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Abstract. Let θ ∈ Rd. We associate three objects to each approxima-
tion (p, q) ∈ Zd ×N of θ: the projection of the lattice Zd+1 to Rd, along
the approximating vector (p, q); the displacement vector (p − qθ); and
the residue classes of the components of the (d+1)-tuple (p, q) modulo
all primes. All of these have been studied in connection with Diophan-
tine approximation problems. We consider the asymptotic distribution
of all of these quantities, properly rescaled, as (p, q) ranges over the best
approximants and ε-approximants of θ, and describe limiting measures
on the relevant spaces, which hold for Lebesgue a.e. θ. We also consider
a similar problem for vectors θ whose components, together with 1, span
a totally real number field of degree d+1. Our technique involve recast-
ing the problem as an equidistribution problem for a cross-section of a
one-parameter flow on an adelic space, which is a fibration over the space
of (d + 1)-dimensional lattices. Our results generalize results of many
previous authors, to higher dimensions and to joint equidistribution.
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1. Introduction

Our results concern the asymptotic statistics of certain geometric and
arithmetic quantities associated with approximation vectors. We begin by
introducing the notions and notations necessary for formulating the results
(more details will be given in subsequent sections of the paper).

Throughout this paper, d and n are positive integers with n = d+1. Let
e1, . . . , en be the standard basis of Rn, and let v =

∑
viei ∈ Rn with vn ̸= 0.

We will continuously use the direct sum decomposition

Rn = Rd ⊕ span(v), where Rd def
= {u ∈ Rn : un = 0}, (1)

and the first summand in this decomposition will be called the horizontal
space. The projection Rn → Rd will be denoted by πvRd , and πRd will be an
abbreviation for πenRd .
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Choose some norm on Rd, and for y ∈ Rd, denote ⟨y⟩ = minp∈Zd ∥y−p∥.
For θ ∈ Rd, we say that (p, q) ∈ Zd × N is a best approximation of θ if for
any q′ < q, ⟨qθ⟩ < ⟨q′θ⟩, and ⟨qθ⟩ = ∥qθ−p∥. For all θ ∈ Rd∖Qd, the set of
best approximations of θ is an infinite sequence (pk, qk)k∈N, where the order
is chosen so that q1 ≤ q2 ≤ · · · . In fact there will be k0 such that qk+1 > qk
for all k > k0, and the pk will be uniquely determined for k > k0. The
potential ambiguity of choices for k ≤ k0 will have no effect on the objects
we will consider in this paper. For θ ∈ Rd and v = (p, q) ∈ Zd × N, we will
write

disp(θ,v)
def
= q1/d(p− qθ) ∈ Rd, (2)

and refer to this vector as the displacement.
All measure spaces in this paper will be standard Borel spaces and all

measures will be Borel measures. The collection of probability measures on
a measure spaceX is denoted by P(X). Two measures onX are said to be in
the same measure class if they are mutually absolutely continuous (i.e. have
the same null-sets). If X is a locally compact second countable Hausdorff
(lcsc) space, µ is a regular measure on X, and (xk)k∈N is a sequence in X,

we say that (xk) equidistributes with respect to µ if the measures 1
N

∑N
k=1 δxk

converge weak-* to µ.
A lattice in Rn is a discrete subgroup of full rank. Its covolume is the vol-

ume of a fundamental domain in Rn, and the space of all lattices of covolume
1 is denoted by Xn. It can be identified with the quotient SLn(R)/ SLn(Z)
via the map gZn 7→ g SLn(Z), and thus acquires a natural SLn(R)-invariant
probability measure, which we denote by mXn . This measure is sometimes
called the Haar-Siegel measure. Two lattices in Rn are homothetic if one can
be obtained from the other by multiplication by a nonzero scalar, and the
homothety class of each Λ contains a unique representative in Xn, which we
denote by [Λ]. If Λ is a lattice in Rn and v ∈ Λ∖Rd then πvRd(Λ) is a lattice

in Rd and
[
πvRd(Λ)

]
∈Xd.

We denote by Ẑ the profinite completion of Z, that is, the inverse limit
of groups Z/mZ, with respect to the natural maps Z/m1Z→ Z/m2Z when-
ever m2|m1. This is a compact topological ring which is isomorphic to∏
p prime Zp, where Zp is the ring of p-adic integers. We denote by Ẑn the

additive group which is the n-fold Cartesian product of Ẑ; it is also the
inverse limit of quotient groups Zn/Λ, where Λ ranges over finite index sub-

groups of Zn. We denote by mẐn the Haar probability measure on Ẑn. For
Λ ∈ Xn, a vector v ∈ Λ is said to be primitive if it is not a multiple of a
vector in Λ by an integer different from ±1, and we denote the primitive

elements of Λ by Λprim. The natural diagonal embedding Zn ↪→ Ẑn has a

dense image, and we denote the closure of the image of Znprim by Ẑnprim. Note
that Ẑnprim is one orbit for the natural action of the group SLn(Ẑ), and

Ẑnprim = {(vp)p prime : ∀p, ∥vp∥p = 1}.
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Since SLn(Ẑ) acts transitively on Ẑnprim, there is a unique invariant proba-
bility measure for this action, which we denote by mẐn

prim
.

Theorem 1.1. For any norm || · || on Rd there is a probability measure

µ = µbest,||·|| on Xd × Rd × Ẑn such that for Lebesgue almost any θ ∈ Rd,
the following holds. Let vk ∈ Zn be the sequence of best approximations to
θ with respect to the norm || · ||. Then the sequence([

πvk

Rd(Zn)
]
, disp(θ,vk),vk

)
k∈N ∈Xd × Rd × Ẑn (3)

equidistributes with respect to µ. The measure µ has the following properties:

(1) It is a product µ = µ(∞) × µ(f) where µ(∞) ∈ P(Xd × Rd), µf ∈
P(Ẑn).

(2) The measure µ(f) is mẐn
prim

(and in particular, does not depend on

the choice of the norm).

(3) The projection µ(Xd) of µ(∞) to Xd is equivalent to mXd
, but is equal

to it only in case d = 1.

(4) The projection µ(R
d) of µ(∞) to Rd is boundedly supported, absolutely

continuous w.r.t. Lebesgue with a nontrivial density (i.e., is not the
restriction of Lebesgue measure to a subset of Rd). If || · || is the
Euclidean norm, then it is SOd(R)-invariant.

(5) For d > 1, µ(∞) ̸= µ(Xd) × µ(Rd).

Furthermore, each of the coordinate sequences([
πvk

Rd(Zn)
])
⊂Xd, (disp(θ,vk)) ⊂ Rd, (vk) ⊂ Ẑn (4)

equidistributes in its respective space, with respect to the pushforward of

µ(Xd), µ(R
d), µ(f) respectively.

Let ε > 0 and fix a norm ∥ · ∥ on Rd. Given θ ∈ Rd, we say that
w = (p, q) ∈ Zd × N is an ε-approximation of θ (with respect to ∥ · ∥) if
∥disp(θ,w)∥ ≤ ε and gcd(p1, . . . , pd, q) = 1. Standard results in Diophantine
approximation imply that for a.e. θ, for all ε, there are infinitely many ε-
approximations. When we refer to the sequence (pk, qk) of ε-approximations,
we will always assume that they are ordered so that q1 ≤ q2 ≤ · · · .

Theorem 1.2. For any norm ||·|| on Rd and any ε > 0 there is a probability

measure ν = νε−approx,||·|| on Xd×Rd×Ẑn such that for Lebesgue almost any

θ ∈ Rd, the following holds. Let wk ∈ Zn be the sequence of ε-approximations
of θ with respect to the norm || · ||. Then the sequence([

πwk

Rd (Zn)
]
, disp(θ,wk),wk

)
k∈N ∈Xd × Rd × Ẑn (5)

equidistributes with respect to ν. The measure ν has the following properties:

(1) The measure ν is a product ν = ν(Xd) × ν(Rd) × ν(f) where ν(Xd) ∈
P(Xd), ν

(Rd) ∈ P(Rd) and ν(f) ∈ P(Ẑn).



GEOMETRIC AND ARITHMETIC ASPECTS OF APPROXIMATION VECTORS 5

(2) The measure ν(Xd) is mXd
and the measure ν(f) is mẐn

prim
(in par-

ticular, these measures do not depend on the choice of ε or of the
norm).

(3) The measure ν(R
d) is the normalized restriction of the Lebesgue mea-

sure on Rd, to the ball of radius ε around the origin with respect to
the norm ∥ · ∥.

Furthermore, each of the coordinate sequences([
πwk

Rd (Zn)
])
⊂Xd, (disp(θ,wk)) ⊂ Rd, (wk) ⊂ Ẑn (6)

equidistributes in its respective space, with respect to the pushforward of

ν(Xd), ν(R
d), ν(f) respectively.

Remark 1.3. A comparison of the two statements reveals that for the
measure ν arising in Theorem 1.2 we have a somewhat simpler description
than for the measure µ in Theorem 1.1. In fact, as will be seen in §11, µ
is absolutely continuous with respect to ν, and the density, which will be
described explicitly, is not a product.

Remark 1.4. In the case of best approximations, our proof gives more
information on the set of full measure in Rd for which the conclusions hold.
For instance, as was pointed out to us by Yiftach Dayan, using [SW19] one
obtains the equidistribution of the first two components of (3) with respect
to the measures described in Theorem 1.1, for a.e. θ, with respect to the
natural measure on a self-similar fractal such as Cantor’s middle thirds set
or the Koch snowflake. See Remark 13.1.

Various special cases of these results, dealing with the individual coordi-
nate sequences (4), and mostly for d = 1, were proved in prior work. Even
in case d = 1, the joint equidistribution of these sequences is new. We will
survey these results in §3. Furthermore, in the sequel we will state a re-
finement (see Theorem 2.1) where equidistribution will take place in a torus

bundle over the product Xd × Rd × Ẑn.
Theorems 1.1 and 1.2 give information about typical vectors θ ∈ Rd but

as is often the case, they say nothing about concrete vectors. The follow-
ing result deals with the asymptotic statistical properties of approximation
vectors of certain algebraic vectors θ. It shows that there are limit laws gov-
erning the approximations but that they are actually quite different from
the ones appearing in Theorems 1.1 and 1.2. To the best of our knowledge
there are no prior results of this type.

