits of rel
operations. An interesting novelty of our approach is that certain finite
covers Ĝ of G appear as the groups which acts naturally on our covers
(see §2.10). The finite covers we consider have arisen in topological
contexts (see [Boi]), in the study of interval exchange transformations
(see [Y]) and in computations of monodromy representations (see e.g.
[MYZ]), as well as in our forthcoming [SmWe3]. We believe that the
terminology we introduce will be useful in future work on translation
surfaces.

Recall that a surface M is generic for µ if for any continuous com-

pactly supported function f on suppµ, limTÑ8
1
T

şT

0
fpusMq ds “

ş

f dµ,
where U “ tus : s P Ru. The analysis of generic points plays a major
role in the analysis of ergodic measures on homogeneous spaces. The
Rel surgery depends on a parameter T and as remarked above, the Rel
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surgery is not globally defined. As a consequence, the set of surfaces for
which it is defined for all T is not locally compact and it is not a-priori
clear that the centralizer of the U -action should map U -generic points
to U -generic points. We clarify this in §4.2. In §6 we explicitly identify
the domain of definition of real Rel surgeries, continuing work done in
[MW2, McM8, B2].

In the second part of the paper we specialize to eigenform loci.
Namely, let D ě 4 be an integer congruent to either 0 or 1 mod 4,
and let EDp1, 1q be the space of translation surfaces in Hp1, 1q which
are eigenforms for real multiplication by a quadratic order of discrimi-
nant D. The following is our measure classification result.

Theorem 1.1. Let D be as above and let µ be a U-invariant U-ergodic
Borel probability measure on EDp1, 1q. Then one of the following holds:

(1) Every surface in suppµ has a horizontal cylinder decomposition
and µ is the length measure on a periodic U-orbit.

(2) Every surface in suppµ has a horizontal cylinder decomposi-
tion into three cylinders and µ is the area measure on a 2-
dimensional minimal set for the U-action. In this case µ is
invariant under the real Rel operation.

(3) For every M P suppµ, the horizontal data diagram ΞpMq con-
tains two saddle connections, joining distinct singularities, whose
union divides M into two isogenous tori glued along a slit. In
this case µ is the image of the G-invariant measure on a quo-
tient G{Γ for some lattice Γ, via a Borel U-equivariant map.

(4) For every M P suppµ, ΞpMq contains one saddle connection

joining distinct singularities, and µ is the image of the pG-invariant

measure on a quotient pG{Γ for some lattice Γ in the 3-fold con-

nected cover pG of G, via a Borel U-equivariant map.
(5) The set of surfaces with horizontal saddle connections has µ

measure zero and µ is the image of the G-invariant measure on
a closed G-orbit in Hp1, 1q via a Borel U-equivariant map. In
this case D is either a square or is equal to 5.

(6) For every M P suppµ, ΞpMq contains two saddle connections
joining distinct singularities, whose complement in M is a torus
with two parallel slits of equal length, which are images of each
other under a translation by an exactly d-torsion element of the
torus. In this case D “ d2 is a square and µ is the image, via
a Borel U-equivariant map, of the G-invariant measure on the
space of tori.

(7) µ is the canonical flat measure on EDp1, 1q obtained from period
coordinates.
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We describe these measures in detail in §8. The construction of most
of the measures in this list involves the real Rel operation on Hp1, 1q.
Any U -invariant measure µ, which is not preserved by real Rel, gives
rise to a one-parameter family of U -invariant translates of µ by real
Rel. This observation of Calta [C, CW] is crucial to our analysis, and
the measures (3)–(6) all arise in this way as real Rel translates of G-
invariant measures. The measures (5) are the real Rel translates of the
natural measures on closed G-orbits in Hp1, 1q. Loosely speaking, the
measures (3),(4), and (6) are all pushforwards of measures on closed G-
orbits in a suitable boundary component in a bordification of Hp1, 1q,
where the maps pushing the measure consist of the composition of
real Rel with a map passing from the boundary component to Hp1, 1q.
In (4), the closed G-orbit belongs to the stratum Hp2q, while in (3)
it belongs to Hp0q ˆ Hp0q, and in (6) it belongs to Hp0, 0q (where
Hp0q and Hp0, 0q denote respectively the moduli spaces of genus one
translation surfaces with one or two marked points).

The equivariant maps in cases (3)–(6) arise from the real Rel opera-
tion and are not defined for every point in G{Γ. They define Borel iso-
morphisms between the supports of these measures and homogeneous
spaces (that is, quotients G{Γ for lattices Γ Ă G). We emphasize how-
ever that these maps are not everywhere defined, but rather on a dense
open set of full measure, and thus their existence does not imply the
existence of homeomorphisms of the supports of these measures with
homogeneous spaces of G. In fact such homeomorphisms do not exist
in general; in a forthcoming paper [SmWe3], we show that the supports
of these measures are not homeomorphic to homogeneous spaces. In
particular the supports of the measures appearing in case (5) above are
manifolds with nonempty boundaries and infinitely generated funda-
mental groups. It is likely that the same is true in cases (3), (4) and
(6).

Theorem 1.1 extends a theorem of Calta and Wortman [CW]. In
[CW] it was assumed that D is not a square, and thus case (6) did
not arise. Also [CW] assumed that µ is not invariant under the real
Rel operation, and case (2) did not arise. Theorem 1.1 is proved in
a more general form in §9. The statement is inspired by Ratner’s
measure classification theorem [KSS, Thm. 3.3.2], and its proof is
inspired by [EMaMo, CW], which in turn employs arguments of Ratner.
We provide some technical shortcuts and clarify some delicate steps.
Our treatment relies on the general results worked out in §4.1, §4.2 and
§6.

The measures in cases (1)–(6) of Theorem 1.1 are naturally organized
in continuous families depending on some real parameters (e.g. in case
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(5) the continuous parameter involves a real Rel perturbation, and in
case (2) there is a natural two parameter family of perturbations). We
call such continuous families of U -invariant measures “beds”. Within
them, the invariants Ξpµq, Zpµq and Zµ are constant, while N pµq and
Nµ vary in a natural way with respect to the real Rel action. In §11,
we develop an analogue of the “linearization technique” developed for
homogeneous spaces (see [KSS, §3.4]) to analyze the behavior of U -
orbits which are near beds. Using these ideas we classify all orbit-
closures for the U -action on EDp1, 1q.

In fact we prove a stronger statement. The assertion that M is
generic for µ constitutes a quantitative strengthening of the assertion
that UM “ suppµ. The following statement is an analogue of Ratner’s
genericity theorem [KSS, Thm. 3.3.10]:

Theorem 1.2. For any D as above and any M P EDp1, 1q, there is a
measure µ as in Theorem 1.1 such that M is generic for µ, and belongs
to the support of µ.

In §11 we deduce Theorem 1.2 from a more explicit result which
explains, given M , how to construct the measure µ for which M is
generic.

Continuing the analogy with related results for homogeneous flows,
we prove several equidistribution results. We mention three of our
results of this type here, and refer the reader to §12 for more results
along these lines.

Theorem 1.3. Let µ be the length measure on a periodic U-orbit in
EDp1, 1q, let tgtu denote the geodesic flow, and suppose suppµ is not
contained in a closed G-orbit. Then the measures gt˚µ converge to the
flat measure on EDp1, 1q as tÑ 8.

This could be viewed as a non-homogeneous analogue of a theorem
that Shah proves in a homogeneous setting [KSS, Thm. 3.7.6]. The
following result also has an analogue in the homogeneous setting (see
[KSS, §3.7]):

Theorem 1.4. Let µ be the G-invariant measure on a closed G-orbit
in EDp1, 1q. Let t P R and let µt be the measure obtained by applying
the real Rel operation to surfaces in suppµ, with rel parameter t. Then
as tÑ 8 or tÑ ´8, µt converges to the flat measure on EDp1, 1q.

In response to a question of Giovanni Forni, we prove:

Theorem 1.5. Let µ be any ergodic U-invariant measure on EDp1, 1q,
then as t Ñ `8, gt˚µ converges to a G-invariant measure, and as
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t Ñ ´8, either gt˚µ converges to a G-invariant measure or gt˚µ is
divergent in the space of probability measures on Hp1, 1q.

We also prove an equidistribution result for large circles in Theorem
12.7. Following a strategy of Eskin and Masur [EM], we use this result
to solve a counting problem. We obtain:

Theorem 1.6. For any M P EDp1, 1q, the limit

CD “ lim
TÑ8

#tsaddle connections on M of length ď T u

T 2

exists.

Theorem 1.6 was proved in [EMS] for the case that D is a square,
and in [B2] for the case that D is not a square. In both of these papers
precise formulae for the constants CD were given. In fact, when D is
not square, CD “ 4π, which agrees with the value of this constant for
a generic surface in Hp1, 1q. The proof given in [B2] contained a gap
in the case D “ 5 which our results bridge.

We expect that the results obtained in §8–§12 for the eigenform loci
in genus 2, can be extended to the Prym loci in genera 3, 4, 5 (see
[McM6]), and more generally, to the rank-one loci defined by Wright
[W1]. We hope to return to this topic in future work.

1.1. Acknowledgements. The authors are grateful to Uri Bader, Elon
Lindenstrauss and Saul Schleimer for useful conversations. This work
is supported by BSF grant 2010428, Royal Society Wolfson Research
Merit Award, ERC starter grant DLGAPS 279893, and Simons Foun-
dation grant 359821.

2. Basics

In this section we define our objects of study: translation surfaces,
moduli spaces of translation surfaces and dynamics on moduli spaces.
For background and alternate treatments we refer the reader to [EMZ,
MaTa, MaSm, Zo]. Our treatment expands on previous work by dis-
cussing in detail blow-ups of translation surfaces and associated orbifold
covering spaces of strata, which are needed in later sections. Our dis-
cussion also has interesting consequences of indendent interest about
fundamental groups of strata (see §2.11).

2.1. Translation surfaces. A translation surface, or a surface with
translation structure can be defined in several equivalent ways. We will
describe it by gluing polygons, in terms of an atlas using the language
of pG,Xq structures, or as a holomorphic differential.
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Let M be a surface obtained from a collection of polygons in R2

which are glued together by isometries of the edges which are restric-
tions of translations. Each polygon edge receives an orientation when
viewed as part of the boundary of a polygon and we assume that the
gluing isometries reverse these boundary orientations. This construc-
tion typically produces a finite set of singular points corresponding to
the vertices of the polygons at which the cone angle is larger than 2π.
The cone angle at a singularity is 2πpn ` 1q for some natural number
n. We call n the order of the singularity. In addition to the singular
points that we have defined it is often useful to mark a finite set of
points at which the cone angles are 2π. Let Σ be a finite subset of M
which contains all of the singular points and possibly some additional
“marked” points.

A translation structure on a surface determines an atlas of charts for
the surface M r Σ taking values in R2 where the transition maps are
restrictions of translations. A translation structure can be determined
by specifying this atlas. If we have a space X equipped with an action
of a group G, a pG,Xq-structure is an atlas of charts with overlap func-
tions in G. Thus a translation surface produces a pG,Xq “ pR2,R2q

structure on M where the first R2 represents a Lie group acting on
the second R2 by translation. See [Th] for more information about
pG,Xq-structures.

We can use the atlas of charts on M to define geometric structures on
M which are naturally associated with the translation structure. Since
the one-forms dx and dy are translation invariant on R2 these charts
allow us to build globally defined one-forms dx and dy on M . Similarly
we can use the planar charts to define a metric, an area form, and an
orientation on M . A saddle connection on M is a path with endpoints
in Σ, which is a straight line in each chart of this atlas, and does not
contain singularities in its interior. The one-forms dx and dy are closed
and represent cohomology classes in H1pM,Σ;Rq. For an oriented

path γ connecting points in Σ write holpM,γq for
´

ş

γ
dx,

ş

γ
dy
¯

. We

can think of holpM, ¨q as giving a homomorphism from π1pMq to R2

or as determining an element of H1pM,Σ;R2q. This is the holonomy

homomorphism. If ĂM is the universal cover of M then a map from ĂM to
R2 with derivative equal to the identity is a developing map. Developing
maps exist and are unique up to translation. The developing map is
equivariant with respect to the holonomy homomorphism. This is an
instance of the general principle that for any pG,Xq-structure on a

manifold M , there is a developing map dev : ĂM Ñ X and a holonomy
homomorphism π1pMq Ñ G.
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The atlas for a translation surface gives a trivialization of the tangent
bundle at non-singular points. Let us say that f : M Ñ N is a smooth
map between translation surfaces if it preserves singular sets, and is
smooth away from the singular set of M . Using the trivialization of
the tangent space, we can view the derivative of a smooth map f as a
2 ˆ 2 real matrix-valued function. We say that a smooth map f is a
translation equivalence if it is a homeomorphism and its derivative is the
identity matrix. The notion of translation equivalence gives a natural
equivalence relation on translation surfaces. We say that M and N are
affinely equivalent if there is an orientation-preserving smooth map f
between them which is a homeomorphism and for which Df is constant
but not necessarily equal to the identity. The affine equivalence classes
are orbits of a GL˝2pRq-action we will discuss shortly.

If we identify R2 with C then the coordinate charts of a translation
structure induce a conformal structure on M r Σ. This conformal
structure extends to M so that the points in Σ correspond to punctures.
We can define the complex-valued one-form dz “ dx ` i dy. This is a
holomorphic one-form or Abelian differential with zeros at the singular
points where the order of the zero is the order of the singular point.
If we are given a surface with a conformal structure X and we wish
to define a compatible translation surface then this is determined by a
nonzero holomorphic one-form ω. We use the notation pX,ωq to denote
this pair. For the relations between these three points of view, see [Zo]
and the references cited there.

2.2. Strata as sets. Strata are moduli spaces of translation surfaces.
In this section we describe the set of surfaces corresponding to a given
stratum and the relevant notion of equivalence. In section 2.4 we will
show that the set of these equivalence classes of surfaces can be given
natural orbifold structures. Let k P N and let a1, . . . , ak be a sequence
of non-negative integers. Let M be a translation surface and let Σ be
a finite subset of M which consists of k points labeled ξ1, . . . , ξk and
contains all singular points of M . (Note that our conventions imply
that Σ has at least one point.) We say that M is a translation surface
of type pa1, . . . , akq if the cone angle at ξj is 2πpaj ` 1q. We refer to
aj as the order of ξj. The points ξj with order zero are not singular
and we will refer to them as marked points. We want to construct a
version of the stratum in which singular points have well defined la-
bels. To this end we say that two surfaces of type pa1, . . . , akq are label
preserving translation equivalent if they are translation equivalent by
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means of a translation equivalence preserving the labelling of the singu-
lar points. (When no confusion will result we will drop the expression
“label preserving”.)

Let H “ Hpa1, . . . , akq denote the stratum of translation surfaces of
type pa1, . . . , akq, considered up to label preserving translation equiv-
alence. The surfaces in H have genus g where 2g ´ 2 “

ř

aj. It
is sometimes convenient to denote this stratum as Hgpa1, . . . , akq. In
particular note that g ě 1 since the aj are non-negative.

Caution should be exercised in dealing with surfaces with non-trivial
translation automorphisms. Since there is no canonical equivalence
between two equivalent surfaces with non-trivial translation automor-
phisms it is dangerous to think of them as being ‘the same’. When we
build the stratum as a topological space these surfaces will correspond
to orbifold points.

2.3. Strata of marked surfaces. Let S be an oriented surface of
genus g and let Σ be a subset consisting of k points labeled ξ1, . . . , ξk.
The pair pS,Σq will serve as a topological model for a translation sur-
face. A marked translation surface is a translation surface M of type
pa1, . . . , akq, equipped with an orientation-preserving homeomorphism
f : S Ñ M where Σ maps to the appropriate distinguished points of
the translation structure, respecting the labels. We will consider S as
fixed and sometimes write maps f : S Ñ M as pairs pf,Mq. Two
marked translation surfaces pf1,M1q and pf2,M2q are considered to be
equivalent as marked translation surfaces if there is a label preserving
translation equivalence g : M1 ÑM2 so that g ˝ f1 and f2 are isotopic
via an isotopy that fixes the points in Σ.

Let Hm “ Hmpa1, . . . , akq denote the set of marked translation sur-
faces, up to the equivalence relation described above. As discussed
above, a surface M P H determines a cohomology class holpM, ¨q P
H1pM,Σ;R2q. A marked translation surface f : S Ñ M in Hm deter-
mines a pullback cohomology class f˚pholpM, ¨qq P H1pS,Σ;R2q where
f˚pholpM,γqq “ holpM, f˚pγqq. We denote by

dev : Hm Ñ H1
pS,Σ;R2

q (1)

the map which takes a marked translation surface to the corresponding
element of H1pS,Σ;R2q. This map is often called the period map.

2.4. Strata as spaces. We now define a topology on Hm using an atlas
of charts which is defined via triangulations of translation surfaces.
Let τ be a triangulation of S so that the vertices are points in Σ.
We do not require that edges have distinct endpoints in S though we
do require that they have distinct endpoints in the universal cover of
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S or equivalently that no two edges are homotopic relative to their
endpoints. This triangulation gives S the structure of a ∆-complex
(for a definition see [H, p. 102]). Let Uτ Ă Hm be the set of marked
translation surfaces containing a representative f : S ÑM which takes
the edges of τ to saddle connections in M .

The function that maps an oriented edge to its holonomy vector is
a 1-cochain in the cochain complex associated to the triangulation τ .
The condition that the sums of vectors on the boundary of a triangle is
zero means that this 1-cochain is a cocycle. Using the fact that τ is a
∆-complex we can identify the space of such cocycles with H1pS,Σ;R2q

(see [H]).
Using the triangulation τ allows us to define comparison maps be-

tween two marked translation surfaces lying in a given chart Uτ . Namely,
suppose pf,Mq and pf 1,M 1q are two representatives of marked trans-
lation surfaces in the same Uτ . Then f 1 ˝ f´1 : M Ñ M 1 is a homeo-
morphism but it is only well defined up to isotopy. We define a map
F in this isotopy class by requiring that for each triangle ∆ in τ , F
is an affine map when restricted to fp∆q. This requirement and the
triangulation τ determine F “ F pτ,M,M 1q uniquely, and we call it the
comparison map between M and M 1.

Proposition 2.1. The map dev|Uτ : Uτ Ñ H1pS,Σ;R2q is injective
and its image is open.

Proof. Suppose pf,Mq and pf 1,M 1q are in Uτ and have the same image
under dev. The comparison map F pτ,M,M 1q : M Ñ M 1 is a transla-
tion equivalence since the holonomy of corresponding edges are equal.
By changing f and f 1 by isotopies we can assume that the image fpτq
and f 1pτq are geodesic triangulations. So the maps F ˝ f and f 1 are
equal. We conclude that pf,Mq and pf 1,M 1q are equivalent and the
developing map is injective on Uτ .

A cohomology class φ is in the image of dev|Uτ if the values of φ on
the sides of every triangle ∆ in τ correspond to the coordinates of a
non-degenerate triangle in R2 with the appropriate orientation — an
open condition in H1pS,Σ;R2q. If this condition is satisfied then an
appropriate translation surface can be built by gluing together triangles
in R2 with edge coordinates given by φ. In particular the image devpUτ q
is open in H1pS,Σ;R2q. �

It was shown in [MaSm] that every translation surface M with Σ
nonempty admits a triangulation of this type. Thus the charts Uτ cover
Hm as τ ranges over triangulations of S. The change of coordinate maps
for this system of charts are linear. These charts on the sets Uτ give
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Hm an affine manifold structure. This affine manifold structure can be
discussed using the terminology of pG,Xq-structures. Specifically we
can take X to be H1pS,Σ;R2q and the structure group G can be taken
to be the group of linear automorphisms of H1pS,Σ;R2q. Our choice
of dev as notation for the map in (1) is motivated by the fact that this
map is the developing map for the affine structure.

We have described triangulations of pS,Σq in terms of a homeomor-
phism with a ∆-complex. We note that such a homeomorphism is
determined up to isotopy by knowing the relative homotopy classes of
the edges of the triangulation (see [FaMa, Lemma 2.9]). Furthermore
distinct edges are not homotopic to each other relative to their end-
points. In the sequel we will use τ to denote the homotopy classes of
edges of a triangulation.

We now make use of the marked stratum to put a topology on the
stratum. Consider the group of isotopy classes of orientation-preserving
homeomorphisms of S fixing Σ pointwise. This is sometimes called the
pure mapping class group (see e.g. [I]). We will simply refer to it as
the mapping class group and we will denote it by ModpS,Σq. Up to
the action of ModpS,Σq there are finitely many charts Uτ . It can be
checked that the ModpS,Σq-action on Hm is properly discontinuous.
This equips the quotient H “ Hm{ModpS,Σq with the structure of
an affine orbifold, with respect to which the map Hm Ñ H is an orb-
ifold covering map (see [Th] for the definition and basic properties of
properly discontinuous actions and orbifolds).

2.5. Blow ups of translation surfaces. We now discuss a “blow-up”
construction that replaces a singularity ξ by a boundary circle. This is
a special case of a more general construction of a “real oriented blow-
up” (see e.g. [HPV]). The real oriented blowup of a point ξ in R2 is a
new space BloξpR2q together with a collapsing map c : BloξpR2q Ñ R2

with the property that the inverse image of any point other than ξ is
a single point while the inverse image of ξ is the circle of directions at
ξ which we can identify with pR2 r t0uq{R` (or with the unit circle)
and denote by S1. The space BloξpR2q has the property that a smooth
path in R2 landing at ξ and with non-zero derivative at ξ has a lift to
the space BloξpR2q which takes the endpoint of the path to a point in
the circle of directions.

If we blow up the vertex ψ of a polygon P in R2 then we obtain
the space BloψpP q which is the result of replacing the vertex ψ in P
by an interval. We describe this construction explicitly. Applying a
translation, assume ψ is at the origin. Say that the two edges of the
polygon incident to ψ are in directions θ1, θ2 with 0 ă θ2 ´ θ1 ă 2π,
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and there is ε ą 0 such that

trpcos θ, sin θq : θ P rθ1, θ2s, r P r0, εqu

parametrizes a neighborhood of ψ in P . The blow-up of this neighbor-
hood in BloψpP q corresponds to the rectangle

tpr, θq : θ P rθ1, θ2s, r P r0, εsu

and the collapsing map c from BloψpP q to P takes pr, θq to rpcos θ, sin θq.
In particular the interval tp0, θq : θ P rθ1, θ2su is collapsed to the point
ψ. Note that this interval has a natural “angular coordinate” with
values in the unit circle.

Given a translation surface M with singular points Σ we construct
a surface with boundary M̌ by blowing up all of the points of Σ. We
can do this as follows. Choose a triangulation of M . Blow up each
vertex of each triangle thereby creating a family of hexagons where
each hexagon contains edges of two types: those corresponding to edges
of triangles and those corresponding to vertices of triangles. Glue the
(triangle edge) sides of the hexagons together according to the gluing
pattern of the original triangles. The result is the surface M̌ which is in
fact independent of the particular choice of triangulation. At a singular
point ξj of the surface the intervals mapping to ξj glue together to form
a circle which we call BjM̌ . The angular coordinates glue together to
give us a map pj : BjM̌ Ñ S1. The total angular measure of BjM̌ is
2πpaj`1q which is the cone angle at ξj. We can choose an identification
of the circle BjM̌ with the circle R{p2πpaj ` 1qqZ so that the angular
coordinate of a point is equal to its circle coordinate modulo 2π. This
identification of BjM̌ with the circle is well-defined up to translation
by 2π while the map pj is defined independently of any choices.

If we associate a point ν in the j-th boundary component BjM̌ with
a short ray heading away from ξj, then pjpνq is the direction of the ray.
We define the prongs to be points on boundary circles corresponding to
horizontal rays, i.e. points whose angular parameter is πk with k P Z.
We will call a prong right- or left-pointing, if k is even (resp. odd), that
is, according to the orientation that the prong inherits from the plane.
A particular choice of an identification of BjM̌ with R{2πpaj ` 1qZ
is equivalent to the choice of a right-pointing prong. The boundary
circles of M̌ inherit boundary orientations as boundary components of
the oriented manifold M . With respect to the boundary orientation
the maps pj are covering maps of degree ´paj ` 1q where the negative
sign reflects the fact that moving in the direction of the boundary
orientation corresponds to decreasing the angular coordinate.
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2.6. Strata of boundary marked surfaces. In this subsection we
define a notion of marked surface appropriate to surfaces with bound-
ary and a corresponding mapping class group. To this end we define a
“model surface” Š, which will capture some of the structure common
to the surfaces M̌ for M P Hpa1, . . . , akq. Let Š be a surface with
boundary which has genus g where 2g ´ 2 “

ř

aj and k boundary
components labeled B1Š, . . . , BkŠ. The circles inherit a boundary ori-
entation from S. We equip each boundary circle BjŠ with orientation
reversing homeomorphisms qj : BjŠ Ñ R{p2πpaj ` 1qZq which give
angular coordinates on the boundaries. A marked translation surface
rel boundary is a surface M̌ which is a blow up of a translation sur-
face M of type pa1, . . . , akq, equipped with an orientation preserving
homeomorphism f̌ : Š Ñ M̌ respecting the labels, and such that on
each boundary circle BjŠ we have pj ˝ f̌ ” qj mod 2π. Note that a
boundary marking of M induces an explicit coordinate on BM̌ and an
explicit choice of a prong, namely the image under f̌ of the prong on
BjŠ corresponding to angular parameter zero.

We say that two boundary marked translation surfaces rel boundary
pf̌1, M̌1q and pf̌2, M̌2q are equivalent if there is a translation equivalence
g : M1 Ñ M2 such that ǧ ˝ f̌1 and f̌2 are equal on BŠ and are isotopic

via an isotopy that fixes the boundary. Let rH “ rHpa1, . . . , akq denote
the set of boundary marked translation surfaces, up to equivalence. We

call rH a stratum of boundary marked translation surfaces.
There is a natural collapsing map c : M̌ Ñ M which collapses each

boundary component to a single point. A map f̌ : Š Ñ M̌ induces
a map f : S Ñ M , where c ˝ f̌ “ f ˝ c. If f̌1 and f̌2 are equivalent
(in the sense of §2.6), then so are f1 and f2 (in the sense of §2.2). We
say that f is obtained from f̌ by projection. The forgetful map which
takes pf̌ , M̌q to the pair pf,Mq where f is obtained by projection gives

a map pr : rHÑ Hm.
We now define a mapping class group rel boundary. We say a home-

omorphism f̌ : Š Ñ Š is admissible if f̌ takes each boundary circle BjŠ

to itself and the restriction of f̌ to BjŠ is a rotation by a multiple of
2π with respect to the circle coordinate given by qj. We say that two
admissible homeomorphisms are isotopic rel boundary if they agree on
BŠ and if the are isotopic by an isotopy which is the identity when
restricted to BŠ. We denote by ModpŠ, a1, . . . , akq the group of isotopy
classes rel boundary of admissible homeomorphisms of Š. When there
is no chance of confusion we will abbreviate this to ModpŠ, BŠq. There
is a natural right action of the mapping class group ModpŠ, a1, . . . , akq
on the stratum H̃pa1, . . . , akq by precomposition.
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2.7. Relative homotopy classes of paths. A useful tool in the
study of mapping class groups is the study of their action on curves. In

order to analyze rH and ModpŠ, BŠq we will consider the action on ho-
motopy classes of paths with endpoints in the boundary. We consider
paths in Š with endpoints in BŠ. We say that two paths are homotopic
if there is a homotopy between them that keeps the endpoints in BŠ.
We say that two homotopic paths are relatively homotopic if the homo-
topy can be chosen to fix the endpoints of the path. The collection of
relative homotopy classes of paths is a natural set to consider but, un-
like homotopy classes of paths in pM,Σq, it is not discrete. We analyze
its topology below. There is a well-defined action of ModpŠ, BŠq on rel-
ative homotopy classes of paths. We say that a path α is peripheral if
both endpoints lie in the same boundary component and α is homotopic
to a path contained in that boundary component. Let σ : r0, 1s Ñ Š
be a non-peripheral oriented path with σp0q P BŠj and σp1q P BŠk. Let
CσpŠq be the set of relative homotopy classes of oriented paths in Š
which are homotopic to σ.

