
On the error bounds for visible points in some
cut-and-project sets

Ilya Gringlaz∗ Rishi Kumar† Barak Weiss‡

Abstract

We study points in cut-and-project sets which are visible from the origin, con-
tinuing a direction of inquiry initiated in [6,14], where the asymptotic density of
visible points was investigated. We establish an error bound for the density of visi-
ble points in certain cases. We also prove that the set of visible points in irreducible
cut-and-project sets with star-shaped windows is never relatively dense.

1 Introduction

Let P Ă Rd be a locally finite point set, let D Ă Rd be a bounded measurable set with
volpDq ą 0, and for T ą 0 let TD denote the dilated set ttx : x P D, t P r0, T su. The
asymptotic density of P with respect to D is defined to be

θpPq
def
“ lim

TÑ8

#pP X TDq

volpTDq
, (1)

provided the limit exists. In general, the existence of the limit and its value may depend
on the choice of the averaging set D, but this will not play a role in this paper and we
suppress the dependence of θ on D from the notation. The most commonly studied case
is the case in which D is the unit ball with respect to some norm on Rd. We denote

P‹
def
“ P ∖ t0u, Pvis

def
“ ty P P‹ : ty R P , @ t P p0, 1qu,

the set of nonzero points and the set of points of P which are visible from the origin. For
certain sets P Ă Rd, d ě 2 for which the asymptotic density of Pvis has recently been
established, we will be interested in the rate of convergence of the limit in (1). We will
also be interested in the question of relative density of the set Pvis.
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To set the stage we review some of what is known in case P “ Zd; i.e., the lattice
of integer points. In this case, the set of visible points from the origin is given by the
primitive lattice points:

Zd
vis “

␣

pn1, . . . , ndq P Zd
‹ : gcdpn1, . . . , ndq “ 1

(

.

When D is the unit ball of a norm, an elementary and classical argument using Möbius
inversion shows that θpZd

visq “ 1{ζpdq (see [2], also see the appendix of [2] for a discussion
of more general averaging sets). Here ζpsq “

ř

nPN n´s denotes the Riemann zeta function.
The question of error estimates in this convergence has been extensively studied and we
give a sample of results. For the unit ball with respect to the ℓ8 norm we have (see
[11,17])

#
`

Zd
vis X r´T, T sd

˘

volpr´T, T sdq
“

1

ζpdq
`

#

O
´

plog T q2{3plog log T q1{3

T

¯

, d “ 2,

O
`

1
T

˘

, d ě 3.

See [21] for the case of Euclidean balls, [3,9,10] for a discussion of more averaging sets. In
this example P “ Zd, the density θ exists and is independent of D, for a large variety of
sets D, but the error term depends quite delicately on D.

A subset P Ă Rd is called relatively dense if there exist a constant R ą 0 such that
for every x P Rd, we have dpx,Pq ď R. If P is not relatively dense, we say that it has
arbitrarily large holes; that is, for any R ą 0 there is a ball B of radius R for which
B X P “ ∅. It was shown in [4] that the set Zd

vis has arbitrarily large holes (see also
[2, Prop. 4] and the proof of Lemma 2.4 below).

In this paper we will consider cut-and-project sets (also referred to as model sets),
which are defined as follows (see [1,13,15]). A grid in Rn is the image of a lattice under
a translation, that is a set of the form y ` gZn where y P Rn and g P GLpn,Rq. Let
n “ d`m for positive integers n, d,m, and let πphys and πint denote the projections of Rn

onto the two summands in the direct sum decomposition

Rn
“ Rd

‘ Rm. (2)

The first and second summands in this decomposition are referred to as physical and
internal space respectively, and we will continue to denote them by Rd,Rm in the re-
mainder of the paper. Let L Ă Rn be a grid and W Ă Rm be a subset referred to as
the window. In this paper we will always assume that W has non-empty interior, and is
Jordan measurable (that is, bounded and with boundary of zero Lebesgue measure). We
will impose certain additional conditions on W further below. The cut-and-project set
associated with pW ,Lq is defined as

ΛpW ,Lq “ tπphyspyq : y P L, πintpyq P Wu Ă Rd.

We say that Λ “ ΛpW ,Lq is irreducible if πintpLq is dense in Rm and πphys|L is injective.
In this case Λ is relatively dense, and its density θpΛq exists (whenever D is Jordan-
measurable) and is given by

θ pΛpW ,Lqq “
volpWq

covolpLq
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(see [8,13,19]). Here covolpLq denotes the covolume of L, defined as covolpy ` gZnq “

| det g|. See [7,18,23,26] for some results about the rate of convergence in (1) for cut-and-
project sets.

Recently, Marklof and Strömbergsson [14, Theorem 1] proved that for any irreducible
cut-and-project set Λ, the density of visible points exists, is the same for all Jordan
measurable D, and satisfies

0 ă θpΛvisq ď θpΛq. (3)
They also observed ([14, p.2]) that for ‘generic choices’ (see Proposition 3.2) of the grid
L one has equality in the right-hand side of (3). On the other hand Hammarhjelm [6]
gave certain examples of cut-and-project sets in R2 for which the latter inequality is strict,
and computed θpΛvisq explicitly (some of these examples had also been considered by Sing
[24]). We will refer to the cases considered by Hammarhjelm as Hammarhjelm examples
and give a definition in §4.1.