Theorem 1.5. Let α⃗ ∈ Rd be a vector of the form α⃗ = (α1, . . . , αd), where

K def
= spanQ(1, α1, . . . , αd) is a totally real number field of degree n ≥ 3. Let

ε0
def
= inf {ε > 0 : there are infinitely many ε-approximations to α⃗} . (7)

Let ε > ε0 and let ∥ · ∥ be a norm on Rd. Then there are measures

µ(α⃗) = µ
(α⃗)
best,∥·∥ and ν(α⃗) = ν

(α⃗)
ε−approx,∥·∥ on Xd × Rd × Ẑn, such that the
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following hold. Let (vk)k∈N and (wk)k∈N denote respectively the sequence of
best approximations and ε-approximations of α⃗, with respect to ∥ · ∥. Then:

• The sequence (3) equidistributes with respect to µ(α⃗), provided

the norm on Rd is either the Euclidean norm or the sup-norm. (8)

• For any norm, the sequence (5) equidistributes with respect to ν(α⃗).

Furthermore, the supports of the projections of µ(α⃗) and ν(α⃗) to Xd,Rd, Ẑn
are null sets with respect to mXd

,mRd ,mẐn
prim

respectively, and in particular,

they are singular with respect to the measures appearing in Theorems 1.1 and
1.2.

Remarks 1.6. (1) A version of Theorem 1.5 is also true in dimension
d = 1 but requires slightly different methods (see Remark 8.12 for
details on what can go wrong in our proof). Also, with our method
one can also treat vectors α⃗ for which the field K is real but not
totally real. However this necessitates some additional arguments
and some additional conditions on the norm. We hope to return to
these topics in future work.

(2) Let α⃗ = (α1, . . . , αd) be as in Theorem 1.5. It is well-known that α⃗
is badly approximable (see e.g. [Sch71]). That is,

inf{||disp(α⃗,w)|| : w ∈ Zd × N} > 0 (9)

(where disp(α⃗,w) is as in (2)). This shows that if limit measures

µ(α), ν(α) as in Theorem 1.5 exist, then their projection to Rd is
bounded away from 0. This is already quite different from the typical
behavior described in Theorems 1.1, 1.2.

(3) The measures µ
(α⃗)
best,∥·∥ and ν

(α⃗)
ε−approx,∥·∥ admit an explicit description,

see §11. Although they are very different from the measures µbest,∥·∥
and νε−approx,∥·∥ appearing in Theorem 1.1 and 1.2, in the recent
paper [SZ], the first author and Zheng exhibit explicit choices of
sequences of vectors α⃗j , corresponding to totally real number fields,

for which µ
(α⃗j)

best,∥·∥ −→j→∞ µbest,∥·∥.

(4) Several authors (see [Che13, §2.3] and references therein) have shown
that in some cases of vectors whose coordinates generate cubic fields
which are not totally real, best approximation denominators vectors
are periodic, or satisfy higher order linear recurrences. We show (see
Proposition 11.7) that for any norm, and any α⃗ as in Theorem 1.5, for
both best approximations and ε-approximations, the sequence of de-
nominators (log(qk))k∈N is strongly asymptotic to a one-dimensional
cut-and-project set, and the sequence of approximation vectors is
strongly asymptotic to a generalized cut-and-project set (see §11.2
for the definitions of these terms).
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1.1. Outline of method and structure of the paper. Our method
closely follows that used by [CC], which in turn was inspired by [AN93].
We consider a space X, a flow at ↷ X, and a subset S ⊂ X intersect-
ing all orbits along a discrete infinite countable set of times. The set S is
called a Poincaré section or cross-section, and the flow induces a return time
function

τ : S → R+, τ(x) = min{t > 0 : atx ∈ S},
and a first return map

TS : S → S, TS(x) = aτ(x)x.

It has been known since classical work of Ambrose and Kakutani (see [Amb41,
AK42] or §4.1) that there is a bijection µ ←→ µS between {at}-invariant
ergodic measures on X, and TS-invariant ergodic measures on S. These
notions were intensively studied both in the setup of standard Borel spaces
with Borel actions, and in the setup of smooth flows on manifolds, with
sections which are codimension one submanifolds. In our setup, the space
X and the section S are chosen so that they satisfy the following properties.

• The space X is an adelic homogeneous space, that is, a quotient
X = G(A)/G(Q) where G is a Q-algebraic group, and {at} is a
one-parameter real subgroup acting on X by left translations. In
particular, X is a locally compact and second countable topological
space, but is not a manifold.

• The section S is chosen so that for each θ in Rd there is Λ̃θ ∈ X, such

that visits to S of the trajectory {atΛ̃θ : t ≥ 0} in X, correspond
in an explicit way to a sequence of approximations. In particular
we will choose distinct (but closely related) sections for dealing with
best approximations and ε-approximations.
• The observables we are interested in, like [πvRd(Zn)], disp(θ,v), and
v (seen as an element of Ẑnprim), are explicitly given by functions on
S.
• For certain dynamically natural measures µ on X, the corresponding
measures µS on S can be described explicitly. In particular this is
true for µ = mX , the unique G(A)-invariant probability measure on
X.

The specific cross-section we work with in this paper involves lattices
which contain a primitive vector whose nth coordinate is 1. We remark that
in [CC] a different cross-section is used.

Recall that for a flow {at} on a locally compact second countable space X,
and an invariant measure µ, the trajectory of a point x ∈ X is generic for µ if

the orbital averaging measures 1
T

∫ T
0 δatxdt converge weak-* to µ as T →∞.

A similar definition can be given with µS , TS in place of µ, {at}. Although
the relationship between at-invariant measures on X and TS-invariant mea-
sures on S is well-understood, for our application we need a finer under-
standing of the relationship between {at}-generic trajectories on (X,µ) and
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TS-generic trajectories on (S, µS). We are not aware of any treatment which
is suitable for our purposes and we develop it in detail in this paper.

In §2 we introduce a torus bundle En → Xd, which we call the space of
lift functionals. We then state strengthenings of Theorems 1.1, 1.2, 1.5 in
which the measures µ(Xd), ν(Xd) are replaced with measures µ(En), ν(En) on
En. In §3 we state more detailed results and compare our results to those of
previous authors. §4 contains some measure-theoretic preliminaries, and in
§5 we introduce reasonable cross sections for a flow on a lcsc measure space
(X,µ) (here and throughout, lcsc is an abbreviation for locally compact
second countable Hausdorff space, and all measures on lcsc spaces are Borel
regular Radon measures, but not necessarily probability measures). Roughly
speaking, the definition of a reasonable cross section captures the minimal
topological and measure-theoretic structure needed in order to establish a
link between generic points for {at} and for TS .

A further helpful notion introduced in Definition 4.7 is that of a tempered
subset of a reasonable cross-section. Such a subset is a cross-section in its
own right, and for tempered subsets, the relation between generic points is
clearer: a point inX is generic for µ if and only if its {at}-orbit intersects S in
points which are generic for TS . We remark that the cross-section we will use
for analyzing best approximations is a tempered subset, but the cross-section
we will use for analyzing ε-approximations is not (see Proposition 9.10).
Correspondingly, for best approximations our results will be slightly stronger
(see Remark 1.4 and Remark 1.6(3)). We remark further that the section
of [CC] was also shown to be tempered.

In §6 we will discuss some useful abstract properties of reasonable cross-
sections; in particular, how to lift a cross-section from a factor, and conti-
nuity properties of cross-sections measures. Taken together, sections §§4-6
constitute our contribution to the abstract theory of cross-sections in lcsc
spaces.

In the subsequent sections we will apply this abstract theory to the spaces
which are relevant for us. In §7 and §8 we will introduce the specific real
and adelic spaces we will work with, and the flows and cross-sections we will
use. Namely, for Theorems 1.1 and 1.2 we will work with µ = mX A

n
, the

natural measure on the adelic space SLn(A)/ SLn(Q), and for Theorem 1.5
the measure µ will be a homogeneous measure on an adelic torus-orbit. A
considerable part of the paper, comprising §8-§9, will be devoted to checking
that the cross-sections we work with are reasonable, and special subsets cor-
responding to best approximations and ε-approximations, are Jordan mea-
surable. In §10 we will explain how certain observables associated with
approximation vectors, can be read off from intersection times with the sec-
tion. In §11 we will analyze the cross-section measures in detail. In §12 we

will argue that for typical θ, the trajectories {atΛ̃θ} relevant for the approx-
imation question, give rise to generic intersection with the cross-section. In
§13 we will combine all of these ingredients to conclude the proofs of the
main results.
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2. A strengthening: the bundle En of lift functionals over
projected lattices

Let ρXd
be the map appearing in the first coordinate of (3), that is

ρXd
(v)

def
=
[
πvRd(Zn)

]
.

In this section we will introduce a probability space (En,mEn) and maps
πXd

, ρEn that fit in the following commuting diagram:

En

πXd

��
Znprim ρXd

//

ρEn

<<

Xd

(10)

We first define the spaces and maps group-theoretically, and then use them
to state strengthenings of our results. We will then discuss the geometric
information encoded in the space En.

Let

En
def
= {Λ ∈Xn : en ∈ Λprim} (11)

be the set of lattices containing en as a primitive vector, and let

H
def
=
{(

A 0
x 1

)
∈ SLn(R) : A ∈ SLd(R), xt ∈ Rd

}
. (12)

Then the lattice Zn is contained in En, the group H acts transitively on
En, and H(Z) is the stabilizer of Zn for this action. Thus we may identify
En ≃ H/H(Z). Since H(Z) is a lattice in H, there is a unique H-invariant
probability measure on En which we denote mEn . We define

πXd
: En →Xd, πXd

(Λ)
def
= πRd(Λ); (13)

that is, the projection of Λ along en. The condition en ∈ Λprim ensures
that the image of this map is indeed in Xd. It is clear that πXd

intertwines
the SLd(R)-actions on En and Xd (where we view SLd(R) as embedded in
H by taking x = 0 in (12)). From the uniqueness of invariant probability
measures for transitive actions we obtain

(πXd
)∗mEn = mXd

. (14)

We now define the map ρEn : Znprim → En. For v ∈ Rd and t ∈ R, let

u(v)
def
=
(
Id v
0 1

)
∈ SLn(R) (15)
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and

at
def
= diag

(
et, . . . , et, e−dt

)
∈ SLn(R). (16)

Given v = (v1, . . . , vn)
t ∈ Znprim, we set

v
def
= −πRd(v)

vn
= − 1

vn
(v1, . . . , vd)

t and t
def
= − log |vn|,

and define

ρEn(v)
def
= atu(v)Zn. (17)

That is, we use u(v) and at to deform Zn to a lattice in En by moving v to
en, using maps which do not change the homothety class of the projection
to the horizontal space. Recall that [·] is our notation for the covolume one
representative of the homothety equivalence class, and note that at acts by
dilations on Rd and u(v) acts trivially on Rd. Thus, this choice ensures that[

πvRd(Zn)
]
=
[
atu(v)π

v
Rd(Zn)

]
= [πRd(atu(v)Zn)] = [πXd

(ρEn(v))] .