Definition 2.2. . Let σ̌ and σ̌1 be elements of CσpŠq going from BjŠ to
BkŠ, and let ε ą 0. We say that σ̌1 is ε-close to σ̌ if there are intervals
I1 Ă BjŠ and I2 Ă BkŠ of length ε, containing the endpoints of σ̌ and
σ̌1, such that σ̌1 is homotopic to σ̌ through a family of paths each of
which has one endpoint in I1 and one endpoint in I2.

Sets of ε-close homotopy classes of curves for given intervals I1 and
I2 form the basis for a topology on CσpŠq. We have an endpoint map
ε : CσpŠq Ñ BjŠ ˆ BkŠ which takes a relative homotopy class of curves
to its endpoints. With respect to the topology on CσpŠq the endpoint
map is continuous.

Lemma 2.3. Say that S is a surface with boundary with negative Euler
characteristic. The endpoint map ε : CσpŠq Ñ BjŠ ˆ BkŠ is a covering
map and CσpŠq is the universal cover of BjŠ ˆ BkŠ. It follows that the
space of relative homotopy classes of paths in this homotopy class is

homeomorphic to the product of the universal covers Ą

BjŠ and Ą

BkŠ.

We will apply this result to the surfaces with boundary Š arising as
‘model surfaces’ corresponding to some family of translation surfaces.
According to our conventions these surfaces always have negative Eu-
ler characteristic. This result captures the idea that the distinction
between homotopy and relative homotopy for paths is measured by the
amount of twisting around each boundary component.
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Proof. Since the Euler characteristic of Š is negative we can give Š a
hyperbolic structure so that the boundaries are geodesics. The uni-

versal cover rŠ is isometric to a convex subset of the hyperbolic plane

with geodesic boundary. Choose a boundary component B1 of rŠ cor-

responding to BjŠ. Identify B1 with Ą

BjŠ. Choose a lift of σ to a path

σ̃ in rŠ starting in B1. The other endpoint of σ̃ lands in a component

B2 which maps to BkŠ. Identify B2 with Ą

BkŠ. Since the path is non-
peripheral, B1 and B2 are distinct. Any path homotopic to σ has a lift
to a path from B1 to B2 and this lift is unique since the subgroup of the
deck group that stabilizes B1 and B2 is trivial. This follows from the
fact that a hyperbolic isometry that fixes four points is the identity.

We get a map from the space of relative homotopy classes of paths

homotopic to σ to B1 ˆ B2 “
Ą

BjŠ ˆ
Ą

BkŠ as follows. Given a path
homotopic to σ we lift to a path from B1 ˆ B2 and we associate this
path to its endpoints. Given a pair of points pp1, p2q P B1 ˆ B2 we
associate the projection to Š of the unique geodesic from p1 to p2. The

fact that any path between Ą

BjŠ and Ą

BkŠ is relatively homotopic to a
unique geodesic implies that these maps are inverses. This map is a
continuous bijection with respect to the natural topology on CσpŠq. �

We now describe explicitly some elements of ModpŠ, BŠq which cor-
respond to partial Dehn twists around boundary components. Let
Aj be an annular neighborhood of BjŠ where we choose coordinates
tpt, θq : t P r0, 1s, θ P R{2πpaj ` 1qZu. Here t “ 0 corresponds to the
boundary circle BjŠ, and the θ coordinate of Aj is compatible at t “ 0
with the θ coordinate of the boundary circle. We will define a par-
ticular homeomorphism τj P ModpŠ, BŠq as follows. On Aj we define
τjpt, θq “ pt, θ` 2πp1´ tqq so that τj rotates BjŠ by 2π and is the iden-
tity on the other boundary of Aj. We extend τj to a map τj : Š Ñ Š by
setting it to be the identity outside of Aj. The map τj represents an el-
ement of ModpŠ, BŠq which we call a fractional Dehn twist by angle 2π.

In particular τ
aj`1
j is a full Dehn twist around the boundary curve BjŠ.

Note that τ
aj`1
j is a right Dehn twist and that it also makes sense to

describe τj as a right fractional Dehn twist (see [FaMa]). The collapsing
map c : Š Ñ S induces a map c˚ : ModpŠ, BŠq Ñ ModpS,Σq. Denote
by FT the group generated by the fractional Dehn twists τ1, . . . , τk.
Note that FT depends on pa1, . . . , akq.

Lemma 2.4. We have a short exact sequence

1 Ñ FT Ñ ModpŠ, BŠq
c˚
ÝÑ ModpS,Σq Ñ 1, (2)
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where the group FT is the free Abelian group generated by the τj and
is central in ModpŠ, BŠq.

Proof. We can see from the definition of a fractional Dehn twist that
an element of FT is isotopic to the identity by an isotopy which moves
points in the boundary of S. These isotopies descend to isotopies of
pS,Σq. It follows that FT belongs to the kernel of c˚. The fact that the
kernel of c˚ is exactly FT follows from the arguments used in [FaMa,
Prop. 3.20].

To see the surjectivity of c˚, let h be a homeomorphism of S fixing
points of Σ. The homeomorphism h is isotopic to a diffeomorphism (see
[FaMa, Thm. 1.13]) which, using the properties of the real blow-up, has
a lift to a homeomorphism h1 from Š to itself. This homeomorphism
induces a homeomorphism of BjŠ for each j. By applying an isotopy in
the annular neighborhood Aj of each BjS as above, we can replace h1 by
a map h2, which is the identity on Aj. In particular h and h2 represent
the same element of ModpS,Σq, and h2 fixes each point of BŠ. This
shows that the equivalence class of h contains a representative which
is in the image of c˚, proving surjectivity.

Since h2 is the identity on each Aj and τj is the identity on the
complement of Aj we see that h2 and τj have disjoint support so they
commute which implies that FT is central.

We now show that there are no relations between elements of FT .
Consider a word in the collection of twists that represents a relation.
Since FT is abelian we can write it as w “ τm1

1 ¨ ¨ ¨ τ
mj
j ¨ ¨ ¨ τmkk . Now

since Š has negative Euler characteristic we can find a non-peripheral
path from a boundary component BjŠ to itself. The effect of w on this
path is to shift both endpoints by 2πmj. By Lemma 2.3, since w acts
trivially, mj “ 0. Since j was arbitrary, w “ 1. �

2.8. Strata of boundary marked surfaces as topological spaces.

In this subsection we define a topology on rH in a manner somewhat
analogous to the method used for defining the topology on Hm. We

construct a cover of rH by sets on which the developing map is an
injection into H1pS,Σ;R2q and then we use these maps to endow each
such set with the topology induced by the developing map. We show
that with respect to this topology the map pr is a covering map, thus

we conclude that these charts give not only a topology on rH but a
compatible affine structure.

To construct these charts fix a point pf̌ , M̌q P rH and a geodesic tri-
angulation τ of M . We caution the reader that in contrast to §2.4,
here τ denotes a geodesic triangulation of M rather than a topological
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triangulation of S. We have canonical lifts of the edges σ of the trian-
gulation τ to edges σ̌ in M̌ so that the endpoints of σ̌ lie in BM̌ . Let
τ̌ be the collection of paths in Š of the form f̌´1pσ̌q for σ an edge of τ .
These paths are embedded and we refer to them as arcs. These arcs
of τ̌ decompose Š into hexagons where edges of the hexagons consist
alternately of arcs and intervals in boundary circles.

We now define what it means for two hexagon decompositions to be
ε-close. Firstly we require that the arcs in the two decompositions are
pairwise homotopic. Secondly we require that these pairs of homotopic
arcs are ε-close in the sense of Definition 2.2. Note that any triangu-
lation of a translation surface has the property that distinct edges lie
in distinct homotopy classes, thus there is no ambiguity in comparing
homotopy classes of arcs in the two decompositions.

Given a geodesic triangulation τ of M , let τ̌ be its pullback under a
marking of blown up translation surfaces Š Ñ M̌ , and let Uτ̌ ,ε consist

of pf̌ , M̌ 1q P rH for which there is a geodesic triangulation σ of M 1 which
lifts to a hexagon decomposition of σ̌ of M̌ 1 so that the pullback of σ̌
under f̌ 1 is ε-close to τ̌ .

Lemma 2.5. The developing map is injective on the set Uτ̌ ,π{2.

Remark: The developing map for rH is most naturally defined to take
values in H1pS, BŠ;R2q but the the collapsing map c : Š Ñ S induces
a map c˚ : H1pS,Σ;R2q Ñ H1pŠ, BŠ;R2q which is an isomorphism. In
the sequel we will make use of this isomorphism to identify the two
spaces.

Proof. Assume that pf̌1, M̌1q and pf̌2, M̌2q map to the same point in
H1pS,Σ;R2q and both lie in Uτ̌ ,π{2. Let τ1 and τ2 be triangulations
of M1 and M2 so that τ̌1 “ f˚1 pτ̌1q and τ̌2 “ f2

˚
pτ̌2q are π{2-close to

τ̌ , and hence π-close to each other. Since M1 and M2 have geodesic
triangulations such that corresponding edges have the same image in
H1pS,Σ;R2q, the comparison map F pτ,M1,M2q is a translation equiva-
lence, and we denote it by g : M1 ÑM2. In order to show that pf̌1, M̌1q

and pf̌2, M̌2q represent the same element of rH we need to show that
ǧ˝f̌1 and f̌2 agree on BŠ and that they are isotopic via an isotopy which
fixes BŠ. Both τ̌1 and τ̌2 produce collections of arcs in Š. There is a
unique correspondence between these collections of arcs so that cor-
responding arcs are homotopic. We want to show that corresponding
arcs are not just homotopic but in fact relatively homotopic.

We begin by working with a single edge. Let σ be an edge of τ̌
and let σ1 and σ2 be corresponding oriented edges of τ̌1 and τ̌2. Our
first objective is to show that σ1 and σ2 have the same endpoints and
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are relatively homotopic. The relative homotopy classes of σ1 and σ2

determine points rσ1s and rσ2s in CσpŠq. It suffices to show that these
two points are the same.

Say that σ1 and σ2 run from BiŠ to BjŠ. We have the endpoint map
ε : CσpŠq Ñ BiŠˆBjŠ. According to Lemma 2.3 this is a covering map.
We also have projection maps pk : BkŠ Ñ R{2πZ which are covering
maps (in either S or M). Consider the composition Π “ ppi ˆ pjq ˝ ε :
CσpŠq Ñ R{2πZ ˆ R{2πZ. This is a covering map. The oriented
segments σ1 and σ2 have the same holonomy so they point in the same
direction in R2 hence Πprσ1sq “ Πprσ2sq. Since both triangulations lie
in Uτ̌ ,π{2 there are intervals I Ă BiŠ and J Ă BjŠ of length π and a
homotopy from σ1 to σ2 for which the endpoints of the paths remain
in I and J . This homotopy gives a path ρ from rσ1s to rσ2s in CσpŠq
which projects to I ˆ J Ă R{2πZˆR{2πZ under the covering map Π.
The image of ρ is a loop, which is contractible since it is contained in
the contractible set IˆJ . Covering theory implies that ρ itself must be
a loop so rσ1s “ rσ2s. It follows that ǧ ˝ f̌1pσ1q and f̌2pσ2q are relatively
homotopic.

Proposition 2.1 shows that g ˝ f̌1 and f̌2 induce the isotopic maps
on pS,Σq. It remains to show that they agree as maps on pŠ, BŠq.
According to Lemma 2.4 this means that there is no boundary twisting
but boundary twisting is detected by the effect on relative homotopy
classes of the paths σ. We conclude that g ˝ f̌1 and f̌2 are isotopic
relative to their boundaries. �

We can use the injectivity of the developing maps on the sets Uτ̌ ,π{2
to define a topology on H̃. With respect to this topology the developing
map becomes a local homeomorphism. The next proposition refers to
this topology.

Proposition 2.6. The projection map pr from rH to Hm has the path
lifting property.

Recall that the path lifting property for the map pr means that if we
are given a path f : I Ñ Hm and a lift x̃0 of the endpoint fp0q “ x0

then there is a unique path f̃ : I Ñ X̃ with f̃p0q “ x̃0 which satisfies

pr ˝ f̃ “ f (see [H, p. 60] for more information).

Proof. It suffices to construct lifts of paths locally. Consider an open
set Uτ Ă Hm corresponding to a triangulation τ as in §2.4. Let φt “
pft,Mtq for t P r0, 1s be a path taking values in Uτ and let pf̌0, M̌0q

represent a point in rH such that prpf̌0, M̌0q “ pf0,M0q. We define a
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path φ̌t “ pf̌t, M̌tq for t P r0, 1s, satisfying

φ̌0 “ pf̌0, M̌0q and prpφ̌tq “ φt, (3)

as follows.
Let F pτ,M0,Mtq : M0 ÑMt be the comparison maps defined in §2.4.

These maps are piecewise linear and hence they have unique exten-
sions to the blow-ups, that is there are homeomorphisms F̌ pτ,M0,Mtq :
M̌0 Ñ M̌t of the blown-up surfaces, satisfying

c ˝ F̌ pτ,M0,Mtq “ F pτ,M0,Mtq ˝ c.

We define F̌t “ F̌ pτ,M0,Mtq ˝ f̌0 : Š Ñ M̌t, and denote the restriction
of F̌t to BjŠ by BjF̌t. We would like to set φ̌t “ pF̌t, M̌tq but there
is a problem in that the maps F̌t need not preserve the boundary co-
ordinates given by the maps pj : BjM̌t Ñ S1. In other words, it will
not generally be the case that pj ˝ BjF̌t “ pj. We claim that there is
a unique (up to isotopy) way to modify the maps F̌t by precomposi-
tion with a continuous family of maps of Š, so that they do satisfy
the boundary coordinate condition, and so that (3) holds. We will do
this by precomposing the maps F̌t with homeomorphisms Ht : Š Ñ Š
supported in a neighborhood of the boundary and then set f̌t “ F̌t˝Ht.

In order to prove the existence of the required homeomorphisms Ht,
we consider the condition that they will need to satisfy. For each
boundary component BjŠ the restriction BjHt should satisfy

pj ˝ BjF̌t ˝ BjHt “ pj and BjH0 “ Id. (4)

We rewrite this as

pj ˝ BjF̌t “ pj ˝ pBjHtq
´1. (5)

Setting `j,t “ pBjHtq
´1, we see that `j,t : BjŠ Ñ BjŠ is a solution to the

homotopy lifting problem

pj ˝ `j,t “ pj ˝ BjF̌t and `j,0 “ Id,

see Figure 1.
Since pj is a covering map the Homotopy Lifting Theorem [H, Prop

1.30] asserts that lifts `j,t exist and are unique. Thus Ht “ p`j,tq
´1

is defined on the boundary of Š. It remains to extend Ht to annular
neighborhoods of the boundaries. As in §2.6 we have a family of disjoint
annuli Aj in Š parametrized by tpr, θq : r P r0, 1s, θ P R{2πpaj ` 1qZu
where in these coordinates, tr “ 0u is the j-th boundary component of
Š. Then we define Ht to be the identity outside the union of annuli, to
be equal to the prescribed map BjHt on tr “ 0u, and be given by the
formula Htpr, θq “ pr, ψp1´rqtpθqq for 0 ď r ď 1.
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BjŠ

BjŠ S1

`j,t
pj

pj ˝ BjF̌t

Figure 1. The boundary map `j,t “ pBjHtq
´1 rectifies

the discrepancies of BjF̂t along boundary circles.

It is clear that with these definitions, the path φ̌t “ pf̌t, M̌tq with
f̌t “ F̌t ˝Ht satisfies (3).

It is not hard to verify the homotopy invariance of the lift, that is,
if we have two homotopic paths φt and φ1t (for t P r0, 1s), one can lift
the homotopy to obtain a one-parameter family of maps f̌1

s
: Š Ñ M̌1,

which gives us an isotopy from f̌ 0
1 to f̌ 1

1 , fixing the boundary. That is,

the lifts of homotopic paths have the same endpoint in rH.
The uniqueness (up to isotopy) of the maps Ht (where H0 is the

identity and (4) holds), follows from the uniqueness of the lifts `j,t and
standard properties of annuli, and is left as an exercise. �

Corollary 2.7. The map pr : rH Ñ Hm is a covering map and rH has
an affine structure given by period coordinates.

Proof. A local homeomorphism to a semilocally simply connected space
with the path lifting property is a covering map. �

The group ModpŠ, BŠq acts on rH by precomposition. It acts con-

tinuously and properly discontinuously on rH, the quotient is H and
according to Lemma 2.4 the subgroup FT acts simply transitively on
each fiber of pr. We warn the reader that the spaces H̃ and Hm are not
in general connected. Typically they have infinitely many components.

2.9. The space of framed surfaces. Our next objective is to define
and analyze the covering space of framed surfaces. Since Hm is an affine

manifold and pr : rH Ñ Hm is a covering map, we have equipped rH
with the structure of an affine manifold. Since the action of ModpŠ, BŠq
is properly discontinuous, for each subgroup Γ of ModpŠ, BŠq, we can

form the quotient rH{Γ. By Lemma 2.4 we have H “ H{ModpŠ, BŠq

and Hm “ H{FT . Moreover each rH{Γ is an orbifold cover of H. Note
that this is not the Galois correspondence relating connected covers to
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subgroups of the fundamental group, since rH is not connected. Never-
theless we can define the space of framed surfaces via a group-theoretic
approach.

We start with a discussion of subgroups of ModpŠ, BŠq. While an
element of the group ModpŠ, BŠq is only defined up to isotopy on the
interior of Š, it is well-defined on the boundary circles and acts on
each circle BjŠ by rotations which are multiples of 2π. Let ModpŠq be
the subgroup of ModpŠ, BŠq represented by homeomorphisms that fix
the boundary pointwise. Let PR be the prong rotation group, consist-
ing of homeomorphisms of the boundary BŠ which, on each boundary
component BjŠ, are rotations by an integral multiple of 2π. Since BjŠ
is parametrized by a circle of length 2πpaj ` 1q, as a group PR is

isomorphic to
śk

j“1 Z{paj ` 1qZ. We have a short exact sequence

1 Ñ ModpŠq Ñ ModpŠ, BŠq Ñ PRÑ 1. (6)

Surjectivity in (6) follows from the fact that the fractional twists τj P
ModpŠ, BŠq map to a collection of generators for PR.

A framed translation surface is a translation surface M equipped
with a right-pointing horizontal prong at each singular point. We will
call this prong (considered as an element of BjM̌) the selected prong.
Equivalently a framed surface is equipped with a choice of boundary
coordinate on Cj taking values in the circle R{2πpaj ` 1qZ so that the
map pj is reduction modulo 2π and the selected prong corresponds to
the angle 0.

The space of framed translation surfaces is naturally a finite cover
of H and we will denote it by Hf . The connected components of Hf

were classified by Boissy [Boi]. We recover Hf as the quotient of rH by
the group ModpŠq in (6):

Proposition 2.8. We have rH{ModpŠq “ Hf .

Proof. We define a map from rH to Hf as follows. For each boundary
component BjŠ, let 0j denote the point in BjŠ with angular coordinate

0. Given a marked blown-up surface pf̌ , M̌q, define a framed surface
by letting the point f̌p0jq P BjM̌ be the selected prong. Say that two

surfaces pf̌1, M̌1q and pf̌2, M̌2q map to the same surface in Hf . Thus
there is a translation equivalence h : M1 ÑM2 so that ȟ takes selected
prongs in each BjM̌1 to selected prongs in BjM̌2. This means that the

restriction of the map pf̌2q
´1 ˝ ȟ ˝ f̌1 to BjŠ fixes 0j. Since this map

is a rotation of the circle with a fixed point it is the identity map.
Thus pf̌2q

´1 ˝ ȟ ˝ f̌1 P ModpŠq so pf̌1, M̌1q and pf̌2, M̌2q are ModpŠq-
equivalent. �
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We summarize our constructions in Figure 2.

rH

Hm Hf

H

Figure 2. The vertical arrow corresponds to factoring
by the action of ModpŠ, BŠq, and the pair of arrows on
the left and right correspond to factoring by the groups
appearing in the sequences (2) and (6) respectively.

2.10. Action of G and its covers on covering spaces of H. The
affine equivalence classes of translation structures are orbits of a group

actions which we now define. Recall that GL˝2pRq and ČGL˝2pRq denote
respectively the group of orientation preserving invertible 2 ˆ 2 real
matrices, and its universal cover group. Given g P GL˝2pRq and a
translation surface M we construct a new surface gM as follows. As
discussed in §2.1, in the language of pG,Xq-structures, a translation
surface can be given by an atlas of charts on M with overlap functions
taking values in the group of translations R2. The element g is a linear
map R2 Ñ R2, and postcomposing each chart in an atlas, we obtain a
new translation atlas. Let gM be this new translation surface and let
φg be the identity map from M to gM . The map φg is an affine map
with derivative g.

The group g P GL˝2pRq acts on rHm as follows. If pf,Mq P rHm then
define gpf,Mq to be pφg ˝ f, gMq. The condition that g P GL˝2pRq in-
sures that φg˝f is orientation preserving. Since the action of ModpS,Σq
on marked surfaces is by pre-composition, this action induces a well-
defined action on Hm. If we let GL˝2pRq act on H1pS,Σ;R2q by acting
on the coefficients via the linear action on the plane, then the map
dev : Hm Ñ H1pS,Σ;R2q will be equivariant.

It is a general principle that if a connected topological group acts
on a topological space X, then its universal cover acts on any cover
of X. Since GL˝2pRq and its subgroup G “ SL2pRq act on Hm, and
rH Ñ Hm is a covering map, we conclude that their universal covering
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groups ĄGL˝2pRq and rG act on rH. For related discussions in the case of
strata of meromorphic quadratic differentials see [BS] and [HKK].

It will be useful for us to not only know that this action exists but to

have an explicit description of the action. An element of rg P ĄGL˝2pRq
can be represented by a pair pρ, gq where g P GL˝2pRq and ρ : r0, 1s Ñ
GL˝2pRq is a path with ρp0q “ Id and ρp1q “ g. Two such representa-
tions are equivalent if the corresponding paths are homotopic relative

to their endpoints. Given an element of rH, pf̌ , M̌q and an element

rg “ pρ, gq of ĄGL˝2pRq we have a path αptq “ ρptqpf,Mq in Hm and a

lift of the initial point of this path pf,Mq to pf̌ , M̌q P rH. According to

Proposition 2.6 this path lifts uniquely to a path α̃ptq P rH and we set
g̃pf̌ , M̌q “ α̃p1q. The resulting element is independent of the choice of
path ρ.

Let

us
def
“

ˆ

1 s
0 1

˙

, gt
def
“

ˆ

et{2 0
0 e´t{2

˙

and rθ
def
“

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

. (7)

We will refer to the action of us as the horocycle flow and gt as the
geodesic flow and write

U “ tus : s P Ru, A “ tgt : t P Ru, SO2pRq “ trθ : θ P Ru, B “ AU.

Note that B is the connected component of the identity in the group
of upper-triangular matrices and it normalizes U . Since U is simply
connected, the connected component of the identity in the pre-image

of U in rG is a subgroup isomorphic to U . Thus we can identify U with

a subgroup of rG, and the same is true for the groups B and A. The
groups G and GL˝2pRq are both homotopy equivalent to SO2pRq – S1,

and rG and ĂGL
˝

2pRq are both homotopy equivalent to ĂSO2pRq – R.

As we have seen the fundamental groups of both groups rG and
ĂGL

˝

2pRq are isomorphic to Z. Since SO2pRq Ă G Ă GL˝2pRq and the
induced maps on fundamental groups are isomorphisms it will cause
no confusion to identify the fundamental groups of these three groups.
This group is infinite cyclic and we denote it by C. We have three
short exact sequences:

1 Ñ C Ñ ĄGL˝2pRq Ñ GL˝2pRq Ñ 1

1 Ñ C Ñ rGÑ GÑ 1 (8)

1 Ñ C Ñ ĄSO2pRq Ñ SO2pRq Ñ 1.

We will write the element of ĄSO2pRq corresponding to θ P R as r̃θ,

so that r̃θ ÞÑ rθ mod 2π is the projection ĄSO2pRq Ñ SO2pRq. The group
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C is central in ĄGL˝2pRq and in these coordinates it is identified with
tr̃2πn : n P Zu.

We will explicitly describe the action of ĂSO2pRq on rH.

Proposition 2.9. The left action of r̃2π on rH is equal to the right

action of τ´1 where τ “ τ1 ¨ ¨ ¨ τk P FT. That is, for pf̌ , M̌q P rH we
have r̃2πpf̌ , M̌q “ pf̌ ˝ τ

´1, M̌q.

Proof. Given a marked translation surface rel boundary f̌ : Š Ñ M̌ we

follow the definition of the action of ĂGL
˝

2pRq on rH given above. Let
Dθ be the map supported in annuli around boundary components of
Š that performs a Dehn twist by θ P R on each boundary component.
Let θ0 P R, and assume for concreteness that θ0 ą 0. We will describe
the action of r̃θ0 by explicitly lifting the action of trθ : θ P r0, θ0su using
the procedure described in Proposition 2.6.

Let pf,Mq P Hm be a marked translation surface, and let pf̌ , M̌q

be an element of rH projecting to pf,Mq. We want to lift the path

θ ÞÑ rθpM, fq “ pf, rθMq to rH. As in §2.8, fix a triangulation τ of S.
By a compactness argument it suffices to analyze the lift of the path
θ ÞÑ rθpM, fq, for the subset

tθ P r0, θ0s : rθpM, fq P Uτu,
and we can assume with no loss of generality that pf,Mq P Uτ .

Let F pτ,M, rθMq be the comparison map defined in §2.4. An impor-
tant observation, which follows immediately from the definition of the
comparison maps, is that the derivative of F pτ,M, rθMq is everywhere
equal to the matrix rθ, and hence the comparison map is in fact inde-
pendent of the triangulation τ . Let F̌ pτ,M, rθMq denote the extension
of F pτ,M, rθMq to blown-up surfaces, and let F̌θ “ F̌ pτ,M, rθMq ˝ f .
Then as discussed in §2.8, F̌θ does not preserve boundary coordinates,
but the composition D´θ ˝ F̌θ does. Thus the path θ ÞÑ pF̌θ ˝D´θ, rθM̌q
satisfies (3), so by uniqueness, is the desired lift of the path pf, rθMq

to rH.
In particular, setting θ0 “ 2π and using the fact that rθ0 “ Id, we

get pf̌ ˝D´2π, M̌q and D´2π “ τ´1 with τ “ τ1 ¨ ¨ ¨ τk. �

2.11. Consequences. We note some consequences of the above dis-
cussion. These will not be needed in this paper but are of independent
interest.

