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Abstract. We study geometrical properties of translation surfaces: the fi-

nite blocking property, bounded blocking property, and illumination proper-

ties. These are elementary properties which can be fruitfully studied using
the dynamical behavior of the SL(2,R)-action on the moduli space of trans-

lation surfaces. We characterize surfaces with the finite blocking property

and bounded blocking property, completing work of the second-named au-
thor [Mon05]. Concerning the illumination problem, we also extend results of

Hubert-Schmoll-Troubetzkoy [HST08], removing the hypothesis that the sur-

face in question is a lattice surface, thus settling a conjecture of [HST08]. Our
results crucially rely on the recent breakthrough results of Eskin-Mirzakhani

[EM] and Eskin-Mirzakhani-Mohammadi [EMM], and on related results of
Wright [Wria].

1. Introduction

A translation surface is a finite union of polygons, glued along parallel edges by
translations, up to a cut and paste equivalence. These structures arise in the study
of billiards, interval exchange transformations, and various problems in group the-
ory and geometry. See [MT02, Zor06] for comprehensive introductions and detailed
definitions. The purpose of this paper is to apply recent breakthrough results of
Eskin-Mirzakhani [EM] and Eskin-Mirzakhani-Mohammadi [EMM], on the dynam-
ics of a group action on the moduli space of translation surfaces, to some elementary
geometrical questions concerning translation surfaces. We begin with some defini-
tions.

A pair of points (x, y) ∈ M ×M is finitely blocked if there exists a finite set
B ⊂M which does not contain x or y and intersects every straight-line trajectory
connecting x and y. A set B with this property is called a blocking set for (x, y), and
the minimal cardinality of a blocking set is called the blocking cardinality of (x, y)
and is denoted by bc(x, y). A translation surface M has the blocking property if any
pair (x, y) ∈M ×M is finitely blocked, and the bounded blocking property if there
is a number n such that any pair (x, y) ∈M ×M is finitely blocked with blocking
cardinality at most n. If x and y are finitely blocked with blocking cardinality zero,
that is, if there is no straightline path on M from x to y, then we say that x and y
do not illuminate each other. A translation surface M is a torus cover if there is a
surjective translation map from M to a torus (the singularities of M may project to
one or several points on the torus). Equivalently (see e.g. [Mon05]), the subgroup
of R2 generated by holonomies of absolute periods on M is discrete.

Our first result settles a question of the second-named author, see [Mon05,
Mon09].

Theorem 1. For a translation surface M , the following are equivalent:

(1) M is a torus cover.
1
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(2) M has the blocking property.
(3) There is an open set U ⊂ M × M such that any pair of points in U is

finitely blocked.
(4) M has the bounded blocking property.

Hubert, Schmoll and Troubetzkoy [HST08] have constructed an example of a
translation surface M which is not a torus cover, and in which there are infinitely
many pairs of points which do not illuminate each other. In fact, there is an
involution τ : M → M such that for any x ∈ M , there is no straight line between
x and τ(x). See §6.3 for similar examples. This shows that in (3), it is not enough
to suppose that U is infinite.

Our second result concerns questions of illumination. The classical illumination
problem was first posed in the 1950’s, when it was asked whether there exists a
polygonal room with a pair of points which do not illuminate each other. First
examples were found by Tokarsky [Tok95] and Boshernitzan (unpublished), and
this raised the question of classification and possible cardinality of pairs of points
which do not illuminate one another on translation surfaces. We refer to [HST08]
or the Wikipedia page http://en.wikipedia.org/wiki/Illumination problem

for a brief history. We show:

Theorem 2. For any translation surface M , and any point x ∈ M , the set of
points y which are not illuminated by x is finite.

Moreover, the set

{(x, y) : x and y do not illuminate each other}

is the union of a finite set, and of finitely many translations surfaces M ′ embedded
in M ×M , such that the projections pi|M ′ : M ′ →M are both finite-degree covers.

Here pi : M ×M → M, i = 1, 2 are the natural projections onto the first and
second factors respectively.

Theorem 2 strengthens results of [HST08], which deal with surfaces which have
a large group of translation automorphisms. Namely, Theorem 2 was proved in
[HST08] under the additional hypothesis that M is a lattice surface, and when M
is a pre-lattice surface, the first assertion of the theorem was shown, with ‘countable’
in place of ‘finite’ (for the definitions see §2.3). The first assertion of Theorem 2
settles [HST08, Conjecture 1]. In §5 we deduce Theorem 2 from the more general
Theorem 11. In §6 we give examples which elaborate on related examples given in
[HST08].

A standard ‘unfolding’ technique (see [MT02, Zor06]) leads to the following re-
sult, justifies the title of this paper. It is a special case of [OP01, Conjecture 1].

Corollary 3. Let P be a rational polygon. Then for any x ∈ P there are at most
finitely many points y for which there is no geodesic trajectory between x and y.

There is a moduli space H parameterizing all translation surfaces sharing some

topological data, and this space is equipped with an action of the groupG
def
= SL(2,R).

The breakthrough work [EM, EMM] has made it possible to analyze the dynamics
of this action in great detail. Our analysis depends crucially on this work, as well
as on additional work of Wright [Wria].

We note that the crucial feature which make our analysis possible is that the
geometric properties we consider give rise to subsets of H which are closed and
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G-invariant. It has long been known that a detailed understanding of the G-action
would shed light on the illumination problem, as well as on many similar ‘elemen-
tary’ problems. For more papers applying the dynamics of the G-action to the
analysis of closed and G-invariant geometrical properties of translation surfaces,
see [Vee95, Vor96, Mon05, Mon09, HST08, SW10, SW07, LW].

1.1. Acknowledgements. This works relies on deep results of Alex Eskin, Maryam
Mirzakhani and Amir Mohammadi, and is influenced by Alex Eskin’s vision that
the geometrical problems considered here can be solved via ergodic theory. We
are also grateful to Erwan Lanneau, Duc-Manh Nguyen, John Smillie and Alex
Wright for helpful discussions. This research was supported by the ANR projet
blanc GEODYM and European Research Council grant DLGAPS 279893.