This is the commutativity of the diagram (10).
With this notation in hand we now state a strengthening of Theorems

1.1, 1.2 and 1.5:

Theorem 2.1. Let ∥ · ∥ be a norm on Rd, let ε > 0, and let α⃗ be as in
Theorem 1.5. Then there are measures

µ(en), µ(en,α⃗), ν(en) and ν(en,α⃗)

on En × Rd × Ẑn such that, denoting by (vk)k∈N, (wk)k∈N the sequence of
best approximations and ε-approximations of θ ∈ Rd, the sequences

(ρEn(vk), disp(θ,vk),vk)k∈N ∈ En × Rd × Ẑn (18)

and
(ρEn(wk),disp(θ,wk),wk)k∈N ∈ En × Rd × Ẑn (19)

equidistribute with respect to µ(en) and ν(en) respectively for Lebesgue a.e. θ,
and with respect to µ(en,α⃗) (provided (8) holds) and ν(en,α⃗) (provided ε > ε0,
for ε0 as in (7)) for θ = α⃗. Furthermore, the properties of these measures,
listed in Theorems 1.1, 1.2 and 1.5, remain valid, provided we replace ev-
erywhere Xd with En.

We now discuss the additional information encoded by ρEn(v), besides
the information encoded by ρXd

(v). Let v ∈ Rn ∖Rd and suppose Λ ∈Xn

contains v as a primitive vector (for example Λ ∈ En and v = en). We
will introduce an additional geometric invariant associated with v and Λ,
which we will call the lift functional. It records the information required
to reconstruct Λ from its projection onto the hyperplane Rd along v. Let

Λ′′ def
= πvRd(Λ) and let Λ′ be the rescaling of Λ′′ which has covolume one.

That is, if vn is the nth coefficient of v, then

Λ′ = |vn|1/dπvRd(Λ) ∈Xd. (20)

Note that Λ′ = πXd
(Λ) if Λ ∈ En and v = en.
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We claim that there is a linear functional f : Rd → R such that

∀w ∈ Λ ∃k ∈ Z such that w = πvRd(w) +
(
f(πvRd(w)) + k

)
v. (21)

To see this, complete v to a Z-basis v,v1, . . . ,vd of Λ, so that wi
def
=

πvRd(vi) (i = 1, . . . , d) is a Z-basis of Λ′′. For each i there is ci ∈ R such that

vi = wi + civ, and we can define f ∈ (Rd)∗ via the requirement

f(wi) = ci (i = 1, . . . , d).

This construction depends on the choice of the vectors vi, but any two
functionals f1, f2 satisfying (21) will satisfy that f1(u)− f2(u) ∈ Z for any
u ∈ Λ′′, that is they differ by an element of the dual lattice (Λ′′)∗. It will
be more convenient to work with lattices of covolume 1, so we will replace
Λ′′ with Λ′ and f with

f ′(x)
def
= f

(
|vn|−1/dx

)
, (22)

so that f ′ is well-defined as a class in the torus TΛ′ , where for ∆ ∈ Xd we
denote

T∆
def
=
(
Rd
)∗
/∆∗. (23)

This class [f ′] is the lift functional.
Consider the set

E
def
=
{
(Λ′, f) : Λ′ ∈Xd, f ∈ TΛ′

}
,

which is a torus bundle over Xd. Then a pair (Λ′, f) constructed as above
by projecting Λ along v ∈ Λprim ∖ Rd is an element of E . Moreover, using
(21), we can recover Λ from Λ′, f and v, as follows:

Λ = Λ(Λ′, f,v) =
{
|vn|−

1
dx+ (f(x) + k)v : x ∈ Λ′, k ∈ Z

}
. (24)

Thus for each fixed v ∈ Rn ∖ Rd we have an identification of E with the
set of lattices in Xn which contain v as a primitive vector. In particular,
choosing v = en we obtain En as the image of the map Λ(·, ·, en) as in (24).

In order to make the connection between En = HZn and lift functionals
more concrete, we write any element of h ∈ H in the form h =

(
A 0
x 1

)
,

as in (12). Writing h = (A,x) we see that H is a semi-direct product
SLd(R)⋉Rd where SLd(R) acts on Rd by right-multiplication on row vectors.
Furthermore, for hi = (gi,xi) we have h1Zn = h2Zn if and only if g1 ∈
g2 SLd(Z) and xt

1g
−1
1 ∈ xt

2g
−1
2 + Zdg−1

1 . In particular, the lattice Λ′ = giZd
and the equivalence class of the functional f(w) = xt

ig
−1
i w, seen as an

element of TΛ′ , are well-defined independently of i = 1, 2. They represent
respectively the projected lattice πvRd(hiZn), and the lift functional.
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3. Consequences, and prior work

Fix a norm ∥·∥ on Rd and fix ε > 0. Let µ, ν be as in Theorem 1.1 and 1.2

respectively, and let µ(Xd), µ(R
d), µ(f), ν(Xd), ν(R

d), ν(f) be the projections
of these measures on the respective factors. We discuss prior work about
equidistribution on these spaces. Throughout this section we fix θ ∈ Rd for
which the conclusions of Theorems 1.1 and 1.2 are valid, and let (vk), (wk)
denote the sequence of best approximations and ε-approximations of θ.

3.1. Equidistribution of (shapes of) projections in Xd. Our theorems
assert that the sequence of projected lattices

([
πwk

Rd (Zn)
])
k∈N equidistributes

with respect to the natural measure ν(Xd) = mXd
on Xd, and the sequence([

πvk

Rd(Zn)
])
k∈N also equidistributes with respect to a measure µ(Xd) on Xd,

and µ(Xd) ≪ mXd
. We stress that µ(Xd) ̸= mXd

. We will give an explicit

description of µ(Xd) in §11. In particular we will show that µ(Xd) gives less
weight to lattices with short vectors than mXd

.
The first equidistribution result for projected lattices appears in beautiful

papers of Roelcke [Roe56] and Schmidt [Sch98]. Let

SX d
def
= SOd(R)\ SLd(R)/ SLd(Z)

denote the space of shapes of lattices, that is, the space of similarity classes
of lattices in Rd (two lattices are similar if they differ from each other by a
conformal linear map, that is a composition of a dilation and an orthogonal
transformation). This space is equipped with a natural measure mSX d

constructed from the Haar measure on SLd(R). There is a natural projection
map Xd → SX d with compact fiber, and we can define mSX d

concretely
as the image of mXd

under this projection.
For any v ∈ Zn ∖ {0}, the projected lattice πv

v⊥(Zn) is a lattice in the

d-dimensional subspace v⊥ ⊂ Rn, and represents an equivalence class in
SX d (which we continue to denote by πv

v⊥(Zn)). Schmidt showed that

the uniform measures on the finite sets
{
πv
v⊥(Zn) : v ∈ Znprim, ∥v∥ ≤ T

}
are

equidistributed with respect to mSX d
, in the limit as T → ∞1. There

has been a recent surge of interest in equidistribution results for shapes of
projected lattices, see [Mar10, EMSS16,AES16] and references therein. In
these finer results, one typically considers projected lattices along a sparser
sequence of vectors, than the one considered by Schmidt.

Our results deal with the projections along vectors close to a line and to
the best of our knowledge these have never been considered. Note that we
do not work in SX d but in the larger space Xd. Indeed, in our case the
directions of spaces in which the projected lattices lie converges, and there
is no reason to reduce lattices modulo similarity.

1In fact Schmidt considered the lattices obtained by interecting Zn with v⊥, but the
results are equivalent, as can be easily seen by passing to dual lattices.
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3.2. Equidistribution in the bundle of lift functionals. In case d = 1
the space Xd reduces to a point and the bundle En is isomorphic to the fiber
over this point, namely the one-dimensional torus T1 = R/Z. It thus makes
sense to consider an analogous question to Schmidt’s result mentioned in
§3.1, namely ask whether in the limit as T → ∞, the uniform measures
on the finite collection of lift functionals associated with vectors of Z2

prim

of length at most T , converges to the uniform measure on T1. Indeed,
such results were obtained by Dinaburg-Sinai [DS90] and Risager-Rudnick
[RR09]. The analogous question for lift functionals arising from a sequence
of approximations to a line in R2 has not been previously considered, as far
as we know. In this very special case, our result for the equidistribution of
the sequence (ρEn(vk))k∈N takes the following form:

Corollary 3.1. Let ε > 0. For a.e. θ ∈ R, let (pk, qk) be the sequence of
best approximations, let (p′k, q

′
k) be the sequence of ε-approximations, and let

(uk, vk) and (u′k, v
′
k) denote respectively the shortest vector in Z2 for which

det

(
pk uk
qk vk

)
= 1,

and respectively, for which

det

(
p′k u′k
q′k v′k

)
= 1.

Write

fk
def
=

pkuk + qkvk
p2k + q2k

and f ′k
def
=

p′ku
′
k + q′kv

′
k

(p′k)
2 + (q′k)

2
.

Then, as N → ∞, the sequence (f ′k)
N
k=1 becomes equidistributed in the in-

terval
[
−1

2 ,
1
2

]
, with respect to Lebesgue measure; and the sequence (fk)k∈N

becomes equidistributed in
[
−1

2 ,
1
2

]
, with respect to an absolutely continuous

measure whose density is given by

F :

[
−1

2
,
1

2

]
→ R, F (t) =

1

2 log 2

(
1

2− |t|
+

1

1 + |t|

)
.

See [DS90, RR09, NH16] for related work and for an interpretation of
(uk, vk) as the shortest solutions to the gcd equation.

3.3. Equidistribution of displacement vectors in Rd. In case d = 1,
for best approximations, a very closely related result is the so-called Doeblin-
Lenstra conjecture, proved by Bosman, Jager and Wiedijk (see [Doe40,
BJW83] for the original papers, and [DK02, Chap. 5.3.2] and [IK02, Chap.
4] for more detailed treatments and related results). They showed that for
a.e. θ ∈ R, with best approximations (qk, pk), the uniform measures on the
sets

{|qk(qkx− pk)| : n = 1, . . . , N}
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converge weak-* to the measure ν on [0, 1] whose density function is given
by

F : [0, 1]→ R, F (t) =

{
1

log 2 0 ≤ t ≤ 1
2

1/t−1
log 2

1
2 < t ≤ 1.