Corollary 2.10. Every path component of Hm has an infinite funda-
mental group. In particular it is never the case that the space of marked
surfaces is the universal cover of the stratum.
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Proof. Let C be a path component of Hm and let M P C. Proposition

2.9 shows that lifting the closed path trθM : θ P r0, 2πsu to rH, we
get a non-closed path whose endpoints differ by an application of the
element τ´1 P FT . This element has infinite order in FT . Since the
group FT acts freely on the fiber pr´1pMq, none of the lifted paths are
closed. It follows that C has an infinite fundamental group. �

An instructive example is the case H “ Hp0q (where the model
surface S is the torus with one marked point and Š is the torus with
an open disk removed). The covering space Hm can be identified with
GL˝2pRq (the connected component of the identity in GL2pRq), and is

not simply connected, whereas rH is identified with its universal cover

group ĄGL˝2pRq and is simply connected. A generator of the fundamental
group of GL˝2pRq acts by a boundary Dehn twist on Š.

We present another useful consequence of our lifting construction.
Let Γ0 be a subgroup of ModpŠ, BŠq, let HΓ0 denote the quotient

rH{Γ0, let C be a path component of HΓ0 and let p P C and q P rH such
that q projects to p. We define a homomorphism ρq : π1pC, pq Ñ Γ0 as
follows. Let φ be a loop based at p. Let rφs be the element of π1 that
it represents. We can lift φ to a path starting at q. The endpoint of
this lifted path maps to p so it has the form pγ for some γ P Γ0 (where
our notation reflects the fact that ModpŠ, BŠq acts by precomposition,
so defines a right-action). Define ρqprφsq to be γ. The homotopy lifting
property shows that ρqprφsq depends only on q and on the homotopy
class rφs, and not the particular loop φ chosen to represent it.

The construction of ρq depends on the choice of the point q. If we
were to choose a different point q1 mapping to p then q1 “ qα for some
α P Γ0. In this case the lift of φ starting at pα is the path φα and the
other endpoint is pγα “ pαpα´1γαq. Thus ρq1pφq “ α´1ρqαpφq so ρq1
differs from ρq by an inner automorphism of Γ0. In other words we have
constructed a preferred homomorphism ρ : π1pCq Ñ Γ0, well-defined up
to a choice of an inner automorphism of Γ0.

Let n P N and let Cn denote the subgroup of C generated by r2πn.

Then Cn is central in G and Ĝn “ rG{Cn is the unique connected n-fold
cover of G.

Corollary 2.11. Let Γ0 be a subgroup of ModpŠ, BŠq. Then Ĝn acts

on rH{Γ0 if and only if τn P Γ0. In particular, suppose n is the least

common multiple of the numbers tai ` 1 : i “ 1, . . . , ku. Then Ĝn acts

on Hf , but Ĝm does not act when m ă n.
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Proof. Let HΓ0 “
rH{Γ0, and let pf̌ , M̌q P rH. If the action of r̃2πn is

well-defined on HΓ0 then r̃2πnpf̌ , M̌q and pf̌ , M̌q are equivalent in HΓ0

so by Proposition 2.9,

pf̌ , M̌qτ´n “ r̃2πnpf̌ , M̌q “ pf̌ , M̌qγ

for some γ P Γ0. That is, f̌ ˝γ and f̌ ˝τ´n are isotopic via an isotopy fix-
ing BŠ. In particular they represent the same elements in ModpŠ, BŠq
and τ´n P Γ0. Conversely if τ´n P Γ0 then pf̌ , M̌q and r̃2πnpf̌ , M̌q
represent the same surface in HΓ0 . �

2.12. Area form. Let rHp1q and Hp1q denote the subset of area-one
surfaces in rH and H respectively. With respect to the charts afforded

by the map dev, rHp1q is a submanifold cut out by a quadratic equation.
We can give these quadratic equations explicitly. Identify the coeffi-

cients R2 with C and define a Hermitian form on H1pS,Σ;R2q by

xα, βy “
1

2i

ż

M

α ^ β̄. (9)

The area of M is xω, ωy, where ω “ devpMq.
We now explain how this Hermitian form can be obtained in more

topological terms, from the cup product and a particular choice of coef-
ficient pairing. First note that if we take z and w to represent two sides
of a triangle, then the signed area of the triangle is equal to <pzw̄{2iq.
Now recall that the cup product of two R-valued simplicial cochains is
defined on a simplex by taking the product of values of the cochains
on the simplex, and is then extended by linearity to chains. If we have
coefficients which are not in R, we can replace the operation of multi-
plying values of cochains by a bilinear pairing of the values of cochains.
Motivated by the above observation, we will use the coefficient pairing

C Q pz, wq ÞÑ zw̄{2i P C. (10)

If we interpret the 1-forms in (9) as complex valued cohomology classes,
interpret integration as evaluation on the fundamental class of M , and
use evaluation on the fundamental class to identify H2pS,Σ;Cq with
C, then our Hermitian form is the cup product

H1
pS,Σ;Cq bH1

pS,Σ;Cq Ñ H2
pS,Σ;Cq – C,

and the particular choice of coefficient pairing (10) is responsible for
the connection with the area of translation surfaces.

Since the Hermitian form on rH was defined purely topologically, it is

preserved by the ModpS,Σq-action. Thus rHp1q and Hp1q have pG,Xq-
structures where X is a quadric in H1pS,Σ;Cq and G can be taken
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to be the subgroup of the general linear group which preserves this
quadric.

3. Rel foliation and Rel vector-fields

It is a general principle that geometric structures on H1pS,Σ;R2q

which are invariant under the action of the mapping class group induce
geometric structures on the stratum. We will now see an example of
this principle. Consider the following exact sequence:

0 ÝÑ H0
pSq ÝÑ H0

pΣq ÝÑ H1
pS,Σq

Res
ÝÑ H1

pSq ÝÑ 0 (11)

Let us take the coefficients in cohomology groups to be R2. Let R de-
note the image of H0pΣ;R2q in H1pS,Σ;R2q which we can also identify
with the kernel of the restriction map Res : H1pS,Σ;R2q Ñ H1pS;R2q.
We can identify H0pΣ;R2q with the set of functions from Σ to R2 and
we can identify the image of H0pS;R2q in H0pΣ;R2q with the subspace
of constant functions. Thus R can be seen as R2-valued functions on
Σ modulo constant functions. If k is the cardinality of Σ then the
real dimension of R is 2pk ´ 1q. In the second part of this paper we
will be concerned with the case when Σ consists of two points, so that
dimRR “ 2.

We will explicitly describe the action of R on H1pS,Σ;R2q. Pick
v P R and let γ P H1pS,Σ;R2q. We will define γ ` v P H1pS,Σ;R2q.
Explicitly, the elements γ, γ ` v are determined by their values on
oriented paths in S with endpoints in Σ. Let σ be one such oriented
path starting at ξi and ending at ξj. Since R – H0pΣ;R2q{H0pS;R2q,
v is an equivalence class of functions rv : Σ Ñ R2, where functions
are equivalent if they differ by a constant. We define pγ ` vqpσq “
γpσq ` rvpξjq ´ rvpξiq. Since representatives of v differ by constants, the
preceding formula does not depend on the choice of rv. Also vpσq gives
the same value for any σ from ξi to ξj.

The group G acts equivariantly on the terms of the exact sequence
(11). If we think of the terms as vector spaces of R2-valued functions
then G acts on these functions by acting on their values. In particular
there is a natural action of G on R since it is the quotient of the first
two terms.

A subspaceW of a vector space V defines a linear foliation of V where
the leaves are the translates of W . In this way the subspace R defines
a foliation of H1pS,Σq. Since the mapping class group ModpS,Σq pre-
serves the short exact sequence it preserves this foliation and thus the
foliation descends to a well-defined foliation on H. We call this the Rel
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foliation. The names ‘kernel foliation’ and ‘absolute period foliation’
have also been used in the study of this foliation, see [Zo, Sch, McM7].

Proposition 3.1. Two surfaces in the same Rel leaf have the same
area.

Proof. As we have seen in (9) the area of a surface M can be written as
xω, ωy where ω “ devpMq and the bilinear form is the cup product with
a certain choice of coefficient pairing. So it suffices to show that the cup
product of two classes in H1pS,Σq depends only on the image of the
classes in absolute cohomologyH1pSq; the latter statement follows from
the fact that the cup product is natural with respect to the inclusion
pM,Hq Ñ pM,Σq, i.e. diagram (12) below commutes. We refer to [H]
for the definition of the cup product in the relative case, and to [H,
Prop. 3.10] for a proof of naturality.

H1pS,Σq ˆH1pS,Σq

��

Y // H2pS,Σq

»

��
H1pSq ˆH1pSq

Y // H2pSq

(12)

�

We will define a notion of parallel translation on the leaves of the Rel
foliation. We can identify the elements of R with constant vector fields
on the vector space H1pS,Σ;R2q. Recall that we have insisted on label-
ing the points in Σ, and that the mapping class group fixes Σ pointwise.
With these conventions, ModpS,Σq acts trivially on R. Thus the vec-
tor fields corresponding to R are invariant under ModpS,Σq and induce
well-defined vector fields on Hm and H. The leaves of the Rel foliation
have natural translation structures and these are the coordinate vector
fields.

The constant vector field associated with v P R can be integrated on
the vector space H1pS,Σ;R2q to give a one-parameter flow. Our next
objective is to lift this flow, to the extent possible, to Hm.

Definition 3.2. Let M0 be point in H and let v P R. Let ~v denote
the rel vector field on H corresponding to v. We say that RelvpM0q

is defined and equal to M1 if there is a smooth path φptq in H with
φp0q “M0, d

dt
φptq “ ~vpφptqq and φp1q “M1.

The translation structures on the leaves of the Rel foliation are not
complete in general and this means that the trajectories of the vector
fields cannot always be defined for all time.
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Proposition 3.3. Let Ω Ă HˆR be the set of pairs pM, vq for which
RelvpMq is defined. Then Ω is open and the map pM, vq ÞÑ RelvpMq is
continuous when viewed as a map from Ω to H.

Proof. This follows from properties of solutions of first order ordinary
differential equations. �

Our next result deals with the interaction between the natural ac-
tions of G on H and R, and the partially defined maps Relv.

Proposition 3.4. Let M P H and v P R. If RelvpMq is defined and
g P G then RelgvpgMq is defined and gpRelvpMqq “ RelgvpgMq.

Proof. Let ~v denote the vector field corresponding to v P R. To
say that RelvpMq is defined means that there is a smooth path φptq
with φp0q “ M , d

dt
φptq “ ~vpφptqq, and in this case φp1q “ RelvpMq.

Consider the path t ÞÑ gpφptqq. It has the property that gpφp0qq “

gM , d
dt
gpφptqq “ gp d

dt
φptqq “ g~vpφptqq “ ~pgvqpφptqq and gpφp1qq “

gpRelvpMqq. The existence of this path shows that RelgvpgMq is de-
fined and gpRelvpMqq “ RelgvpgMq. �

We can think of R as a Lie group acting on H1pS,Σ;R2q. The fact
that we can lift elements of the Lie group action on H1pS,Σ;R2q to
Hm does not imply that the relations in the Lie group necessarily lift.
For example the transformations Relv and Relw acting on H1pS,Σ;R2q

commute but the corresponding lifted transformations of Hm need not
commute where they are defined. The following result gives criteria for
a composition law and for commutation.

Proposition 3.5. Let

l “ r0, 1s2 and 4 “ tps, tq P R2 : 0 ď s ď t ď 1u,

and let v, w P R. Then:

(i) If Relsv`twpMq exists for all ps, tq P 4 then

Relv ˝ RelwpMq “ Relv`wpMq. (13)

(ii) If Relsv`twpMq exists for all ps, tq P l then

Relv ˝ RelwpMq “ Relw ˝ RelvpMq “ Relv`wpMq. (14)

Proof. It suffices to prove the result in Hm, since the maps Relu are
ModpS,Σq-equivariant. Note that (ii) follows immediately from (i), so
we prove (i). Define

σ : 4Ñ H1
pS,Σ;R2

q by σps, tq “ devpMq ` sv ` tw.

Recall that we have a developing map dev : Hm Ñ H1pS,Σ;R2q. The
developing map is a local homeomorphism. This does not imply that
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paths can be lifted but it does mean that when paths can be lifted
the lifts are unique (see [E] for more information). The hypothesis
that Relsv`twpMq is defined for all ps, tq P 4 means that every path
r ÞÑ σprs, rtq for 0 ď r ď 1 lifts to Hm. Let σ̃ps, tq “ Relsv`twpMq be
the lift of σ to Hm. Arguing as in Proposition 1.11 in [E] we see that σ̃
is a continuous map. By construction σ̃p0, 1q “ RelwpMq and σ̃p1, 1q “
Relv`wpMq. The path ρ0prq “ σ̃pr, 1q satisfies ρ0p0q “ RelwpMq and
ρ10 “ v, so by the definition of Rel, ρ0p1q “ RelvpRelwpMqq. Also
ρ0p1q “ σ̃p1, 1q “ Relv`wpMq, and (13) follows. �

3.1. Real Rel. Let us write R2 as Rx ‘ Ry. We then write

H1
pS,Σ;R2

q – H1
pS,Σ;Rxq ‘H

1
pS,Σ;Ryq. (15)

and we refer to H1pS,Σ;Rxq as the horizontal space. Let Z denote the
intersection of R and the horizontal space. We will refer to Z as real
Rel. Since the subgroup B of Z preserves the horizontal directions Rx,
its action on R leaves Z invariant.

A special case which will concern us here are strata with two sin-
gularities. In this case R can be identified with R2, and we make
the identification explicit. Label the singularities of the model sur-
face S by ξ1 and ξ2, we will identify R with R2 as follows: a cochain
v : H1pS,Σq Ñ R2 which vanishes on cycles represented by closed
curves is identified with the vector vpδq for some (any) directed path δ
from ξ1 to ξ2. In this case Z is one dimensional, and we write ReltpMq
for RelvpMq, where v “ pt, 0q P R2 – R via the identification above.

Figures 3 and 4 show the effect of flowing along the real Rel vector
field on a decagon with opposite sides identified. In Figure 3 the flow
has the effect of shortening the top saddle connection. The flow cannot
be continued past the point at which the length of the top saddle con-
nection shrinks to zero. In Figure 4 the lengths of saddle connections
are preserved since they connect vertices of the same color, and hence
represent a saddle connection from a singularity to itself. In this case
the flow can be continued for all time.

Definition 3.6. Let v P R. We denote by H1
v be the set of M P H for

which RelvpMq is defined.

Proposition 3.5(i), with w “ ´v, implies Rel´v ˝ RelvpMq “ M for
M P H1

v, and this yields a useful equivariance property:

RelvpH1
vq “ H1

´v. (16)

In the case of two singularities keeping in mind our convention regard-
ing the identification R – R2, we will continue to use the notation H1

v

for v P R2. Then Proposition 3.4 implies that for v P R2 and g P G
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Figure 3. Applying Relt (with t ă 0) to the decagon.
When t ă ´a or t ą b then Relt fails to be defined, where
a is the length of the top segment and b is the length of
the second segment from the top.

Figure 4. Applying Relt (with t ą 0) to the tipped decagon.

we have gpH1
vq “ H1

gv, where gv is the image of v under the linear ac-

tion of g on R2. We now introduce some more notation for discussing
directions belonging to Z.

Definition 3.7. Let H1
8 “

Ş

zPZ H1
z (i.e. the subset of M on which

Relz is defined for all z P Z).
In the case of two singularities, for a real number t let H1

t denote the
set H1

v with v “ pt, 0q (i.e. the subset of M on which Relt is defined).
For a fixed M P H, let

ZpMq “ tz P Z : M P H1
zu

(i.e., the subset of Z corresponding to surgeries which are defined on
M). Thus H1

8 “ tM P H : ZpMq “ Zu.
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Recall that if V is a vector space and V0 Ă V , we will say that V0 is
a star body if

v P V0, s P r0, 1s ùñ sv P V0.

We denote the convex hull of a subset W Ă V by convW .

Proposition 3.8. The set ZpMq has the following properties:

(i) It is an open star body in Z.
(ii) If b P B then ZpbMq “ bpZpMqq.
(iii) If z P ZpMq then ´z P ZpRelzpMqq.
(iv) If z, z1 P Z and convt0, z, z ` z1u Ă ZpMq, then RelzpMq and

Relz1pRelzpMqq are defined and Relz1pRelzpMqq “ Relz`z1pMq.

Proof. The fact that ZpMq is open follows from Proposition 3.3. The
fact that it is a star body is immediate from Definition 3.2. This proves
(i). Assertions (ii), (iii), (iv) follow respectively from Propositions 3.4,
(16), and 3.5(i). �

We will need a significant strengthening of Proposition 3.8:

Proposition 3.9. For any M , ZpMq is convex.

Whereas the proof of Proposition 3.8 relies only on general principles,
Proposition 3.9 relies on additional information about Rel and will be
proved in §6.

4. The centralizer and normalizer of the horocycle flow

Recall that G acts on H1pS,Σ;R2q via its linear action on R2. Since
the linear action of U on R2 preserves horizontal vectors, it fixes ele-
ments of Rx. This implies that real Rel commutes with the horocycle
flow. Namely, by Proposition 3.4, if z P Z and u P U then uz “ z, and
hence upH1

zq “ H1
z, and

upRelzpMqq “ RelupzqpuMq “ RelzpuMq, for M P H1
z.

Now define

N
def
“ tpb, zq : b P B, z P Zu and L “ tpg, vq : g P G, v P Ru.

We equip N and L with the natural group structures as semi-direct
products N “ B ˙Z and L “ G˙R, which are compatible with their
actions on period coordinates. For the action of the first factor on the
second in this semi-direct product, we take the natural action of G on
R, and its restriction to the B-invariant subspace Z. In particular in
the case of two singularities, G acts on R – R2 via its standard linear
action, and B acts on Z – Rx via the restriction of its linear action on
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R2, to the horizontal axis. We will write this semidirect product group
law explicitly as

pg1, v1q ¨ pg2, v2q “ pg1g2, v1 ` g1v2q for `i “ pgi, viq P L, i “ 1, 2,

where in the expression g1v2 we mean the action of G on R described
above. We can associate a partially defined transformation of H to
each element of L as follows:

gM ¯ v “ RelvpgMq when pg, vq P L and gM P H1
v. (17)

We will use a different notation for the restriction to N . Namely we
write

nM “ RelzpbMq when n “ pb, zq P N and bM P H1
z. (18)

Note that (17) and (18) give two different notations for the same
transformations. The reason for this is a fundamental difference be-
tween the behavior of the same operation on N and on L. When
dealing with all of L, these operations do not obey a group action law.
Indeed, it may happen that pM ¯ vq¯w ‰ pM ¯wq¯ v. However, for
N we have the following:

Proposition 4.1. Let n1 “ pb1, z1q, n2 “ pb2, z2q be two elements of
N . Suppose that n2M and n1pn2Mq are defined. Then pn1n2qM is
defined, and n1pn2Mq “ pn1n2qM .

Proof. Let n1 “ pb1, z1q and n2 “ pb2, z2q. Since n2M “ Relz2pb2Mq
is defined we have z2 P Z

pb2Mq, and since n1pn2Mq is defined, we have
z1 P Z

pb1n2Mq. Using Proposition 3.8 we find that Zpn2Mq contains ´z2

and b´1
1 z1. By Proposition 3.9 we see that

convt0,´z2, b
´1
1 z1u Ă Zpn2Mq. (19)

Then

n1pn2pMqq “Relz1pb1n2pMqq (20)

“Relb´1
1 z1

pn2pMqq (21)

“Relb´1
1 z1`z2

˝ Rel´z2pn2pMqq (22)

“Relb´1
1 z1`z2

pb2pMqq (23)

“Relz1`b1z2pb1b2pMqq (24)

“pn1n2qpMq.

Here Proposition 3.4 is used to derive (21) from (20) and to derive
(24) from (23), and (22) is obtained from (21) by Proposition 3.8 and
(19). �



HOROCYCLE DYNAMICS AND THE EIGENFORM LOCI 35

The following is immediate from Propositions 3.3, 3.8 and 4.1 (and
was proved previously in [MW2]):

Corollary 4.2. The set H1
8 is N-invariant. The map N ˆH1

8 Ñ H1
8

defined by p`,Mq ÞÑ `M defines a continuous action of N on H1
8. The

Z-orbits in this action are the real Rel leaves in H1
8.

The following will be useful. For u P U and n “ pbn, znq P N , write
upbnq “ bub´1, so that nu “ upbnqn as elements of N . Then we have:

Corollary 4.3. For any u P U , n P N and M P H, if npuMq is defined
then nM is defined and npuMq “ upbnqpnMq.

Proof. We apply Proposition 4.1 with b2 “ u and z2 “ 0. �

4.1. The stabilizer group of a measure. Proposition 3.8 implies
the invariance property ZpuMq “ ZpMq. We now extend this to semi-
direct products and use it to define the stabilizer of a measure, within
a collection of partially defined transformations.

For fixed M P H we write

N pMq
“
 

pb, zq P N : z P ZpbMq
(

.

(i.e. the set of n P N for which nM is defined). Then it follows from
Proposition 3.3 that N pMq is open for each M , and Corollary 4.3 implies
N puMq “ N pMq.

Proposition 4.4. Suppose M is in the U orbit-closure of M 1. Then
N pMq Ă N pM 1q.

Proof. If n P N pMq then by Proposition 3.3 there is a neighborhood W
of M in H such that n P N pM1q for any M1 P W . Let u P U such that
uM 1 PW . Then z P N puM 1q “ N pM 1q. �

We also need the following:

Proposition 4.5. Given an ergodic U-invariant measure µ there is a
subset Ω Ă H such that µpΩq “ 1 and for any M1,M2 P Ω, ZpM1q “

ZpM2q and N pM1q “ N pM2q.

Proof. To explain the idea, we first prove the assertion for ZpMq in case
dimZ “ 1. In this case, ZpMq is an open interval for every M P H,
which we can write as

ZpMq “ paM , bMq, for some ´8 ď aM ă 0 ă bM ď 8.

The maps M ÞÑ aM ,M ÞÑ bM are measurable maps with values in
the extended real line so by ergodicity, are constant µ-a.e., and the
statement follows.
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In the general case the proofs for ZpMq and N pMq are identical, so we
discuss the case of ZpMq. The map M ÞÑ ZpMq is a map from H to the
collection of open subsets of Z. Rather than worry about measurability
issues, we proceed as follows. Let Z0 be a dense countable subset of Z.
For each z P Z0, the set

Ωz “
 

M P H : z P ZpMq
(

is a measurable invariant set, so has measure 0 or 1 by ergodicity. We
define

Ω “
č

µpΩzq“1

Ωz r
ď

µpΩz1 q“0

Ωz1 ,

where z, z1 range over the countable set Z0. Then µpΩq “ 1, and for
any M P Ω,

ZpMq X Z0 “ tz P Z0 : µpΩzq “ 1u.

Since an open set is the interior of the closure of its intersection with
a dense set, we see that ZpM1q “ ZpM2q for any M1,M2 P Ω. �

We will denote by Zpµq and N pµq the sets ZpMq, N pMq which appear
in Proposition 4.5 for M P Ω. If z P Zpµq we define a pushforward

Relz˚µpXq “ µpRel´zpX XH1
´zqq, for all measurable X Ă H.

Note that µpH1
zq “ 1, and now it follows from (16) that Relz˚µ is a

probability measure. Moreover, the partially defined map Relz is a
measurable conjugacy between pH, µq and pH,Relz˚µq, thought of as
dynamical systems for the U -action. Thus Relz˚µ is again an ergodic
U -invariant measure. The same observations are valid for n P N pµq.
Namely, if we denote

H1
n “ tM P H : npMq is definedu “

 

M P H : z P ZpbMq
(

(25)

(where n “ pb, zq), then we have an equivariance property

npH1
nq “ H1

n´1 (26)

and we can define an ergodic U -invariant measure

n˚µpXq “ µpn´1
pX XH1

n´1qq, for all measurable X Ă H.
Corollary 4.3 now implies that n˚µ is a U -invariant measure, and the
partially defined map M ÞÑ npMq is equivariant for the action of U on
pH, µq and the “time-changed” action of U on pH, n˚µq via

u ¨M “ upnqM, for n˚µ a.e. M

(where upnq “ nun´1).
The collection of Borel probability measures on a locally compact

space X can be given the weak-˚ topology by embedding it in the
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dual space of the space CcpXq of continuous functions with compact
support.

Proposition 4.6. Let µ be an ergodic U-invariant probability measure.
The map which takes n P N pµq to n˚µ is a continuous with respect to
the weak-˚ topology.

Proof. Let nj be a sequence of elements of N pµq converging to n8 P

N pµq. In order to show that nj˚µ converges to n8˚µ we need to show
that for any continuous compactly supported function ϕ on H, we have

lim
jÑ8

ż

H
ϕdpnj˚µq “

ż

H
ϕdpn8˚µq.

For each j, the set H1
nj

has full µ-measure, and hence so does H1
0 “

Ş

1ďjď8H1
nj
. Now we have:

lim
jÑ8

ż

H
ϕdpnj˚µq “ lim

jÑ8

ż

njpH10q
ϕdpnj˚µq (27)

“ lim
jÑ8

ż

H10
ϕ ˝ nj dµ (28)

“

ż

H10
lim
jÑ8

ϕ ˝ nj dµ (29)

“

ż

H10
ϕ ˝ n8 dµ (30)

“

ż

n8pH10q
ϕdpn8˚µq (31)

“

ż

H
ϕdpn8˚µq. (32)

The equalities (27) and (32) follow from the fact that each nj˚µ assigns
full measure to njpH1

0q respectively. The lines (28) and (31) follow
from the definition of the pushforward of a measure. Line (29) follows
from Lebesgue’s Dominated Convergence Theorem using the fact that,
since f has compact support, it is bounded and hence the family of
functions f ˝ nj is uniformly bounded and also using the fact that
constant functions are in L1pµq since µ is a probability measure. Line
(30) follows from Proposition 3.3 and the continuity of ϕ. �

Definition 4.7. For any ergodic U-invariant measure µ we define

Nµ
def
“

 

n P N pµq : n˚µ “ µ
(

.
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Corollary 4.8. Nµ is a closed subgroup of N .

Proof. The fact that Nµ is closed follows from Proposition 4.6, and in
order to prove that Nµ is closed under compositions, it suffices to show
that for µ-almost every M , n1pn2Mq “ pn1n2qM . This follows from
Proposition 4.1. �

Proposition 4.9. If Nµ contains a non-unipotent element (i.e. an el-
ement in N r UZ) and dimZ “ 1 then Nµ X Z is connected. In par-
ticular, if Nµ contains a non-unipotent element of N and a nontrivial
element of Z then it contains all of Z.

Proof. Write Z1 “ UZ – R2 and N1 “ Nµ X Z1, and let a P Nµ rN1.
By Corollary 4.8, Nµ is a closed subgroup of N , and hence N1 is a
closed subgroup of Z1 containing U . If it is not connected then there is
a minimal positive distance between two distinct cosets for N1 in Z1.
However N1 is invariant under conjugation by the elements a and a´1,
and one of these acts on Z1 by contractions. This contradiction proves
the claim. �

4.2. Generic points and real Rel. Recall that if µ is a U -invariant
ergodic probability measure on a closed subset L of a stratum H, then
M P L is said to be generic for µ if for any continuous compactly
supported function f on L, we have

lim
TÑ8

1

T

ż T

0

fpusMq ds “

ż

f dµ. (33)

Definition 4.10. Let µ be an invariant U-ergodic measure on H. Then
Ωµ denotes the set of generic points for µ.