2. Preliminaries

We begin by briefly recalling the definitions of translation surfaces and strata,
and refer to [MT02, Zor06] for more details. Fix a topological orientable surface S of
genus g, a finite subset Σ = {x1, . . . , xk} of S, and non-negative integers α1, . . . , αk
so that

∑
i αi = 2g − 2. We allow some of the αi to be zero and require k 6= 0. A

translation surface M of type ~α = (α1, . . . , αk) is a surface M homeomorphic to S,
with k labelled singular points {ξ1, . . . , ξk}, equipped with an equivalence class of
atlases of planar charts, i.e. maps from open subsets of M r {ξ1, . . . , ξk} to C, such
that:

• Transition maps for the charts are translations.
• At each ξi the charts give rise to a cone type singularity of angle 2π(αi+1).

As usual two atlases are considered equivalent if their union is also an atlas of
the same type, and two translation surfaces are considered equivalent if there is a
homeomorphism from one to the others, which is a translation in charts, and maps
the distinguished finite set {ξi} of one translation surface bijectively to the other in
a way which respects the numbering. Note that an atlas of planar charts on M rΣ
naturally induces a translation structure on (M rΣ)× (M rΣ), with charts taking
values in C2 and for which transition maps are translations. We will call this the
Cartesian product translation structure on M2.

The points ξi are called singularities. Note that we have allowed singularities
with cone angle 2π (as happens when αi = 0). Such singularities are sometimes
referred to as marked points. Note also that in contrast to the convention used by
some authors, our convention is that singularities are labeled.

A homeomorphism S →M which maps each xi to ξi is called a marking. We can
use a marking and the planar charts of M to evaluate the integrals of directed paths
on S beginning and ending in Σ. Such an integral is a complex number whose real
and imaginary components measure respectively the total horizontal and vertical
distance travelled when moving in M along the image of the path. Denote by H(~α)
the set of translation surfaces of type ~α. It is called a stratum and is equipped with
a natural topology defined as follows. The discussion above shows that the marking
gives rise to a map

H(~α)→ H1(S,Σ;C).

It is known that the maps above constitute an atlas of charts which endow H(~α)
with the structure of a linear orbifold. We will call these coordinates period coor-
dinates. With respect to period coordinates, the change of a marking constitutes
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a change of coordinates via a unimodular integral matrix, so H(~α) is naturally en-
dowed with a Lebesgue measure and a Q-structure. It is known that each stratum
has finitely many connected components.

The group G acts on each stratum component H by postcomposition of planar
charts. That is, identifying the field of complex numbers with the plane R2 in the
usual way, each g ∈ G is a linear map of R2 and we use it to replace each chart

M ⊃ U
ϕ→ C ∼= R2 with the chart g ◦ ϕ : U → R2. For each stratum component

H, the subset H(1) consisting of area one surfaces is a sub-orbifold which in period
coordinates is cut out by a quadratic condition. It is preserved by the G-action,
and G acts ergodically preserving a natural smooth finite measure obtained from
the Lebesgue measure by a cone construction. Given a translation surface M and
a positive real number t, we denote by tM the translation surface obtained by
multiplying all planar charts of M by the scalar t.

2.1. Adding marked points. We will need some notation for the operation of
covering a stratum by a corresponding stratum with one or two additional marked
points.

Given a stratum component H, we denote by H′ the corresponding stratum com-
ponent of surfaces with one additional marked point, and by H′′ the corresponding
stratum component of surfaces with two additional marked points. More formally

this is defined as follows. SupposeH is a component ofH(~α) where ~α
def
= (α1, . . . , αk)

and Σ
def
= {x1, . . . , xk} is a finite subset of cardinality k in the topological surface S.

Let xk+1, xk+2 denote two distinct points on S r Σ, set αk+1 = αk+2 = 0, set

Σ′
def
= Σ∪ {xk+1}, Σ′′

def
= Σ′ ∪ {xk+2}, ~α′

def
= (α1, . . . , αk+1), ~α′′

def
= (α1, . . . , αk+2),

and let ϕ′ : H(~α′) → H(~α), ϕ′′ : H(~α′′) → H(~α′) be the forgetful maps obtained
by deleting the points corresponding to xk+1, xk+2 from the domain of any planar

chart. Let ϕ
def
= ϕ′◦ϕ′′. The three maps ϕ′, ϕ′′, ϕ are bundle maps for the respective

bundles H(~α′),H(~α′′),H(~α′′) with bases H(~α),H(~α′),H(~α) and fibers S r Σ, S r
Σ′, (S r Σ)2 r ∆ respectively (∆ is the diagonal). Finally we let H′,H′′ be the
connected components of H(~α′) and H(~α′′) covering the component H.

One easily checks from the definitions that the maps ϕ,ϕ′, ϕ′′ are G-equivariant,
and that the fibers are linear manifolds in period coordinates. Moreover note that
the linear structure on a fiber ϕ′−1(M) ∼= S r Σ coincides with the translation
structure afforded by the translation charts on M , and similarly, the linear structure
on a fiber ϕ−1(M) ∼= (SrΣ)2r∆ coincides with the Cartesian product translation
structure on M2. In the sequel we will refer to xk+1, xk+2 as the first and second
marked points for the covers H′′ → H′ → H. Note that we allow H to contain
additional marked points.

2.2. Recent dynamical breakthroughs. We now state the results of [EM, EMM,
Wria] mentioned in the introduction. This requires some terminology. We say that
a subset L0 ⊂ H is a complex linear manifold defined over R if for each of the charts
H → H1(S,Σ;C) ∼= C obtained by fixing a marking, the image of L0 is the inter-
section of an open set with an affine subspace whose linear part is a C-linear vector
space defined over R. Note that the real dimension of a complex linear manifold is
even. Given L ⊂ H(1), we denote

L̂ def
= {tM ′ : t > 0,M ′ ∈ L}.
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If ν is a measure on H then µ(A) = ν({tx : x ∈ A, t ∈ (0, 1]} is a measure on H(1)

and we say that µ is obtained by coning off ν. We say that L ⊂ H(1) is an affine
invariant manifold if it is G-invariant, is the support of an ergodic G-invariant

measures µ, L̂ is a complex linear manifold defined over R, and µ is obtained by

coning off Lebesgue measure on L̂.