In this paper we prove the following results. In all of these results, Λ “ ΛpW ,Lq

is an irreducible cut-and-project set in Rd, d ě 2, and the averaging sets D are Jordan
measurable. Recall that W is star-shaped with respect to the origin if for any w P W , the
segment ttw : t P r0, 1su contained in W .

Theorem 1.1. Assume W is star-shaped with respect to the origin, and L is a lattice.
Then Λvis has arbitrarily large holes.

The special case of the set of visible points of the Amman-Beenker seems to have
known before, see [24] and [1, p. 427].

Let m denote the Haar measure on the group GLpn,Rq.

Theorem 1.2. Assume W is star-shaped with respect to the origin. Then for m-a.e. g P

GLpn,Rq, the lattice L “ gZn satisfies θpΛvisq “ 1
ζpnq

θpΛq for any averaging set. Moreover
for any averaging set D Ă Rd, for any ε ą 0, m-a.e. g P GLpn,Rq, we have an error bound

ˇ

ˇ

ˇ

ˇ

# pΛvis X TDq

volpTDq
´ θpΛvisq

ˇ

ˇ

ˇ

ˇ

“ O
´

volpTDq
´ 1

3
`ε
¯

.

The main ingredient in the proof of Theorem 1.2 is work of Fairchild and Han [5] which
will be recalled below. We stress that Theorem 1.2 does not contradict the observation of
[14] as we deal with generic lattices, not generic grids; cf. Propositions 3.2 and 3.3. Put
differently, our definition of visibility concerns visibility from the origin but if one replaces
it with visibility from a fixed basepoint in Λ one would see that typically, strict inequality
holds in (3).

Theorem 1.3. For the Hammarhjelm examples, if the averaging set D is convex, for any
ε ą 0 we have an error bound

ˇ

ˇ

ˇ

ˇ

# pΛvis X TDq

volpTDq
´ θpΛvisq

ˇ

ˇ

ˇ

ˇ

“ O
´

volpTDq
´ 1

4
`ε
¯

.
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2 Visible points in a lattice L and in ΛpW ,Lq.

Denote
ΛpW ,Lvisq

def
“ tπphyspyq : y P Lvis , πintpyq P Wu.

The following lemma provides a relation between the visible points of a lattice and the
visible points of cut-and-project sets.

Lemma 2.1. Let L be a lattice in Rn, and W be a window which is star-shaped with
respect to the origin. Then

ΛpW ,Lqvis Ă ΛpW ,Lvisq. (4)

Proof. Let x P ΛpW ,Lq‹ ∖ΛpW ,Lvisq. By definition, there exists y P L‹ ∖Lvis such that
x “ πphyspyq. This implies that there exists a real number t P p0, 1q, such that y1 def“ ty P L.
Since W is star-shaped with respect to the origin and x P ΛpW ,Lq, we obtain

πintpy
1
q “ tπintpyq P W .

Consequently,
tx “ tπphyspyq “ πphys ptyq “ πphyspy

1
q P ΛpW ,Lq.

This shows that x R ΛpW ,Lqvis.

In [6], Hammarhjelm gave examples for which the inclusion in (4) is strict. The
following result gives a condition guaranteeing equality in (4).

Proposition 2.2. Let Λ “ ΛpW ,Lq, where L is a lattice and W is star-shaped with
respect to the origin. If we have strict inclusion in (4) then there are linearly independent
y1, y2 P L such that dim pspanRpy1, y2q X Rmq ě 1.

Proof. Suppose that ΛpW ,Lvisq ∖ ΛpW ,Lqvis ‰ ∅. Then there exists y1 P Lvis such that
x

def
“ πphyspy1q P ΛpW ,Lvisq and x R ΛpW ,Lqvis. If x “ 0 then y1 P Rm and the desired

conclusion holds, with y2 any element of L which is not a scalar multiple of y1. Thus we
can assume that x ‰ 0 and thus there exist y2 P L and t P p0, 1q such that

x1 def
“ πphyspy2q “ tπphyspy1q “ tx.

Clearly y1 and y2 are nonzero. If there was some c P R such that y2 “ cy1, then by
applying πphys we find that we must have c “ t P p0, 1q, in contradiction to the fact that
y1 P Lvis. Therefore y1, y2 are linearly independent; i.e.,

dimU “ 2, where U
def
“ spanRpy1, y2q.

We have dimpπphyspUqq “ 1, and since the kernel of πphys is the space Rm, this implies
dimpU X Rmq “ 1.

We say that H is a hole in P if H X P “ ∅. The following statement follows easily
from Lemma 2.1.
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Lemma 2.3. Let L be a lattice in Rn, let W be a window which is star-shaped around
the origin, and let Λ “ ΛpW ,Lq. Suppose that H is a hole in Lvis and H1 Ă Rd satisfies
H1 ˆ W Ă H. Then H1 is a hole of ΛpW ,Lqvis.

Let P Ă Rn and let V Ă Rn be a subset. We say that P contains arbitrarily large
holes along V if for any R ą 0 there is a ball B of radius R and with center in V such
that B X P “ ∅.

Lemma 2.4. Let V Ă Rn be a linear subspace such that V ` Zn is dense in Rn. Then
Zn

vis has arbitrarily large holes along V .