We collect some well-known facts about generic points.

Proposition 4.11. If µ is ergodic then Ωµ has full µ measure. If
µ ‰ ν then Ωµ and Ων are disjoint. If M P Ωµ then the support of µ is
contained in the orbit closure of M .

In light of Proposition 4.4, this implies:

Corollary 4.12. If M P Ωµ then N pµq Ă N pMq.

It will prove useful to reformulate the notion of genericity in terms of
convergence of measures. It is important to keep in mind that we are
dealing with spaces which are locally compact but not compact. The
weak-˚ topology on the space of Borel measures is defined in terms of
integrals of continuous functions of compact support. In this topology
the total mass of a measure need not be a continuous function on the
space of measures since the constant function 1 need not have compact
support.
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Definition 4.13. Let νpM,T q be the probability measure defined by
ż

ϕdνpM,T q “
1

T

ż T

0

ϕpusMq ds, for all ϕ P CcpHq.

Then M is generic for µ if

lim
TÑ8

νpM,T q “ µ (34)

where the limit is taken with respect to the weak-˚ topology on mea-
sures on H.

In preparation for Proposition 4.15 below, we collect some results
about integrals of continuous bounded functions along orbits. The
space of probability measures on a locally compact space can be given
another topology by embedding it in the dual space of CbpXq, the
space of continuous bounded functions on X. This topology is called
the strict topology (see [Bo] for more information). Clearly convergence
in the strict topology implies convergence in the weak-˚ topology. The
following result gives a simple criterion for showing that weak-˚ con-
vergence implies strict convergence.

Proposition 4.14 ([Bo] Prop. 9, p. 61). Suppose X is a locally
compact space, µj is a sequence of probability measures on X, and µ is
also a measure on X. If µj Ñ µ with respect to the weak-˚ topology,
and if µ is a probability measure, then µj Ñ µ with respect to the strict
topology.

If the limit measure µ is not a probability measure then it has total
mass less than one. This phenomenon is referred to as “loss of mass”.
In §10 we will give conditions that establish that loss of mass does not
occur for measures νpM,T q.

We will repeatedly use the following:

Proposition 4.15. Let µ be an ergodic U-invariant measure. If n P
N pµq then npΩµq is the set of generic points for n˚µ.

Proof. Let M P Ωµ. According to Corollary 4.12, nM is defined. We
use the reformulation of genericity in terms of weak-˚ convergence of
measures given above. Thus we are given that limTÑ8 νpM,T q “ µ
with respect to the weak-˚ topology on measures on H and we want to
show that limTÑ8 νpnM, T q “ n˚µ with respect to the same topology.

Since N normalizes U , there is c ą 0 such that nus “ ucsn. We have
n˚νpM,T q “ νpnM, cT q. Thus it suffices to show:

lim
TÑ8

n˚νpM,T q “ n˚µ.
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Let H1
1 “ H1

n as in (25) and let H1
2 “ npH1

1q “ H1
n´1 . Let M denote

the set of probability measures on H which assign mass 1 to H1
1, and

let N denote the set of probability measures on H which assign mass
1 to H1

2. By Proposition 3.3, H1
1 and H1

2 are open subsets of H, and
in particular are locally compact. Moreover any continuous compactly
supported function on H1

1 extends to a continuous function on H by
setting it equal to zero on HrH1

1. It follows that limTÑ8 νpM,T q “ µ
with respect to the weak-˚ topology on M.

Since n is a homeomorphism from H1
1 to H1

2, the map n˚ : M Ñ N
is continuous and limTÑ8 n˚νpM,T q “ n˚µ with respect to the weak-˚
topology on N. Since n˚µ is a probability measures which assigns full
measure to H1

2, and since H1
2 is locally compact, we can use Proposition

4.14 to conclude that limTÑ8 n˚νpM,T q “ n˚µ in the strict topology
on measures on H1

2.
We need to show that convergence also holds with respect to the

weak-˚ topology on measures on H. Given a function ϕ on H which is
continuous and compactly supported, its restriction to H1

2 is a bounded
continuous function. Therefore

lim
TÑ8

ż

H12
ϕdn˚νpM,T q “

ż

H12
ϕdn˚µ

by strict convergence which gives

lim
TÑ8

ż

H
ϕdn˚νpM,T q “

ż

H
ϕdn˚µ,

and establishes convergence with respect to the weak-˚ topology on
measures on H. �

Corollary 4.16. If µ is an ergodic U-invariant probability measure
and if M1 and M2 are in Ωµ and there is an element n P N pµq of N
such that M2 “ nM1, then n P Nµ.

Proof. Let M1 and M2 be generic for µ and M2 “ nM1 where n P N .
According to Proposition 4.15, µ and n˚µ share a generic point and
hence, by Proposition 4.11, they must coincide. �

5. Horizontal equivalence of surfaces

Given M P H with singularity set Σ, we denote by ΞpMq the set
of horizontal saddle connections for M . We would like to use ΞpMq
to define two equivalence relations on surfaces: topological horizontal
equivalence and geometrical horizontal equivalence. Analogously to the
sets Zpµq, N pµq appearing in Proposition 4.5, they will serve as invariants
of ergodic U -invariant measures.
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Let M̌ be the blowup of M and let pf̌ , M̌q P rH be a marking of M̌
rel boundary. Then f̌´1pΞpMqq is a subset of Š, which we denote by
f̌˚pΞq. We take ΞpMq to include all of the points of Σ and hence f̌˚pΞq
contains the boundary BŠ. In addition, for each edge of ΞpMq, f̌˚pΞq
contains an edge in the interior of S, which intersects the boundary BŠ
at points with angular parameters which are multiples of π, even or
odd according as the point is the initial or terminal point of the edge.

Definition 5.1. We will say that M1 and M2 are topologically hor-
izontally equivalent if there are markings rel boundary pf̌i, M̌iq such
that f̌˚2 pΞq and f̌˚1 pΞq can be obtained from each other by an isotopy of
Š that does not move points of BŠ. We will say that M1 and M2 are
geometrically horizontally equivalent if they are topologically horizon-
tally equivalent, and if for any edge δ in f̌˚i pΞpMiqq, holpM1, f̌1pδqq “
holpM2, f̌2pδqq, where f̌1 and f̌2 are as in the definition of topological
equivalence.

Proposition 5.2. If M P H, b P B and u P U then M and bM are
topologically horizontally equivalent, and M and uM are geometrically
horizontally equivalent.

Proof. Since B acts by postcomposition on the charts, and preserves
the horizontal direction, it preserves the set ΞpMq (possibly changing
the lengths of edges), and henceM and bM are topologically equivalent.
Moreover if b “ u P U then the lengths of edges are unaffected and so
M and uM are geometrically horizontally equivalent. �

Corollary 5.3. If µ is an ergodic U-invariant measure on H, then
there is a subset X Ă H of full µ-measure such that for any M1,M2 P

X, M1 and M2 are geometrically horizontally equivalent.

We will define a combinatorial invariant of topological horizontal
equivalence – the horizontal data diagram. This diagram is an analogue
of the separatrix diagram introduced by Kontsevich and Zorich [KoZo]
and captures some of the properties of ΞpMq which depend only on
the class of M . Note that a graph embedded on a translation surface
is a ribbon graph, namely at each vertex it inherits from the surface a
cyclic order of edges incident to the vertex. Its vertices are labeled by
the labels ξ1, . . . , ξk of the corresponding singularities. Additionally, if
the graph consists of horizontal saddle connection, each edge inherits
an orientation from the translation structure mapping it to a horizontal
edge in the plane.

For any pf̌ , M̌q P rH, f̌˚pΞq is a graph embedded in Š. By projecting
it to S we thus obtain a ribbon graph with labeled singularities and
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oriented edges. The graphs f̌˚pΞq carry additional information, namely
the angular distance separating consecutive edges incident at a vertex.
This angle is an integer multiple of π, and where the orientations of
consecutive edges agree if and only if this distance is an even multiple
of π. It is clear that all of this information is an invariant of geometric
horizontal equivalence.

The horizontal data diagram of M records the graph structure in-
duced by f̌˚pΞq, as well as the orientation of edges, labeling of vertices,
and cyclic structure at each singularity. In order to record the informa-
tion of angular separation of edges at vertices, we indicate as dashed
lines additional left- and right-pointing horizontal. Thus at the singu-
larity ξi there are 2pai ` 1q prongs, some of which correspond to edges
of the graph. Figures 5, 6 and 7 depict graphs which can occur as
ΞpMq for some M in Hp1, 1q.

Figure 5. This figure represents a horizontal data dia-
gram on a blown up surface.

In Figure 6 the angle between any two adjacent ends is exactly π,
but this is not the case in Figure 7. We capture this angle information
in the diagrams in Figure 7 by inserting additional dotted lines at
each vertex indicating the ends of horizontal separatrices which are not
saddle connections. We can determine the angle between two prongs by
counting the number of ends of separatrices between them. Note that it
makes sense to give orientations to separatrices so that the orientations
of ends at a given vertex alternate with respect to the cyclic ordering.

It follows from Corollary 5.3 that for any ergodic U -invariant measure
µ, there is a subset X of H such that µpXq “ 1 and every M P X
has the same horizontal data diagram. We call it the horizontal data
diagram of µ and denote it by Ξpµq.
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If a horizontal data diagram is maximal, i.e. at each vertex, all
prongs are initial or terminal prongs of edges, then the horizontal data
diagram coincides with the separatrix diagram of [KoZo].

A B C D

Figure 6. These figures represent all maximal horizon-
tal data diagrams in Hp1, 1q up to switching labels and
orientations. See Figure 4 for a polygonal presentation
of a cylinder decomposition of type A.

1 2 3 4 5

Figure 7. These figures represent some non-maximal
horizontal data diagrams in Hp1, 1q.

We will sometimes need an extension of ΞpMq. Recall that at each
ξi P Σ there are 2pai ` 1q prongs. Some of these are part of saddle
connections in ΞpMq, and we call the others the unoccupied prongs of
ΞpMq. Let Ξ´pMq denote the graph which contains ΞpMq and has one
additional prong edge for every unoccupied prong, with one vertex at
a singular point and one vertex at a point of M rΣ, where the edge is
realized by a path in M which lies on the horizontal separatrix issuing
at the corresponding prong.

We will sometimes need to be specific about the length of edges. In
that case, given L ą 0, we will let Ξ´pM,Lq denote the graph Ξ´pMq
described above, where the prong edges all have length L. Note that
since all of the prong edges are part of an infinite separatrix in the
horizontal direction, the graph Ξ´pM,Lq can be embedded in M for
any L.
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6. An explicit surgery for real Rel

In this section, for fixed M P H and z P ZpMq, we will present
an explicit presentation of RelzM in terms of glued polygons. Our
explicit surgery generalizes the special cases treated in [McM8] and
[B2, §3]. As a by-product, it will enable us to determine ZpMq explicitly
from the geometry of M . This analysis makes it possible to analyze
limits limjÑ8 RelzjM , for zj P ZpMq with limjÑ8 zj P BZ

pMq. Such
limits do not exist as elements of H; loosely speaking they belong to a
bordification of H obtained by adjoining boundary strata. We will not
construct this bordification in this paper but hope to return to it in
future work. A particularly simple case of this bordification arises when
one takes limits of surfaces in Hp1, 1q for which a segment joining the
two singularities collapses. Even in this relatively simple case, which
will arise in Theorem 6.5, the construction we use differs from earlier
related work (see [KoZo, EMZ]) and leads naturally to the use of framed
surfaces.

We will establish some terminology and make a construction which
will be used in stating Theorem 6.1. Let L and ε be positive numbers.
Given M , we let ΞpMq, Ξ´pMq and Ξ´pM,Lq be as in §5. We say
that N “ N pL, εq Ă M is the pL, εq-rectangle thickening of Ξ´pMq
if N is a union of rectangles R`e and R´e in M , with sides parallel to
the coordinate axes, where e ranges over the edges of Ξ´pM,Lq, Re

has vertical sides of length ε, and the edge e runs along the bottom
of R`e and the top of R´e . Here the words ‘bottom’ and ‘top’ refer
to the orientation provided by the translation surface structure and
need not correspond to the directions shown in our figures. The edge
identification maps of the rectangles are inherited from Ξ´pMq, namely
they are as follows. Each R´e is attached to R`e along e, and the
bottom of R´e (resp. top of R`e ) is unattached. If the right end of
e is not a singularity (i.e. e is right-pointing prong edge) then the
right hand boundaries of R˘e are unattached. If the right end of e
is the singularity ξ then the right hand boundary of R´e (resp. R`e )
is attached to the left hand boundary of R´f , where f is the edge of
Ξ´pMq which is counterclockwise (resp. clockwise) from e at ξ. For
the gluing rule for the left edges, replace left with right and clockwise
with counterclockwise in the above description. See Figure 8.

Note that for any L there is ε0 “ ε0pM,Lq such that for all ε ă ε0,
the pL, εq-rectangle thickening of Ξ´pMq exists and is embedded in M .
Moreover the constant ε0pM,Lq can be chosen to be independent of M
and L, for L in a bounded set of numbers and M in a compact set of
topologically horizontally equivalent surfaces.
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Figure 8. A rectangle thickening of Ξ´pMq in Hp2q
with 10 rectangles.

Given translation surfaces M,M 1, and a subset M0 ĂM we say that
M 1 can be obtained from M by modifying M0 if there are polygon rep-
resentations of M and M 1, and a subset M 1

0 Ă M 1, such that M0,M
1
0

are unions of polygons, and there is a homeomorphism f : pMrM0q Ñ

pM 1rM 1
0q, which is a translation in each coordinate chart of the trans-

lation surface structures on M and M 1.

Theorem 6.1. Let M P H. For each δ P ΞpMq, let ZpM,δq denote the
connected component of 0 in tz P Z : holpM, δq ` zpδq ‰ 0u. Then

ZpMq “
č

δPΞpMq

ZpM,δq. (35)

For any z P ZpMq there is L “ Lz ą 0, such that for any ε ă ε0pM,Lq,
RelzM can be obtained from M by modifying N pL, εq. Moreover, the
function z ÞÑ Lz can be taken to be bounded when z varies in a bounded
subset of ZpMq.

Proof. First note that ZpMq Ă
Ş

δPΞpMq Z
pM,δq. Indeed, if z P ZpMq

then the straight line path tReltzM : t P r0, 1su is embedded in H. In
particular, for any saddle connection δ P ΞpMq,

holpM, δq ` tzpδq “ holpReltzM, δq ‰ 0.

So the path ttz : t P r0, 1su is contained in ZpM,δq and hence z P ZpM,δq.
Now let z P

Ş

δPΞpMq Z
pM,δq. Recall that we may think of an element

z of Z – H0pΣ;Rq{H0pS;Rq as being represented by a function z̄ :
Σ Ñ R. All such representatives z̄ differ by constants, and

zij “ z̄pξjq ´ z̄pξiq “ zpδijq, (36)
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for any path δij : r0, 1s Ñ S with δijp0q “ ξi, δijp1q “ ξj. We fix one
representative z̄ of z, and let

L ą max
i“1,...,k

|z̄pξiq|. (37)

Our assumption about z implies that

if δ is from ξi to ξj and holpM, δq ą 0, then holpM, δq ` zij ą 0. (38)

Let ε ă ε0pM,Lq and let N0 “ N pL, εq. Choose a marking pf,Mq P
Hm of M . For each t P r0, 1s, we will define a translation surface Mt

and a marking ft : S Ñ Mt, as follows. To each rectangle R “ R˘e in
N0 we define a trapezoid Rt “ R˘t,e, by choosing a plane development

R̄ of R and moving the vertices of R̄ horizontally, where points of R̄
which come from BN0 are not moved, and points which correspond
to the singularity ξi are moved by adding tz̄pξiq to their horizontal
component. See Figures 9 and 10.

e0

e1

e2
R`0

R`1

R`2

Figure 9. The complex N0, presented topologically,
showing three adjacent rectangles. The rectangles are
presented with correct geometries below.

e0 e1 e2ξ0 ξ1

R`0 R`1 R`2

Note that for any t P r0, 1s, the lengths of edges of Rt do not vanish.
Indeed, R˘e has either one or two vertices which are in Σ, depending
on whether e is a prong edge or an edge of ΞpMq. In case it is a prong
edge, the length of horizontal sides of R is L and (37) implies that
the sidelength of Rt is positive, and in case it is an edge of ΞpMq,
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e0 e1 e2ξ0 ξ1

R`0 R`1 R`2

e0 e1 e2ξ0 ξ1

R`0 R`1 R`2

Figure 10. The effect of different deformations, trans-
forming the rectangles into trapezoids.

(38) implies that the sidelength of Rt is positive. We glue the different
trapezoids tRtu to each other along their edges, using the same gluing
that defines N0, to obtain a complex Nt. Since the sides of R cor-
responding to BN0 have the same length in Rt, their boundaries BNt

and BN0 can be identified by a translation, and so we can glue Nt to
M rN0 along BN0. We denote the resulting translation surface by Mt;
clearly it is obtained from M by modifying N0.

On each rectangle R we choose a homeomorphism f̄t : R Ñ Rt

which sends vertices of R to the corresponding vertices of Rt, and acts
affinely on each boundary edge of BRt. This choice ensures that f̄t can
be extended consistently from rectangles to their union, defining a map
f̄t : N0 Ñ Nt, and then extended to a homeomorphism f̄t : M Ñ Mt.
We set ft “ f̄t ˝ f . With this choice pft,Mtq is a path in Hm, and the
maps ft ˝ f

´1 are isotopic to the identity via an isotopy fixing Σ.
We claim that for each t, the pullback devpft,Mtq “ f˚t holpMt, ¨q is

the cohomology class devpf,Mq ` tz. We verify this formula on each
path γ : r0, 1s Ñ M between singularities ξi and ξj. The path γ is
homotopic to a concatenation of segments δ1, . . . , δ` which are com-
pletely contained in N0, and segments δ11, . . . , δ

1
m which are not com-

pletely contained in N0. Each of the segments δ “ δi is homotopic
to a saddle connection in ΞpMq. If δ is a saddle connection of ΞpMq
then it is one of the edges e of the rectangles Re, and by construction
holpf˚t Mt, δq “ holpf˚M, δq` tzpδq. If δ1 “ δ1` is a path not contained in
N0 we can subdivide it into a concatention of paths σ1, σ2, σ3, σ4, where
σ1 goes from ξ1 to BN0, σ2 goes from BN0 to ξj, σ3 (resp. σ4) is a union
of segments inside (resp. outside) N from BN0 to BN0. Moreover by ap-
plying a homotopy we can assume that on the initial surface M , each of
the segments in σ1, σ2 and σ3 proceeds along a vertical line in the rect-
angles R˘e . Now we compute the difference holpf˚t Mt, σq´holpf˚M,σq
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in each case. We have holpf˚t Mt, σ1q ´ holpf˚M,σ1q “ ´z̄pξiq and
holpf˚t Mt, σ2q´holpf˚M,σ2q “ z̄pξjq by definition of the deformed flat
structure on R˘t,e. We also have holpf˚t Mt, σ4q ´ holpf˚M,σ4q “ 0,
since σ4 is in the complement of N0 where the two flat structures are
the same, and we have holpf˚t Mt, σ3q ´ holpf˚M,σ3q “ 0 since each
of the segments of σ3 passes through both R`e and R´e for some e,
leaving and exiting at symmetric points, and the change to the holo-
nomy in these two rectangles cancel each other. All together we have
holpf˚M, δ1q ´ holpf˚t Mt, δ

1q “ z̄pξjq ´ z̄pξiq, as required. �

The following result says that the only obstruction to defining the
Rel flow is the one illustrated in Figure 3. Let zij be defined as in
equation (36).

Corollary 6.2. Suppose Z is the real Rel subspace for a stratum H as
above and let z P Z, M P H. Then M P H1

z exactly when there is no
horizontal saddle connection δ on M from singularity ξi to singularity
ξj, and t P r0, 1s such that holpM, δq ` tzij “ 0. In particular H1

8 is
the set of surfaces which have no horizontal saddle connections joining
distinct singularities.

Furthermore, if H has two singularities, and v P R – R2, then
M R H1

v if and only if there is a saddle connection δ on M from ξ2 to
singularity ξ1, with holpM, δq “ tv for some t P r0, 1s.

Proof. The first assertion is a restatement of (35), and the second as-
sertion follows immediately from the first. For the third assertion, let
rθ be the rotation matrix for which rθv is horizontal. We obtain the
assertion by applying the first assertion to the surface rθM and using
Proposition 3.4 with g “ rθ. �

Corollary 6.2 was proved in [MW2, Thm. 11.2]. See also [McM8].
Figures 3 and 4 illustrate the meaning of Corollary 6.2. In Figure 3

the saddle connection at the top and bottom of the decagon violates
the first condition, when v “ pT, 0q for T which is at least as large
as the length of this segment. In Figure 4 there are no horizontal
saddle connections joining distinct singularities, and as a consequence
of Corollary 6.2, RelpT,0qM is defined for all T .

We now derive some consequences. As a first consequence we have:

Proof of Proposition 3.9. Each ZpM,δq is a half-space, and in particular
is convex. Thus Proposition 3.9 follows immediately from (35). �

An immediate consequence of the explicit surgery we have presented
in the proof of 6.1 is the following useful statement:
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Corollary 6.3. For any M and any t for which ReltM is defined,
there is a natural bijection between horizontal saddle connections on
M and on ReltM , and for each saddle connection δ directed from ξ2 to
ξ1, holpReltM, δq “ holpM, δq ´ pt, 0q. In particular M and ReltM are
topologically horizontally equivalent.

The following will be crucial for analyzing U -invariant measures in
§8.

Definition 6.4. Suppose H “ Hp1, 1q, and let T P Z – R. Let H2
T

denote the set of surfaces M P H for which

(i) M contains exactly one directed saddle connection δ1 from ξ2 to
ξ1 with holpM, δ1q “ pT, 0q;

(ii) M contains no directed saddle connection δ from ξ2 to ξ1, such
that holpM, δq “ pc, 0q with c between 0 and T .

Theorem 6.5. There is a map

Φ : H2
T Ñ Hp2q

which is affine in charts (hence continuous) and U-equivariant. For
each M P H2

T , ΦpMq is obtained by modifying N pε, Lq for some ε ą
0, L ą T depending on M . There is a map

Φf “ Φ
pT q
f : H2

T Ñ Hfp2q,

which is a lift of Φ (i.e. Φ “ P ˝ Φf where P : Hfp2q Ñ Hp2q is the
projection), and Φf is a homeomorphism onto its image.

Suppose T ą 0. Note that assumption (ii) implies that r0, T q Ă
ZpMq, and assumption (i) implies that T R ZpMq; that is T P BZpMq. A
topology on Hp1, 1q Y Hfp2q can be constructed in which the map Φ
can be recovered as ΦpMq “ limsÑT´ RelspMq. We will not construct
this topology here.

Proof. We will assume throughout the proof that T ą 0. The case
in which T ă 0 can be dealt with by repeating the arguments below,
switching the labels of the two singularities. Let δ1 be as in (i) in the
definition of H2

T and let e1 be the corresponding edge of Ξ´pMq. Let
L ą |T | and define N pL, εq as in the discussion prior to the statement
of Theorem 6.1, where ε ą 0 is small enough so that the rectangles
R˘e are all embedded in M . Define the polygons R˘T,e as in the proof

of Theorem 6.1. For all e ‰ e1 condition (ii) ensures that R˘T,e is a
nondegenerate trapezoid. For e1, the length of the edge corresponding
to e1 is zero and so it is a triangle. See Figure 11. We glue the two
triangles R˘T,e1 to the trapezoids R˘T,e, e ‰ e1 to obtain the complex NT
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which we glue to M rN0 as before, to obtain MT . We note that NT is
a thickening of a graph obtained from Ξ´pM,Lq by collapsing the edge
e1. One can compute explicitly that there is one singular point in NT

and that it has cone angle 6π; that is MT P Hp2q. We set ΦpMq “MT .

e0 e2ξ0 “ ξ1

R`0 R`1 R`2

Figure 11. The developing image of degenerate rect-
angles. The trapezoid R`1 has degenerated to a triangle,
the edge e1 “ e1 has disappeared, and the two singular
points have coalesced.

q3 R`3

q2 R´2

q4R`4

q1R´1

R´δ1

R`δ1

δ1

Figure 12. The complex N0, shown topologically, with
δ1 connecting the two singularities.

δ1ξ0 ξ1

R`3 R`δ1 R`4

R´2 R´δ1 R´1

Figure 13. The developing image of rectangles. The
double lines represent two different edges on the surface.

We now show that Φ is affine in charts. We first explain what
this means. Let H2

m,T be the pre-image of H2
T in Hmp1, 1q, and let

devp1,1q : Hmp1, 1q Ñ H1pS, tξ1, ξ2u;R2q be the developing map as
in (1). Condition (i) in Definition 6.4 can be expressed as a lin-
ear condition on the image of devp1,1q and condition (ii) is an open
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ξ

R`3 R`δ1 R`4

R´2 R´δ1
R´1

Figure 14. The developing image of rectangles when δ1

shrinks to a point and the two singularities coalesce.

q3

q2

q4

q1

R`δ1

R´δ1

R`3 R`4

R´2 R´1

Figure 15. The corresponding topological correct pic-
ture. The chosen prong edge is labeled q1.

condition on the image of devp1,1q, and thus H2
m,T is an affine sub-

manifold of Hmp1, 1q. Also let devp2q : Hmp2q Ñ H1pS 1, tξ1u;R2q,
for some model surface S 1 of genus 2 with one distinguished point
ξ1. To say that Φ is affine in charts is to say that that there is a
map Φm : H2

m,T Ñ Hmp2q, which is a lift of Φ, and a linear map

L : H1pS, tξ1, ξ2u;R2q Ñ H1pS 1, tξ1u;R2q such that

devp2q ˝ Φm “ L ˝ devp1,1q. (39)

Let pf,Mq P H2
m,T be a marked surface projecting to M P H2

T , and

define the map f̄T : M Ñ MT as in the proof of Theorem 6.1. Let
fT “ f ˝ f̄T : S Ñ MT . The map f̄T is injective on the complement
of e1 and maps all points in e1, including its endpoints ξ1 and ξ2, to
the unique singularity of MT , which we denote by ξ. Note that f´1pe1q
is a simple path connecting the two points ξ1 and ξ2. Let S 1 be the
surface obtained from S by collapsing f´1pe1q to a point ξ1, and let
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p : S Ñ S 1 be the quotient map. Since f´1pe1q is contractible, S 1 is also
a genus 2 surface, and since fT is constant on f´1pe1q, it descends to
a homeomorphism S 1 Ñ MT , which we continue to denote by fT . We
see that

Φm : H2
m,T Ñ Hmp2q, Φmpf,Mq “ pfT ,MT q

is a lift of Φ. Since f´1pe1q is contractible, the pullback p˚ : H1pS 1;R2q Ñ

H1pS;R2q is an isomorphism. Let Resp1,1q and Resp2q denote the restric-
tion maps in (11), in the two cases corresponding respectively to Hp1, 1q
and Hp2q. Since ξ1, ξ2 are contained in f´1pe1q, and the holonomies of
absolute periods are on the same on pf,Mq and pfT ,MT q, we find that
Resp2q ˝ devp2q ˝ Φm “ p˚ ˝ Resp1,1q ˝ devp1,1q. Since Resp2q is an isomor-

phism, this yields (39) with L “ Res´1
p2q˝p

˚˝Resp1,1q. This computation,

and the fact that the action of U does not move the points of e1, also
shows that Φ is U -equivariant.