Theorem 4 (Eskin-Mirzakhani-Mohammadi). For each stratum component H and

each M ∈ H(1), the orbit closure L def
= GM is an affine invariant manifold. The

collection of affine invariant manifolds of H obtained as orbit-closures for the G-
action is countable. If Ln, n ≥ 1 is a sequence of distinct affine invariant manifolds
of some dimension k contained in H, then after passing to a subsequence, the set
of accumulation points

{M ∈ H : ∃Mn ∈ Ln such that Mn →M}
is an affine invariant manifold L∞ with dimL∞ > k and {Mn} ⊂ L∞.

Note that the results of [EMM] work for strata with marked points, i.e. they
allow αi = 0.

Suppose that the number of singularities k is at least 2. Let H1(S) and H1(S,Σ)
denote respectively the absolute and relative homology groups. Then we have
H1(S) ⊂ H1(S,Σ) and we can restrict each 1-cocycle in H1(S,Σ;C) to the subspace
H1(S); that is we get a natural restriction map H1(S,Σ;C) → H1(S;C). The
kernel REL of this map is a subspace of H1(S,Σ;C) of real dimension 2(k − 1),
and we have a foliation of H1(S,Σ;C) by cosets of REL. Since the restriction
map H1(S,Σ;C) → H1(S;C) is topological, the space REL is independent of a
marking, that is can be used to unequivocally define a linear foliation of H(~α)
using period coordinates. This foliation of H(~α) is called the REL foliation. The
G-action respects the REL foliation and hence we have a linear foliation of H by
leaves tangent to g ⊕ REL, where we use g to denote the tangent to the foliation
by G-orbits. We denote this foliation by G ⊕ REL. Following [Wria], if a closed
G-invariant and G-ergodic linear manifold L is contained in a single leaf of the
foliation G⊕REL, we say that it is of cylinder rank one. A translation surface M
is completely periodic if in any cylinder direction on M there is a complete cylinder
decomposition.

Theorem 5 (Wright [Wria], Theorems 1.5 and 1.6). A linear manifold L as above
is of cylinder rank one if and only if any surface in L is completely periodic.

We will need the following Lemma. Note that its assertion would be trivial if
the fiber of ϕ were compact.

Lemma 6. Let M ∈ H and M ′′ ∈ ϕ−1(M) ⊂ H′′. Let L def
= GM and L′′ def

= GM ′′.
Then ϕ|L′′ is an open mapping and hence dimϕ(L′′) = dimL.
Proof. According to [EMM], there are Borel probability measures µ, µ′′ on H, H′′
respectively such that L = suppµ, L′′ = suppµ′′. We first claim that µ = ϕ∗µ

′′. To
this end note that Theorems 2.6 and 2.10 in [EMM] provide an averaging method
converging to µ, µ′′; that is, in both of these theorems, one finds probability mea-
sures νT on G, such that for any continuous compactly supported functions f, f ′′

on H and H′′ respectively,∫
G

f(gM)dνT (g)→T→∞

∫
H
fdµ (resp.,

∫
G

f(gM ′′)dνT (g)→T→∞

∫
H′′

f ′′dµ′′ ).
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By a standard argument we may assume that this is also true if f ′′ is continuous and
has a finite limit at infinity; in particular, for f ∈ Cc(H) we may take f ′′ = f ◦ ϕ.
Thus by equivariance we have∫

H
fdµ←−

∫
G

f(gM)dνT (g) =

∫
G

f ′′(gM ′′)dνT (g) −→
∫
H′′

f ◦ ϕdµ′′,

and this implies that µ = ϕ∗µ
′′.

The map ϕ|L′′ : L′′ → L is an affine map of affine manifolds. In order to show
that it is open it suffices to show that its derivative is surjective at every point
x ∈ L′′. If not, then there is a neighborhood U of x in L′′ such that ϕ(U) is
contained in a proper affine submanifold of L. Such a proper affine submanifold
must have zero measure for the flat measure class on L, i.e. µ(ϕ(U)) = 0. By the
preceding paragraph this implies µ′′(U) = 0 which is impossible. �

2.3. The Veech group, lattice surfaces, and periodic points. An affine au-
tomorphism of a translation surface M is a homeomorphism ϕ : M → M which
is affine in charts. In this case, by connectedness, its derivative Dϕ is a constant
2× 2 matrix of determinant ±1. We denote by Aff+(M) the group of orientation-
preserving affine automorphisms, i.e. those for which Dϕ ∈ G. We say that ϕ is
a parabolic automorphism if Dϕ is a parabolic matrix, i.e., is not the identity but
has both eigenvalues equal to 1. The Veech group of M is the image under the
homomorphism D : Aff+(M) → G of the group of orientation-preserving affine
automorphisms. We say that M is a lattice surface if its Veech group is a lattice
in G. Equivalently, by a theorem of Smillie (see [Vee95, SW07]), the orbit GM is
closed. Following [HST08] we say that M is a pre-lattice surface if Aff+(M) con-
tains two non-commuting parabolic automorphisms. Veech [Vee89] showed that a
lattice surface is a pre-lattice surface, justifying the terminology. A point x ∈M is
called periodic if its orbit under Aff+(M) is finite.