(25)

In contrast, our result, is about the uniform measures on

{qk(qkx− pk) : n = 1, . . . , N}

(i.e., we have removed the absolute values), and we show weak-* convergence
to the measure on [−1, 1] whose density function is

F̄ : [−1, 1]→ R, F̄ (t) =
1

2
F (|t|).

That is, the measure µ′ we consider is invariant under t 7→ −t and projects
to the measure µ given by (25) under the map t 7→ |t|.

As far as we are aware, in dimension d > 1, the distribution of the displace-
ment sequence disp(θ,vk) for best approximations has not been studied.
Similarly, the distribution of displacements disp(θ,wk) for ε-approximations
has not been studied, even in the one dimensional case. However, there has
been some study of the direction of the displacement of ε-approximations.
Namely, let Sd−1 = {x⃗ ∈ Rd : ∥x⃗∥ = 1} be the unit sphere with respect to
the given norm, let

Proj : Rd → Sd−1, (26)

and consider the sequence

(Proj(disp(θ,wk)))k∈N ⊂ S
d−1. (27)

In [AGT15], Athreya, Ghosh and Tseng showed that if ∥ · ∥ is the Euclidean
norm, and ε-approximations are defined without requiring gcd(p1, . . . , pd, q) =
1, then the sequence (27) is equidistributed with respect to the unique
SOd(R)-invariant measure on Sd−1. From Theorem 1.2 we immediately ob-
tain the following statements, valid for any norm:

Corollary 3.2. For any norm ∥ · ∥ on Rd, let m|B be the normalized re-
striction of Lebesgue measure to the unit norm-ball {u : ∥u∥ ≤ 1}, and let

ν(S
d−1) = (Proj)∗(m|B). Also let µ(S

d−1) = (Proj)∗µ
(Rd), where µ(R

d) is as
in Theorem 1.1. Then for any ε > 0, the sequence (27) of directions of

ε-approximations is equidistributed with respect to ν(S
d−1), and the sequence

(Proj(disp(θ,vk)))k∈N (28)

of directions of best approximations, is equidistributed with respect to µ(S
d−1).

Note that by Theorem 1.1(4), when ∥ · ∥ is the Euclidean norm, the

measures µ(S
d−1) and ν(S

d−1) coincide, but this is not true for general norms.
In another direction, Moschevitin [Mos00] has characterized the possible

sets that can be obtained as the closures of the sequences (28), for various
θ.
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3.4. Equidistribution in Ẑn, and congruence constraints. According
to (4) and (6), for Lebesgue a.e. θ, the sequences (vk)k∈N , (wk)k∈N of best

approximations and ε-approximations, considered as elements of Ẑnprim, are
both equidistributed with respect to mẐn

prim
. In case d = 1, such results have

a long history. In 1962, Szüsz [Szü62] proved the following. For any a and
m, there is c′ such that for any ε > 0, for a.e. θ ∈ R, the sequence (pk, qk)
of ε-approximations satisfies

1

N
|{1 ≤ k ≤ N : qk ≡ a mod m}| →N→∞ c′.

He also proved a similar statement for sequences of rationals arising from
more general approximation functions. In 1982 Moeckel [Moe82] proved a
dynamical result which implies the following. For a positive integer m and
integers a, b, there is c such that for a.e. θ ∈ R, the sequence (pk, qk) of best
approximations satisfies

1

N
|{1 ≤ k ≤ N : qk ≡ a & pk ≡ b mod m}| →N→∞ c.

In these results, the constants c, c′ can be easily computed. See also [JL88,
DK02,FS14] and references therein.

For a positive integer m and a vector a⃗ ∈ (Z/mZ)n, we say that a⃗ is
primitive (mod m) if there are no b, d1, . . . , dn ∈ Z/mZ with b /∈ (Z/mZ)×
and ai = bdi for all i. Let Nm,n be the cardinality of the set of primitive
vectors in (Z/mZ)n; it is not hard to verify that

Nm,n =
k∏
i=1

(
pnrii − pn(ri−1)

i

)
,

where m = pr11 · · · p
rk
k is the prime factorization of m. We generalize the

above results to any dimension d ≥ 1 in the following Corollary, which
follows immediately from Theorems 1.1, 1.2.

Corollary 3.3. Let ∥ · ∥ be a norm on Rd. Let m be a positive integer
and let a⃗ ∈ (Z/mZ)n. Then for any ε > 0, a.e. θ ∈ Rd, the sequences
(vk)k∈N , (wk)k∈N of best approximations and ε-approximations to θ both sat-
isfy

1

N
|{1 ≤ k ≤ N : uk ≡ a⃗ mod m}| →N→∞ c

(in both cases uk = vk and uk = wk), where

c
def
=

{ 1
Nn,m

a⃗ is primitive (mod m)

0 otherwise.

As far as we know, prior to this work, there were no such results for dimen-
sion d > 1; this despite a remark of Cassels (Math Review of [Szü62]) that ‘it
would be interesting to extend these results to simultaneous approximation’.
A related work of Berthé, Nakada and Natsui [BNN06] establishes similar
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properties for the convergents arising from the d-dimensional Jacobi-Perron
algorithm.

3.5. Growth of qk, the Khinchin-Lévy constant, and a ‘Khinchin-
Lévy distribution’. The asymptotic rate of growth of the denominators qk
(i.e., the last coordinate of the vector vk in case of best approximations, and
of the vector wk in case of ε-approximations) has been a topic of detailed
study. For both best approximations and ε-approximations, Theorem 2.1
makes it possible to obtain new information about this growth. Namely, as
we will show, for a given θ, the quotient qk+1/qk can be computed explicitly
from the data contained in the 3-tuple (18) (in the case of best approxima-
tions) and (19) (in the case of ε-approximations). Using this we prove:

Corollary 3.4. Let ∥ · ∥ be a norm on Rd and let ε > 0. Then there are

probability measures λ
(KL)
∥·∥,best, λ

(KL)
∥·∥,ε on R+ with finite expectation such that

for a.e. θ ∈ R, the following holds. Let (vk)k∈N, (wk)k∈N denote respectively

the best approximation and ε-approximation sequence, and let q
(best)
k , q

(ε)
k

denote the corresponding denominators. For any k ≥ 2, let

t
(best)
k

def
= log

(
q
(best)
k+1

q
(best)
k

)
and t

(ε)
k

def
= log

(
q
(ε)
k+1

q
(ε)
k

)
. (29)

Then the uniform probability measures on the sets{
t
(best)
k : 1 ≤ k ≤ N

}
,

{
t
(ε)
k : 1 ≤ k ≤ N

}
converge respectively to λ

(KL)
∥·∥,best, λ

(KL)
∥·∥,ε , in the weak-* topology as N → ∞.

The expectation of λ
(KL)
∥·∥,ε is ζ(n)

Vd,∥·∥ εd
, where Vd,∥·∥ is the Lebesgue measure of

the unit ball of the norm, in Rd.

For d = 1, in the case of best approximations, Khinchin [Khi36] showed

in 1936 that the limit limk→∞ log q
1/k
k exists, and in the same year, Lévy

[Lév36] gave the value of the limit. In our terminology, this limit is the

expectation of the measure λ = λ
(KL)
best , and thus Corollary 3.4 provides an

analogue of the Khinchin-Lévy result for ε-approximations, valid for any
d and any norm. For d = 1 and for best approximations, in 1986 Jager
proved a convergence to a measure λ as above, and gave an explicit formula
for λ. He also established a joint equidistribution result for the sequence of

pairs
(
t
(best)
k ,disp(θ,vk)

)
k∈N

(see [DK02, Lemma 5.3.11]). For best approx-

imations, and for the Euclidean norm, the convergence to a limit measure

λ
(KL)
∥·∥,best was recently proved in arbitrary dimension by Cheung and Cheval-

lier[CC]. Our work extends this to arbitrary norms, answering [CC, Question
1]. As a corollary, Cheung and Chevallier obtained that for a.e. θ, the de-
nominators qk in the sequence of best approximations in dimension d > 1,



GEOMETRIC AND ARITHMETIC ASPECTS OF APPROXIMATION VECTORS 17

satisfy that the limit limk→∞ q
1/k
k exists. In a subsequent work with Xieu

[Xie15], the limit was evaluated in the case d = 2.
Lagarias [Lag82] constructed examples showing irregular growth of the

sequence q
1/k
k ; in particular showing that the a.e. behavior can fail dramat-

ically for some special choices of θ. A different way to measure the growth
of approximations is due to Borel and Bernstein in dimension d = 1, and
was extended by Chevallier to the case d > 1. See [Che13] for more details
on this, and for a survey of more results on best approximations.

As noted in [CC, Question 1], it would be interesting to compute the

expectation of λ
(KL)
∥·∥,best for different dimensions and different norms. It would

also be interesting to obtain additional statistical informations about these
distributions, such as higher moments and tail bounds.

4. Preliminaries

In this section we recall some standard results. Some of them will be
valid in a general Borel measurable setup, and for some we will require some
topological assumptions. To distinguish these cases we will use the following
terminology. We will have a space X on which a one-parameter group {at}
acts, a σ-algebra BX of subsets of X, and a measure µ which is at-invariant.

• The Borel setup is the one in which (X,BX) is a standard Borel
space, i.e., there is a Polish structure (the topology induced by a
complete and separable metric) on X for which BX is the Borel σ-
algebra. In this setup the action map R×X → X, (t, x) 7→ atx is
assumed to be Borel, and the measure µ is assumed to be σ-finite.
• The lcsc setup is the one in which in addition,X is a Hausdorff locally
compact second countable (lcsc) space, BX is the Borel σ-algebra for
the underlying topology, and the action map is continuous. Moreover
the measure µ is assumed to be Radon (regular and finite on compact
sets).

The above conditions will be assumed throughout the paper without fur-
ther mention. Additionally, we will usually assume that µ is finite, but will
make explicit mention of this when we do.

4.1. Measurable cross-sections. In this section we recall classical defi-
nitions and results in the Borel setup. We start with the definition of a
Borel cross-section which do not involve a measure and continue with the
definition of a µ-cross-section which is relevant when a measure is present.