Proof. Since V ` Zn is dense in Zn we obtain by rescaling that for any N ą 0,

V ` NZn
“ N ¨ pV ` Zn

q Ă Rn (5)

is a dense inclusion.
Let U be an open bounded subset of Rn, and for each A P N and each x “ pk1, . . . , knq P

Zn, let

CpA,xq
def
“ Zn X px ` r´A,As

n
q “ tpk1 ` i1, . . . , kn ` inq : |ij| ď A, j “ 1, . . . , nu .

We claim that there are N ą 0 and x0 P Zn such that for each x P x0 ` NZn we have
CpA,xq XZn

vis “ ∅. To see this, let I def
“ Zn X r´A,Asn, and for each tuple pi1, . . . , inq P

I, choose a prime Pi1,...,in so that these primes are all distinct. Then, by the Chinese
remainder theorem, for each fixed j P t1, . . . , nu there exists a solution kj P Z to the
system of congruences

kj ” ´ij pmod Pi1,...,inq, pi1, . . . , inq P I. (6)

Define
x0 “ pk1, . . . , knq P Zn and N

def
“

ź

pi1,...,inqPI

Pii,...,in .

Then (6) remains true if pk1, . . . , knq are the coordinates of any x P x0 ` NZn, and the
choice (6) ensures that for such vectors, gcdpk1 ` i1, . . . , kn ` inq ě Pi1,...,in . This proves
the claim.

Now given R ą 0, let A be large enough so that for any x P U ` V , the set CpA,xq

contains the ball Bpx1, Rq for some x1 P V . Such an A exists because U is bounded. Since
the inclusion in (5) is dense, we have U ` V ` NZn “ Rn, and thus

x0 “ u ` v ´ x, where u P U , v P V, ´x P NZn.

In particular
x0 ` x P px0 ` NZn

q X pU ` V q.

Now using the claim, we see that Zn
vis contains arbitrarily large holes along V .

Proof of Theorem 1.1. Write Λ “ ΛpW ,Lq, where W is star-shaped with respect to the
origin, L is a lattice, and πintpLq is a dense subset of Rm. By Lemma 2.3, it suffices to
show that Lvis has arbitrarily large holes along Rd.
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To this end, write L “ gZn for g P GLpn,Rq and let V
def
“ g´1Rd. Since πintpLq is a

dense subset of Rm, and the standard topolgy on Rm is the quotient topology for the
projection πint : R

n Ñ Rm, we see that Rd`L is dense in Rn. Since linear transformations
are homeomorphisms, this implies that V `Zn is dense in Rn. Applying Lemma 2.4, we see
that Zn

vis has arbitrarily large holes along V . Since linear transformations are bi-Lipschitz
maps, and send visible points to visible points, this implies that Lvis has arbitrarily large
holes along Rd, as required.

3 Random cut-and-project sets and point counting

In this section we discuss probability measures on discrete subsets of Rd, explain what
we mean by a ‘random’ cut-and-project set, and prove Theorem 1.2. In fact we will prove
the stronger Theorem 3.4 below. For a complete metric space X, we denote by ClpXq

the space of closed subsets of X, equipped with the Chabauty-Fell topology (see [18, §2.2]
and references therein).

Proposition 3.1. Let ν be any measure on ClpRnq which is supported on discrete count-
able sets and invariant under translations. Then for ν-a.e. P, P‹ “ Pvis.

Proof. Suppose to the contrary that the set

K
def
“ tP : P is discrete and countable, and Pvis ‰ P‹u

satisfies νpKq ą 0. The group Rn acts on ClpRnq by translations, and preserves ν. By
the Birkhoff ergodic theorem applied to the indicator function 1K , there is P0 P K such
that

volpTq ą 0, where T
def
“ tt P Rn : t ` P0 P Ku . (7)

Write pP0q‹ “ tx1,x2, . . .u. For any i ‰ j, the set

Tij
def
“ tt P Rn : 0 is on the line through t ` xi and t ` xju

is a line in Rn, so satisfies volpTijq “ 0. But whenever Pvis ‰ P‹, there are two distinct
nonzero points in P such that the line containing them passes through the origin. Thus
we have T Ă

Ť

i‰j Tij, contradicting (7).

Let SLnpRq and ASLnpRq denote the groups of orientation- and volume-preserving
linear and affine transformation on Rn respectively. Consider the associated homogeneous
spaces

Xn
def
“ SLnpRq{SLnpZq, Yn

def
“ ASLnpRq{ASLnpZq,

of covolume-one lattices and grids in Rn. Both spaces are equipped with the quotient
topology, or equivalently, the Chabauty-Fell topology. Let mXn and mYn denote the Haar-
Siegel measures on Xn and Yn, respectively; i.e., the unique Borel probability measures
invariant under the transitive action of SLnpRq and ASLnpRq. Then we have embeddings
Xn Ă Yn Ă ClpRnq.
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Fixing the direct sum decomposition (2), the corresponding projections πphys, πint, and
a window W , following [13] we define a map

Ψ : Yn Ñ ClpRd
q, ΨpLq

def
“ ΛpW ,Lq.

Finally let µ̄ and µ denote respectively the pushforwards of mYn and mXn under Ψ.
That is, these measures construct a random cut-and-project set by fixing the direct sum
decomposition and window, and randomly choosing a grid or lattice L. It was noted
in [13] that µ̄ (respectively, µ) is invariant and ergodic under the action of ASLdpRq

(respectively, SLdpRq) on ClpRdq, and gives full mass to the collection of irreducible cut-
and-project sets. Measures satisfying these properties are called RMS measures; they
have been completely classified, see [13,18]. When referring to ‘generic’ cut-and-project
sets, we have in mind cut-and-project sets which form a set of full measure with respect
to µ.