2.3.1. Example. In Lemma 6 we showed that ϕ′′|L′′ : L′′ → L is an open map.
Given that L is connected, this leads to the question of whether ϕ|L′′ is surjective.
The following example of Alex Wright shows that an open affine map of orbit-
closures need not be surjective. Let M ∈ H be a lattice surface which admits an
involution τ (e.g. M could be a surface of genus 2 and τ could be the hyper-elliptic
involution). Let L = GM be the orbit of M (which in this case coincides with

the orbit closure), let x ∈ M be a non-periodic point, and let M ′
def
= (M,x) be

the surface in H′ obtained by marking the point x. It was proved in [HST08],

and follows easily from Theorem 4, that L′ def
= GM ′ coincides with ϕ′−1(GM) (i.e.

all surfaces in GM marked at all nonsingular points). Now let y
def
= τ(x) 6= x, let

M ′′
def
= M(x, y) be the surface in H′′ obtained by marking M at the two points x, y,

let L′′ def
= GM ′′, and let ϕ′′ : H′′ → H′ be the affine map which forgets the second

marked point. We have

L′′ ⊂ {(M0, x0, y0) ∈ H′′ : M0 ∈ L, τ(x0) = y0 6= x0},
since the set on the right-hand side is closed and G-invariant. This implies that
ϕ′′(L′′) ⊂ {(M0, x0) : M0 ∈ GM, τ(x0) 6= x0}, and in particular ϕ′′|L′′ is not
surjective. However the proof of Lemma 6 shows that ϕ′′|L′′ is open.

Using one additional marked point one can find similar examples that show that
in general, in Lemma 6, one need not have ϕ(L′′) = L.
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3. Bounded blocking defines closed sets

Let M be a translation surface with singularity set Σ, and let M̂2 = {(x, y) ∈
(M r Σ)2 : x 6= y}. If Z is a topological space and A ⊂ B are subsets of Z, when
we say that A is closed as a subset of B, we mean that A is closed in the relative
topology, i.e. A = B ∩A.

Lemma 7. For any fixed integer n ≥ 0, the following hold:

(I) For a fixed translation surface M , the set

Fn(M)
def
= {(x, y) ∈ M̂2 : bc(x, y) ≤ n}

is closed as a subset of M̂2.
(II) For a fixed translation surface M , and a fixed nonsingular x ∈M , the set

Fn(M,x)
def
= {y ∈M r (Σ ∪ {x}) : bc(x, y) ≤ n}

is closed as a subset of M r (Σ ∪ {x}).
(III) The set Fn ⊂ H′′ consisting of all surfaces on which the first and second

marked points are finitely blocked of blocking cardinality at most n, is closed
in H′′.

(IV) For a fixed stratum H, the set of M0 ∈ H for which any pair (x, y) ∈ M̂2
0

satisfies bc(x, y) ≤ n is closed in H.

Moreover, there is ` such that if the set

(1)
{

(x, y) ∈M2 : bc(x, y) ≤ n
}

is dense in M2, then M has the bounded blocking property with blocking cardinality
at most `.

Proof. We will denote a surface in H′′ by (M,x, y), where x and y are respectively
the first and second marked points on M . The topology on H′′ is such that when
(Mk, xk, yk) → (M,x, y), for any parametrized line segment {σ(t) : t ∈ [0, 1]} on
M between x and y, for any large enough k there are parametrized line segments
{σk(t) : t ∈ [0, 1]} such that σk(t) → σ(t) for all t – see [MT02, Zor06] for details.
Here a parameterized line segment is a constant speed straight line in each chart
and does not contain singular points in its interior.

We begin with the proof of (III). Let (Mk, xk, yk) be a sequence that converges to

(M,x, y) in H′′, where (xk, yk) belongs to Fn(Mk) for all k. Let
{
b
(1)
k , . . . , b

(n)
k

}
⊂

Mk be a blocking set for (xk, yk). Passing to a subsequence, we may assume that

b
(i)
k converges to a point b(i) ∈ M for each i. By the above description of the

topology of H′′, if
{
b(1), . . . , b(n)

}
does not contain x or y then it is a blocking set

for (x, y) in M and we are done.
We now discuss the case that some of the b(i) are equal to x or y. We modify

the set
{
b(1), . . . , b(n)

}
as follows. For any i for which b(i) is different from both x

and y, we set B(i) = b(i). Suppose i is such that b(i) = x. Let r > 0 be smaller
than half the length of the shortest saddle connection on M . This implies that r is
smaller than half the distance between x and y, and that there is no singularity in
the ball B(x, r) with center x and radius r.

For k large enough, B(xk, r) is an embedded flat disk in Mk that contains b
(i)
k ,

and there is a unique trajectory δ
(i)
k from xk to b

(i)
k that stays within this disk. Let
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B
(i)
k be the point on δ

(i)
k at distance r from xk. Passing again to a subsequence we

assume that B
(i)
k converges to a point B(i) in M . Note that this point is distinct

from x and y for each such i. We repeat this procedure for each i for which b(i) is
equal to either x or y, passing at each stage to a further subsequence.

Let us prove that
{
B(1), . . . , B(n)

}
is a blocking set for (x, y) in M . Let σ

be a trajectory from x to y. We can assume without loss of generality that σ is
simple, i.e. does not intersect itself. Let σk be the segment between xk and yk that

converges pointwise to σ. If σk meets one of the B
(i)
k for infinitely many k, B(i)

belongs to σ and we are done.
Assume by contradiction that there is an index i such that, for infinitely many

k, σk meets b
(i)
k but not any B

(j)
k . In particular, b

(i)
k converges to either x or y.

Suppose for concreteness that it converges to x. Since B
(i)
k does not belong to

σk, the subsegment σ′k of σk between x and b
(i)
k is not equal to the segment δ

(i)
k

defined above. In particular the length of this subsegment is bounded below and
it converges to a nontrivial subsegment σ′ of σ, which is a loop from x to x. This
contradicts the simplicity of σ, completing the proof of (III).

Clearly (III) =⇒ (I) =⇒ (II) and (III) =⇒ (IV). It remains to prove
the final assertion. Suppose x, y ∈ M and there are xk → x, yk → y such that
bc(xk, yk) ≤ n. We need to prove that bc(x, y) ≤ `, for some ` which depends only
on M and n. If x, y are distinct nonsingular points, then for large enough k the
points xk, yk are also distinct and nonsingular, and the claim follows from (I). We
will consider three cases, adapting the proof of (III) to each one:

Case 1. x = y is a nonsingular point. We will show that in this case the
previous proof applies and we can take ` = 2n.