Definition 4.1. Let (X,BX , {at}) be as in the Borel setup. A Borel cross-
section is a Borel subset S with the following properties:

• For any x ∈ X, the sets of visit times

Yx
def
= {t ∈ R : atx ∈ S} (30)

are all discrete and totally unbounded; that is, for any T > 0,
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Yx ∩ (T,∞) ̸= ∅, Yx ∩ (−∞,−T ) ̸= ∅, and # (Yx ∩ (−T, T )) <∞. (31)

• The return time function

τS : S → R+, τS(x)
def
= min (Yx ∩ R+) (32)

is Borel.

If S is a Borel cross-section we will denote by TS : S → S the first return
map defined by

TS(x)
def
= aτS(x)x.

Definition 4.2. Let (X,BX , {at}) be as in the Borel setup and let µ be
an {at}-invariant measure. We will say that S ∈ BX is a µ-cross-section if
there is an {at}-invariant set X0 ∈ BX such that

• µ(X ∖X0) = 0.
• S ∩ X0 is a Borel cross-section for (X0,BX0) (where BX0 is the re-

stricted σ-algebra defined by BX0

def
= {A ∩X0 : A ∈ BX}).

If S is a µ-cross-section and X0 is as in Definition 4.2, then we denote
τS : S → R+ ∪ {∞} the function

τS(x)
def
=
{
τS∩X0(x) if x ∈ S ∩X0,
∞ if x ∈ S ∖X0.

We denote TS∩X0 by TS . It is a well defined Borel map S ∩X0 → S ∩X0,
and we say that a measure on S is TS-invariant if S ∖X0 is a null-set and
its restriction to S ∩X0 is TS-invariant.

Remark 4.3. The restricted Borel space (X0,BX0) appearing in Definition
4.2 is a standard Borel space, see [Kec95, Chap. 13].

For ε > 0 we let

S≥ε
def
= {x ∈ S : τS(x) ≥ ε} and S<ε

def
= S ∖ S≥ε. (33)

The sets S≥ε are an increasing collection of Borel sets whose union is S.
Given E ∈ BX and I ⊂ R we let

EI
def
= {atx : x ∈ E, t ∈ I} , (34)

and let m = mR denote the Lebesgue measure on R.
The following structure theorem is due to Ambrose and Kakutani [Amb41,

AK42], see also [Nad13,Wag88]:

Theorem 4.4. Let (X,BX , {at}) be as in the Borel setup and let S ∈ BX .
Then, for any finite {at}-invariant measures µ on (X,BX) for which S is
a µ-cross-section, there exists a TS-invariant measures µS on (S,BS) such
that the following holds for any Borel set E ⊂ S:



GEOMETRIC AND ARITHMETIC ASPECTS OF APPROXIMATION VECTORS 19

(i) If E ⊂ S≥ε, and I is an interval of length < ε then

µS(E) =
µ(EI)

m(I)
.

In particular, for any ε > 0 we have µS(S≥ε) <∞.

(ii) For any interval I, µS(E) ≥ µ(EI)
m(I) .

(iii) In general

µS(E) = lim
ε→0

1

ε
µ
(
E(0,ε)

)
. (35)

(iv) We have µS(E) = 0 if and only if µ(ER) = 0.
(v) If µ =

∫
η dΘ(η) for a measure Θ on P(X), where Θ-a.e. η is {at}-

invariant, then S is an η-cross-section for Θ-a.e. η, and µS =
∫
ηS dΘ(η).

Moreover, µ is {at}-ergodic if and only if µS is TS-ergodic.
(vi) We have

µ(X) =

∫
S
τS dµS .

(vii) If K ↷ (X,µ) is a group-action commuting with the {at}-action and
preserving S, then the K-action also preserves µS .

We will refer to item (vi) as the Kac formula. Note that (vii) is not
mentioned in the above references but follows immediately from (35).

Definition 4.5. Let (X,BX , {at}) be as in the Borel setup and let µ be a
finite {at}-invariant measure. Let S be a µ-cross-section. Then the measure
µS from Theorem 4.4 is called the cross-section measure of µ.

Note that in Theorem 4.4, µ is finite but µS need not be. However, from
(vi) one easily sees that if τS is bounded below, or more generally, if there
is c > 0 such that τS(x) ≥ c for µS-a.e. x, then µS is finite.

Remark 4.6. In Theorem 4.4 we defined a map µ 7→ µS . Under suitable
conditions this map is injective and its image has an explicit description.
See [Nad13].

Definition 4.7. Let (X,BX , {at}) be as in the Borel setup and let µ be a
finite {at}-invariant measure. Let S be a µ-cross-section. Let M ∈ N and
let E ⊂ S be Borel. We say that E is M -tempered if for µS-a.e. x,

#{t ∈ [0, 1] : atx ∈ E} ≤M.

We say that E is tempered if it is M -tempered for some M , and that S is a
tempered µ-cross-section if this condition holds for E = S.

Clearly S is tempered if S = S≥ε for some ε > 0. It is not hard to show
(see [CC, Proof of Prop. 19]) that µS(E) <∞ for any tempered subset.
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4.2. Tight convergence of measures on lcsc spaces. Let X,BX be as
in the lcsc setup, let Cb(X) denote the collection of bounded continuous real-
valued functions on X, and letM(X) denote the collection of finite regular
Borel measures on X. Whenever we discuss convergence of measures in this
paper, it will be assumed that the measures belong toM(X). In particular,
although infinite measures may appear in the discussion, convergence of
measures will only be discussed for finite measures. For µ ∈ M(X) and
f ∈ Cb(X), we denote the integral

∫
X f dµ by µ(f). We will use the so-

called tight topology (sometimes referred to as strict topology) onM(X) for
which convergence µk → µ is defined by either of the following equivalent
requirements (see [Bou04b, §5, Prop. 9] for the equivalence):

(i) For all f ∈ Cb(X), µk(f)→ µ(f).
(ii) For any compactly supported continuous function f : X → R, µk(f)→

µ(f) and µk(X)→ µ(X).

Note that this is not equivalent to weak-* convergence, in which f is taken
to be compactly supported. Due to the characterization (ii), the weak-*
topology is coarser than the tight topology when X is not compact. Never-
theless, when the total masses µ(X), µk(X) are the same (e.g., when they
are probability measures), these notions of convergence coincide.

For a topological space X and E ⊂ X, int(E), cl(E) and ∂(E) = cl(E) ∩
cl(X∖E) denote respectively its topological interior, closure, and boundary.
Since we will work with several topological spaces, if we want to stress the
dependence on X we will write intX(E), clX(E), ∂X(E).

Definition 4.8. Let X be an lcsc space and µ ∈ M(X). We say that E ∈
BX is Jordan measurable with respect to µ (abbreviated µ-JM) if µ(∂X(E)) =
0.

Suppose X ′ ⊂ X is locally compact (in its relative topology as a subset of
X) and µ(X ∖X ′) = 0. It may happen that for E ⊂ X ′ we have ∂X′(E) ⊊
∂X(E). Nevertheless, since µ(X ∖ X ′) = 0, we still have µ(∂X′(E)) =
µ(∂X(E)), and so the notion of Jordan measurability with respect to µ is
not affected by adding or removing sets of measure zero (as long as we work
with locally compact sets).

The collection of µ-JM sets forms a sub-algebra of BX , and this algebra is
rich enough to capture the tight convergence to µ. More precisely we have
the following.

Lemma 4.9 (See [Bil68], Thms. 2.1 & 2.7, or [Bou04], Chap. 4). If µk, µ ∈
M(X) then µk → µ tightly if and only if for any µ-JM set E one has
µk(E)→ µ(E).

Moreover, if Y is also an lcsc space and ψ : X → Y is a measurable
function, then the push-forward map ψ∗ :M(X)→M(Y ) is continuous at
a measure µ ∈ M(X) (with respect to the tight topologies) provided that ψ
is continuous µ-almost everywhere.
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5. Equidistribution of visits to a cross-section

Throughout this section we let (X,BX , {at}, µ) be as in the lcsc setup and
S be a µ-cross-section as in Definition 4.2. We further assume that

(A) µ is a probability measure.
(B) µS is finite.
(C) S is lcsc (with respect to its subset topology induced by the topology

on X).

Let χE be the indicator of E ⊂ X. For x ∈ X and E ⊂ S we let

N(x, T,E) = # {t ∈ [0, T ] : atx ∈ E} .
Definition 5.1.

(1) We say that a point x ∈ X is (at, µ)-generic if
1
T

∫ T
0 δatxdt→T→∞ µ.

(2) We say that x ∈ X is (at, µS)-generic if the sequence of visits of the
orbit {atx : t > 0} to S equidistributes with respect to 1

µS(S)µS .

(3) For a Borel subset S ′ ⊂ S which is µS-JM and of positive µS-
measure, we say that x ∈ X is (at, µS |S′)-generic if the sequence
of visits of the orbit {atx : t > 0} to S ′ equidistributes with respect
to 1

µS(S′)µS |S′ .

Since, by (A), both cases above concern probability measures, we can
understand the equidistribution equivalently as either weak-* convergence
or as tight convergence. Also, by Lemma 4.9, x is (at, µ)-generic if and only
if

for any µ-JM set E ⊂ X, 1

T

∫ T

0
χE(atx)dt→T→∞ µ(E). (36)

Similarly, by Lemma 4.9, and using (B) and (C), x is (at, µS)-generic if and
only if

for any µS-JM set E ⊂ S, N(x, T,E)

N(x, T,S)
→T→∞

µS(E)

µS(S)
. (37)

Remark 5.2. Note that we do not define genericity with respect to the first
return map TS : S → S, but the reader will note the relationship between
(at, µS)-genericity and (TS , µS)-genericity: x ∈ X is (at, µS)-generic if and

only if x′ = aτS(x)x is
(
TS ,

1
µS(S) µS

)
-generic (in the natural sense).