A crucial difference between µ and µ̄ is that µ̄ is invariant under translations, but µ
is not. Applying Proposition 3.1, we immediately obtain:

Proposition 3.2. For µ̄-a.e. cut-and-project set, Λ‹ “ Λvis, and thus θpΛq “ θpΛvisq.

The situation for µ is very different, as the following shows:

Proposition 3.3. Suppose the window W is star-shaped with respect to the origin. Let
m denote the Haar measure on GLnpRq. Then for m-a.e. g P GLnpRq we have

ΛpW , gZn
visq “ ΛpW , gZn

qvis. (8)

In particular, for µ-a.e. cut-and-project set Λ, if Λ “ ΛpW ,Lq then Λvis “ ΛpW ,Lvisq.

Proof. Denote

B
def
“ tg P G : Du1, u2 P Zn s.t. dimpspanRpgu1, gu2q X Rm

q ě 1u .

In light of Proposition 2.2, it suffices to prove that mpBq “ 0. We have

B “
ď

u1,u2

Bpu1, u2q,

where the union ranges over pairs of vectors in Zn, and

Bpu1, u2q “ tg P G : dimpspanRpgu1, gu2q X Rm
q ě 1u .

Thus it is enough to prove mpBpu1, u2qq “ 0, for fixed u1, u2. The set Bpu1, u2q is a
submanifold (in fact, an algebraic subvariety) of GLnpRq. By our assumption d ě 2,
there is g P GLnpRq for which gu1, gu2 both belong to Rd and in particular Bpu1, u2q

is a proper submanifold of GLnpRq. Recalling that m assigns zero measure to proper
submanifolds of GLnpRq, we obtain that mpBpu1, u2qq “ 0.

Now let m1 denote the Haar measure on SLnpRq. Since the validity of (8) is not
affected if one replaces Zn by its dilate cZn, (8) also holds for m1-a.e. g P SLnpRq. Since
the measure mXn is the restriction of m1 to a fundamental domain for the action of
SLnpRq, the second assertion follows.
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Following [20], we say that a collection of Borel subsets tΩT : T ą 0u of Rd is an
unbounded ordered family if

• 0 ď T1 ď T2 ñ ΩT1 Ă ΩT2 ;

• For all T ą 0, volpΩT q ă 8;

• volpΩT q ÝÝÝÑ
TÑ8

8; and

• For all large enough V ą 0 there is T such that volpΩT q “ V .

Theorem 3.4. Let d ě 2, and let the window W Ă Rm be star-shaped with respect to the
origin. Fix an unbounded ordered family tΩT : T ą 0u in Rd. Then, for any ε ą 0, for
µ-a.e. Λ,

#pΩT X ΛpW ,Lqvisq “
volpWq

ζpnq
¨ volpΩT q ` O

´

volpΩT q
2
3

`ε
¯

. (9)

Proof. The proof will proceed by passing to the larger space Rn and applying a result
of Fairchild and Han [5]. Recall we have assumed d ě 2 and thus n “ d ` m ě 3. Let
G

def
“ SLnpRq, and as before, let m1 denote the Haar measure on G. Let tΩ1

T : T ą 0u

denote an unbounded ordered family in Rn, and let ε ą 0. It follows from the case N “ 1
of [5, Theorem 1.3], that for m1-a.e. g P G,

#pgZn
vis X Ω1

T q “
volpΩ1

T q

ζpnq
` O

´

volpΩ1
T q

2
3

`ε
¯

.

In particular, if we specialize to Ω1
T

def
“ ΩT ˆ W , then we obtain for µ-a.e.L P Xn,

#pLvis X Ω1
T q “

volpΩT q ¨ volpWq

ζpnq
` O

´

volpΩT q
2
3

`ε
¯

(where the implicit constant depends on L, W , ε and the family tΩT u). Note that when
πphys|L is injective we have

#pLvis X Ω1
T q “ #pΛpW ,Lvisq X ΩT q.

Thus, restricting further to the set of L for which the conclusion of Proposition 3.3
holds, and for which πphys|L is injective, we obtain that for µ-a.e.L, (9) holds.

Remark 3.5. It would be interesting to extend Theorem 3.4 to other RMS measures which
are not invariant under translations (the case of translation invariant RMS measures
follows from Proposition 3.1 and [18]).

4 Quadratic number fields and Hammarhjelm exam-
ples

In this section, we will recall relevant information about real quadratic number fields and
review the results of Hammarhjelm [6]. Let K “ Qp

?
dq with d ą 1, be a real quadratic
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number field, and let OK be its ring of integers. The norm of an integer x P OK is defined
as

Npxq “ xσpxq,

where σ is the non-trivial Galois automorphism of K. The unit group Oˆ
K consists of the

elements x P OK such that Npxq “ ˘1. The unique element λ “ λK P Oˆ
K such that

Oˆ
K “ t˘1u ˆ tλi : i P Zu, λ ą 1,

is called the fundamental unit of K. For an ideal I P OK , the norm of I is defined as

NpIq “ |OK{I| ,

which is always finite. If OK is a principal ideal domain, we have NpIq “ |Npxq|, where I
is the principal ideal generated by x. Throughout the paper, we will consider fields K for
which OK is a principal ideal domain. For any x1, . . . , xd P OK , let gcdpx1, . . . , xdq denote
a fixed generator of the ideal generated by x1, . . . , xd. We write gcdpx1, . . . , xdq “ 1 when
gcdpx1, . . . , xdq is a unit. We say that x P OK is prime if x “ ab, a, b P OK ùñ a P

O‹
K or b P O‹

K .