We construct the points B(i) as follows. Passing to subsequences we assume the

existence of each of the limits bi = limk→∞ b
(i)
k , and when bi 6= x, we set Bi = bi as

before. When bi = x, in place of the short segments δ
(i)
k appearing in the previous

argument, we consider two segments — one from xk to b
(i)
k and one from yk to b

(i)
k .

We denote these by δ
(i)
k,1, δ

(i)
k,2 and construct points B

(i)
k,1, B

(i)
k,2 by ‘sliding’ b

(i)
k along

these segments as in the preceding argument. Taking limits, in each case in which
bi = x we get two limit points, so re-indexing we get a total of at most 2n points.

We now show that this is a blocking set. Let σ be a segment from x to x, which
does not contain any of the Bi. It is not contained in the ball B = B(x, r) appear-
ing in the previoius proof. Let σk be a sequence of parameterized line segments
converging to σ. We can assume that none of these segments contains any of the

B
(i)
k,j , i = 1, . . . , n, j = 1, 2. The only place in the proof of (III) in which we used

that x 6= y is that we needed to know that the subsegment σ′ of σ constructed in
the proof is a proper subsegment of σ. In the case x = y there are two subsegments

σ′k, σ
′′
k between x and b

(i)
k , neither of which is equal to δ

(i)
k , since σk does not contain

any of the B
(i)
k,j . In particular each of them leaves the disk B(xk, r) and hence has

length at least r. So in the limit they both converge to nontrivial loops σ′, σ′′ from
x to itself, whose concatenation is σ. This gives the desired contradiction to the
simplicity of σ.

Case 2. x 6= y and at least one of them is a singularity. We will show that in this
case we can take ` = n(τ + 1)2, where τπ is the maximal cone angle of a singularity
on M .
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Assume that x is a singularity, let r be as in the preceding proof, and let
U1, . . . ,Uτ+1 be open convex subsets of M of diameter less than r, such that⋃
Us = B(x, r) r {x} and x is in the closure of each Us. Such sets exist by our

choice of τ and r, e.g. we may take them to be open half-disks centered at x. If y
is also a singularity, we similarly choose U ′1, . . . ,U ′τ+1 covering B(y, r)r {y}.

We now choose sequences x
(s)
k such that x

(s)
k ∈ Us and x

(s)
k →k→∞ x. If y is also

a singularity we similarly choose sequences y
(t)
k which approach y from within U ′t.

We also require that bc
(
x

(s)
k , y

(t)
k

)
≤ n for each k, s, t. Such sequences exist since

(1) is dense. For each choice of (s, t) ∈ {1, . . . , τ + 1}2 we perform the procedure

explained in the proof of (III). Namely we take blocking sets
{
b
(i,s,t)
k : i = 1, . . . , n

}
which block all segments between x

(s)
k and y

(t)
k , pass to subsequences to assume that

limk b
(i,s,t)
k exists for each i, s, t, and define B(i,s,t) to be this limit if it is distinct

from x and y. If the limit is x we modify b
(i,s,t)
k by letting B

(i,s,t)
k be the unique

point of distance r from x along the continuation of the unique segment δ
(i,s,t)
k

which connects x and b
(i,s,t)
k and which passes through Us. Then we take B(i,s,t)

to be the limit limk B
(i,s,t)
k (passing to subsequences if necessary). We perform a

similar modification if limk b
(i,s,t)
k = y. This procedure gives us a set{

B(i,s,t) : i ∈ {1, . . . , n}, (s, t) ∈ {1, . . . , τ + 1}2
}
,

which we claim is a blocking set for x, y.
Indeed for each segment σ from x to y, we can assume that it approaches x from

within Us and y from within U ′t. Then for large enough k there are segments σk
from x

(s)
k to y

(t)
k which approach σ pointwise. Working with these segments as in

the proof of (III), we see that σ is blocked by B(i,s,t) for some i.
Case 3. x = y is a singular point. In this case we use both of the arguments

used in Cases 1 and 2. We leave the details to the reader. �

Corollary 8. Let BBn denote the set of surfaces which have the bounded blocking
property, with blocking cardinality at most n. Then there is ` ∈ N such that if
M ∈ BBn then GM ⊂ BB`.

Proof. Let us say that M0 is n-blocking for distinct nonsingular points if for any

(x, y) ∈ M̂2
0 , bc(x, y) ≤ n. Then the set of such surfaces is closed by Lemma

7(IV). Also, if M ′′ ∈ H′′ has x, y as the first and second marked points, and
x(g), y(g) are the first and second marked points on gM ′′, then bc(x, y) ≤ n im-
plies bc(x(g), y(g)) ≤ n. This implies that the property of being n-blocking for
distinct nonsingular points is G-invariant. Since M ∈ BBn, M is n-blocking for
distinct nonsingular points. Thus any surface in GM is also n-blocking for distinct
nonsingular points, and the claim follows from the last assertion in Lemma 7. �

A similar argument also shows:

Proposition 9. Let M be a translation surface, ξ a singular point on M and n ≥ 0
an integer. Recalling our convention that singularities on translation surfaces are
labeled, we can use the notation ξ for a singular point of any other surface in
H. Let F ′n ⊂ H′ denote the set of surfaces on which the marked point y satisfies
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bc(ξ, y) ≤ n. Then F ′n is closed in H′. In particular, {y ∈ M r Σ : bc(ξ, y) ≤ n}
is closed as a subset of M r Σ.

Proof. We repeat the proof of Lemma 7(III), replacing everywhere x with ξ and
also xk with ξ.

In this case the set B = B(ξ, r) is a topological disk which is metrically a finite
cover of a flat disk, branched over its center point ξ. Then B is star-shaped with
respect to its center point ξ and it is still the case that there is a unique straight
segment from ξ to any point in B which is contained in B. We can thus define the

segment δ
(i)
k as in the proof of (III), and the same argument applies. �

4. Characterization of the finite blocking property

In this section we will prove Theorem 1. A translation surface is purely pe-
riodic if it is completely periodic and all cylinders in such a decomposition have
commensurable circumferences. The following was proved in [Mon09]:

Proposition 10 (Monteil). If M has the blocking property then M is purely peri-
odic.