We now show that Φ lifts to a continuous map Φf : H2
T Ñ Hfp2q.

In view of the discussion in §2.9, in order to lift Φ to a map to Hfp2q
we need to equip MT with a right-pointing horizontal prong at the
singular point ξ. Let δ1 “ δ1pMq be as in the definition of H2

T and
let qpMq be the prong which is obtained by moving an angle π in
the counterclockwise direction from the terminal prong of δ1, at the
singularity ξ2. Then qpMq is in the complement of δ1 and so is mapped
by f̄T to a horizontal prong on MT . See Figures 12 and 15, where qpMq
is marked as q1. We need to show that with this choice of selected
prong, Φf is continuous. In light of Proposition 2.8, it is enough to
show two things: (i) that the choice of prong M ÞÑ qpMq is continuous
with respect to the coordinates given by the developing map, for any
fixed triangulation; and (ii), that M ÞÑ qpMq is ModpŠq-invariant. It
is clear from our description of qpMq that (i) and (ii) are satisfied.

Finally, since Φf is a lift of a locally affine map in charts, in order to
show that it is a homeomorphism onto its image we need only verify
that it is injective, and for this we explicitly construct its inverse. We
first pick one basepoint M 1

0 “ ΦfpM0q in each connected component of
the image of Φ, choose a horizontal prong at M 1

0 using the direction of
δ in M0 as in the preceding paragraph, and extend this choice continu-
ously to all surfaces in the image of Φ. Now for any M 1 in the image of
Φ, let N 1 be the pL, εq-rectangle thickening of Ξ´pM

1q for L ą |T | and
small enough ε. We consider N 1 with its decomposition into rectangles
as in the preceding discussion, and we now modify this decomposition.
Let q1 be the chosen right-pointing prong on M 1 and let q2 be the
left-pointing prong which is clockwise from q1. Similarly let q3, q4 be
the left- and right-pointing prongs which are at angular distance 3π
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from q1, q2 respectively. Let σ1 (resp. σ2) be the two vertical segment
of lengths ε between q1, q2 (resp., between q3 and q4) connecting ξ to
the boundary of BN 1. For i “ 1, 2, the segments σ1, σ2 are boundary
segments of two rectangles R˘i of the complex N 1, one on each side.
Let ∆i be a triangle which is embedded in the union of R`i Y R´i , has
an apex at ξ, and has σi as an altitude contained in its interior. We
now replace each R˘i with R˘i r ∆i, and add the ∆i to the polygo-
nal decomposition of N 1. Thus we have a decomposition of N 1 into
rectangles, trapezoids, and two triangles. To each of them we apply
the map described in the proof of Theorem 6.1, with ´T instead of T .
That is, we do not move points on BN 1 and the non-boundary edges.
The two triangles are thought of as degenerate trapezoids. The choice
of the prongs at ξ, and the fact that M 1 is in the image of Φ, ensure
that these operations are well-defined, that is for all t strictly between
0 and T , the deformed shapes are nondegenerate trapezoids. Gluing
them to each other using the gluing map of N 1 and gluing the resulting
complex to M rN 1 completes the definition of the inverse of Φf . �

The image of Φ in Theorem 6.5 can be described explicitly in terms
of the choice of horizontal prong at the singularity. Namely suppose
again that T ą 0 and that q1 is the chosen prong. Let q2, . . . , q6 be the
additional prongs at ξ in counterclockwise order. Then the image of Φ
is the set of M P Hfp2q which have no horizontal saddle connections of
length at most T from q1 or q3 to q4 or q6.

The inverse of Φ appearing in Theorem 6.5 is the operation of ‘split-
ting open a singularity’ which was discussed in [EMZ].

7. The eigenform locus

In this section we will define the eigenform locus ED. We describe
its intersection with Hp1, 1q and Hp2q and describe how it meets some
boundary strata. We summarize some properties of surfaces in the
eigenform locus.

7.1. Definition of the eigenform loci. The eigenform loci were de-
fined by Calta [C] and McMullen [McM2]. Calta made use of the J
invariant and McMullen used properties of real multiplication on Ja-
cobians. Here we follow the approach of McMullen.

For every positive integer D ” 0, 1 pmod 4q with D ě 4 there is a
closed, connected, G-invariant locus ED Ă Hp2q Y Hp1, 1q, called the
eigenform locus, which we now describe.

An order in a number field F is a subring O of the ring of integers
OF which is finite index as an abelian group. Orders in quadratic fields
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are particularly simple as they can be classified by a single integer D,
the discriminant. More precisely, for every positive integer D ” 0, 1
pmod 4q, we consider the real quadratic order

OD “ ZrT s{pT 2
` bT ` cq,

where b, c P Z are such that b2 ´ 4c “ D. If D is not square, it is a
subring of the real quadratic field, FD “ QrT s{pT 2 ` bT ` cq. We also
allow D to be square, in which case FD is isomorphic to Q‘Q as a Q-
algebra. In either case the isomorphism classes of OD and FD depend
only on D. We fix a choice of a ring homomorphism ι : FD Ñ R. When
D is not square, ι is a field embedding. If D is square, ι is obtained
from the projection of Q ‘ Q onto its first factor. A more detailed
discussion of orders in number fields appears in [BoSh].

Consider a genus two Riemann surface X with Jacobian variety
JacpXq “ ΩpXq˚{H1pX;Zq, where ΩpXq is the space of holomor-
phic one-forms on X. Real multiplication by OD on JacpXq is a ring
monomorphism ρ : OD Ñ End0

pJacpXqq, where End0
pJacpXqq is the

ring of endomorphisms of JacpXq which are self-adjoint with respect
to the intersection form on H1pX;Zq. We also require ρ to be proper,
in the sense that it does not extend to OE Ľ OD for some E|D.

Real multiplication by OD induces a representation of OD on ΩpXq,
and by self-adjointness, a decomposition of ΩpXq into complementary
eigenspaces. A nonzero holomorphic one-form on X is an eigenform
if it lies in one of these eigenspaces. We say that a pair pX,ωq is an
eigenform for real multiplication if JacpXq has real multiplication with
ω an eigenform.

Real multiplication for curves in genus two is very special, as it can
be detected from knowledge of the absolute periods of a single one-
form on the curve. That is to say, real multiplication in genus two has
a “purely flat” description. More precisely:

Proposition 7.1 ([B2]). A genus two translation surface M is an
eigenform for real multiplication by OD if and only if there is a proper
monomorphism ρ0 : OD Ñ End0

pH1pM ;Zqq such that

holpM,ρ0pλq ¨ γq “ ιpλqholpM,γq (40)

for each λ P OD and γ P H1pM ;Zq.

The ρ0 in this Proposition is simply the action on homology induced
by the real multiplication ρ : OD Ñ End0

pJacpMqq. See also [McM2,
Lemma 7.4], and see [CaSm] for an alternative approach.

We define the eigenform locus ED Ă Hp2q Y Hp1, 1q to be the lo-
cus of eigenforms for real multiplication by OD, and we define EDp2q
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and EDp1, 1q to be the intersections of ED with the respective strata.
Similarly we denote the corresponding subsets of area-one surfaces by

E p1qD p2q and E p1qD p1, 1q.
The locus EDp1, 1q is GL2pRq-invariant, as it can be easily seen that

the condition of Proposition 7.1 is G-invariant (this was first proved
in [McM2] and [C]). It is also Rel invariant since this condition only
involves absolute periods. Moreover EDp1, 1q is a six dimensional linear
submanifold of Hp1, 1q with respect to the period coordinates from
§2.2. To see this explicitly, choose two generators γ1, γ2 of H1pM ;Zq
(as an OD-module) and complete to a set of four generators as a Z-
module, e.g. by adjoining a multiple of each γi by a generator of OD

over Z. Equation (40) now gives linear equations which the vectors
holpM,γq must satisfy, and these equations define EDp1, 1q locally. As

a consequence E p1qD p1, 1q is a five-dimensional manifold locally defined
in periodic coordinates by linear equations and one quadratic equation.

This dimension count easily implies that GL2pRq-orbits and Rel
leaves locally fill out EDp1, 1q and yields:

Proposition 7.2. For any M P E p1qD p1, 1q there is a neighborhood U of

the identity in L and a neighborhood U 1 of M in E p1qD p1, 1q such that the
map p : U Ñ U 1 defined by

ppg, vq “ gM ¯ v

is the restriction of an affine homeomorphism to G˙ R2.

Proof. Consider a precompact neighborhood W of the identity in GL2pRq.
For some ε ą 0, no surface in W ¨M has saddle connections of length
less than ε. By Corollary 6.2, p is well-defined on V “ W ˆ Bεp0q Ă
GL2pRq˙R2. Possibly decreasing ε so that the image of p is contained
in an affine coordinate chart as defined above, p is a homeomorphism
onto its image. Since the action of Rel preserves the area of surfaces, p
sends L into the locus of area-one surfaces. Intersecting V with L and
the image of p with the locus of area-one surfaces, we obtain U and U 1
with the required properties. �

The eigenform locus has a more elementary description in the case
where D is a square. A translation surface X is a torus cover if there
is a branched cover p : X Ñ T which is a local translation for some flat
torus T (note that the branch points of p are not required to lie over a
single point of T ). We say p is primitive if it does not factor through
a torus cover of smaller degree, equivalently if the map on homology
p˚ : H1pX;Zq Ñ H1pT ;Zq is onto. McMullen established in [McM3]
that Ed2 is the locus of primitive degree d torus covers.
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7.2. G-invariant measures in genus two. We now discuss the G-
invariant measures in genus two. These were classified by McMullen
in [McM3]. Measures supported on the full strata were constructed by
Masur [Ma] and Veech [Ve1] using period coordinates on these strata.
In [McM3] McMullen constructed measures on the eigenform loci in an
analogous way using period coordinates.

We may use Proposition 7.2 to define a measure on EDp1, 1q by locally
pushing forward Haar measure on L. More precisely, given E in the
image U 1 of p, we assign to E the Haar measure of p´1pEq Ă L (the
L invariance of Haar measure implies that the measure of E doesn’t
depend on the choice of basepoint). We call this the flat measure on
EDp1, 1q. McMullen proved that this measure is finite and G-invariant
[McM3].

Here is an alternative description of the flat measure which can
be generalized to define a measure on any linear submanifold of a
stratum. Suppose f : S Ñ M is a marked translation surface, write
M “ pX,ωq, and suppose that JacpXq admits real multiplication by
OD. The real multiplication on JacpXq gives H1pS;Zq the structure
of an OD-module. A choice of embedding OD Ñ R makes R2 an O-
module as well. We define H1

ODpS,Σ;R2q Ă H1pS,Σ;R2q to be the
subspace of cocycles for which the induced period map H1pS;Zq Ñ R2

is OD-linear. This is in other words the space of cocycles satisfying
(40). By Proposition 7.1, the linear subspace H1

ODpS,Σ;R2q parame-
terizes the eigenform locus in Hm near M .

We have the commutative diagram of homology groups (all coeffi-
cients in R2):

0 // H0pΣq{H0pSq //

��

H1
ODpS,Σq

//

��

H1
ODpSq

//

��

0

0 // H0pΣq{H0pSq // H1pS,Σq // H1pSq // 0

We give EDp1, 1q a measure by defining a measure on the linear space
H1

ODpS,Σq on which it is modeled which is invariant under the mon-
odromy action. To define such a measure, we give a measure on the
other two terms of the short exact sequence. The left term is canon-
ically R2, and the monodromy action is trivial. We give it the usual
Euclidean area form. The H1pSq term has a symplectic form arising
from the intersection form, which is preserved by the action of the map-
ping class group. This descends to a symplectic form on H1

ODpSq which
is preserved by monodromy. This form is non-degenerate; this could be
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checked by direct computation, and was proved in complete general-
ity by Avila, Eskin and Möller [AEM]. Therefore the symplectic form
defines a volume form on H1

ODpSq which is also monodromy invariant.
The product of these volume forms induces one on H1

ODpS,Σq which
defines a measure on EDp1, 1q. Finally, we apply the standard cone
construction (meaning we push forward the restriction of the measure
to surfaces in EDp1, 1q of area at most 1, by the canonical projection
onto the locus of surfaces of area one; see [Zo] for details) to obtain a
finite G-invariant measure on EDp1, 1q which is supported on the area
one forms.

The eigenform locus EDp1, 1q is nonempty and connected for D ě 4
and D ” 0 or 1 pmod 4q by [McM2].

In the stratum Hp2q, the locus of eigenforms EDp2q, is called the
Weierstrass curve in McMullen’s papers. By [McM5], EDp2q consists
of a single G-orbit if D ı 1 pmod 8q and D ě 5 (note EDp2q is empty
for D ă 5), or if D “ 9. Otherwise EDp2q consists of two orbits. It is
equipped with a finite measure coming from Haar measure on G.

The square-discriminant eigenform locus Ed2 also contains a count-
able, dense collection of closed G-orbits. A translation surface X is
called a square-tiled surface if it is a branched cover of the standard
square torus with all of the branching lying over a single point. Every
square-tiled surface has a closed G-orbit, and the square-tiled surfaces
are dense in each Ed2 .

Closed G-orbits inherit a measure from the Haar measure on G, and
this measure is finite by a result of Smillie (see [SmWe2]). We will
refer to this measure as the Haar measure on the closed G-orbit. The
decagon surface is the surface obtained by identifying opposite sides of
the regular 10-gon. It was shown by Veech [Ve2] that it has a closed G-
orbit. It belongs to Hp1, 1q and in fact to the eigenform locus E5p1, 1q.
We write Ldec Ă E5p1, 1q for its G-orbit. The closed G-orbits in genus
two were classified by McMullen in [McM2] and [McM4] (these closed
G-orbits were constructed independently by Calta [C] using different
methods):

Theorem 7.3. Each connected component of EDp2q is a closed G-orbit,
and every closed G-orbit in Hp2q is of this form.

Every closed G-orbit in Hp1, 1q is either the G-orbit of a square-tiled
surface or is Ldec.

In [McM3], McMullen showed that the measures defined above are
the full list of ergodic G-invariant measures in genus two:
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Theorem 7.4. Every ergodic G-invariant measure on Hp2q is either
the flat measure on the full stratum or Haar measure on a closed G-
orbit.

Every ergodic G-invariant measure on Hp1, 1q is either the flat mea-
sure on the full stratum, the flat measure on some EDp1, 1q, or the Haar
measure on a closed G-orbit.

7.3. Degenerate eigenform surfaces. We will also be interested in
eigenforms which are not genus two surfaces but can be thought of
as surfaces lying in a bordification of Hp1, 1q. We will consider two
cases, where the role of “boundary strata” will be played respectively
by Hp0q ˆHp0q and Hp0, 0q.

Given a pair of genus one translation surfaces E1 and E2, we may
consider the one-point connected sum X “ E1#E2. These degener-
ations arise from families of genus two surfaces where a separating
curve has been pinched. As we have the direct sum decompositions
H1pXq “ H1pE1q ‘H1pE2q and ΩpXq “ ΩpE1q ‘ ΩpE2q, the Jacobian
of X is simply the product of E1 and E2:

JacpXq “ Ω˚pXq{H1pX;Zq
– Ω˚pE1q{H1pE1;Zq ‘ Ω˚pE2q{H1pE2;Zq
– E1 ˆ E2

Just as for the smooth case, we say that X is an eigenform for real mul-
tiplication if JacpXq has real multiplication, with the one-form defining
the translation structure belonging to one of the eigenspaces in ΩpXq.
McMullen gave a more explicit description of real multiplication for
these degenerate surfaces in terms of isogenies of the Ei.

Recall that E1 and E2 are isogenous if there is a holomorphic covering
map p : E1 Ñ E2. The isogeny p is primitive if it cannot be written
as a composition of an isogeny of lower degree with a self-covering of
E2. Existence of p yields a dual isogeny p̄ : E2 Ñ E1, so isogeny is
an equivalence relation. In translation coordinates, an isogeny p is of
the form ppzq “ λz ` c for some complex number λ which we call the
scaling factor of p. In our setting, λ will always be real, in which case
p preserves the horizontal direction but scales the metric by a factor of
λ.

Proposition 7.5 ([McM5]). The surface E1#E2 is an eigenform for
real multiplication by OD if and only if there exists a primitive degree
m isogeny p : E1 Ñ E2, together with an integral solution pe, `q to the
equation e2 ` 4m`2 “ D with ` ą 0 and gcdpe, `q “ 1, such that the
scaling factor λ is the unique real positive root to the equation λ2´eλ´
`2m “ 0.
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We define PD Ă Hp0q ˆHp0q to be the locus of pairs pE1, E2q such
that E1#E2 is an eigenform for real multiplication by OD. With the
diagonal G-action on Hp0q ˆ Hp0q, the locus PD is G-invariant by
Proposition 7.5.

By [McM5], the locus PD consists of finitely many closed G-orbits.
We recall McMullen’s classification of these G-orbits. A prototype for
real multiplication by OD is a triple of integers pe, `,mq such that D “

e2 ` 4`2m, with `,m ą 0 and gcdp`,mq “ 1. A prototype pe, `,mq
determines a prototypical form in PD as follows. Let λ be the unique
positive solution of λ2 “ eλ` `2m. We define a pair of lattices in C:

Λ1 “ Zpλ, 0q ‘ Zp0, λq Λ2 “ Zp`m, 0q ‘ Zp0, `q,

and associated genus one translation surfaces Ei “ pC{Λi, dzq. Multi-
plication by λ defines an isogeny p : E1 Ñ E2 of degree l2m.

Proposition 7.6 ([McM5]). Each G-orbit of PD contains a unique
prototypical form.

Given a prototype pe, `,mq, we define PDpe, `,mq to be the closed
G-orbit containing the prototypical form associated to pe, `,mq. By
the above proposition, this gives a bijection between prototypes and
components of PD. We say that two pairs of genus-one forms have
the same combinatorial type if they lie on the same component of PD.
By [McM5, Theorem 2.1], the G-orbit corresponding to the prototype
pe, `,mq is isomorphic to the modular curve G{Γ0pmq, where Γ0pmq Ă
SLp2,Zq is the group of matrices which are upper-triangular mod m.

Finally, in the case when D “ d2 with d ą 1, we consider the moduli
space Hp0, 0q of genus one translation surfaces E with two marked
points p and q. Again, there is a natural G-action on this space. We
define Sd2 Ă Hp0, 0q to be the locus of pE, p, qq such that p´q is exactly
d-torsion in the group law on E (that is dpp´ qq “ 0 and d1pp´ qq ‰ 0
for any d1 ă d, in particular this implies p ‰ q). By [B1], Sd2 is a closed
G-orbit isomorphic to G{Γ1pdq, where

Γ1pdq “

"ˆ

a b
c e

˙

P SL2pZq : a ” e ” 1 (mod dq and c ” 0 (mod dq

*

.

We can regard pE, p, qq as a degenerate degree d torus cover obtained
by pinching a nonseparating curve. Since p´ q is a point of order d in
the group law on E, we have a degree d map π : E Ñ F , where F is
the quotient of E by the order d subgroup generated by p´ q. This π
is the torus cover of minimal degree sending p and q to the same point.
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The precise sense in which surfaces in the loci PD, SD, and EDp2q
can all be regarded as lying in the boundary of EDp1, 1q, is explained
in [B1]. We will not explicitly use this point of view.

7.4. Properties of eigenform surfaces. We will require the follow-
ing properties of surfaces in EDp1, 1q. Recall that the modulus of a flat
cylinder is defined to be its height divided by its circumference.

Proposition 7.7. In any cylinder decomposition of a surface in EDp1, 1q
with more than one cylinder, there is at least one rational relation
among the moduli of horizontal cylinders.

Proof. Given a horizontally periodic surface M with n cylinders, the
orbit-closure UM is a torus of dimension n´ r, where r is the number
of independent rational relations among the moduli of the cylinders
(see [SmWe1, Proposition 4]). We must then show that in any case the
dimension of UM is smaller than n.

First, suppose n “ dimUM “ 3. We may parameterize a neighbor-
hood of M in Hp1, 1q by the three holonomy vectors pxi, yiq of a saddle
connection joining cone points on the two boundary components of the
ith cylinder Ci. Since the yi are constant on UM and dimUM “ 3,
the xi are arbitrary on UM . However, since UM is contained in the
eigenform locus, the xi satisfy some nontrivial real-linear equation, a
contradiction.

Now suppose n “ dimUM “ 2. There must then be a horizontal
saddle connection joining distinct zeros. Applying the real-rel flow so
that the length of this saddle connection tends to 0, yields a surface
M 1 in Hp2q with two horizontal cylinders with the same moduli. A
neighborhood of M 1 in Hp2q is parameterized by two holonomy vectors
pxi, yiq. Again, if dimUM “ 2, the xi would be arbitrary on UM 1,
which contradicts the real-linear equation imposed by the eigenform
locus. (Note in the two-cylinder case, the claim also follows directly
from [McM3, Theorem 9.1].) �

Proposition 7.8. The U-action on each EDp1, 1q, with respect to the
flat measure, is ergodic.

Proof. In a G-action, ergodicity of the geodesic flow implies ergodicity
of the U -action by the “Mautner phenomenon” (see e.g. [EW]). So
it suffices to prove ergodicity of the G-action. This can be proved by
applying the Hopf argument to the geodesic flow as in [Ma]. �

Recall that a periodic direction of a translation surface is a direction
in which the surface is a union of parallel cylinders and saddle connec-
tions. A translation surface is completely periodic if for any direction
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which contains a cylinder, the surface is a union of parallel cylinders
and saddle connections.

Theorem 7.9 ([McM4, C]). Every genus two surface M which is an
eigenform is completely periodic. In particular for M P EDp1, 1q, if
ΞpMq contains a saddle connection joining a zero to itself, then the
horizontal direction of M is periodic.

Given two genus one translation surfaces E1 and E2, consider a hor-
izontal segment I Ă R2 which embeds into each Ei. We may form the
connected sum X “ E1#IE2 by removing the image of I from each
EI , and then gluing the resulting boundary components. The result
is a surface X P Hp1, 1q with two horizontal saddle connections whose
union is a loop separating X into two tori (see [McM3] for details).

Theorem 7.10. Suppose that D is not square. Let M P ED, and
suppose M contains a loop which is a union of horizontal saddle con-
nections. Then either

‚ The horizontal direction of M is periodic, or
‚ M is obtained by gluing two genus one translation surfaces with

uniquely ergodic horizontal directions along a horizontal slit.

In particular, in the second case ΞpMq consists of two horizontal saddle
connections joining distinct zeros which are interchanged by the hyper-
elliptic involution (for the corresponding horizontal data diagram, see
diagram 5 in Figure 7).

Proof. We regard M as a Riemann surface X equipped with a holo-
morphic one-form ω. By [McM1], if Reω has zero “Galois flux” and
ΞpMq contains a loop, then we are in one of these two cases. Zero flux
follows from equation (4.2) of [McM1] and Theorem 5.1 of [McM3].

The final statement is proved in the following lemma. �

Lemma 7.11. Let M P Hp1, 1q be a surface with two horizontal sad-
dle connections I and I 1 joining distinct zeros. The loop γ “ I Y I 1

disconnects M if and only if the hyperelliptic involution interchanges I
and I 1.

Proof. Let η : M Ñ M denote the hyperelliptic involution and ω the
holomorphic one-form on M induced by the translation structure.

Suppose that we are in the case where η interchanges I and I 1. Since
η˚ω “ ´ω, the map η sends γ to itself preserving the orientation.
Thus rη˚γs “ rγs P H1pM ;Zq. But the hyperelliptic involution acts
on H1pM ;Zq as minus the identity. It follows that γ is homologous to
zero, so it separates M .
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Suppose now that η fixes I and I 1. Since η reverses the orientation of
each of these saddle connections, each must contain a single fixed point
of η (i.e. one of the six Weierstrass points of M). If f : M Ñ S2 is the
quotient map induced by the hyperelliptic involution, then in this case
the union fpIq Y fpI 1q is a smooth embedded path joining two branch
points of f . Since an embedded path does not disconnect the sphere,
and f has branch points disjoint from fpIq Y fpI 1q, the complement
MzpI Y I 1q is also connected, a contradiction. �

When D “ d2, there is one more possible configuration of horizontal
saddle connections. Suppose pE, p, qq is a genus one translation surface
with two marked points p, q whose difference p´ q is exactly d-torsion
in the group law of E. There is then a genus one surface F and degree
d cover π : E Ñ F which identifies p and q. Let I Ă R2 be a segment
which may be embedded in E by a translation to yield disjoint parallel
segments I 1 and I2 beginning at p and q respectively. We may then
form the self-connected-sum M “ pE, p, qq#I by cutting along I 1 and I2

and then regluing to obtain a genus two surface. Since the gluings are
compatible with the covering π : E Ñ F , the surface M is a primitive
degree d branched cover of F , so M P Ed2p1, 1q. If the slope of I is
not a periodic direction on E, the surface M has exactly two saddle
connections of this slope of the same length, and the complement of
this pair of saddle connections is a genus one surface. As in the second
case in Theorem 7.10, the horizontal diagram is once again diagram
5 of Figure 7, but the complement of the slit has a different topology
than in the case that D is not a square.

The following theorem says when D is square, this is the only addi-
tional configuration of saddle connections.

Theorem 7.12. Suppose that D “ d2. Let M P ED, and suppose M
contains a loop which is a union of horizontal saddle connections. Then
either

‚ The horizontal direction of M is periodic, or
‚ M is obtained by gluing two genus one translation surfaces with

uniquely ergodic horizontal directions along a horizontal slit,
‚ M is a self-connected sum of pE, p, qq along two horizontal slits

of the same length based at p and q respectively, where E a is
genus one translation surface with uniquely ergodic horizontal
direction, and p´ q is exactly d-torsion in the group law of E.

In particular, in the second case ΞpMq consists of two horizontal saddle
connections joining distinct zeros which are interchanged by the hyper-
elliptic involution. In the third case, ΞpMq consists of two horizontal
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saddle connections of the same length fixed by the hyperelliptic involu-
tion.

Proof. Suppose that M is not periodic. If M has a saddle connection
joining a singularity to itself, this saddle connection is the boundary of
a cylinder, which implies that the horizontal direction of M is periodic
by Theorem 7.9, a contradiction. Therefore ΞpMq consists of two hor-
izontal saddle connections I and I 1 joining singularity ξ1 to singularity
ξ2.

Let π : M Ñ F be a primitive degree d cover of a genus one trans-
lation surface. The horizontal direction of F is not periodic, otherwise
M would be periodic as well. The singularities ξi are also the branch
points of π, and the images πpIq and πpI 1q are horizontal segments on
F joining πpξ1q to πpξ2q. Since the horizontal direction of F is not
periodic, the images πpξ1q and πpξ2q must be distinct. There is then
a unique horizontal segment on F joining these points which I and I 1

are both mapped to injectively by π. It follows that I and I 1 have the
same length.

By Lemma 7.11, the loop I Y I 1 disconnects M if and only if I and
I 1 are interchanged by the hyperelliptic involution.