The Dedekind zeta function associated with OK is given by

ζOK
psq “

ÿ

IĂOK

1

NpIqs
,

where the summation is over the nonzero ideals I Ă OK and the series converges whenever
ℜpsq ą 1 (see [12, p.131] for details). The Möbius function µ is defined for ideals I Ă OK

as follows:

µpIq “

$

’

&

’

%

1, NpIq “ 1,

p´1qr, I “ p1 ¨ ¨ ¨ pr, for distinct prime ideals p1, . . . , pr,
0, I Ă p2 for some prime ideal p.

Using the Möbius function, the reciprocal of the Dedekind zeta function can be expressed
as

1

ζOK
psq

“
ÿ

IĂOK

µpIq

NpIqs
, (10)

and this series converges absolutely when ℜpsq ą 1. Since any ideal in OK can be written
as I “ gOK , where g P OK , and we will sometimes write µpIq as µpgq. The Minkowski
embedding of OK into R2 is defined as

LOK

def
“ tpx, σpxqq : x P OKu.

We say that W Ă Rm is centrally symmetric if W “ ´W . With these preliminaries, we
can state the result of Hammarhjelm [6].

Theorem 4.1. Let W Ă R2 be star-shaped with respect to the origin and centrally sym-
metric, let K be one of Qp

?
2q,Qp

?
5q, and let

L def
“ tpx1, x2, σpx1q, σpx2qq : x1, x2 P OKu – LOK

‘ LOK
.
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Then the density of ΛpW ,Lqvis exists with respect to any Jordan measurable averaging set
D, and we have

θpΛpW ,Lqvisq “

ˆ

1 ´
1

λ2
K

˙

1

ζOKp2q

θpΛpW ,Lqq.

Remark 4.2. 1. For specific choices of W, one obtains the Amman-Beenker point set
and sets associated with the Penrose tiling vertex set. The density of visible points in the
Amman-Beenker point set had been established earlier by Sing [24].

2. Hammarhjelm’s results are stated with a slightly less restrictive condition than
central symmetry, namely, for an explicit constant c ą 1 depending on the field K, Ham-
marhjelm requires ´W Ă cW.

3. The proof of Theorem 4.1 works for other fields which satisfy a condition we will
discuss below.

4.1 The Hammarhjelm condition

Let K “ Qp
?
dq be a real quadratic number field with d ě 2 square free. In the range

2 ď d ď 100, for

d “ 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43,

46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97

the ring of integers OK are principal ideal domains. It is conjectured that there are
infinitely many real quadratic number fields K with OK principal ideal domain (see [16,
p.37]). Denote

P “ tπ P OK : π is prime and 1 ă π ă λu,

where λ is the fundamental unit. We say that a number field K for which OK is principal
ideal domain satisfies the Hammarhjelm condition if

|σpπq| ą 1, π P P .

Hammarhjelm [6] verified that the condition holds for Qp
?
2q and Qp

?
5q.

The condition may be interpreted graphically as follows. Let LOK
be the Minkowski

embedding of OK . Then the Hammarhjelm condition holds precisely when

LOK
X pp1, λq ˆ r´1, 1sq “ ∅. (11)

Note that the left-hand side of (11) is always finite, being the intersection of a lattice and
a bounded set. Furthermore, generators for LOK

can be easily computed. Thus one can
check (11) by hand (see Figure 1). In the range 1 ď d ď 100, the Hammarhjelm condition
is satisfied only for d “ 2, 5, 13, 29, 53.

We will say that a cut-and-project set ΛpW ,Lq is a Hammarhjelm example if W is
convex and centrally symmetric, and L “ LOK

‘ LOK
, where K is a real quadratic field

K satisfying the Hammarhjelm condition.

10
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Figure 1: The Minkowski embedding of OK , where K “ Qp
?
5q and λ “ 1

2
p1 `

?
5q.

5 Effective inclusion-exclusion

In this section we prove Theorem 1.3. Once more, we prove a stronger result, namely:

Theorem 5.1. Let d ě 2, let m “ d, and let W Ă Rd be a convex centrally symmetric
window. Let K be a real quadratic field satisfying the Hammarhjelm condition, and let

L def
“ tpx1, . . . , xd, σpx1q, . . . , σpxdqq : xi P OKu –

d
à

LOK
Ă R2d. (12)

Let Λ “ ΛpW ,Lq, and let D Ă Rd be a convex averaging set. Then we have the following
asymptotic estimate as T Ñ 8

#pΛvis X TDq

volpTDq
“

ˆ

1 ´
1

λd

˙

¨
θpΛq

ζOK
pdq

`

$

&

%

O
´

log T
?
T

¯

, d “ 2,

O
´

1?
T

¯

, d ě 3.

It is possible to relax the convexity assumption on W and D in Theorem 5.1 as follows.
If there is some s P N so that D, W and D ˆ tW (for every t), are all of narrow class
s then in the proof below, we may apply [22, Lemma 1] (see also [27, Thm. 2.3]) as a
substitute for Proposition 5.2 below. We leave the details to the dedicated reader.