Proof of Theorem 1. The implication (1) =⇒ (2) is proved in [Mon05], and it is
immediate that (2) =⇒ (3). We first show (4) =⇒ (1), that is we assume that
M has the bounded blocking property and we show that it is a torus cover.

Let L def
= GM . By assumption there is n such that M ∈ BBn, and by Corollary

8 this means L is contained in BB` for some `. By Proposition 10 this means that
every surface in L is completely periodic and by Proposition 5, L is of cylinder rank
one.

Recall that the field of definition of L is the smallest field such that in any
coordinate chart U on H given by period coordinates, the connected components
of U ∩ L are cut out by linear equations with coefficients in k (see [Wrib]). By
[Wria, Theorem 1.9], for any completely periodic surface M ′ ∈ L, and any cylinder
decomposition on M ′ with circumferences c1, . . . , cr the field of definition k of L
satisfies

k ⊂ Q
[{

ci
cj

: i, j = 1, . . . , r

}]
.

By Proposition 10, any surface in L is purely periodic, so k = Q. Therefore L
contains a surface with rational holonomies, i.e. a square-tiled surface M ′. Since
M ′ is square-tiled the holonomy of absolute periods on M ′ is a discrete subset of
C. Motion in the G⊕ REL leaf only changes the holonomy of absolute periods by
a linear map, and therefore for any M in L, the holonomy of absolute periods is
discrete, i.e., any M ∈ L is a torus cover. This proves (4) =⇒ (1).

Now we prove (3) =⇒ (4). We have an open set U1 in M×M consisting of pairs

of points on M blocked from each other by finitely many points, that is, U1∩M̂2 ⊂⋃
n Fn(M). Each Fn(M) is closed as a subset of M̂2 by Lemma 7(I), so by Baire

category, there is n such that Fn(M) contains an open set U2. Each pair of points

(x, y) in U2 defines a surface in H′′, namely M ′′ = (M,x, y). Let L(M ′′)
def
= GM ′′ ⊂

H′′. By Theorem 4, L̂(M ′′) is a linear manifold of even dimension contained in
Fn and the collection of such linear submanifolds is countable. By Lemma 7(III),

L̂(M ′′) ⊂ Fn.
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The fiber ϕ−1(M) is a linear submanifold ofH′′ identified with M̂2. Therefore for

any M ′′, Ω(M ′′)
def
= ϕ−1(M)∩L̂(M ′′) is also a linear submanifold, and its dimension

is 0, 2 or 4. We have covered U2, an open subset of a four-dimensional manifold, by
countably many linear manifolds of dimensions at most four. By Baire category,
there is M ′′ for which Ω(M ′′) is a linear manifold of dimension four. Since ϕ−1(M)
is connected, it coincides with Ω(M ′′).

We have proved that

ϕ−1(M) = Ω(M ′′) ⊂ L̂(M ′′) ⊂ Fn;

that is, any two distinct nonsingular points in M are of blocking cardinality at
most n. Applying the last assertion of Lemma 7, we see that M has the bounded
blocking property. �

5. Illumination

In this section we will study some illumination problems. Recall that two points
x, y on a translation surface M do not illuminate each other if and only if they are
finitely blocked with blocking cardinality zero. Also recall that p1, p2 denote the
projections onto the first and second factors of M ×M . The following result is the
main result of this section.

Theorem 11. Let M be a translation surface, let n be a non-negative integer.
Then:

(i) For any x ∈ M , the set {y ∈ M : bc(x, y) ≤ n} is either finite or contains
M r (Σ ∪ {x}).

(ii) The set {(x, y) ∈M2 : bc(x, y) ≤ n} either contains M̂2, or is a finite union
of 0 and 2 dimensional linear submanifolds of M ×M . The 2-dimensional
linear submanifolds are of one of the following forms: F×M , M×F , where
F ⊂ M is finite, or a translation surface S embedded affinely in M ×M ,
where for i = 1, 2, τi = pi|S : S → M is a finite-degree covering map such
that τ2 ◦ τ−1

1 is a multiplication by a scalar λ satisfying λ2 ∈ Q.

Theorem 11 implies Theorem 2. We apply Theorem 11 with n = 0. It is clear
that the second alternative in (i) cannot hold, since for any x, all nearby points
illuminate x. Also, in (ii), the cases F ×M and M×F do not arise, since any point
illuminates some other point. �

Proof of Theorem 11. Keep the notation of §2.1 and Lemma 7. We will first prove
(i) in case x is a regular point of M . Let M ′ ∈ ϕ′−1(M) ⊂ H′ denote the surface
with first marked point at x. We need to show that

A
def
= {y ∈M r (Σ ∪ {x}) : bc(x, y) ≤ n} ,

which we may identify with Fn ∩ ϕ′′−1(M ′), is either finite or coincides with
ϕ′′−1(M ′). Let us assume A  ϕ′′−1(M ′). Since Fn is closed and G-invariant,
A is a union of at most countably many linear manifolds, which are of the form

L(M ′′0 )
def
= GM ′′0 for M ′′0 ∈ A. For each M ′′0 , L(M ′′0 )∩ϕ′′−1(M ′) is a linear manifold

of dimension 0 or 2 by Theorem 4. If the dimension were 2, A would coincide with
the fiber ϕ′′−1(M) by connectedness, and hence each L(M ′′0 ) is finite. To conclude
the proof of (i) we need to show that in fact there are only finitely many distinct sets
L(M ′′0 ). If there were infinitely many this would mean that Fn contains infinitely
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many G-orbit-closures, so by Theorem 4 they would accumulate on an orbit-closure
of greater dimension, also contained in Fn. By Lemma 6, each L(M ′′0 ) projects onto
L, so the only way for the dimension to increase would be in the direction of the
fiber ϕ′′−1(M ′); that is, once again we would have that A = ϕ′′−1(M ′), contrary
to assumption.

In case x = ξ is a singularity we repeat the argument, using Proposition 9 instead
of Lemma 7, F ′n instead of Fn, ϕ′ instead of ϕ′′ and H′ instead of H′′. We leave
the details to the reader.