In this section we will study the relationship between (at, µ)-genericity
and (at, µS)-genericity. As a motivating example, consider the following
simplified situation. Assume that (i) for any µS-JM set E ⊂ S, the thickened
set E(0,1) (defined via (34)) is µ-JM; and (ii) the return time function τS is
bounded below by 1. Then it follows that if x ∈ X is (at, µ) generic, then it
is (at, µS)-generic. Indeed, we have

1

T
N(x, T,E) =

1

T

(∫ T

0
χE(0,1)(atx)dt+O(1)

)
and the claim can be deduced using (36), (37), and Theorem 4.4(i).
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Since the notions of cross-sections in Definitions 4.1, 4.2 refer only to the
Borel structure, while equidistribution is a topological notion, it is natural
to expect a topological assumption like (i), and indeed, we will require some
similar additional assumptions. Regarding (ii), when trying to remove it,
one encounters a complication involving the relation between the continuous
time parameter T and the number of visits N(x, T,S). Suppose x is (at, µ)-
generic but the number of visits up to time T is large compared to T (e.g.,
on the order of T 2). This implies frequent visits to S<ε. In Theorem 5.11
below, which is the main result of this section, we use this observation to
define a concrete µ-null set, and show that for trajectories avoiding this set,
(at, µ)-genericity implies (at, µS)-genericity.

Definition 5.3. Let S ⊂ X be a µ-cross-section satisfying (A), (B) and
(C). We say that S is a µ-reasonable if in addition, the following hold:

(1) For all sufficiently small ε, the sets S≥ε are µS-JM.
(2) There is a relatively open subset U ⊂ S such that the following two

conditions hold:
(a) The map (0, 1)× U → X, (t, x) 7→ atx is open;

(b) µ
(
(clX(S)∖ U)(0,1)

)
= 0.

Remark 5.4. We note that the interval (0, 1) in Definition 5.3 can be
replaced by any fixed small interval. We also note that it is possible to
obtain our results while replacing Definition 5.3(1) with the weaker require-
ment that there exists an increasing collection of µS-JM sets Fk such that
S =

⋃
k Fk and such that Fk ⊂ S≥εk for some εk > 0. This more flexible

framework requires slightly more involved arguments, but we will not need
it and leave the details to the dedicated reader.

The following elementary lemma shows that Definition 5.3 implies the
property (i) used in the preceding discussion.

Lemma 5.5. If S is µ-reasonable then for any µS-JM set E ⊂ S and any
interval I ⊂ [0, 1], EI is µ-JM.

Proof. Assume for concreteness that I is a closed interval, the other cases
being similar, and write I = [τ1, τ2]. Let U ⊂ S be the relatively open set
appearing in Definition 5.3(2). We need to show that µ

(
∂X
(
EI
))

= 0. This
will follow once we show

∂X
(
EI
)
⊂ (clX(S)∖ U)I ∪ aτ1S ∪ aτ2S ∪ (∂S(E))I (38)

Indeed, all sets on the RHS of (38) are µ-null: the first by the choice of
U , the fourth because of Theorem 4.4(iv) and the assumption that ∂S(E)
is µS-null, and the second and third sets are µ-null by standing assumption
(B) and Theorem 4.4(ii).

We prove (38). Let x ∈ ∂X
(
EI
)
, so that there is a sequence tk ∈ [τ1, τ2]

and yk ∈ E such that atkyk → x. By passing to subsequences we may assume
that tk → t0 ∈ I and yk → y0 ∈ clX(E) ⊂ clX(S). We distinguish several
cases. If y0 /∈ U , then x clearly belongs to the RHS of (38). Thus we assume



GEOMETRIC AND ARITHMETIC ASPECTS OF APPROXIMATION VECTORS 23

that y0 ∈ U . If t0 ∈ {τ1, τ2} then again x clearly belongs to the RHS of
(38). Assume that τ1 < t0 < τ2 and y0 ∈ U , hence in particular y0 ∈ clS(E).
If y0 /∈ intS(E) then by definition y0 ∈ ∂S(E) and again x belongs to the
RHS of (38). The only remaining possibility is that y0 ∈ intS(E) but this
is impossible since x /∈ intX

(
EI
)
but the map (t, y) 7→ aty is open from

(0, 1)× U to X. □

For a set E ⊂ S≥ε the relation between N(x, T,E) and
∫ T
0 χE(0,ε)(atx)dt

is simple:

Proposition 5.6. Let S be a µ-reasonable cross-section. Then for any x ∈
X which is (at, µ)-generic, for any ε > 0 and for any µS-JM set E ⊂ S≥ε,

lim
T→∞

1

T
N(x, T,E) = µS(E). (39)

Proof. By Lemma 5.5 we have that E(0,ε) is µ-JM, and thus by Lemma 4.9,
1
T

∫ T
0 χE(0,ε)(atx)dt →T→∞ µ

(
E(0,ε)

)
. Since E ⊂ S≥ε, we obtain (using

Theorem 4.4) that

µ(E(0,ε)) = εµS(E) and

∫ T

0
χE(0,ε)(atx)dt = εN(x, T,E) +O(1),

and (39) follows. □

The following sets will be useful for analyzing trajectories {atx : t > 0}
visiting S<ε with abnormally large frequency. Let

∆S,δ
def
=

{
x ∈ S : ∀ε > 0, lim sup

T→∞

1

T
N(x, T,S<ε) > δ

}
, (40)

∆S
def
=
⋃
δ>0

∆S,δ.

We have the following variant of Proposition 5.6, in which we do not
require that E ⊂ S≥ε.

Proposition 5.7. Let S be a µ-reasonable cross-section. Assume that x ∈
X ∖ ∆RS is (at, µ)-generic (where ∆RS is the thickening of ∆S as in (34)).
Then (39) holds for any µS-JM set E ⊂ S.

Proof. By Definition 5.3, for any small enough ε > 0 we have that E ∩ S≥ε
is µS-JM, as an intersection of two such sets and so by Proposition 5.6,

lim inf
T→∞

1

T
N(x, T,E) ≥ lim

T→∞

1

T
N(x, T,E ∩ S≥ε) = µS(E ∩ S≥ε).

Since the sets S≥ε exhaust S, and ε can be chosen arbitrarily small, we find

lim inf
T→∞

1

T
N(x, T,E) ≥ µS(E). (41)
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Fix δ > 0. Since x /∈ ∆RS , we have x /∈ ∆RS,δ. By (40) there exists ε > 0 so
that

lim sup
T→∞

1

T
N(x, T,S<ε) ≤ δ, (42)

and clearly we may take ε arbitrarily small to ensure that S≥ε is µS-JM.
Taking (42) into account and applying again Proposition 5.6 we get

lim sup
T→∞

1

T
N(x, T,E) = lim sup

T→∞

1

T
(N(x, T,E ∩ S≥ε) +N(x, T,E ∩ S<ε))

≤ lim
T→∞

1

T
N(x, T,E ∩ S≥ε) + lim sup

T→∞

1

T
N(x, T,S<ε)

(43)

≤ µS(E ∩ S≥ε) + δ ≤ µS(E) + δ.

Since δ was arbitrary, we get (39). □

The following lemma shows that the extra assumption in Proposition 5.7,
namely that x /∈ ∆RS , is almost harmless.

Lemma 5.8. Let S be a µ-reasonable cross-section. Then

µS (∆S) = 0 and µ
(
∆RS

)
= 0.

Proof. By Theorem 4.4(iv) it is enough to show that µS (∆S) = 0. For this it
is enough to show that for any fixed δ > 0, µS (∆S,δ) = 0. Take 0 < ε1 < ε0
small enough so that µS(S≥ε0) > 0 and µS(S<ε1) < δ. This is possible by
(B) and because S =

⋃
ε>0 S≥ε. Let

µ =

∫
ν dΘ(ν)

be the ergodic decomposition of µ; that is, Θ is a probability measure on
P(X), and for Θ-a.e. ν, ν is an {at}-invariant ergodic measure on X. More-
over, Θ-a.e. ν satisfies that S≥ε0 ,S<ε1 are both ν-JM, and S is a cross-section
for (X, ν, {at}). We will show that for such ν, for ν-a.e. x, the cross-section
measure νS satisfies

lim
T→∞

1

T
N(x, T,S<ε1) = νS(S<ε1). (44)

This will imply νS (∆S,δ) = 0 for such ν, and hence that µS (∆S,δ) = 0.

Note that for E ⊂ S, the ratio N(x,T,E)
N(x,T,S) is an ergodic average for χE in the

ergodic dynamical system (S, 1
νS(S)νS , TS). Applying the pointwise ergodic

theorem to the characteristic functions of the sets S≥ε0 ,S<ε1 we deduce that
there is a set F ⊂ S of full ν-measure such that for any y ∈ F ,

N(y, T,S≥ε0)
N(y, T,S)

→T→∞
νS(S≥ε0)
νS(S)

N(y, T,S<ε1)
N(y, T,S)

→T→∞
νS(S<ε1)
νS(S)

,
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and thus

lim
T→∞

1
TN(y, T,S<ε1)
1
TN(y, T,S≥ε0)

= lim
T→∞

N(y, T,S<ε1)
N(y, T,S≥ε0)

=
νS(S<ε1)
νS(S≥ε0)

. (45)

Moreover, replacing F with a smaller set of full ν-measure, we can assume
that each y ∈ F is also (at, ν)-generic. Applying Proposition 5.6 for E =
S≥ε0 we get that the denominator on the LHS of (45) converges to the
denominator on the RHS. This implies (44) for y ∈ F . □

For tempered subsets of S (see Definition 4.7) we can prove a version of
Proposition 5.6 without reference to the problematic set ∆S .

Proposition 5.9. Let S be a µ-reasonable cross-section and let E ⊂ S be a
tempered subset which is µS-JM. If x ∈ X is (at, µ)-generic then (39) holds.

For the proof we will need the following lemma which provides the sub-
stitute for the assumption x /∈ ∆RS .

Lemma 5.10. Let S be a µ-reasonable cross-section for (X, at, µ) and let
F ⊂ S be a µS-JM set which is M -tempered. Then for any x which is
(at, µ)-generic we have

lim sup
T→∞

1

T
N(x, T, F ) ≤Mµ

(
F (0,1)

)
. (46)

Proof. Let I = (0, 1). By Lemma 5.5, the set F I is µ-JM and hence
1
T

∫ T
0 χF I (atx)dt→T→∞ µ

(
F I
)
. Thus (46) will follow from

N(x, T, F ) ≤M ·m
({
t ∈ [0, T ] : atx ∈ F I

})
+M, (47)

for each T > 0 (where m is the Lebesgue measure on R). Let k = N(x, T, F )
and let t1 < · · · < tk be an ordering of {t ∈ [0, T ] : atx ∈ F}. Then, the M -
temperedness implies that there is a subset J ⊂ {1, . . . , k} of cardinality at
least k

M , such that for any j1 < j2 in J one has tj2− tj1 ≥ 1. For each tj ∈ J
except perhaps the largest, and for any t ∈ (tj , tj + 1), we have t ≤ T and

atx ∈ F I . This implies that
{
t ∈ [0, T ] : atx ∈ F I

}
contains at least

⌊
k
M

⌋
−1

disjoint intervals of length 1, which implies (47). □

Proof of Proposition 5.9. The proof is very similar to that of Proposition 5.7.
The inequality lim infT→∞

1
TN(x, T,E) ≥ µS(E) follows as in (41). On the

other hand, similarly to (43), using Proposition 5.6, for any sufficiently small
ε > 0 we have

lim sup
T→∞

1

T
N(x, T,E) = µS(E ∩ S≥ε) + lim sup

T→∞

1

T
N(x, T,Eε),

where Eε
def
= E ∩ S<ε. The sets Eε are M -tempered and so by Lemma 5.10,

lim supT→∞
1
TN(x, T,E) ≤ µS(E) +M µ

(
E

(0,1)
ε

)
. But since

⋂
ε>0E

(0,1)
ε =

∅, we have

µ
(
E(0,1)
ε

)
→ε→0 0,
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and hence lim supT→∞
1
TN(x, T,E) ≤ µS(E). Putting these inequalities

together gives (39). □

We summarize the results of this section in the following theorem.