In the proof we will use the following counting result, see [22]:

Proposition 5.2. For any n P N there is C ą 0 so that the following holds. Let S Ă Rn,
let L Ă Rn be a lattice, and let c ą 0 and T0 ě 1 such that:

(1) S is convex and its diameter is bounded above by T0;

(2) The lattice L contains n linearly independent vectors of length at most T0, and n´1
linearly independent vectors of length at most c.

11



Then
ˇ

ˇ

ˇ

ˇ

#pS X Lq ´
volpSq

covolpLq

ˇ

ˇ

ˇ

ˇ

ď CcT n´1
0 . (13)

Remark 5.3. Note that in [22] it is further assumed that S is compact; however for
convex sets, the general case can be obtained by approximating S from inside and outside
by compact convex sets.

For g P OK , let ag be the diagonal matrix

ag
def
“ diagpg, . . . , g

loomoon

d times

, σpgq, . . . , σpgq
looooooomooooooon

d times

q,

and let
Lg

def
“ agL “ tpgx1, . . . , gxd, σpgx1q, . . . , σpgxdqq : xi P OKu. (14)

Since OK is a ring, Lg Ă L, and we have

covolpLgq “ |Npgq|
d covolpLq. (15)

Notation. In the remainder of this section, K and W satisfy the hypotheses of
Theorem 5.1, L is given by (12), and β P Oˆ

K .

Lemma 5.4. Let Lg be as in (14), and let D Ă Rd be a convex averaging set. Then,
there is a constant C1 such that for any g P OK, and any T ě |Npgq|,

ˇ

ˇ

ˇ

ˇ

# pΛpβW ,Lgq X TDq ´
volpTDq ¨ volpWq

covolpLq
¨

βd

|Npgq|d

ˇ

ˇ

ˇ

ˇ

ď C1

ˆ

T

|Npgq|

˙d´ 1
2

.

Proof. We have

# pΛpβW ,Lgq X TDq “ # ppTD ˆ βWq X Lgq .

“ #
`

a´1
g pTD ˆ βWq X L

˘

.
(16)

This reduces our problem to the problem of counting lattice points in a convex set. Our
goal will be to ensure that the hypotheses of Proposition 5.2 are satisfied, with T0 as
small as possible. To this end we will apply diagonal elements which fix the lattice L but
change the convex body in question.

Choose positive numbers c, T1 so that assumption (2) of Proposition 5.2 holds, for c
and for any T0 ě T1. Let A1 denote the one-parameter diagonal group

A1
def
“

$

&

%

diagpes, . . . , es
looomooon

d times

, e´s, . . . , e´s
looooomooooon

d times

q : s P R

,

.

-

.

Now suppose g0 P Oˆ
K , g0 ą 1 is a unit of norm one. Then multiplication by g0 permutes

the integers of K and hence ag0L “ L. Moreover ag0 P A1. It follows that

A0
def
“ ta0 P A1 : a0L “ Lu

12



is a co-compact subgroup of A1, and for any a0 P A0,

# pΛpβW ,Lgq X TDq
(16)
“ #a0

`

a´1
g pTD ˆ βWq X L

˘

“ #
`

a0a
´1
g pTD ˆ βWq X L

˘

.

In the remainder of the proof, we will say that two quantities X, Y are comparable if
their ratio X{Y is bounded above and below by positive constants which do not depend
on g and T (but may depend on the window W , the averaging set D, the number field
K, and the number β). In this case we will write X — Y .

For a0 P A0 we will write

Spa0q
def
“ a0a

´1
g pTD ˆ βWq “ S1pa0q ˆ S2pa0q, where Sipa0q Ă Rd

(note that these sets also depend on T but we suppress this dependence in the notation).
Since A0 is cocompact in A1, and the linear action of A1 scales the first factor of the
decomposition R2d “ Rd ‘ Rd by a constant factor while scaling the second factor by
its reciprocal, we can find a0 P A0 so that S1pa0q and S2pa0q have comparable diame-
ters D1, D2. Moreover each diameter Di is comparable to the dth root of the volume
volpSipa0qq. Since

Dd
1 D

d
2 — volpSpa0qq “ volpa0a

´1
g pTD ˆ βWqq “ volpa´1

g pTD ˆ βWqq —
T d

|Npgq|d
,

this implies that

D1 — D2 —

d

T

|Npgq|
— diampSpa0qq. (17)

Thus both assumptions of Proposition 5.2 hold, with n “ 2d and with

T0
def
“ max pT1, diampSpa0qqq . (18)

Note that T0 —

b

T
|Npgq|

. Indeed, when the maximum in (18) is attained by the term
diampSpa0qq, we have this from (17), and when the maximum is attained by T1, we have
this from 1 ď

b

T
|Npgq|

ď T1 “ T0. Now the desired conclusion follows from the conclusion
of Proposition 5.2.

The following lemma was proved in the case d “ 2 in [6, Lemma 4.6]).

Lemma 5.5. Let g P OK, let T ą 0 and let BT be the ball of radius T around the origin.
Then for β P Oˆ

K, there is a constant L such that

#pΛpβWq,Lgq‹ X BT q ď
L ¨ T d

|Npgq|d
,

where the constant L depends only on W and β.