The proof of (ii) is similar. Suppose that

M̂2 6⊂ A def
= {(x, y) ∈M2 : bc(x, y) ≤ n}.

Applying Theorem 4 as in the preceding paragraph we see that A is the union
of finitely many 0-dimensional and finitely many 2-dimensional linear manifolds.
We need to show that all of the 2-dimensional manifolds have the stated form.
This follows from arguments of [HST08], but we give an independent argument for
completeness.

Let N ⊂ (M r Σ)2 be a 2-dimensional linear manifold in A. By Theorem 4, N
is C-linear, i.e., in the translation charts of M ×M , a neighborhood of N is the set
of solutions of an equation of the form

(2) az1 + bz2 = 0

(up to a translation). Moreover N is defined over R so we can take a, b ∈ R. If
a = 0 then any connected component of N is of the form M ×{x} for some x ∈M ,
i.e. N is of the form M × F . Similarly if b = 0 then N has the form F ×N . Now
we consider the case when a, b are both nonzero.

Since the transition maps for the translation atlas are translations, a and b can
actually be taken to be independent of the neighborhood, and the Cartesian product
translation structure on M2, restricted to N , endows N with a natural structure of
a translation surface (see [HST08, §3] for more details), where N is locally modelled
on the plane (2). Since a and b are both nonzero, each of the projections τi = pi|N
has a nonsingular derivative, so by connectedness, each τi is a finite covering map.

The plane (2) can be identified with C in many ways and thus the translation
surface structure onN is only naturally defined up to a scalar multiple. However, for
any fixed choice of translation structure on N , each of the maps τi is the composition
of a dilation and a translation covering. Let ki be the degree of the covering map
τi, and let λi be the associated dilation. The choice of the λi depends on a choice
of the translation structure on N , but since the derivative of τ2 ◦ τ−1

1 is the map

z1 7→ −ab z1, we have λ
def
= λ2

λ1
= −ab . We can compute the area of N using each of

the maps τi, to obtain

area(N) =
ki
λ2
i

area(M).

Comparing these formulae for i = 1, 2 we see that λ2 =
(
a
b

)2
= k2

k1
∈ Q. �

6. Examples and questions

Let T be the standard torus, obtained from the unit square [0, 1]2 by gluing
opposite sides to each other by translations. Denote by π the projection from R2 to
T . For any nonzero integer n, notice that the map R2 → R2, x 7→ nx descends to a
map mn : T → T which multiplies both components by n in R/Z, and is therefore
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n2 to 1. We describe blocking cardinalities of pairs of points in T and blocking sets
realizing them.

Lemma 12. (a) If x and y are distinct points on T , their blocking cardinality
is bc(x, y) = 4.

(b) It is realized by the blocking set B(x, y) = m−1
2 (x + y), which contains the

midpoint of any geodesic from x to y.
(c) This is the unique blocking set of size 4.

Proof. Let x̃, ỹ denote points in R2 which project to x, y on T . Let u = (1, 0),
v = (0, 1), w = (1, 1). The four segments from ỹ to the four points x̃, x̃+ u, x̃+ v,
x̃+w (four corners of a unit square) project to segments with disjoint interiors on
T , so at least 4 points are required to block the pair (x, y). On the other hand, any
line segment in T from x to y is the projection of a line segment in R2 from x̃ to
ỹ+au+bv with a and b in Z. Such a segment has midpoint 1

2 (x̃+ ỹ+au+bv). This

midpoint in R2 projects to one of the points 1
2 (x+ y), 1

2 (x+ y + u), 1
2 (x+ y + v),

1
2 (x+ y + w), which are the four points in T comprising m−1

2 (x+ y). This proves
that the set B(x, y) is a blocking set and that bc(x, y) ≤ 4. So (a) and (b) are
proved.

We now prove (c). We saw that the four segments from ỹ to x̃, x̃ + u, x̃ + v,
x̃ + w project to segments on T with disjoint interiors, so a blocking set for (x, y)
must contain at least a point in each of them. Consider the segment from ỹ + v
to x̃+ u. The only intersection of its projection to T with the interiors of our four
segments is its midpoint m which is also the midpoint of the segment from y to
y +w. So a blocking set not containing m would need to contain at least 5 points.
Similar reasoning proves the other three points in the proposed set B(x, y) have to
be in a blocking set of cardinality 4. �

The following two lemmas extend this description to configurations blocking a
point from itself, and describe larger blocking sets on T . They are proved by similar
arguments and we leave the details to the reader.

Lemma 13. (a) If x = y, then the blocking cardinality is bc(x, x) = 3.
(b) It is realized by the blocking set B(x, x) = m−1

2 (2x)r {x}, which is the set
of midpoints of all primitive geodesics from x to x. This blocking set can
also be described as B(x, x) = x+B0 where B0 = B(0, 0) = m−1

2 (0)r {0}.
(c) This is the unique blocking set of size 3.

Lemma 14. (a) Let n and a be relatively prime integers with 1 ≤ a < n. For
any pair of points (x, y) with x 6= y, the set B = m−1

n (ax + (n − a)y) is a
blocking set of cardinality n2 for the pair (x, y). It contains the point located
a/n of the way along each line segment from x to y on T .

(b) Let n ≥ 2 be an integer. For the pair of points (x, x) with x = 0, the set

B0 = m−1
n (0)r {0} = {(a/n, b/n) : 0 ≤ a < n, 0 ≤ b < n, (a, b) 6= (0, 0)}

is a blocking set of cardinality n2 − 1.
For the pair of points (x, x) with x 6= 0, the set B = x+B0 is a blocking

set of cardinality n2 − 1, also equal to m−1
n (nx).

We will use these computations to compute blocking configurations on brached
covers of T . Recall that if M → T is a branched translation cover, a singularity of
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M corresponds to a ramification point of the cover, and if the angle at a singularity
x is 2πk then k is called the ramification index of x.

Lemma 15. Suppose M is a torus cover of degree d, with arbitrary branch locus
and ramification type, and let p : M → T denote the covering map.