Suppose we are in the case where I and I 1 are fixed by the hyper-
elliptic involution. The complement MzpI Y I 1q is then a genus one
translation surface with two boundary components, each a union of
two horizontal segments of the same length. The holonomy around
each boundary component is trivial, so we have exhibited M as a self-
connected-sum pE, p, qq#I . The branch covering π must arise from a
primitive covering E Ñ F which identifies p and q. This implies that
p´ q is exactly d-torsion in the group law of E. �

8. Construction of ergodic measures for U

In the previous section we discussed G-invariant measures on ED.
In this section we will discuss U -invariant measures which are not G-
invariant.

8.1. Minimal sets. A minimal set for a flow is a minimal (with respect
to inclusion) nonempty closed invariant subset. An example is a closed
orbit, but more complicated examples may arise. The minimal sets for
the horocycle flow in any stratum were classified in [SmWe1], where
the following was shown.

Proposition 8.1. For M P H, the following are equivalent:

‚ UM is minimal.
‚ UM is compact.
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‚ M has a horizontal cylinder decomposition, with ΞpMq consist-
ing of the boundaries of these cylinders.

In case these hold, UM is topologically conjugate to a torus, whose
dimension is the dimension over Q of the span of the moduli of the
cylinders in the horizontal direction of M , and under this conjugacy,
the U-action becomes conjugate to a straight-line linear flow on this
torus. The closure of any U-orbit in H contains some M satisfying the
above conditions.

Corollary 8.2. Each minimal set supports a unique U-invariant mea-
sure (which in particular is ergodic). The measure is linear with respect
to the linear structure on the torus which is the minimal set.

Proof. These are all well-known properties of straight line flows on tori,
and follow from the isomorphism above. �

Corollary 8.3. For cylinder decompositions of type (A) of Figure 6,
the corresponding orbit-closure is a minimal set which is one-dimensional
or two-dimensional. In the former case it is a closed horocycle, and in
the latter, the corresponding measure is invariant under UZ, and this
group acts transitively on the support of the measure. For cylinder
decompositions of types (B), (C) and (D), U-orbits are periodic.

Proof. By Proposition 8.1 the dimension of the U -orbit closure is the
dimension of the Q-span of the moduli, which by Proposition 7.7 is
either 1 or 2. Suppose that it is 2. Again by Proposition 7.7, there must
be three cylinders, so we are in case (A). The description in [SmWe1]
shows that the additional dimension of the orbit closure is given by
changing only the twists around cylinders, and it is straightforward to
check using the explicit coordinates used in [SmWe1], that the Z-action
also affects only the twists, changing them linearly in a way which is
distinct from the U action. Thus the UZ-orbits are 2 dimensional,
and hence UZ is transitive on the orbit-closure and the corresponding
measure is UZ-invariant.

In cases (B) and (C) there are only two cylinders which, by Proposi-
tion 7.7, have rationally related moduli. In case (D) there is only one
cylinder. So in all of these cases the minimal set is 1-dimensional. �

8.2. Parameter spaces of minimal sets. For every discriminant D,
there are examples in ED of surfaces belonging to minimal sets of type
(A), for which the U -orbit closure is two-dimensional, i.e. is an orbit
of UZ. These minimal spaces are naturally grouped in continuous
families, which we will refer to as ‘beds’. Their structure was studied
in detail in [B2, §6] when D is not square. We summarize this structure
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here. This analysis will not be required in the sequel. Contrary to the
rest of the paper, this discussion will be in the context of surfaces with
unlabeled singularities as the combinatorial structure is simpler.

Each EDp1, 1q contains finitely many four (real) dimensional beds
which parameterize unit area surfaces with periodic horizontal direc-
tions having three cylinders, where the ratios of circumferences of these
cylinders are fixed, while twist parameters and heights are allowed to
vary, subject to the linear condition which defines the eigenform locus.
These beds are invariant under the horocycle flow, geodesic flow and
real and imaginary rel. Each bed is foliated by a family of 2-tori defined
by fixing the heights as well as the circumferences of the cylinders, and
varying the twist parameters. Each torus is a closed UZ-orbit and is
either a U -minimal set or a union of closed U -orbits, depending on
whether or not moduli of the cylinders have rational ratios. We will
see in Theorem 12.3 that applying the geodesic flow to one of these tori
gives a family of measures which equidistribute in EDp1, 1q .

As we vary the heights of the cylinders in one of these families of
three-cylinder surfaces (see Figure 16), the height of a cylinder may
tend to 0, yielding a family of two-cylinder surfaces in the boundary
of the family of three-cylinder surfaces (see Figure 17). For a given
three cylinder surface there are two cylinders which are candidates
for degeneration and for each candidate cylinder there is a path in the
family of three cylinder surfaces leading to a surface in which this cylin-
der is degenerate. Thus there are two distinct families of two-cylinder
surfaces lying in the boundary of each three-cylinder family. These
two-cylinder families are three-dimensional and composed of surfaces
having horizontal data diagram of type (B) or (C). By Corollary 8.3,
each two-cylinder family is a union of closed U -orbits.

Figure 16. Moving in the bed of minimal sets: 3 cylin-
der surfaces in E8p1, 1q, deformed by imaginary rel.

Each family of two-cylinder surfaces is in turn in the boundary of
exactly two families of three-cylinder surfaces. Starting from a given
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Figure 17. Applying a cut and paste surgery, one can
continue the imaginary rel motion and arrive at a 2-
cylinder surface.

family of three-cylinder surfaces, we may continue this process of mov-
ing in the family so that the cylinders degenerate to one of the boundary
two-cylinder families and then by undoing a different degeneration we
get to a different three-cylinder family. After passing through a finite
sequence of three-cylinder families, we eventually return to the origi-
nal one. These families of minimal sets then comprise finitely many
disjoint cycles.

If OD is a maximal order, the set of cycles is naturally in bijection
with the ideal class group of OD. The bijection is given by associat-
ing to a periodic surface in one of these families the fractional ideal in
FD obtained by taking the Z-span of the circumferences of its cylin-
ders. These circumferences are constant (up to scale) in each two- or
three-cylinder family of minimal sets, and when a three-cylinder family
degenerates to a two-cylinder family, one cylinder is lost but the frac-
tional ideal generate by their circumferences is unchanged. If OD is
not maximal the analysis becomes more involved. In the case where D
is square, the structure of the collection of minimal sets is more com-
plicated due to the presence of minimal sets consisting of one-cylinder
surfaces, in addition to two and three cylinder decompositions.

8.3. Framing and splitting. Let Hfp2q Ñ Hp2q be the threefold
cover corresponding to choosing a right-pointing horizontal prong at
the singularity, as in §2.9. This cover is connected, since as we have

seen in Proposition 2.9, the ĂSO2pRq-orbits of a point contain all of its

pre-images under the map Hfp2q Ñ Hp2q. We denote by pEDp2q the
pre-image of EDp2q in Hfp2q. By the same reasoning as above, each
connected component of EDp2q has connected inverse image. Recall

that since U is simply connected it lifts to pG, so it acts on pEDp2q.
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Proposition 8.4. The action of U is ergodic on any connected com-

ponent of pEDp2q.

Proof. Since any connected component of EDp2q is a G-orbit (see The-

orem 7.3), pG acts transitively on each connected component of pEDp2q,
and in particular, ergodically. The inclusion U Ă pG has the Mautner

property (see e.g. [EW]) and hence any ergodic pG-action is also ergodic
for U . �

8.4. Other U-invariant measures. We now discuss the remaining
ergodic U -invariant measures. Each of these arise from applying the
rel flow to a closed G-orbit, possibly lying in a boundary stratum of
ED. To avoid working with compactifications, we will not always take
this point of view explicitly, in favor of more elementary constructions.

We classify the remaining measures in terms of their configuration of
horizontal saddle connections Ξpµq. We have the following possibilities.

Proposition 8.5. Let µ be an ergodic U-invariant measure, which is
not supported on a minimal set. There are four possibilities for Ξpµq:

(i) Ξpµq “ H.
(ii) Ξpµq consists of one saddle connection joining distinct singu-

larities. For µ-a.e. surface, this saddle connection is fixed by
the hyperelliptic involution.

(iii) Ξpµq consists of two saddle connections joining distinct singu-
larities which are interchanged by the hyperelliptic involution.
For µ-a.e. surface M , the union of these saddle connections
disconnects M into a union of two tori with slits removed.

(iv) Ξpµq consists of two saddle connections joining distinct singu-
larities which are fixed by the hyperelliptic involution. For µ-a.e.
surface M , the union of these saddle connections disconnects M
into a torus with two slits removed, and D is a square.

Proof. This follows directly from Theorems 7.10 and 7.12. �

In the case where M belongs to a minimal set, ΞpMq is one of con-
figurations pictured in Figure 6.

Our goal in this section will be to provide examples of U -ergodic
U -invariant measures in each case.

For fixed discriminant D, let C denote one of the following:

(i) The G-orbit of the regular decagon Ldec Ă E5p1, 1q, or if D is
square, the G-orbit of a square-tiled surface in EDp1, 1q.

(ii) A component of pEDp2q in Hfp2q.
(iii) A component of PD Ă Hp0q ˆHp0q.
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(iv) If D “ d2, the d-torsion locus SD Ă Hp0, 0q.
Note that in this case and subsquently we use the same symbol to
denote subsets of different spaces; that is, more formally we should
replace C with one of Cpiq–Cpivq depending on the cases above. We will
continue with this slight inaccuracy with the set B and map Ψ below,
and this should cause no confusion.

In each case, C has a natural G or pG action, and C is isomorphic to

G{Γ or pG{Γ for some lattice Γ. Let B Ă C denote the subset consisting
of surfaces without horizontal saddle connections. In case (iii) or (iv),
we interpret a saddle connection to be either a closed geodesic or a
segment joining two marked points.

Proposition 8.6. The set B Ă C is the complement of the set of closed
horocycles.

Proof. In cases (i) and (ii) this follows from the Veech alternative [Ve2].
In case (iii), recall that every point of C represents a pair of isogenous

genus one translation surfaces, so the horizontal direction is periodic
for one if and only if it is periodic for the other. A torus with periodic
horizontal direction is stabilized by an infinite cyclic subgroup of U ,
and for two isogenous tori, these subgroups are commensurable. Thus
a point of C representing a pair of tori with periodic horizontal direction
lies on a closed horocycle.

In case (iv), every point of C represents a torus with two marked
points pE, p, qq where p ´ q is d-torsion. It has a horizontal saddle
connection exactly when the horizontal direction of E is periodic, in
which case E is stabilized by an infinite cyclic subgroup of U . Given E,
there are finitely many choices of p, q which differ by d-torsion, up to
isomorphism of E. Thus pE, p, qq is also stabilized by an infinite cyclic
subgroup of U , so lies on a closed horocycle. �

Note that B is a dense Gδ subset of a locally compact metrizable
space, and hence the Borel σ-algebra structure on B is a standard
Borel space (see [K]).

Corollary 8.7. In each case the action of U on B is uniquely ergodic,
i.e. there is a unique U-invariant regular Borel measure on B.

Proof. By Proposition 8.6, the action of U on B is measurably conjugate
to the horocycle flow on the complement of the set of horocycles in

G{Γ or pG{Γ for some lattice Γ. Dani [D] classified the U -invariant

measures on G{Γ and pG{Γ, showing that they are either supported on
closed horocycles or are the global measure induced by Haar measure.
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Thus Dani’s theorem implies that the U -action on each B is uniquely
ergodic. �

In each case, we define a map Ψ: B ˆ p0,8q Ñ Hp1, 1q as follows:

(i) ΨpM,T q “ RelTM. This is well-defined by Corollary 6.2.

(ii) ΨpM,T q is the inverse of the map Φ
p´T q
f of Theorem 6.5. Infor-

mally, ΨpM,T q is the surface obtained by splitting the singular-
ity of angle 6π to two singularities of angle 4π each, and moving
them apart using RelT . The way in which the two singularities
are to be split apart is made explicit by the framing.

(iii) Given a pair of genus one translation surfaces pE1, E2q P B Ă
PD, we define ΨppE1, E2q, T q to be the surface obtained by re-
moving a horizontal slit of length T from each Ei and then
gluing the resulting surfaces along their boundaries to obtain
a genus two surface in Hp1, 1q. The resulting surface is an
eigenform, since real multiplication is preserved by deforma-
tions which leave absolute periods constant by Proposition 7.1.

(iv) Given a genus one surface E with marked points p, q which
differ by d-torsion, we define ΨppE, p, qq, T q to be the surface
obtained by cutting E along two horizontal slits of length T
with left endpoints p and q and then gluing the resulting two
boundary components to obtain a genus two surface in Hp1, 1q.
We saw above that there is a primitive degree d torus covering
π : E Ñ F sending p and q to the same point. Our gluing
identifies only pairs of points which have the same image, so
the resulting surface is also a primitive degree d torus cover
belonging to Ed2p1, 1q.

In each case, we label the singularities of the resulting surface so
that singularity ξ1 is on the left hand side of the horizontal saddle
connection of length T , and singularity ξ2 is on the right hand side.

We extend the definition of ΨpM,T q to T ă 0 as follows. In case
(i), we simply apply RelT . In the remaining cases, we repeat the same
construction using |T | in place of T , but choose the opposite labeling
for the singularities.

For fixed T ‰ 0, let ΨT : B Ñ EDp1, 1q be defined by ΨT pMq “
ΨpM,T q. In cases (ii), (iii), and (iv), we denote by BT the image of
ΨT .

We summarize this discussion in the following:

Proposition 8.8. For each T , ΨT is continuous on B. In case (i), the
image is a set of surfaces with no horizontal saddle connections. In the
remaining cases, the image BT is the set of surfaces in EDp1, 1q with
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‚ in case (ii) there is exactly one horizontal saddle connection δ,
it has length |T |, joins distinct singularities.

‚ in case (iii) there are exactly two horizontal saddle connec-
tions of length |T | joining distinct singularities which are in-
terchanged by the hyperelliptic involution.

‚ in case (iv) there are exactly two horizontal saddle connections
of length |T | joining distinct singularities which have the same
length and are both fixed by the hyperelliptic involution.

These saddle connections are all positively oriented in the case T ą 0
and negatively oriented in the case T ă 0.

In each case, the pushforward under ΨT of the G-invariant (or pG-
invariant) Haar measure on B is the unique U-invariant and U-ergodic
measure µ on EDp1, 1q, such that Ξpµq is as in cases (i)-(iv) above.

Proof. Most of the statements in the Proposition were established in the
preceding discussion. To obtain continuity of ΨT , in case (i), continuity
follows from Proposition 3.3, and in case (ii), from Theorem 6.5. In
the other cases, it follows immediately from the explicit definition of
the surgeries described above that continuity holds in a neighborhood
of M , for all T sufficiently small (depending on this neighborhood).
Continuity for arbitrary T follows by combining this with Proposition
3.3.

In order to prove uniqueness, we show that for each of the cases
(i)–(iv), each surface M with ΞpMq “ Ξpµq as described in the list, is
in the image of the map ΨT . Then the claim follows using the unique
ergodicity of the U -action on the corresponding set B. To show that
M is in the image of ΨT , we define the inverse of ΨT by inverting
the surgery construction used to define it. Thus for case (ii), we use
Theorem 6.5. In case (iii), ΨT associates to a pair of isogenous tori
pE,F q, the connected sum E#IF . Given a surface M with two hori-
zontal saddle connections interchanged by the hyperelliptic involution,
we cut M along these saddle connections to obtain a pair of isogenous
tori pE,F q, and so M “ ΨT pE,F q. The other cases are similar. �

9. Classification of ergodic measures

In this section we show that the only U -invariant U -ergodic measures
in EDp1, 1q are those described in Section 8. The following is our full
measure classification result, which is an expanded version of Theorem
1.1.

Theorem 9.1. Let µ be a U-invariant U-ergodic Borel probability mea-
sure on ED. Then exactly one of the following cases holds:
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(1) µ is length measure on a periodic U-orbit, Ξpµq is a complete
separatrix diagram of type (A), (B), (C) or (D), and all the
cylinders in the corresponding cylinder decomposition have com-
mensurable moduli.

(2) µ is the flat measure on a 2-dimensional torus which is a U-
minimal set, Ξpµq is a complete separatrix diagram of type (A),
and the cylinders in the corresponding cylinder decomposition
do not have commensurable moduli. The stabilizer of µ is UˆZ,
and U ˆ Z acts transitively on suppµ.

(3) Ξpµq consists of two saddle connections joining distinct singu-
larities, which disconnect M . The complement consists of two
isogenous tori glued along a slit as in case (iii) of §8.4, and
there is T P R r t0u such that µ is the pushforward of Haar
measure on a connected component of PD, via the map ΨT .

(4) Ξpµq consists of one saddle connection joining distinct singular-
ities, as in case (ii) of §8.4, and there is T P Rr t0u such that
µ is the image under ΨT of Haar measure on a finite volume
pG-orbit in Hfp2q, where pG and Hfp2q are the threefold covers of
G and Hp2q described in §2.10.

(5) Ξpµq “ ∅ and there is T P R such that µ is the image under
RelT , of Haar measure on a closed G-orbit in EDp1, 1q. In this
case either D is a square or is equal to 5.

(6) Ξpµq contains two saddle connections joining distinct singular-
ities, whose complement in M is a torus with two parallel slits
of equal length, as in case (iv) of §8.4, and there is T P Rr t0u
such that µ is the image under ΨT of a G-invariant measure on
the space of tori with two marked points. In this case D is a
square.

(7) µ is the flat measure on EDp1, 1q.

Definition 9.2. The numbering in Theorem 9.1 corresponds to that in
Theorem 1.1. If µ is a measure satisfying the conditions of item n in
this theorem then we will refer to n as the type of the measure µ.

Remark 9.3. Recall from Proposition 7.2 that EDp1, 1q is an affine
manifold in period coordinates, and the tangent space to EDp1, 1q at a
point M is naturally identified with the Lie algebra l – sl2pRq ˙ R2.
Hence we can discuss the Lie subalgebra lµ which fixes the measure µ.
The following list identifies lµ in each case:

(1) lµ “ u “ LiepUq.
(2) lµ “ u‘ z.
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(3) lµ is the Lie algebra of the subgroup of L fixing the holonomy
of the two saddle connections in Ξpµq (note that these vectors
have the same holonomy).

(4) lµ is the Lie algebra of the subgroup of L fixing the holonomy of
the vector in Ξpµq.

(5) lµ is the Lie algebra of the subgroup of L fixing the vector pT, 0q P
R2.

(6) lµ is the Lie algebra of the subgroup of L fixing the holonomy of
the two vectors in Ξpµq (note that these vectors have the same
holonomy).

(7) lµ “ l.

In all cases above it is easy to show using the maps defined in §8,
that for µ-a.e. point M , the intersection of suppµ with a neighborhood
of M is an affine submanifold whose dimension equals dim lµ. So we
may say that suppµ is almost everywhere an affine manifold locally
modeled on the Lie algebra lµ.

The proof of Theorem 9.1 occupies the rest of this section. It is
modeled on arguments of Ratner dealing with horocycle orbits in ho-
mogeneous spaces (see [R] for a survey), which were first applied to
spaces of translation surfaces in [EMaMo] and applied to the eigen-
form locus by Calta and Wortman in [CW]. We follow the outline
of [CW] but make several improvements. These enable us to bypass
some entropy arguments used in [CW] and give a clearer justification
of Proposition 9.4 below.

Ratner’s argument hinges on the analysis of transverse divergence
of nearby trajectories for the U -action which she calls the R-property
(see [R] p. 22). Suppose we want to compare two orbits utM and utM

1

where M and M 1 are close. We can write M 1 “ gM¯v. The case when
pg, vq P N is somewhat special and we consider it first. In this case g
normalizes U and satisfies utg “ guct for some c ą 0 independent of t,
and therefore

utM
1
“ utpg, vqM “ putg, vqM “ pguct, vqM “ pg, vquctM.

The divergence is caused by two factors. Since pg, vq is independent of
t and small we think of utM

1 and uctM as being close. In particular
if c is not 1 then the primary divergence of these two points is in the
horocycle direction. Rescaling time along the second orbit by replacing
t with ct has the effect of removing this divergence. We describe the
remaining orbit divergence as transverse divergence.
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Now let us consider the general case where M 1 “ gM ¯ v with

g “

ˆ

a b
c d

˙

P G, and v arbitrary. In order to pick out the divergence

in the directions transverse to the horocycle direction we will rescale
the time factor along the second orbit. Specifically let utM be the
first orbit and write the second orbit as usM

1 with s “ sptq. Unlike
the previous case, the time parameter sptq for the second orbit will
depend on the time parameter t in the first orbit in a nonlinear way
and the rescaling will only work in a finite interval of time. We will
show that the time change is not too far from being linear. In order
to do this we choose a family of transversals to the horocycle orbits
and choose the function sptq so that utM and usM

1 stay in the same
transversal. Recall from Proposition 7.2 that locally we can model
EDp1, 1q on L. We choose as our family of transversals the elements of
L corresponding to elements pg, vq where g is lower triangular and v is
in R2, and both g, v are small. This defines a submanifold transverse
to U of complementary dimension.

Since M¯v is defined, by Proposition 3.4, usgM¯usv is also defined
and is equal to uspgM ¯ vq “ usM

1. Since usgM “ pusgu´tqutM , the
pair pusgu´t, usvq, considered as an element of L, gives a well-defined
map which moves utM to usM

1. We calculate:

usgu´t “

ˆ

a` sc b´ at` spd´ ctq
c d´ ct

˙

.

In order for utM and usM
1 to lie on the same transversal, we require

that the matrix usgu´t is close to the identity and lower triangular.
For t P R we set

s “ spt, gq
def
“
at´ b

d´ ct
. (41)

With this choice we have:

usptqgu´t “

ˆ

1
d´ct

0
c d´ ct

˙

(42)

(here sptq “ spt, gq), so that utM and usptqM
1 lie in the same transverse

leaf as long as t is chosen such that d´ tc is close to 1.
Note that while the initial displacement may consist of displacement

in the Rel direction as well as the G-direction, the time change only
depends on the initial displacement in the G direction.

Let µ be a U -invariant ergodic measure on EDp1, 1q with Ξpµq “ ∅.
Since N acts on the set of surfaces with Ξpµq “ ∅ we can consider the
subgroup of N that preserves µ. Let N˝

µ to be the connected component
of the identity in Nµ, where Nµ is the stabilizer of µ as in Definition
4.7.
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Proposition 9.4. For any ε ą 0 there is a compact subset K of
EDp1, 1q with µpKq ě 1 ´ ε such that if M P K is a limit of Mk “

hkM ¯ vk P K, with hk P G and vk “ pxk, ykq P R2, and phk, vkq Ñ 1L,
phk, vkq R U for infinitely many k, then dimN˝

µ ě 2.

Proof. Let Ωµ be the set of µ-generic points for the U -action. The set
Ωµ has full µ measure. Given ε, let Ω1 be a compact subset of Ωµ such
that µpΩ1q ě 1´ε. By the Birkhoff ergodic theorem there is a compact
subset K of EDp1, 1q of measure µpKq ě 1´ ε, and a T0 ą 0, such that
for all M P K and all T ą T0,

1

T
|tt P r0, T s : utM P Ω1u| ě 1´ 2ε. (43)

We will show that this choice of K satisfies the conclusion of the Propo-
sition. So let Mk, M , hk and vk “ pxk, ykq be as in the statement of

the Proposition. Write ck
def
“ cphkq and dk

def
“ dphkq.

By Corollary 4.8, Nµ is a closed subgroup of N and hence a Lie
group. Thus N˝

µ is a connected Lie group that contains U . In order to
show that dimN˝

µ ě 2 it suffices to rule out the possibility U “ N˝
µ,

that is, in any neighborhood of the identity in N , to find an element in
N r U preserving µ. If the sequence phk, vkq contains infinitely many
elements of N r U then it follows from Corollary 4.16 that we have
such a sequence of elements. We may thus assume that phk, vkq R N
for infinitely many k.

Write elements of Z as Rels (where defined). Assume first that along
a subsequence

yk “ opckq. (44)

In this case we will show that for each sufficiently small δ ą 0, there is
an element

` “ `pδq “ gτRelσ (45)

preserving µ, such that

εδ

2
ď τ ď 2δ and σ “ Opδq. (46)

The fact that ` can be written as gτRelσ means that it lies in N . The
fact that τ ‰ 0 means that ` does not lie in U .

In light of Corollary 4.16, in order to show that ` P N belongs to
Nµ, it suffices to prove that there are surfaces M p1q,M p2q P Ωµ such
that `M p1q “M p2q. We will find M p1q and M p2q as limits of convergent
subsequences in Ω1 and ` as a limit of a convergent subsequence in L.
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Recall that in order for utM and usptqM
1 to be close it is necessary

that t be chosen so that d´ tc is close to 1. For g P G set

Ig
def
“ tt P R : | lnpd´ tcq| ď δu, where d “ dpgq, c “ cpgq.

An elementary computation shows that there is a neighborhood W of
1G such that if g P W then 0 P Ig, and for any t1, t2 in the connected
component of Ig containing 0, we have

|t1 ´ t2|

2
ď |spt1, gq ´ spt2, gq| ď 2|t1 ´ t2|. (47)

Here the spti, gq are defined by equation (41) and δ is assumed to be
sufficiently small.

Let P ptq be any linear function, that is P is of the form P ptq “ At`B
for some A,B, and for a ă b, let }P } “ maxxPra,bs |P pxq|. Then it is
easy to check that

|tt P ra, bs : |P ptq| ă ε}P }u|

b´ a
ă 2ε. (48)

The definition of Ig and equation (42) ensure that at the endpoints of
Ig, the gt-component of the displacing element usgu´t is 2δ. Namely,

given c ‰ 0 and d, the formula T “ T pc, dq “ d´e˘δ

c
gives the two

solutions to the equation | lnpd ´ cT q| “ δ. Since dk Ñ 1 and ck Ñ 0,
for all sufficiently large k there is a unique such Tk “ T pck, dkq with
Tk ą 0, and moreover for all sufficiently large k, we will have Tk ě T0.
Here we take δ sufficiently small and k sufficiently large so that

1

2
ď
|dk ´ ckt´ 1|

| lnpdk ´ cktq|
ď 2. (49)

We apply the above estimates for T “ Tk and P ptq “ dk ´ ckt´ 1 and
obtain the existence of a subset of t P r0, T s, of measure at least 1´8ε,
for which all of the following hold:

‚ utM P Ω1 (by (43)).
‚ usMk P Ω1, where s “ sphk, tq (by (47), (43) and since Mk P K).
‚ |dk ´ ckt ´ 1| ě εδ

2
, and hence | lnpdk ´ cktq| ě

εδ
4

(by (48) and
(49)).

In particular, if we choose ε ă 1{8 (which we may with no loss of
generality), then the set of t satisfying all these properties is nonempty.
Fixing such a t, it follows from (42) and Proposition 3.4 that

usMk “ usphkM ¯ vkq “ ushku´tutM ¯ usvk

“

ˆ

1
dk´ckt

0

ck dk ´ ckt

˙

utM ¯ pxk ` syk, ykq .
(50)
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For each k we let tk and sk “ sphk, tkq satisfy (50). Using the compact-
ness of Ω1 we can take a subsequence along which we have convergence

utkM ÑM p1q, uskMk ÑM p2q.