Theorem 5.11. Let S be a µ-reasonable cross-section, and let S ′ ⊂ S be
µS-JM such that µS(S ′) > 0. Suppose x ∈ X is (at, µ)-generic. Assume in
addition that one of the following also hold:

(i) x /∈ ∆RS ;
(ii) S ′ is tempered.

Then x is (at, µS |S′)-generic.

Proof. Let x be (at, µ)-generic and assume (i). Then Proposition 5.7 and
Lemma 4.9 imply that x is (at, µS)-generic. Showing that x is (at, µS |S′)-
generic is equivalent to showing that for any µS-JM set E ⊂ S ′,

lim
T→∞

N(x, T,E)

N(x, T,S ′)
=
µS(E)

µS(S ′)
,

which readily follows using (39) in both numerator and denominator.
Now assume (ii). Since S ′ is tempered, so is E ⊂ S ′, and by Proposi-

tion 5.9, we once again have (39) for both the numerator and the denomi-
nator. □

5.1. Continuity of the cross-section measure construction. In this
subsection we prove the following continuity property of the map µ 7→ µS
that will be used at the very end of the paper in Theorem 14.2:

Proposition 5.12. Let X,B, {at} be as in the lcsc setup, and let µk, µ ∈
P(X). Suppose µ and each µk are {at}-invariant, and µk →k→∞ µ in
the strict topology (or equivalently, since they are in P(X), in the weak-*
topology). Also assume that S ′,S satisfy the following, for ν = µ and for
ν = µk, for any k ∈ N:

(1) S is a ν-reasonable cross-section.
(2) S ′ ⊂ S is νS-JM.
(3) S ′ is tempered.

Then (µk)S |S′ →k→∞ µS |S′, with respect to the strict topology.

Remark 5.13. It seems to us that in the above proposition we cannot de-
duce that µk,S → µS or even that there is convergence after renormalizing
the measures to be probability measures. The reason for this is that po-
tentially, there exists δ > 0 such that for any ε > 0, µk,S(S<ε) > δ for
infinitely many k’s. This is reminiscent of escape of mass. To overcome this
we restrict attention to the tempered set S ′. Nevertheless, the proof does
give that for any µS-JM set E ⊂ S we have

lim inf
k→∞

(µk)S (E) ≥ µS(E).
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Proof. By Lemma 4.9 we need to show that for any µS-JM set E ⊂ S ′ we
have

(µk)S(E)→k→∞ µS(E). (48)

Take E ⊂ S ′ a µS-JM set. For any ε > 0 we can decompose E = (E∩S≥ε)∪
(E ∩ S<ε) and hence for ν ∈ {µ, µk} we have

νS(E) = νS(E ∩ S≥ε) + νS(E ∩ S<ε).

By Lemma 5.5 we have that (E∩S≥ε)(0,ε) is µ-JM, and so by Theorem 4.4(i),

lim
k→∞

(µk)S(E ∩ S≥ε) = lim
k→∞

1

ε
µk

(
(E ∩ S≥ε)(0,ε)

)
=
1

ε
µ
(
(E ∩ S≥ε)(0,ε)

)
= µS (E ∩ S≥ε) .

Moreover µS(E ∩ S<ε)→ε→0 0, because µS is a finite measure, and hence

lim inf
k→∞

(µk)S (E) ≥ µS(E),

and (48) will follow once we establish that

lim sup
k→∞

(µk)S(E ∩ S<ε)→ε→0 0. (49)

Clearly, it is enough to show (49) for E = S ′. Assume first that each µk is
ergodic. Since S ′ is µk-JM, there is xk ∈ X which is (at, µk)-generic. Choose
M so that S ′ is M -tempered, then by (46) we have

(µk)S (S ′ ∩ S<ε) = lim
T→∞

1

T
N (xk, T,S ′ ∩ S<ε) ≤Mµk

(
(S ′ ∩ S<ε)

(0,1)
)
. (50)

Using the ergodic decomposition and Theorem 4.4(v), we see that (50) also holds
without assuming that µk is ergodic. This gives

lim sup
k→∞

(µk)S (S ′ ∩ S<ε) ≤Mµ
(
(S ′ ∩ S<ε)

(0,1)
)
,

and taking the limit as ε→ 0 we obtain (49). □

6. Lifting reasonable cross-sections

The goal of this section is to prove Proposition 6.3 which roughly says
that a lift of a reasonable cross-section to a fiber bundle extension is again
reasonable. We will begin with an elementary lemma about fiber bundles
that will be needed at a certain point.

6.1. Fiber bundles. Let X,Y, F be topological spaces. Recall that a con-
tinuous map π : Y → X between two topological spaces is called an F -fiber
bundle if X can be covered by a collection {Ui} of open sets, called triv-
ial open sets, such that for each index i, there exists a homeomorphism
ψi : Ui × F → π−1(Ui) satisfying π(ψi(x, f)) = x for all (x, f) ∈ Ui × F .
A morphism between two F -fiber bundles Yi → Xi, i = 1, 2, is a pair of
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continuous maps ϕ : Y1 → Y2, ϕ̄ : Z1 → X2 for which the following diagram
commutes:

Y1

π1
��

ϕ // Y2

π2
��

X1
ϕ̄
// X2

(51)

Definition 6.1. The bundle morphism (51) is said to be proper relative
to fibers, if any sequence {yn} ⊂ Y1 for which {π1(yn)} and {ϕ(yn)} are
bounded sequences in X1, Y2 respectively, is bounded in Y1 (here bounded
means has compact closure).

Lemma 6.2. Let F,Xi, Yi (i = 1, 2) be lcsc spaces such that πi : Yi → Xi

are F -bundles. Suppose the bundle map (51) is proper relative to fibers,
ϕ̄ : X1 → X2 is open, and the restriction ϕ|π−1

1 (x) : π
−1
1 (x)→ π−1

2 (ϕ̄(x)) is a

homeomorphism between the fibers, for any x ∈ X1. Then ϕ is open.

Proof. By restricting to trivial open sets in X1, X2 and their preimages in
Y1, Y2, we may assume that Y1, Y2 are trivial bundles. Note that the proper-
ness relative to fibers holds after such restriction.

Assume then that Yi = Xi × F and πi is the projection on the first
coordinate. For any x ∈ X1 write ϕ(x, f) = (ϕ̄(x), ϕx(f)), so that ϕx :
F → F is the homeomorphism ϕ induces between the fibers {x} × F and{
ϕ̄(x)

}
× F . Since we assumed all spaces involved are lcsc, the topology is

induced by a metric. Let (x0, f0) ∈ X1 × F and let U × V be a basic open
neighborhood of (x0, f0) in X1 × F . We will show that ϕ(x0, f0) is in the
interior of

ϕ(U × V ) =
{
(ϕ̄(z), ϕz(f)) : z ∈ U, f ∈ V

}
. (52)

For any z ∈ U , since ϕz is a homeomorphism of F , there exists ε > 0 so that
BF
ε (ϕz(f0)) ⊂ ϕz(V ) (where BF

ε (x) is the ball of radius ε in F centered at
x, with respect to a metric defining the topology). The following claim says
that ε can be taken to be uniform for z close enough to x0.

Claim: There exists ε > 0 such that for any z close enough to x0,

BF
ε (ϕz(f0)) ⊂ ϕz(V ).

We first assume the Claim and complete the proof of the Lemma. By
continuity of ϕ at (x0, f0), there is a neighborhood U ′ of x0 so that for
z ∈ U ′ we have d(ϕx0(f0), ϕz(f0)) < ε/2. Thus for z ∈ U ′, BF

ε/2(ϕx0(f0)) ⊂
BF
ε (ϕz(f0)). By the Claim, making U ′ smaller if necessary, we have that

BF
ε/2(ϕx0(f0)) ⊂ ϕz(V ) for z ∈ U ′, so (52) contains ϕ̄(U ′) × BF

ε/2(ϕx0(f0)).

Since ϕ̄ is open, we have shown that ϕ(x0, f0) is in the interior of (52).
We now prove the claim. Assume to the contrary that there exists a

sequence zn → x0 for which the homeomorphisms ϕzn : F → F map a point
fn /∈ V into BF

1/n(ϕzn(f0)). By the properness relative to fibers of ϕ, we
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may assume fn → f∗ ̸= f0. Moreover, by the continuity of ϕ we get that
limϕ(zn, fn) = ϕ(x0, f∗). On the other hand, this limit is also equal to

lim(ϕ̄(zn), ϕzn(fn)) = (ϕ̄(x0), ϕx0(f0)) = ϕ(x0, f0).

This contradicts the assumption that ϕx0 is one to one. □

6.2. Extensions. Let {at} ↷ (X,BX , µ) and {at} ↷ (X̃,B
X̃
, µ̃) be two

actions as in the lcsc setup, and assume that µ, µ̃ are both probability mea-

sures. We say that π : X̃ → X is a continuous factor map or equivalently
a continuous extension map if it is continuous and satisfies µ = π∗µ̃ and
at ◦ π = π ◦ at for any t ∈ R.

Proposition 6.3. In the above setup, let π : X̃ → X be a continuous
factor map. Assume furthermore that π is a fiber bundle. Let S ⊂ X be a

µ-reasonable cross-section and let S̃ def
= π−1(S). Then:

(a) S̃ is a µ̃-cross-section.
(b) π∗µ̃S̃ = µS .
(c) µ̃S̃ is finite.