The proof of Lemma 5.5 again uses the invariance of L under the group A0 and a
rescaling argument, as in the proof of Lemma 5.4. The proof in [6] easily generalizes to
arbitrary d ě 2 and we omit it.
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Lemma 5.6. Write σpxq
def
“ pσpx1q, . . . , σpxdqq. Then we have

ΛpW ,Lqvis “

"

px1, . . . , xdq P ΛpW ,Lq‹ : gcdpx1, . . . , xdq “ 1, σpxq R
1

λ
W

*

. (19)

Similar results were proved in [6, Propositions 4.8 & 4.14] for d “ 2, K “ Qp
?
2q, and

K “ Qp
?
5q. We provide the proof for completeness.

Proof. We start by proving the inclusion Ă in (19). Suppose that x “ px1, . . . , xdq P

ΛpW ,Lq‹, and that gcdpx1, . . . , xdq ‰ 1. Then there is a prime π P P which divides
x1, . . . , xd. Consequently we have π´1x P Od

K . Replacing π if necessary by its multiple
by a unit, we may assume that π P p1, λq, and hence, by the Hammarhjelm condition,
|σpπq| ą 1. Since W is convex and centrally symmetric, it follows that

σpπ´1xq “ σpπq
´1σpxq P W .

Thus, we conclude that π´1x P ΛpW ,Lq, and x R ΛpW ,Lqvis. If σpxq P 1
λ
W then

σpλ´1xq “ ˘λσpxq P W ,

where we have used that λσpλq “ ˘1 and W is convex and centrally symmetric. It follows
that λ´1x P ΛpW ,Lq, and again x R ΛpW ,Lqvis.

Next, we prove the inclusion Ą. Suppose that x “ px1, . . . , xdq ‰ 0 does not belong to
the left-hand side of (19), that is

x P ΛpW ,Lq‹ ∖ ΛpW ,Lqvis.

Then there is some t P p0, 1q such that tx P ΛpW ,Lq. Let i be an index such that xi ‰ 0.
Since the coordinates xi and txi are both in OK , we have that t P K. Since ΛpW ,Lq is
locally finite, by taking t as small as possible we may assume that

y “ py1, . . . , ydq
def
“ tx P ΛpW ,Lqvis.

Since t P K, we can write t “ b{a, with a, b P OK , with a, b co-prime. If b is not a
unit, then from ay “ bx we see that gcdpy1, . . . , ydq ‰ 1, which is a contradiction to the
direction Ă we have already proved. Thus we can assume a “ t´1 P OK , and so for each
i, a divides xi “ t´1yi. Thus, either gcdpx1, . . . , xdq ‰ 1, in which case x does not belong
to the right-hand side of (19), or a is a unit. If a is a unit then t “ λ´k for some k P Z,
and since t P p0, 1q and λ ą 1 we have k P N. We have that W contains σpxq as well as
σpyq “ σpλ´kxq “ ˘λkσpxq. Since W is centrally symmetric and convex, it follows that
W also contains λσpxq, that is, σpxq P 1

λ
W . So in this case again we have that x does

not belong to the right-hand side of (19).

For the lattice L as in (12) and a window W , define the set of primitive points as

ΛprpW ,Lq
def
“ tx “ px1, . . . , xdq P ΛpW ,Lq‹ : gcdpx1, . . . , xdq “ 1u.

Note that for the integer lattice, with the standard gcd, the set of primitive points coincides
with the set of visible points. But here we work with the gcd of the quadratic field K and
this is no longer the case. Lemma 5.6 shows that under the Hammarshjelm condition,

# pΛpW ,Lqvis X TDq “ # pΛprpW ,Lq X TDq ´ #

ˆ

Λpr

ˆ

1

λ
W ,L

˙

X TD

˙

. (20)
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Given T ą 0, β P Oˆ
K , and an averaging set D, let

C
def
“ tπ P P : ΛpβW ,Lq‹ X ΛpβW ,Lπq‹ X TD ‰ ∅u .

It follows from the local finiteness of cut-and-project sets (see [6, Lemma 4.4] for the
detailed argument) that C is finite, and we write C “ tπ1, . . . , πnu.

We have

ΛprpβW ,Lq X TD “ pΛpβW ,Lq‹ X TDq ∖
ď

πPP

pΛpβW ,Lq‹ X ΛpβW ,Lπq‹q

“ pΛpβW ,Lq‹ X TDq ∖
n
ď

i“1

pΛpβW ,Lq‹ X ΛpβW ,Lπi
q‹ X TDq ,

(21)

For a finite subset F Ă P, let
ś

F denote the product of elements of F . We have

ΛpβW ,Lq X

˜

č

πPF

ΛpβW ,Lπq

¸

“ Λ
`

βW ,Lś

F

˘

. (22)

Since Lg “ Lug for any unit u and g P OK , we have

ΛpW ,Lugq “ ΛpW ,Lgq. (23)

By (21), (22), (23), and the inclusion and exclusion principle, we have

#pΛprpβW ,Lq X TDq “ # ppΛpβW ,Lq‹ X TDqq

`

n
ÿ

i“1

p´1q
i

ÿ

FiĂC:|Fi|“i

#

˜˜˜

ΛpβW ,Lq‹ X
č

πPFi

ΛpβW ,Lπq‹

¸

X TD

¸¸

“ # ppΛpβW ,Lq‹ X TDqq

`

n
ÿ

i“1

p´1q
i

ÿ

FiĂC:|Fi|“i

#
´´

Λ
´

βW ,Lś

Fi

¯

‹
X TD

¯¯

“
ÿ

gPr1,λqXOK

µpgq ¨ # ppΛpβW ,Lgq‹ X TDqq .