By (50), we have uskMk “ `kutkM where

`k “

„ˆ

1
dk´cktk

0

ck dk ´ cktk

˙

, pxk ` sptk, hkqyk, ykq



.

We claim that M p2q “ `M p1q, for ` P N satisfying the bounds (45), (46).
It is enough to show that after passing to a further subsequence, the
sequence `k converges to an element ` satisfying these bounds. Since
| lnpdk ´ cktq| ě

εδ
4

, since ck Ñ 0, and by definition of the interval

Ihk , the matrices

ˆ

1
dk´cktk

0

ck dk ´ cktk

˙

converge to gτ with τ as in (46).

Since xk, yk Ñ 0, in order to obtain the required bound on σ we need
to show that skyk “ Opδq. But

skyk “yk
aktk ´ bk
dk ´ cktk

“
yk
ck

aktk ´ bk
dk{ck ´ tk

(44)
“ op1q

aktk ´ bk
ck{dk ´ tk

gkÑ1G
“ op1q “ Opδq,

as required.
In case the condition of equation (44) does not hold, we have

ck “ Opykq.

In this case we can employ a similar argument, and find an element
`pδq as in (45) which satisfies (instead of (46)) the estimates

σ ě cδ for some c ą 0, and τ “ Opδq, σ “ Opδq.

�

Remark 9.5. The proof of [CW, Lemma 2], which is the statement
analogous to Proposition 9.4, is incomplete. The formula preceding the
final paragraph of the proof in [CW] would hold for an honest group
action, but in this case requires justification.

Proof of Theorem 9.1. To each ergodic horocycle invariant measure µ
we associate a horizontal data diagram via Corollary 5.3. The possi-
bilities for Ξpµq given in the statement of Theorem 9.1 cover all cases
by Proposition 8.5. In §8, for each possibility for Ξpµq, a measure was
constructed. If it is a complete separatrix diagram, then by Proposi-
tion 8.1 and Corollary 8.2, we must be in cases (1) or (2). In all other
cases for which Ξpµq ‰ ∅, it was shown in Proposition 8.8 that there
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are no additional measures. This shows that if Ξpµq ‰ ∅, then µ must
be one of the measures described in items (1), (2), (3), (4) or (6).

We now treat the case Ξpµq “ ∅. Recall from Definition 3.7 and
Corollary 6.2 that H1

8 is the set of surfaces in Hp1, 1q with no horizontal
saddle connections joining distinct singular points. Then µpH1

8q “ 1
and N “ B˙Z acts on H1

8. Recall that N˝
µ is the connected component

of the stabiliser of µ so that U Ă N˝
µ. We first claim that there is no

U -orbit with positive measure. Indeed, if this were the case then by
ergodicity, µ is supported on one orbit which, by Poincaré recurrence,
must be a periodic orbit. A periodic orbit is a special case of a minimal
set so by Proposition 8.1, Ξpµq consists of a full separatrix diagram.
This contradicts our assumption that Ξpµq “ ∅.

We now claim that we cannot have N˝
µ “ U , i.e. that dimN˝

µ ě 2.
To see this, let Ωµ Ă H1

8 be the set of generic points as in Proposition
4.15, and let K be as in Proposition 9.4. We have K Ă Ωµ. Since µ
assigns zero measure to individual U -orbits and K is a compact set of
positive measure, K contains a sequence pMkq such that Mk ÑM P K
and none of the Mk are on the U -orbit of M . According to Proposition
9.4 dimN˝

µ ě 2.
Now suppose Z Ă N˝

µ. We will show that in this case µ is the flat
measure on EDp1, 1q. Let L be an affine G-invariant subspace of Hp1, 1q,
and let Lp1q be its subset of area-one surfaces. We define the horospher-
ical foliation for tgtu to be the foliation into leaves locally modelled on
the intersection of the tangent space of Lp1q with the horizontal space
H1pS,Σ;Rxq (the first summand in the splitting (15)). This terminol-
ogy is motivated by the fact that the tgtu-flow is non-uniformly hyper-
bolic and the above leaves are generically its strong unstable leaves.
For the case L “ EDp1, 1q, the leaves of the horospherical foliation are
just the orbits of UZ, so in the case we are now considering, the mea-
sure µ is invariant under the horospherical foliation, and must be flat
measure in light of the following:

Claim 1. Suppose that:

‚ L is GL2pRq-invariant and affine in period coordinates, and is
defined by real-linear equations in H1pS,Σ;R2q – H1pS,Σ;Cq.

‚ The flat measure on Lp1q obtained from applying the cone con-
struction to L is G-invariant and ergodic.

Then any strong-stable invariant measure µ on Lp1q, with Ξpµq “ ∅
coincides with the flat measure.

This result was proved by Lindenstrauss and Mirzakhani in [LM]
under the additional hypothesis that L the principal stratum, i.e. L “
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Hp1, . . . , 1q. In [SmWe4] we adapt the argument of Lindenstrauss and
Mirzakhani to prove the more general statement given above. The
special case we require here, namely L “ EDp1, 1q, was explained by
Calta and Wortman, see [CW, §6].

Now suppose dimN˝
µ ě 2 but N˝

µ does not contain Z. Since Z is
a normal subgroup of N , N˝

µ does not contain a conjugate of Z. Let
A be the diagonal group in N . Up to conjugacy, the only three one-
parameter subgroups of N are U,Z and A, so we find that N˝

µ contains

a conjugate of A. We can write this conjugate as A1 “ nAn´1 where
n P N , and since N “ B˙Z, we can write n “ RelTua where a P A, u P
U and T P R. Since N˝

µ contains U and A “ aAa´1 we find that N˝
µ

contains pRelT qApRel´T q. Therefore the measure µ1
def
“ pRel´T q˚µ is B-

invariant. By a result of Eskin, Mirzakhani and Mohammadi [EMiMo],
µ1 is G-invariant, and thus by McMullen’s classification of G invariant
measures [McM3, McM4], the following are the only possibilities:

‚ µ1 is the G-invariant measure on a closed G-orbit, and D is
either a square or D “ 5. This implies that µ “ RelT˚µ

1 is as
described in case (5).

‚ µ1 is the flat measure on EDp1, 1q. Since the flat measure is
Z-invariant, µ “ µ1 and we are in case (7).

�

10. Injectivity and nondivergence

In this section we will prove some results which will be used in the
proof of Theorem 11.1. The strategy of proof involves showing that
typical horocycle orbits do not spend too much time close to a closed G-
orbit L or translations of closed G-orbits by the Rel flow. The argument
depends on the fact that a point in an eigenform locus which is close
to the Relt orbit of L but not in the Relt orbit of L drifts slowly in the
direction of the Relt vector field. In order to exploit this phenomenon it
is useful to have coordinates close to the Relt orbit of L. This argument
is similar in spirit to the linearization method of Dani-Margulis, see
[KSS, §3.4].

For a stratum H and r ą 0, let Hr denote the set of surfaces M in
H for which there are no horizontal saddle connections of length less
than r, and let

H8
def
“ tM P H : ΞpMq “ ∅u “

č

rą0

Hr.

The following is an analogue of [KSS, Cor. 3.4.8].
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Lemma 10.1. Let L be a closed G-orbit in EDp1, 1q. Then for any
T ą 0 there is r ą 0 such that the map

pM,x, yq ÞÑM ¯ px, yq (51)

is well-defined and injective on Lrˆr´T, T sˆt0u, where Lr “ LXHr.
In particular, if we set

L8
def
“ LXH8 (52)

then the map (51) is well-defined and injective on L8 ˆ Rˆ t0u.

Proof. We begin by proving that the map (51) is well-defined and in-
jective on L8 ˆ R ˆ t0u. The assertion that the map is well defined
on L8 follows from Corollary 6.2. We prove injectivity. Suppose that
M1,M2 P L8 and x1, x2 P R are such that Relx1M1 “ M1 ¯ px1, 0q “
M2 ¯ px2, 0q “ Relx2M2. If x1 “ x2 then by applying Rel´x1 we find

that M1 “ M2, so we can assume x1 ‰ x2. Let x3
def
“ x1 ´ x2. Then by

Proposition 3.5

Relx3pRelx1M1q “ Relx3pRelx2M2q “ Relx1M2, (53)

and Relx3 is not the identity element of Z.
Let ν denote the G-invariant measure on L coming from the Haar

measure on G, and let ν1 “ Relx1˚ν. By [DS], the set of U -generic
points for ν is the set of surfaces which are not on periodic U -orbits,
and by [Ve2], this is the set of surfaces without horizontal saddle con-
nections. By Proposition 4.15, the same holds for ν1, that is the set of
U -generic points for ν1 are the surfaces in Relx1L without horizontal
saddle connections. By (53), Relx3 maps Relx1M1, which is a generic
point for ν1, to Relx1M2, which is another generic point. In light of
Corollary 4.16, Relx3 preserves ν1. The stabilizer of ν in N contains
the diagonal subgroup A and hence the stabilizer of ν1 in N contains
a non-unipotent element (take for example a nontrivial element of the
conjugate Relx1ARel´x1 in B ˙ Z). Proposition 4.9 implies that the
stabilizer of ν1 properly contains the group ZU . According to Theorem
9.1, the only U -invariant measure on EDp1, 1q whose stabilizer properly
contains ZU is the flat measure, so ν1 is the flat measure. Hence so is
ν “ Rel´x1˚ν1, a contradiction.

We now prove the first assertion of the Lemma. According to Corol-
lary 6.2, the map (51) is well-defined on Lr ˆ r´T, T s ˆ t0u if r ą T .
It remains to show that this map is injective when r is sufficiently

large. Suppose that M 1 def
“ Relx1M1 “ Relx2M2 for M1,M2 P L and

x1, x2 P R. According to the first part of the proof, at least one of the
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surfaces Mi has horizontal saddle connections. Since the Z-action pre-
serves the property of having horizontal saddle connections (by Corol-
lary 6.3), both surfaces have horizontal saddle connections, and since
L is a closed G-orbit, they lie on closed U -orbits and have a horizontal
cylinder decomposition. Since circumferences and heights of cylinders
are the same for Mi and M 1, they are the same for M1 and M2 and
this ensures that M1 and M2 lie on the union of one of finitely many
closed horocycles Ux1, . . . , Ux` of equal length. Suppose first that this
length is 1, and denote the union of the horocycles of length 1 by A1.
Let r1 ą 0 be the length of the shortest horizonal saddle connection
on any surface in A1, and choose T1 P p0, r1q for which the map (51) is
injective on A1ˆr´T1, T1sˆt0u. Now suppose the length of the closed

horocycles is L. Then for t0
def
“ logL, the union of the closed horocycles

is AL
def
“ gt0A1, the length of the shortest saddle connections on these

horocycles is rL
def
“ et0{2r1 and the map (51) is injective on r´TL, TLs

where TL
def
“ et0{2T1. That is, the ratio rL{TL is independent of L. In

particular, for any T ą 0, we can choose L so that T “ TL and choose
r ą rL. Since

Lprq Ă Lr
ď

rLďr

AL,

for these choices, the map (51) will be injective on Lprq ˆ r´T, T s ˆ
t0u. �

Remark 10.2. The condition that M P Lr is necessary for the validity
of Lemma 10.1. When D is a square and L is the closed G-orbit of a
square-tiled surface, there are surfaces M P L, with a horizontal cylin-
der decomposition of type (A), whose real Rel orbit is compact. When
D “ 5 the ZU-orbit of a surface in L with a cylinder decomposition
of type pAq is also not injectively embedded. That is, in both cases,
injectivity will fail if M has short horizontal saddle connections.

We will also need the following quantitative nondivergence results
for the horocycle flow. The following results are proved in [MW1]:

Theorem 10.3. For any stratum H there are constants C and α such
that for any M P H, any ρ P p0, 1s and any T ą 0, if for any saddle
connection δ for M , maxsPr0,T s }holpusM, δq} ě ρ then

|ts P r0, T s : usM has saddle connections of length ă εu| ă CT

ˆ

ε

ρ

˙α

.

In particular:
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(I) For any ε ą 0 and any compact K 1 Ă H there is a compact
K Ă H such that for any T ą 0 and any M P K 1,

1

T
|ts P r0, T s : usM R Ku| ă ε. (54)

(II) For any ε ą 0 there is a compact K Ă H such that for any
M P H8 there is T0 ą 0 such that for all T ą T0, (54) holds.

We will need a refinement of statement (I).

Proposition 10.4. For any positive constants ε and r, and any com-
pact L Ă H8, there is an open neighborhood W of L and a compact
Ω Ă H containing W, such that surfaces in Ω have no horizontal sad-
dle connections shorter than r, and such that for any surface M and
any interval I Ă R for which usM PW for some s P I, we have

|ts P I : usM R Ωu|

|I|
ă ε. (55)

Proof. If s0 P I is such that us0M P W then by making the change
of variables s ÞÑ s ´ s0 we can assume M P W and I “ ra, bs with
a ď 0 ď b. By considering separately the subintervals ra, 0s and r0, bs,
we can assume that I “ r0, T s for some T ą 0. Given a surface M
we let holpMq be the subset of R2 consisting of the holonomies of the
saddle connections of M , and set

Kr1,r2
def
“ tM P H : holpMq X pp´r1, r1q ˆ p´r2, r2qq “ ∅u . (56)

Then Kr1,r2 is compact for any r1, r2.
Given ε, r and L as in the statement of the proposition, let η satisfy

Cηα ă ε, where C, α are as in Theorem 10.3, and let t0
def
“ 2 log

ˆ

η
?

2r

˙

and σ1 “
η2

2r
. These choices guarantee

et0{2r “
η
?

2
and e´t0{2σ1 “

η
?

2
. (57)

Let L2 “ gt0pLq. Then L2 is a compact subset of H8. Compactness
implies that there is a constant θ ą 0 with the property that for any
M P L2 with a saddle connection δ of length less than 1, the vertical
component y “ ypM, δq satisfies |y| ě θ. Moreover by making θ smaller
if necessary, we can ensure that the same property holds for all surfaces

in a neighborhood W2 of L2. Let T1
def
“ 2

θ
. Then for any M P W2 and
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any saddle connection δ for M , either }holpM, δq} ě 1 or

}holpuT1M, δq} ě |xpuT1M, δq|

“ |xpM, δq ` T1ypM, δq|

ě
2

θ
|ypM, δq| ´ 1 ě 1.

That is, maxsPr0,T1s }holpusM, δq} ě 1, so we can apply Theorem 10.3
with ρ “ 1. We obtain that for all T ě T1, and all M PW2,

1

T
|ts P r0, T s : usM has saddle connections of length ă ηu| ă ε. (58)

We now claim that if we set Ω “ Kr,σ for any σ ď σ1 then (55)

holds when M P W 1 def
“ g´t0 pW2q and I “ r0, T s, T ą e´t0T1. Indeed

suppose M P W 1, δ is a saddle connection for M , and s P r0, T s such

that holpusM, δq P p´r, rq ˆ p´σ, σq. Let M2 def
“ gt0M P W2, s1

def
“ et0s

so that gt0usM “ us1M
2. By (57),

holpus1M
2, δq “ gt0holpusM, δq P

ˆ

´
η
?

2
,
η
?

2

˙

ˆ

ˆ

´
η
?

2
,
η
?

2

˙

and in particular }holpus1M
2, δq} ă η. Since the change of variables

s ÞÑ s1 is linear, (55) follows from (58).
Finally, since L Ă H8 is compact, by making σ small enough, we see

that Ω contains a neighborhood of L, so that taking a small enough
neighborhood W of L contained in W 1, we can ensure that W Ă Ω and
also that for any s P r0, e´t0T1s and any M PW , holpusMq X p´r, rq ˆ
p´σ, σq “ ∅. �

In light of Proposition 3.3, the following is an immediate consequence
of Lemma 10.1 and Proposition 10.4:

Corollary 10.5. Given positive numbers T and ε, and a compact sub-
set L Ă L8, there is δ ą 0, a neighborhood W of L and a compact set
Ω Ă L, containing W, such that the map (51) is well-defined, continu-
ous and injective on Ωˆ r´T, T s ˆ r´δ, δs, and for any interval I and
any M P H, if there is s0 P I such that us0M P W then equation (55)
holds.

�
We take this opportunity to record a consequence of Proposition 10.4,

which will not be used in this paper but is of independent interest.

Corollary 10.6. For any ε ą 0 and any compact L Ă H8, there is
a compact Ω Ă H8 containing L such that for any M P L and any
interval I Ă R containing 0, (55) holds.
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Proof. For any ε ą 0 and j “ 1, 2, . . . , let εj
def
“

ε

2j
. By Proposition

10.4, we can find Ωj containing L such that all surfaces in Ωj have no
horizontal saddle connections of length less than j, and (55) holds with
εj in place of ε for any interval I containing 0 and any M P L. Then

Ω
def
“

Ş

j Ωj has the required properties. �

11. All horocycle orbits are generic

The goal of this section is to prove the following more detailed version
of Theorem 1.2.

Theorem 11.1. Let M P EDp1, 1q. Then M is generic for a U-
invariant ergodic measure µM , and the type of µM (as described in
Definition 9.2) is as follows:

‚ µM has type 1 when ΞpMq is a complete separatrix diagram of
types (B), (C) or (D), or a complete separatrix diagram of type
(A) with commensurable moduli.

‚ µM has type 2 when ΞpMq is a complete separatrix diagram of
type (A) with two cylinders of incommensurable moduli.

‚ µM has type 3 when ΞpMq consists of two saddle connections
joining distinct singularities, which disconnect M into two isoge-
nous tori glued along a slit, as in case (iii) of §8.4.

‚ µM has type 4 when ΞpMq consists of one saddle connection
joining distinct singularities, as in case (ii) of §8.4.

‚ µM has type 5 when ΞpMq “ ∅ and there is s P R so that
RelsM is a lattice surface.

‚ µM has type 6 when ΞpMq is a pair of saddle connections which
do not disconnect M , as in case (iv) of §8.4.

‚ µM has type 7 if it does not correspond to one of the previous
cases i.e. ΞpMq “ ∅ and M is not the result of applying the
Rel flow to a lattice surface.

Remark 11.2. It would be interesting to characterize case (5) ex-
plicitly. That is, give a geometric characterization of those surfaces
M P EDp1, 1q with ΞpMq “ ∅, for which there is s P R such that
RelsM is a lattice surface.

The proof of Theorem 11.1 relies on an analogue of the “linearization
method”, see [KSS, §3.4]. We need the following notion.

Definition 11.3. The support of a U-invariant U-ergodic measure on
EDp1, 1q is called a sheet. The type of the sheet is the type of the
corresponding measure.
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Sheets of the same type typically appear in families. It will be conve-
nient to partition the sheets into families, called beds. In the sequel, a
bed will be a measurable set which is a union of sheets in EDp1, 1q. We
further require the sheets to be of a fixed type j, for j P t3, 4, 5, 6, 7u,
or to be of one of the two types 1 or 2. A bed corresponding to sheets
of type 1 or 2 will be called a minimal sets bed and a bed corresponding
to sheets of type j P t3, . . . , 7u will be called a bed of type j. If B is
a bed corresponding to measures µ of a certain type, we say that µ
belongs to B, and we define ΞpBq to be Ξpµq for µ belonging to B.

The reason for combining sheets of type 1 and 2 into the same bed
of minimal sets, is that an arbitrarily small perturbation of a sheet of
type 1 can be a sheet of type 2 and conversely (the condition that the
moduli of the cylinders are rationally related is not stable under small
perturbations).

Depending on the application, we will use different partitions of the
sheets into beds. For example, for measures of type 1 or 2 (U -minimal
sets), one could take one bed consisting of all U -minimal sets, or take
one bed each for each type (A, B, C, D) of complete separatrix diagram.

Similarly for type 5, ifD “ 5 then the bed could consist of all surfaces
RelsM for M in the G-orbit of the regular decagon. For type 5 when
D is a square, note that EDp1, 1q contains countably many G-orbits of
arithmetic lattice surfaces. In this case one could either take one bed
consisting of all RelsM for all these lattice surfaces, or alternatively,
for each G-orbit GM0, one could take the bed

ď

sPR,MPGM0

RelsM.

In our definition of beds we only required them to be measurable
but in fact they can be chosen so that they have a nicer structure.
Continuing with Remark 9.3, one can partition the sheets into beds
which are almost everywhere locally modeled on affine subspaces of
the Lie algebra l. However the corresponding affine subspaces of l
need not correspond to Lie subalgebras. Additionally beds may have
complicated topology (e.g. boundary). This will be discussed further
in [SmWe3].

For our analysis, the following property of a bed will be helpful:

Definition 11.4. We will say that a sequence of sets K1, K2, . . . fills
out B if the Ki are compact, and µ p

Ť

iKiq “ 1 for any measure µ
which belongs to B.

Proposition 11.5. For each type j ď 6, all sheets in EDp1, 1q of type
j are contained in a finite or countable union of beds, and for each
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bed B there is a countable sequence of compact sets which fills out B.
Explicitly these properties are satisfied by the following choices:

‚ For types j P t3, 4, 6, 7u, we let B be the union of all sheets of
type j, and we let Ki be the closure of the set of M P EDp1, 1q
which have no saddle connections shorter than 1{i, and such
that tδ P ΞpMq : }holpM, δq} ď iu and ΞpBq are the same (as
horizontal data diagrams).

‚ For types j P t1, 2u we let B be the union of all sheets of type 1
or 2, and we define Ki as before.

‚ If j “ 5, for each closed G-orbit L we take B “
Ť

tPR ReltpLq.
Let ν0 be the Haar measure on L, let L8 be as in (52), let
L1, L2, . . . be a nested sequence of compact subsets of L8 with
ν0 p

Ť

i Liq “ 1, and let

Ki
def
“

ď

|t|ďi

ReltpLiq.

Proof. It is clear that the beds listed above contain all sheets of type
j. In all cases except j “ 5 there is just one bed. In the case j “ 5
the number of beds is at most countable, since each EDp1, 1q contains
at most finitely many closed G-orbits.

We now show that in all cases, the setsKi listed above fill out the bed.
Suppose first that ΞpBq ‰ ∅. It is clear that each Ki as in the statement
of the proposition is compact. The set

Ť

iKi contains all M P B for
which ΞpMq “ ΞpBq, so Corollary 5.3 implies that µ p

Ť

iKiq “ 1 for
any measure µ which belongs to B.

Now suppose B is a bed of type (5). Let L, ν0, Li, Ki be as above.
Each Ki is compact by Proposition 3.3. Also, for any measure µ belong-

ing to B, there is t P R such that µ “ νt
def
“ Relt˚ν0. Since ν0 p

Ť

i Liq “ 1,
we have νt p

Ť

i ReltpLiqq “ 1 for all t. For each t, since
Ť

iKi contains
Ť

i ReltpLiq for each t, we have νt p
Ť

iKiq “ 1 for each t. �

The following result summarizes a strategy for proving equidistribu-
tion results which we will use repeatedly.

Proposition 11.6. Let tµtu be a collection of measures where t ranges
over either the positive integers or non-negative real numbers. Suppose
the following hold:

(a) The sequence pµtq as tÑ 8 has no escape of mass; i.e. for any
ε ą 0 there is a compact K Ă EDp1, 1q and t0 such that for all
t ě t0, µtpKq ě 1´ ε.
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(b) Any convergent subsequence pµtkq of pµtq with tk Ñ 8 con-
verges to a measure which is invariant under a conjugate of U
by an element of G.

(c) For any bed B Ł EDp1, 1q there is a sequence K1, K2, . . . of sets
which fill out B, and for any i and any ε ą 0, there is t0 and
an open set U containing Ki such that for all t ě t0, µtpUq ă ε.

Then the sequence µt converges to the flat measure on EDp1, 1q as
tÑ 8.

Proof. It is enough to show that any subsequence pµtkq of pµtq, with
tk Ñ 8 contains a further subsequence converging to the flat measure.
So re-indexing, suppose pµtq is already a subsequence. Since there
is no escape of mass, the set pµtq is precompact with respect to the
weak-˚ topology. So passing to a subsequence we can assume that
µt converges weak-˚ to a probability measure ν and we need to show
that ν is the flat measure. By assumption (b), ν is invariant under a
conjugate U 1 “ g´1Ug of U , and hence g˚ν is U -invariant. We need
to show that g˚ν is the flat measure, as this will imply that ν is the
flat measure as well. To simplify notation we therefore replace g˚ν
with ν to assume that ν is U -invariant. By ergodic decomposition,
and since there are countably many beds, we can write ν “

ř7
1 νj

where each νj is supported on the beds of type j, and is a convex
combination of the measures belonging to these beds. We must show
that ν1 “ ¨ ¨ ¨ “ ν6 “ 0. We derive this from assumption (c), as follows.

Fix a type j ď 6 and let B Ł EDp1, 1q be a bed of type j. Let
K1, K2, . . . be compact sets as described in assumption (c). Since
µp
Ť

Kiq “ 1 for every U -invariant ergodic measure µ belonging to
B, and each µ belonging to B satisfies µ p

Ť

iKiq “ 1, in order to show
νj “ 0 it suffices to show that νjp

Ť

Kiq “ 0. Suppose by contradiction

that a
def
“ νjpEDp1, 1qq is strictly positive. For any i, and any ε ą 0,

let t0 and U be as in (c). There is a continuous compactly supported
function ϕ : EDp1, 1q Ñ r0, 1s which is identically 1 on Ki and vanishes
outside U . The definition of the weak-˚ topology and condition (c) now
ensure that νjpKiq ď

ş

EDp1,1q
ϕdνj ď

1
a

limk

ş

EDp1,1q
ϕdµtk ď

ε
a
. Since

ε ą 0 was arbitrary we must have νjpKiq “ 0 for each i, and hence
νj p

Ť

Kiq “ 0. �

Proof of Theorem 11.1. Step 1: M is of types (1–6). If ΞpMq decom-
posesM into horizontal cylinders then the U -action on the orbit-closure
of M is conjugate to an irrational straightline flow on a torus and so
every orbit is equidistributed. This is what happens when ΞpMq is a
complete separatrix diagram, i.e. in cases (1) or (2). When ΞpMq ‰ ∅
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but ΞpMq is not a complete separatrix diagram, the U -action on UM
is obtained from the U -action on a simpler space via a U -equivariant
map ΨT . Namely, by Propositions 8.8, in each of the cases (3), (4) and
(6) this simpler space is a finite volume homogeneous space G{Γ, and
M “ ΨT pM0q where M0 P G{Γ does not lie on a periodic U -orbit, since
ΞpMq is not a complete separatrix diagram. The equidistribution of
UM0 in G{Γ follows from [DS], and the equidistribution of M follows
from the fact that ΨT is U -equivariant. The same argument applies
when ΞpMq “ ∅ and M belongs to RelsL, for a closed G-orbit L and
s P R.