(a) For a pair (x, y) of points of M such that p(x) 6= p(y), if B′ is a blocking
set for (p(x), p(y)) on T , then B = p−1(B′) is a blocking set for (x, y), of
cardinality at most d times that of B′, with equality when B contains no
zero of M , i.e. no ramification point of p.

(b) In particular,
– for almost every pair (x, y) of points of M , bc(x, y) ≤ 4d.
– for pairs (x, y) of points of M , such that the set B(p(x), p(y)) con-

tains branch points of p, the bound above is decreased by the sum of
the ramification indices of the ramification points above these branch
points.

(c) For a pair of points (x, y) on M such that p(x) = p(y) (whether x = y or
not), p−1(B(p(x), p(x))) is a blocking set, so that bc(x, y) ≤ 3d. As above,
when B(p(x), p(y)) contains branch points of p, the bound is decreased by
the sum of the ramification indices of the ramification points above these
branch points.

Proof. Both (a) and (b) are easy, and (c) follows from the following observation.
When p(x) = p(y), any geodesic path γ from x to y projects to a geodesic γ′ from
p(x) to itself, possibly non primitive. Considering the restriction of the geodesic γ,
if γ′ is not primitive, to its initial part until it first reaches a point projecting to
p(x), we see that (c) holds. �

6.1. Example 1. The following example shows that quite general maps τ1, τ2 may
arise in Theorem 11.

Proposition 16. Let a, b be positive integers with gcd(a, b) = 1, let n = a+ b, and
let

X = {(−ax, bx) : x ∈ T}.
Also let p : M → T be a translation cover with branching locus m−1

n (0), and non-
trivial ramification at each pre-image of each branch point, and let

Y = (p× p)−1(X).

Then any pair of points in Y do not illuminate each other.

Proof. For x ∈ R2, the point 0 is a/n along the geodesic in R2 from −ax to bx.
Thus, according to Lemma 14, the set B = m−1

n (0) is a common blocking set, of
cardinality n2, for all pairs of points in X. Thus the statement follows from Lemma
15. �

6.2. Example 2. The following examples show that the map τ2 ◦ τ−1
1 could be a

translation. Let M = T be the torus, and consider

N = {(x, y) ∈M2 : bc(x, y) ≤ 3}.

Then according to Lemma 13, N contains the diagonal {(x, x) : x ∈ M} but
according to Lemma 12, N 6= M2. Therefore the diagonal is one of the linear
submanifolds appearing in Theorem 11, and we can have τ2 ◦ τ−1

1 = Id.
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Figure 1. The Escher double staircase. Sides marked with identi-
cal stair-climbers are identified; unmarked sides are identified with
the corresponding opposite sides.

Similar examples in which τ2 ◦ τ−1
1 is a nontrivial translation can be obtained by

taking M to be a cyclic cover of T , for example the Escher staircase (see Figure 1).
This surface admits a degree 3 cover p : M → T and it has a nontrivial translation
automorphism D : M → M moving one step up the ladder. Let x and y be
any two points such that D(x) = y. Then p(x) = p(y), and according to Lemma
15(c), bc(x, y) ≤ 9. It is not hard to find an explicit pair of points x, y for which
bc(x, y) > 9. This shows that if we take this surface M and n = 9, then we can
have a subsurface N for which D = τ2 ◦ τ−1

1 is a translation automorphism.

6.3. Example 3. Using the torus and Lemmas 12 and 13 we easily find sequences
xk → x, yk → y for which bc(x, y) < limk bc(xk, yk), i.e. the blocking cardinality
is not continuous. The following example shows that it is not even lower semi-
continuous, i.e. it may increase when taking limits. It also shows that in Lemma

7(I), we cannot replace M̂2 with M2.
Let M be a surface in H(2). Then M admits a hyper-elliptic involution h,

whose set of fixed points consists of the unique singularity ξ, and 5 non-singular
Weierstrass points. We claim that whenever h(x) = y, x 6= y, we have bc(x, y) ≤ 5.
Indeed, in this case, the action of h swaps x and h(x), and acts by rotation by
π. So h maps any segment between σ between x and y to another segment from
x to y, of the same length and in the same direction. Since x and y are distinct
regular points there is only one such segment, i.e. h maps σ to itself, reversing the
orientation on it. So its midpoint must be fixed by h, that is, the Weierstrass points
form a blocking set for the pair (x, y).

On the other hand by constructing explicit disjoint segments, it is not hard to
show that bc(ξ, ξ) ≥ 9. For example we can present M as the union of three
parallelograms (an L-shaped presentation), and the diagonal and edges of these
parallelograms contain 9 disjoint segments from ξ to ξ. Now taking xk → ξ, we



16 SAMUEL LELIÈVRE, THIERRY MONTEIL, AND BARAK WEISS

have yk = h(xk)→ ξ, and

5 ≥ lim
k

bc(xk, yk), bc(lim
k
xk, lim

k
yk) = bc(ξ, ξ) ≥ 9.

6.4. Questions. 1. Let N ⊂ M ×M be a 2-dimensional linear submanifold as
in Theorem 11(ii), and let λ1, λ2 be the derivatives of the translation maps τ1, τ2.
The quotient λ = λ1/λ2 is called the slope of N . In Example 2 the slope is 1, and
in Example 1 the slope can be an arbitrary negative rational number. It would
be interesting to know whether other slopes are possible. In particular, do the
cases λ = 0, λ = ∞ actually arise in connection with blocking configurations? Do
positive rational slopes arise, except for λ = 1?

2. More generally, suppose N ⊂M ×M is an embedded translation surface for
which the maps τi : N → M are the composition of a dilation and a translation,
and let λ be the derivative of the composition τ2 ◦ τ−1

1 . In the proof of Theorem 11
we showed that λ2 ∈ Q. Is it possible that λ is irrational?

3. In the last assertion of Lemma 7, can we take ` = n? Example 3 shows that
this does not follow from a simple continuity argument. Also in connection with
Example 3, does there exist a similar example in which the point ξ is nonsingular?
That is, an example of a surface M with a regular point ξ and two sequences xk, yk
converging to ξ, such that bc(ξ, ξ) > limk bc(xk, yk)?
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