(24)

Lemma 5.7. We have
ˇ

ˇ

ˇ

ˇ

#pΛprpβW ,Lq X TDq ´
volpWq ¨ volpTDq

covolpLq
¨

βd

ζOK
pdq

ˇ

ˇ

ˇ

ˇ

ď

#

C2T
3{2 log T, d “ 2,

CdT
d´1{2, d ě 3,

where C2 and Cd are constants depending only on W and β.

Proof. To simplify notation, denote

MT
def
“

volpWq ¨ volpTDq

covolpLq
. (25)
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Let Hn be the number of ideals in OK of norm n. It follows from [12, Theorem 39] that

Hn ď H ¨ n1{2, (26)

where H ą 0 is a constant independent of n. Since (10) converges absolutely and (24) is
a finite sum, we have

ˇ

ˇ

ˇ

ˇ

#pΛprpβW ,Lq X TDq ´
MTβ

d

ζOK
pdq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

gPr1,λqXOK

µpgq

ˆ

#pΛpβW ,Lgq‹ X TDq ´
MTβ

d

|Npgq|d

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

(27)

Note the conclusion of Lemma 5.5 remains valid for TD instead of BT (perhaps at the
cost of changing the constant L). Thus, using Lemmas 5.4 and 5.5, the right-hand side
of (27) is bounded by

C1

ÿ

gPr1,λqXOK

|Npgq|ďT

T d´1{2

|Npgq|d´1{2
` L

ÿ

gPr1,λqXOK

|Npgq|ąT

T d

|Npgq|d
` MTβ

d
ÿ

gPr1,λqXOK

|Npgq|ąT

1

|Npgq|d

ďC1

ÿ

gPr1,λqXOK

|Npgq|ďT

T d´1{2

|Npgq|d´1{2
` L

ÿ

gPr1,λqXOK

|Npgq|ąT

T d

|Npgq|d
` CM,β ¨ T d

ÿ

gPr1,λqXOK

|Npgq|ąT

1

|Npgq|d

ďC1

ÿ

gPr1,λqXOK

|Npgq|ďT

T d´1{2

|Npgq|d´1{2
` C 1

M,β ¨ T d
ÿ

gPr1,λqXOK

|Npgq|ąT

1

|Npgq|d
,

(28)

where CM,β is a constant depending only on W and β such that MTβ
d ď CM,β ¨ T d, and

C 1
M,β “ CM,β ` L. By (26), (27), and (28), we have

ˇ

ˇ

ˇ

ˇ

#pΛprpβW ,Lq X TDq ´
MTβ

d

ζOK
pdq

ˇ

ˇ

ˇ

ˇ

ď C1 ¨

tT u
ÿ

k“1

Hk ¨ T d´1{2

kd´1{2
` C 1

M,βT
d

8
ÿ

k“tT u

Hk

kd

ď C1HT d´1{2

ż T

x“1

x1{2

xd´1{2
dx ` C 1

M,β ¨ HT d

ż 8

x“T

x1{2

xd
dx.

(29)

In case d “ 2, the right-hand side of (29) is

C1HT 3{2

ż T

x“1

1

x
dx ` C 1

M,βT
2H

ż 8

x“T

1

x3{2
dx

ďC1HT 3{2 log T ` C 1
M,βHT 3{2

ďC2pβqT 3{2 log T,

(30)

where C2pβq is a constant depending only on W and β. In case d ě 3, the right-hand side
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of (29) is

C1HT d´1{2

ż T

x“1

x1{2

xd´1{2
dx ` C 1

M,βT
dH

ż 8

x“T

x1{2

xd
dx

“C1HT d´1{2

ż T

x“1

1

xd´1
dx ` C 1

M,βT
dH

ż 8

x“T

1

xd´1{2
dx

ďC1HT d´1{2
` C 1

M,βHT 3{2
ď CdpβqT d´1{2,

(31)

where Cdpβq is a constant depending only on W and β. Now the required statement
follows by combining (29), (30), and (31).

Finally we are ready for the

Proof of Theorem 5.1. By equation (20), Lemma 5.7, and for MT as in (25), we have
ˇ

ˇ

ˇ

ˇ

#pΛpW ,Lqvis X TDq ´

ˆ

1 ´
1

λd

˙

MT

ζOK
pdq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

#pΛprpW ,Lq X TDq ´
MT

ζOK
pdq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

#

ˆ

Λpr

ˆ

1

λ
W ,L

˙

X TD

˙

´
1

λd

MT

ζOK
pdq

ˇ

ˇ

ˇ

ˇ

ď

#

pC2p1q ` C2p1{λqqT 3{2 log T, d “ 2,

pCdp1q ` Cdp1{λqqT d´1{2, d ě 3.

(32)

By (32), we have
ˇ

ˇ

ˇ

ˇ

#pΛpW ,Lqvis X TDq ´

ˆ

1 ´
1

λd

˙

MT

ζOK
pdq

ˇ

ˇ

ˇ

ˇ

“

#

OpT 3{2 log T q, d “ 2,

OpT d´1{2q, d ě 3.
(33)
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