Step 2: M is of type (7) and ΞpBq ‰ ∅: When M is of type (7)
we apply Proposition 11.6 to the collection of measures tµt : t ą 0u
defined by averaging along the orbit of M ; that is, µt “ νpt,Mq, where
νpM, tq is as in (4.13). Property (a) of Proposition 11.6 follows from
Theorem 10.3 (I) and property (b) is immediate from the definition of
µt. To verify (c) we first discuss beds B for which ΞpBq ‰ ∅, adapting
an argument of [EMaMo]. Let K1, K2, . . . be the sequence filling out
the bed B, as in Proposition 11.5. Fix i and let ε ą 0. Then any surface
in Ki contains a horizontal saddle connection of length at most i. Let
Cpδq be the open set of surfaces whose shortest saddle connection is
shorter than δ. By Theorem 10.3 (II) there is δ ą 0 (depending only
on the stratum Hp1, 1q) such that every surface M 1 without horizontal
saddle connections satisfies

lim sup
tÑ8

µM 1,tpCpδqq ă ε (59)

(where µM 1,t “ νpM 1, tq is as in Definition 4.13). Let

t0 ă 2plog δ ´ log iq, (60)

so that if M1 has a horizontal saddle connection of length at most i,
then gt0M1 has a saddle connection of length less than δ; in other words,

Ki Ă U def
“ g´t0pCpδqq. Since gt0usg´t0 “ uet0s, setting M 1 “ gt0M , we

have gt0˚µM,t “ µM 1,et0 t and (59) implies that

lim sup
tÑ8

µM,tpUq “ lim sup
tÑ8

µM 1,tpCpδqq ă ε,

so (c) is satisfied.
Step 3: M is of type (7) and ΞpBq “ ∅. That is B is a bed of type

(5). The measures belonging to B are of the form Rels˚µ, where s P R
and µ is the G-invariant measure on a closed G-orbit L. Let L8 be as
in (52). Set

F pM,xq
def
“M ¯ px, 0q “ RelxM, F pM,x, yq

def
“M ¯ px, yq, (61)
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postponing for the moment questions of domain of definition of F . Let
Li and Ki be as in Proposition 11.5, so that the Ki fill out B. Note
that Li Ă L8 for each i and

Ki “ F
`

Li ˆ r´i, is
˘

.

We will verify (c) for the sets Ki. Given i and ε ą 0, choose

j ą
p8` εqpi` 1q

ε
. (62)

Corollary 10.5 gives us a constant δ ą 0, an open set W Ă L containing
Li, and a compact set Ω containing W such that: (1) F is well-defined,
continuous and injective on Ω ˆ r´j, js ˆ r´δ, δs, and (2) whenever
M 1 P L and I Ă R is an interval such that usM

1 P W for some s P I,
we have

1

|I|
|ts P I : usM

1
R Ωu| ă

ε

4
. (63)

Now set

U def
“ F

`

W ˆ p´pi` 1q, i` 1q ˆ p´δ, δq
˘

. (64)

Then U is a neighborhood of Ki, and we need to show that µM,tpUq ă ε
for all sufficiently large t. That is, we need to find t0 so that for t ą t0,

|pI X r0, ts|
t

ă ε, where pI def
“ ts P R : usM P Uu. (65)

Whenever s0 P pI there areM 1 “M 1ps0q PW and px, yq “ pxps0q, yps0qq P

p´pi ` 1q, i ` 1q ˆ p´δ, δq such that us0M “ F pM 1, x, yq. Since M is
not of type (5) we have yps0q ‰ 0. We define the following intervals:

I “ Ips0q
def
“ ts : |x` sy| ď i` 1u

J “ J ps0q
def
“ ts : |x` sy| ď ju.

These are nested intervals with common centerpoint s “ ´
xps0q

yps0q
. If an

interval I contains an endpoint of J and intersects I then it contains
one of the two connected components of J rI. These two components
have equal lengths since the two intervals share the same centerpoint
and by (62),

|I X I|
|J X I|

ď
2pi` 1q|y1|

pj ´ i´ 1q|y1|
ă
ε

4
. (66)

We claim that if s P J r I then either usM
1 R Ω or us`s0M R U .

Indeed, suppose s P J r I and usM
1 P Ω. According to Proposition
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3.4,

us`s0M “ usF pM
1, x, yq “ uspM

1 ¯ px, yqq

“ usM
1 ¯ px` sy, yq “ F pusM

1, x` sy, yq.

The injectivity of F on Ωˆ r´j, js ˆ r´δ, δs and |x` sy| ą i` 1 imply
that us`s0M R U . This proves the claim.

For each s0 P I, denote the translates by

J 1
ps0q

def
“ J ps0q ` s0, I 1ps0q

def
“ Ips0q ` s0.

The claim, combined with (63) and (66), imply that if r0, ts contains
an endpoint of J 1 “ J 1ps0q, then

|r0, ts X J 1 X pI|
|r0, ts X J 1|

ď
|r0, ts X I 1|
|r0, ts X J 1|

`
|ts P r0, ts X J 1 : us´s0M

1 R Ω|

|r0, ts X J 1|
ă
ε

2
.

Since pI is covered by the intervals tJ 1ps0q : s0 P pIu, a standard cov-
ering argument shows that we can take a countable subcover J 1

1,J 1
2, . . .

satisfying

s P pI ùñ 1 ď # t` : s P J 1
`u ď 2.

In particular 0 is contained in at most two of the intervals J 1ps`q and
if we take t0 to be larger than the right endpoint of these two intervals,
and t ą t0, r0, ts will contain at least one of the endpoints of any J 1ps`q
which intersects r0, ts. Then for any t ą t0 we will have:

ˇ

ˇ

ˇ
r0, ts X pI

ˇ

ˇ

ˇ
ď
ÿ

`

ˇ

ˇ

ˇ
r0, ts X J 1

` X
pI
ˇ

ˇ

ˇ
ď
ε

2

ÿ

`

|r0, ts X J 1
` | ď

ε

2
2 |r0, ts|

and this proves (65). �

12. Additional equidistribution results

In this section we prove equidistribution for periodic horocycles in
Theorem 1.3, for translates of G-invariant measures by the Rel flow in
Theorem 1.4, for circle orbits of increasing radius in Theorem 1.6, and
for pushforwards of invariant measures of minimal sets by the geodesic
flow in Theorem 12.3.

Proof of Theorem 1.4. Let L be a closed G-orbit in EDp1, 1q, let µ be
the Haar measure on L, and let µt “ Relt˚µ. We will prove that as
t Ñ `8 or t Ñ ´8, the measure µt converges to the flat measure on
EDp1, 1q. For definiteness we discuss the case tÑ `8, the second case
being similar. It is enough to show that if tn Ñ 8 is any sequence
of real numbers for which µtn converges to some ν (where ν is not
necessarily a probability measure), then ν is the flat measure (and in
particular is a probability measure).
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First we show that ν is a probability measure, i.e. that there is no
escape of mass. This follows from statement (II) of Theorem 10.3 as
follows. We need to show that for any ε ą 0 there is a compact subset
K0 of EDp1, 1q such that for all t, µtpK0q ě 1 ´ ε. Given ε let K be
the intersection of EDp1, 1q with the compact set in statement (II) of
Theorem 10.3. Let ϕ be a continuous compactly supported function
on EDp1, 1q, with values in r0, 1s, which is identically equal to 1 on K,

and let K0
def
“ suppϕ. Let M be a generic point for µt. According to

Proposition 4.15, M “ ReltpM
1q for M 1 P L, such that M 1 is generic for

µ. In particular M 1 has no horizontal saddle connections, and hence
neither does M . According to (II),

lim inf
TÑ8

1

T
|ts P r0, T s : usM P Ku| ě 1´ ε,

and therefore

µtpK0q ě

ż

ϕdµt “ lim
TÑ8

1

T

ż T

0

ϕpusMqds

ě lim inf
TÑ8

1

T

ż T

0

1KpusMqds ě 1´ ε.

Now we claim that νpH8q “ 1, that is ν gives no mass to the set
of surfaces with horizontal saddle connections. This follows by again
expressing µt as the limit of an integral along a generic horocycle orbit,
and repeating the argument of Step 2 of the proof of Theorem 11.1.
Thus, in view of Claim 1 (see the proof of Theorem 9.1), it suffices to
prove that ν is invariant under the ‘horospherical foliation’ UZ. It is
clear that ν is U -invariant, and it remains to show that it is invariant
under Rels for any s P R.

Let ϕ P Cc pEDp1, 1qq. Since ϕ is uniformly continuous, for any ε ą 0
there is a neighborhood U of the identity in G so that

|ϕpMq ´ ϕpgMq| ă ε for any M P EDp1, 1q, g P U . (67)

Now define

τpt, sq
def
“ 2 log

´

1`
s

t

¯

and τn
def
“ τptn, sq.

By a matrix multiplication in N , and using Corollary 4.2 we see that
these choices ensure that for any surface M with no horizontal saddle
connections,

gτnReltnM “ Reltn`sgτnM. (68)

Moreover gτn Ñ Id as nÑ 8. Then for n large enough, by (67),
ˇ

ˇ

ˇ

ˇ

ż

ϕdReltn˚µ´

ż

ϕ ˝ gτn dReltn˚µ

ˇ

ˇ

ˇ

ˇ

ă ε.
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On the other hand, using (68) and the fact that µ is supported on L8,
we obtain

ż

ϕ ˝ gτn dReltn˚µ “

ż

L8
ϕpgτnReltnpMqq dµpMq

“

ż

L8
ϕpReltn`sgτnMq dµpMq “

ż

L8
ϕpReltn`sMqdµpMq.

In the last line we used the fact that µ is invariant under gτ for all τ .
Putting these together we find that for sufficiently large n,

ˇ

ˇ

ˇ

ˇ

ż

ϕdReltn˚µ´

ż

ϕd pReltn`sq˚ µ

ˇ

ˇ

ˇ

ˇ

ă ε,

and since ε was arbitrary,

ν “ lim
nÑ8

Reltn˚µ “ lim
nÑ8

pRels`tnq˚µ “ Rels˚ν.

�

Generalizing Theorem 1.4 we have:

Theorem 12.1. In each of the cases (ii), (iii), (iv) of §8.4, let T ą 0
and let ΨT be the map described in §8.4. Let µT be the pushforward of
Haar measure under ΨT , as in Proposition 8.8. Then as T Ñ 8, µT
tends to the flat measure on EDp1, 1q.

The proof of Theorem 1.4 goes through almost verbatim. We leave
the details to the reader.

Proof of Theorem 1.3. We apply Proposition 11.6 to

µt
def
“ gt˚µ, (69)

where
ş

f dµ “ 1
p

şp

0
fpusMqds and tusM : s P r0, psu is a closed horo-

cycle of period p.
To verify that there is no escape of mass we use Theorem 10.3. Let

ρ0 be the length of the shortest horizontal saddle connection on M ,

let t0
def
“ ´ 2 log ρ0 and let t ě t0. The choice of t0 ensures that the

shortest horizontal saddle connection on gtM has length at least 1.
Since the orbit UgtM is periodic, the measure µt is identical to the
measure obtained by averaging along any integer multiple of the period
etp of this orbit. The set of saddle connections for gtM whose length is
shorter than 1 is finite and none of these is horizontal. Thus for each
such saddle connection δ, holpusgtM, δq diverges as s Ñ 8. Therefore
if we take a sufficiently large multiple of the period s0 “ ketp, k P N,
any saddle connection on M will have length greater than 1 either
for the surface gtM or for the surface us0gtM . As a consequence, the
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hypothesis of Theorem 10.3 is satisfied with ρ “ 1, and there is no
escape of mass. This verifies hypothesis (a) of Proposition 11.6, and
hypothesis (b) is obvious.

To verify hypothesis (c) we adapt the argument given in the proof
of Theorem 11.1, retaining the same notation. Namely, in step 2 we
verify (c) for beds with ΞpBq ‰ ∅. We fix i and ε ą 0, and note that
the argument in the preceding paragraph, using Theorem 10.3, implies
that there is δ ą 0 such that if t is large enough so that gtM has no
horizontal saddle of length shorter than 1, then

µtpCpδqq ă ε. (70)

Then we take t0 small enough so that all surfaces in gt0pKiq have hori-

zontal saddle connections shorter than δ, and set U def
“ g´t0pCpδqq. Then

(70) and µt`t0 “ gt0˚µt imply that for all sufficiently large t, µtpUq ă ε,
as required.

Continuing with Step 3, it remains to verify (c) for beds with ΞpBq “
∅. We define F,Li, Ki as in the proof of Theorem 11.1, recalling that
surfaces in Li have no horizontal saddle connections. Given ε and i, we
define U via (64), and need to show that µtpUq ă ε for all sufficiently
large t. For this it suffices to prove that

ˇ

ˇ

ˇ

pI
ˇ

ˇ

ˇ
ă ε etp, where pI def

“ ts P r0, etps : usgtM P Uu. (71)

Before proving (71), we claim that for all sufficiently large t, if s0 P pI
and gtus0M “ F pM 1, x, yq with M 1 P W Ă L, then y ‰ 0. Indeed,
suppose otherwise, that is there are tn Ñ 8, M 1

n PW , |xn| ď i` 1 and
sn P r0, e

tnps such that

usngtnM “ RelxnpM
1
nq.

Set s1n
def
“ e´tnsn so that gtnus1nM “ RelxnpM

1
nq. which implies

us1nM “ Relx1ng´tnM
1
n, where x1n

def
“ e´tn{2xn Ñ 0.

Our hypothesis that M does not belong to a closed G-orbit implies
that xn ‰ 0. Since U commutes with Relx1n , it follows that

UM “ Relx1nUg´tnM
1
n, (72)

and hence Ug´tnM
1
n is a closed horocycle of period p on L. There are

only finitely many such closed horocycles on L and their union is a
compact set disjoint from the closed orbit UM . Since x1n Ñ 0, this
contradicts (72), and proves the claim.

We now note that the argument given in the proof of Theorem 11.1
for proving (65) goes through, with the same notations, and proves
(71). Indeed the only information we needed in the proof of (65) was
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that the number y “ yps0q considered in the proof was nonzero, which
is exactly what we have shown in the preceding paragraph. �

Remark 12.2. When D is a square, Theorem 1.3 can also be proved
by exploiting the connection between EDp1, 1q and a homogeneous space
SL2pRq ˙ R2{Γ (see [EMS]) and using a theorem of Shah [KSS, Thm.
3.7.6].

Generalizing Theorem 1.3 we have:

Theorem 12.3. Let O be a minimal set for the U-action, and let µ be
the U-invariant measure on O. Suppose that O is not contained in a
closed G-orbit. Then gt˚µ tends to the flat measure on EDp1, 1q.

Proof. If O is a closed U -orbit this follows from Theorem 1.3. Accord-
ing to Corollary 8.3, in the remaining case dimO “ 2, the cylinder
decomposition is of type (A), and the measure µ is invariant under
UZ. Let ν be any limit point of gtn˚µ, for tn Ñ 8. By repeating the
arguments given in the proof of Theorem 1.3 we find that ν is a prob-
ability measure, and gives zero mass to surfaces with horizontal saddle
connections. Also clearly ν is UZ-invariant. Therefore, by Claim 1, ν
is the flat measure on EDp1, 1q. �

Proof of Theorem 1.5. We show the existence of ν “ limtÑ˘8 gt˚µ and
describe this limit explicitly, for each of the measures µ in Theorem
9.1. We treat the cases t Ñ `8 and t Ñ ´8 separately, beginning
with the case t Ñ `8. If µ is of type 1, then the limit measure ν is
either the flat measure on EDp1, 1q or a G-invariant measure on a closed
G-orbit, by Theorem 1.3. If µ is of type 2, then Theorem 12.3 implies
that ν is flat measure. If µ is of type 3, 4, or 6, then there is some T ‰ 0
such that µ “ µT is the pushforward of a G-invariant measure under
ΨT , for the map ΨT described in §8.4. Note that this map satisfies the
following equivariance rule: for M P B, gtΨT pMq “ ΨetT pgtMq. This
can be seen by examining the definition of ΨT in each case and using
Proposition 3.4. Therefore we have gt˚µ “ µetT , and by Theorem 12.1,
the limit ν is the flat measure. If µ is of type 5 then µ “ RelT˚µ0, where
µ0 is a G-invariant measure on a closed G-orbit. If T “ 0 then µ “ µ0

is G-invariant and in particular ν “ µ0. If T ‰ 0 then the relation
gtRelT “ ReletTgt (see Proposition 3.4) implies that gt˚µ “ ReletT˚µ0

and by Theorem 1.4, the limit measure ν is the flat measure. Finally
in case 7 the measure µ is G-invariant and there is nothing to prove.

When t Ñ ´8, for each of the measures of type 1, 2, 3, 4 or 6,
almost every surface in the support of µ has at least one horizontal
saddle connection of some fixed length. As tÑ ´8, the length of this
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saddle connection tends to zero and hence gt˚µ diverges in the space
of measures on Hp1, 1q. If µ is of type 5 then µ “ RelT˚µ0, where µ0 is
a G-invariant measure on a closed G-orbit. The commutation relation
gtRelT “ ReletTgt implies that gt˚µ “ ReletT˚µ0 and since t Ñ ´8,
the measure tends to the G-invariant measure µ0. Finally in case 7 the
measure µ is G-invariant and there is nothing to prove. �

We now collect some results which will be used in the proof of The-

orem 1.6. Let Bpa, bq
def
“ r´a, asˆ r´b, bs, and for any t ą 0 and v P R2,

set

Et,v
def
“ tgtrθv : θ P r0, 2πsu.

The following is an elementary fact about ellipses whose proof we omit.

Proposition 12.4. Given ε ą 0, suppose r1, r2, δ1, δ2 satisfy the in-
equalities

r1 ă εr2, δ1 ă εδ2. (73)

Then for any t ą 0, either Et,v Ă Bpr2, δ2q, or

|tθ P r0, 2πs : gtrθv P Bpr1, δ1qu|

|tθ P r0, 2πs : gtrθv P Bpr2, δ2qu|
ă ε. (74)

�
We will also need the following analogue of Corollary 10.5.

Proposition 12.5. Given positive ε, T, η, and a compact subset L Ă
L8, there are positive t0, δ, a neighborhood W of L and a compact set
Ω Ă L containing W, such that the map (51) is well-defined, continuous
and injective on Ω ˆ r´T, T s ˆ r´δ, δs, and for any t ě t0, for any

interval I Ă J
def
“

“

π
2
´ η, π

2
` η

‰

Y
“

3π
2
´ η, 3π

2
` η

‰

, and any M P H, if
there is θ0 P I such that gtrθ0g´tM PW then

|tθ P I : gtrθg´tM R Ωu|

|I|
ă ε. (75)

Proof. Using Proposition 3.3, we see that it suffices to prove an ana-
logue of Proposition 10.4; namely, that for any positive η, ε, r and any
compact L Ă L8, there is a neighborhood W of L, a compact Ω Ă H
containing W , and t0, such that surfaces in Ω have no horizontal sad-
dle connections shorter than r, and for any t ě t0, any interval I Ă J
which contains θ0 with gtrθ0g´tM P W , the estimate (75) holds. This
statement can be obtained from Proposition 10.4 as follows.

A matrix computation shows that

uet tan θ “ apt, θqgtrθg´t, where apt, θq
def
“

ˆ

pcos θq´1 0
´e´t sin θ cos θ

˙

. (76)
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We write apt, θq “ a2pθq a1pt, θq, where

a2pθq
def
“

ˆ

pcos θq´1 0
0 cos θ

˙

, a1pt, θq
def
“

ˆ

1 0
´et tan θ 1

˙

.

Thus a1pt, θq Ñ Id as t Ñ 8, uniformly for θ P J , and a2pθq preserves
horizontal saddle connections, changing their length by a factor of at

most C1
def
“ maxθPJpcos θq´1. Also let C2 be an upper bound on the de-

rivative of the map θ ÞÑ tan θ on the interval J . Let L1 “
Ť

θPJ a2pθqL,
which is also a compact subset of L8. We apply Proposition 10.4 with
C1pr`1q, ε{C2, L

1 in place of r, ε, L, to obtain a neighborhood W 1 of L1

and a compact set Ω1 containing W 1, such that surfaces in Ω1 have no
horizontal saddle connections shorter than C1pr ` 1q, and (55) holds.
We define:

Ω2
def
“

ď

θPJ

a2pθq
´1Ω1.

Then Ω2 is a compact set, containing no surfaces with horizontal saddle
connections of length less than r`1. Therefore for t0 sufficiently large,
surfaces in

Ω
def
“

ď

tět0

a1pt, θq
´1Ω2 “

ď

θPJ,tět0

apt, θq´1Ω1

have no horizontal saddle connections of length less than r. We will
make t0 larger below. We also note that apt, θq´1Ω1 Ă Ω for every
t ě t0, θ P J . Now we set

W def
“ ΩX

č

θPJ,tět0

apt, θq´1W 1,

so that if gtrθ0g´tM P W for some θ0 P J and t ě t0, then by (76),
uet tan θ0M P W 1. Since (55) holds for Ω1 (with ε{C2 instead of ε),
we obtain that (75) holds for Ω. Finally we note that if t0 is chosen
sufficiently large, then W contains an open set containing L. �

Proposition 12.6. Suppose L is a closed G-orbit in Hp1, 1q and M R

L. Then there are positive rδ,rt so that for all t ě rt, if there is θ P r0, 2πs

such that gtrθM “M 1 ¯ px, yq with M 1 P L, then e´tx2 ` ety2 ě rδ.

Proof. Assume by contradiction that there are Mn P L, tn Ñ 8, θn P
r0, 2πs and xn, yn such that

e´tnx2
n ` e

tny2
n Ñ 0 (77)

and gtnrθnM “ Mn ¯ pxn, ynq. By Corollary 6.2, there are neighbor-
hoods U Ă Hp1, 1q containing M and V Ă R2 containing 0, such that

the map pM 1, vq ÞÑM 1¯v is well-defined on UˆV . Set vn
def
“ r´θngtnpxn, ynq.
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Then (77) implies that vn Ñ 0 and hence for all sufficiently large n,

the maps M 1 ÞÑM 1 ¯˘vn are well-defined on U . Set ĂMn
def
“M ¯´vn,

so that ĂMn ÑM . We have

M “ r´θng´tn pMn ¯ pxn, ynqq “ r´θng´tnMn ¯ pr´θng´tnpxn, ynqq

“ r´θng´tnMn ¯ vn,

and this implies that ĂMn “ r´θng´tnMn. We have found a sequence in
L converging to M , contrary to the assumption that M R L. �

Theorem 12.7. For any M P EDp1, 1q which is not a lattice surface,
let µt be the measure on EDp1, 1q defined by

ż

ϕdµt “
1

2π

ż 2π

0

ϕpgtrθMq dθ, for all ϕ P Cc pEDp1, 1qq . (78)

Then µt converges to the flat measure on EDp1, 1q as tÑ 8.

Proof. We will use Proposition 11.6. Hypothesis (a) was verified (for
any translation surface M) in [EM]. To prove hypothesis (b), we note
that µt is invariant under the conjugated group tgtrθg´t : θ P r0, 2πsu.
Conjugating we see that

gtrθg´t “

ˆ

cos θ ´et sin θ
e´t sin θ cos θ

˙

.

For every fixed s and t we set

θps, tq
def
“ arcsin

`

´se´t
˘

, so that ´ et sin θps, tq “ s.

Then gtrθps,tqg´t Ñ us as t Ñ 8. Therefore the limit measure ν is
invariant under each us.

We now verify (c) for beds B with ΞpBq ‰ ∅. Let K1, K2, . . . be the
sequence filling out the bed B, as in Proposition 11.5. Fix i and let
ε ą 0. Then any surface in Ki contains a horizontal saddle connection
of length at most i. As before, let Cpδq be the open set of surfaces
whose shortest saddle connection is shorter than δ. By [EM], there are
positive t1, δ such that for all t ě t1, µtpCpδqq ă ε. Let t0 satisfy (60),

so that Ki Ă U def
“ g´t0pCpδqq. Since µt`t0 “ gt0˚µt, for all t ą t0 ` t1

we have
µtpUq “ µt0˚µt´t0pUq “ µt´t0pCpδqq ă ε,

so (c) is satisfied.
It remains to verify (c) for beds with ΞpBq “ ∅. Let F,Li, Ki “

F pLi ˆ r´i, isq be as in the proof of Theorem 11.1. Given i and ε ą 0,
choose

j ą
8pi` 1q

ε
. (79)
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Choose η ą 0 small enough so that

|J | “ 4η ă πε, where J
def
“

”π

2
´ η,

π

2
` η

ı

Y

„

3π

2
´ η,

3π

2
` η



.

(80)
Let W ,Ω, t0, δ be as in Proposition 12.5, where we apply the proposition

with η and with j, Li, ε{8 instead of T, L, ε. Let rδ,rt be as in Proposition
12.6. Making δ smaller and t0 larger, we can assume that t0 ě rt and

jδ ă rδ2. (81)

Now let

δ1 P

ˆ

0,
εδ

8

˙

(82)

and set
U def
“ F

`

W ˆ p´pi` 1q, i` 1q ˆ p´δ1, δ1q
˘

. (83)

Then U is a neighborhood of Ki, and we need to show that µtpUq ă ε
for all t ě t0. That is, we need to verify

ˇ

ˇ

ˇ

pI
ˇ

ˇ

ˇ
ă 2πε, where pI def

“ tθ P r0, 2πs : gtrθM P Uu.

In light of (80) it suffices to show that
ˇ

ˇ

ˇ

pI X J
ˇ

ˇ

ˇ
ă πε. Whenever θ0 P

pI X J there are M 1 “ M 1pθ0q PW and px, yq “ pxpθ0q, ypθ0qq P p´pi `
1q, i ` 1q ˆ p´δ1, δ1q such that gtrθ0M “ F pM 1, x, yq. We define the
following intervals:

I “ Ipθ0q
def
“ tθ P r0, 2πs : gtrθ´θ0g´tpx, yq P Bpi` 1, δ1qu

J “ J pθ0q
def
“ tθ P r0, 2πs : gtrθ´θ0g´tpx, yq P Bpj, δqu.

We think of r0, 2πs as a circle by identifying 0 and 2π, and think of
these subsets as arcs on the circle. In view of Proposition 12.6 and the

choice of t0, we have e´tx2 ` ety2 ě rδ. Using (81) and considering the
two choices of θ which make rθ´θ0g´tpx, yq horizontal and vertical, we
see that J does not coincide with the entire circle. Then (79), (82)
and Proposition 12.4 imply that

|I|
|J |

ă
ε

8
. (84)

We claim that if θ P J r I then either gtrθ´θ0g´tM
1 R Ω or gtrθM R

U . Indeed, suppose θ P J r I and gtrθ´θ0g´tM
1 P Ω. According to

Proposition 3.4,

gtrθM “ gtrθ´θ0g´tgtrθ0M “ gtrθ´θ0g´tpM
1 ¯ px, yqq

“ gtrθ´θ0g´tM
1 ¯ gtrθ´θ0g´tpx, yq.
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The injectivity of F on Ω ˆ r´j, js ˆ r´δ, δs implies that gtrθM R U .
This proves the claim.

The claim, combined with (74) and (75), implies that
ˇ

ˇ

ˇ

pI X J
ˇ

ˇ

ˇ

|J |
ď
|I|
|J |

`
|tθ P J : gtrθ´θ0g´tM

1 R Ω|

|J |
ă
ε

4
.

We have covered pI X J by the intervals
!

J pθ0q ` θ0 : θ0 P pI
)

, and

we pass to a subcover such that

θ P pI X J ùñ 1 ď # t` : θ P J 1
`u ď 2,

and obtain:
ˇ

ˇ

ˇ

pI X J
ˇ

ˇ

ˇ
ď
ÿ

`

ˇ

ˇ

ˇ

pI X J 1
`

ˇ

ˇ

ˇ
ă
ε

4

ÿ

`

|J 1
` | ă πε.

�

Proof of Theorem 1.6. This follows immediately from Theorem 12.7 by
an argument developed by Eskin and Masur [EM]. See [EMS, EMaMo,
B2] for more details. �
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