(d) S̃ is µ̃-reasonable.

(e) For any µS-JM set E ⊂ S, π−1(E) ⊂ S̃ is µS̃-JM.

(f) If E ⊂ S is M -tempered then π−1(E) is M -tempered.

Remark 6.4. In the proof of Proposition 6.3, the only place that we use the
assumption that π is a fiber bundle and not simply a continuous extension
is in the proof of item (d).

Proof. Since at ◦ π = π ◦ at, we have(
π−1(E)

)I
= π−1

(
EI
)

(53)

for the thickened sets as in (34). In addition, for x = π(x̃) we have{
t : atx̃ ∈ S̃

}
= {t : atx ∈ S} , (54)

and hence

Yx̃ = Yx, τS(x) = τS̃(x̃), and S̃≥ε = π−1(S≥ε). (55)

We prove (a): since S is a µ-cross-section, there exists an {at}-invariant
set X0 ∈ BX such that µ(X0) = 1 and S ∩X0 is a Borel cross-section (see

Definitions 4.1, 4.2). It follows that if X̃0
def
= π−1(X0), then X̃0 ∈ BX̃ is

an {at}-invariant set with µ̃(X̃0) = 1. Finally, it follows from (55) that

S̃ ∩ X̃0 is a Borel cross-section according to Definition 4.1. This finishes the
verification of Definition 4.2 and proves (a).

Item (b) follows from (35), (53), and the assumption that π∗µ̃ = µ.
Item (c) follows from (b) since the µ-reasonability of S implies that µS is

finite.
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Since π : S̃ → S is continuous, for any E ⊂ S,

∂S̃(π
−1(E)) ⊂ π−1(∂SE).

It follows that if E ⊂ S is µS-JM then

µ̃S̃(∂S̃(π
−1(E))) ≤ µ̃S̃(π

−1(∂SE)) = µS(∂SE) = 0,

and (e) follows.
Item (f) follows from the equivariance of π.

It remains to prove (d). We verify Definition 5.3. We note that S̃ satisfies
(A), (B) and (C). Indeed, (A) is part of our assumptions, (B) follows from

(b) and (C) follows easily from the fact that X̃ and S are lcsc and π is
continuous. We now check the further conditions of Definition 5.3. Condi-
tion 5.3(1) follows from (e) and (55). For the technical condition 5.3(2), let

U ⊂ S be the subset appearing in the definition for S, and let Ũ = π−1(U).
First,

cl
X̃
(S̃)∖ Ũ ⊂ π−1 (clX(S)∖ U)

and since π∗µ̃ = µ,

µ̃
(
cl
X̃
(S̃)∖ Ũ

)
≤ µ (clX(S)∖ U) = 0.

In order to verify that the map (0, 1) × Ũ → X̃, (t, y) 7→ aty is open, note

that Ũ (0,1) = π−1(U (0,1)) is open in X̃, and thus it is enough to show that

the map (0, 1)× Ũ → Ũ (0,1) is open. Consider the commutative diagram

(0, 1)× Ũ
(t,x̃) 7→ atx̃ //

(id,π)

��

Ũ (0,1)

π
��

(0, 1)× U
(t,x) 7→ atx

// U (0,1)

(56)

in which the vertical maps are fiber bundles and the horizontal maps consti-
tute a morphism of fiber bundles. Note that the map between the bottom
spaces is open by assumption and the map between the top spaces is a home-
omorphism when restricted to single fibers. Moreover, we claim that this
morphism of bundles is proper relative to fibers in the sense of Definition 6.1.
An application of Lemma 6.2 then shows that the upper horizontal map is
open which finishes the proof.

We verify properness relative to fibers. Let {(tn, x̃n)} ⊂ (0, 1) × Ũ be a

sequence such that both {(tn, π(x̃n))} ⊂ (0, 1) × U and {a(tn)x̃n} ⊂ Ũ (0,1)

are bounded. We may assume without loss of generality that

(tn, π(x̃n))→ (t0, x0) ∈ (0, 1)× U and atn x̃n → z̃ ∈ Ũ (0,1).

It follows first that t0 ∈ (0, 1), and second, by applying π we get that

z̃ ∈ π−1(at0x0), which implies that a−t0 z̃ ∈ π−1(U) = Ũ . Finally, by the
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continuity of the action we see that that

lim x̃n = lim a−tnatn x̃n = a−t0 z̃ ∈ Ũ

which shows that {(tn, x̃n)} converges in (0, 1)× Ũ to (t0, a−t0 z̃). □

7. Homogeneous spaces and homogeneous measures

7.1. Guide to the rest of the paper. In order to obtain our results,
we will apply the theory developed in §§4-6 in order to get equidistributed
sequences on cross-sections in various spaces, and then interpret them as
being related to best approximations and ε-approximations. For our results
we will have three distinctions which give rise to 8 = 23 cases. The first
distinction is between best approximations and ε-approximations (compare
Theorems 1.1 and 1.2), the second distinction is between Lebesgue a.e. vector
and vectors with entries in a totally real field (compare both of the above,
with Theorem 1.5) and the third is between results on equidistribution in

the real spaces En×Rd and in the larger locally compact space En×Rd× Ẑn
(compare the first two coordinates of (18) with all three of them). In all
cases we will specify the dynamical system, define our cross-section, give an
expression for the cross-section measures, and check that the axioms used
in §§4-6 are satisfied. Some of these verifications will be routine but others
will require detailed argumentation.

Since the reader may not be equally interested in all eight cases, we pref-
ace this discussion with a short guide. We will first consider the real ho-
mogeneous space Xn = SLn(R)/ SLn(Z), where the action is given by left
multiplication by the one-parameter group {at} in (16). Understanding the
space Xn will only give information about the real components En × Rd in
(18). On Xn we will define a cross-section Sr0 (defined below in (81)). We
will consider two kinds of measures µ on Xn. The first is the Haar-Siegel
measure mXn . This measure will give information about the properties of
Lebesgue a.e. θ ∈ Rd. When discussing this measure we will say that we are
in Case I. In the second case, related to approximation in totally real fields,
which we will refer to as Case II, we will have a homogeneous measure mα⃗

(see Proposition 7.5), where by homogeneous we mean that there is a closed
subgroup L ⊂ SLn(R), such thatmα⃗ is L-invariant and supp (mα⃗) is a closed
L-orbit. In our case L is a conjugate of the diagonal group A, where the
conjugating matrix will depend on the algebraic vector α⃗, and supp (mα⃗) is
compact. We will prove that Sr0 is µ-reasonable in both Case I and Case II
(see §8.3 and §8.4 respectively).

In order to derive information about best approximations, we will work
with a subset B ⊂ Sr0 , and for ε-approximations, we will work with a subset
Sε ⊂ Sr0 . We will show (see §9.1, §9.2) that these sets are µSr0

-JM in both

cases. As remarked in the introduction, B will be a tempered subset (see
Proposition 9.8), but Sε will not be.
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In order to understand all three components in (18), we will consider the

adelic homogeneous space X A
n

def
= SLn(A)/ SLn(Q), and the factor map

π : X A
n → Xn. These will be defined in §7.4. The group {at} defined in

(16) is contained in SLn(R) and thus in SLn(A), and hence acts on X A
n ,

and the map π is {at}-equivariant. We will lift Sr0 to a cross-section S̃r0 =
π−1(Sr0) in X A

n , and define relevant at-invariant measures µ on X A
n which

descend under π to the correct measure on Xn according to the case at
hand. Namely, in Case I, the measure µ = mX A

n
is the unique SLn(A)-

invariant probability measure on X A
n , and in Case II we will take measures

µ = m̃α⃗ = mL̃α⃗ỹα⃗
corresponding to α⃗, which are homogeneous measures

supported on a compact adelic torus-orbit. These measures satisfy π∗mX A
n
=

mXn and π∗m̃α⃗ = mα⃗. Using the results of §6, we will obtain that the lifted

cross-section S̃r0
def
= π−1(Sr0) is µ̃-reasonable in both cases. Similarly we

will obtain that the lifted subsets B̃ def
= π−1(B), S̃ε

def
= π−1(Sε) are µ̃-JM.

Throughout the discussion we will take care to obtain explicit description
of the maps and measures that arise.

In the subsection below we will introduce the spaces and measures (X,µ),
and in the subsequent sections we will introduce the cross-sections and their
JM-subsets.

7.2. The real homogeneous space, Case I. We will work with the space

of lattices Xn
def
= SLn(R)/ SLn(Z), and the Haar-Siegel measure mXn . Let

SL
(±)
n (R) denote the n × n real matrices of determinant ±1. The following

simple observation will be useful.

Proposition 7.1. Xn is isomorphic to the quotient SL
(±)
n (R)/ SL(±)

n (Z),
via a map which is SLn(R)-equivariant.

Proof. Let τ : SLn(R) ↪→ SL
(±)
n (R) be the embedding. Then τ(SLn(Z)) ⊂

SL
(±)
n (Z) and hence τ induces an SLn(R)-equivariant map τ̄ : SLn(R)/SLn(Z)→

SL
(±)
n (R)/SL(±)

n (Z). We leave it to the reader to verify that τ̄ is a bijec-
tion. □

Note that elements of SL
(±)
n (R) act on Xn via their action on Rn; in terms

of the isomorphism given in Proposition 7.1, the left-action of SL
(±)
n (R) by

matrix multiplication on lattices, is given by left multiplication on cosets.

7.2.1. Contracting horospherical group. Let G be an lcsc group, {at} ⊂ G a
one-parameter subgroup, and Γ < G a lattice. Let X = G/Γ and let µ be
an {at}-invariant measure on X . The group

H− def
= {g ∈ G : atga−t →t→+∞ e}, (57)
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is known as the contracting horospherical subgroup of G, corresponding to
{at}. Also we denote the centralizer of {at} by H0, that is,

H0 def
= {g ∈ G : ∀t, atg = gat}. (58)

We will need the following well-known fact. We leave the proof to the reader.

Proposition 7.2. The product H≤ = H0H− is a group. If x0 is (at, µ)-
generic and h0 ∈ H0, h− ∈ H−, then h0h−x0 is (at, h

0
∗µ)-generic.

7.3. The real homogeneous space, Case II. Let d ≥ 2, and let K =
spanQ {α1, . . . , αd, 1} be a totally real field of degree n overQ. Let σ1, . . . , σn :
K → R denote the distinct field embeddings. Departing slightly from com-
mon conventions, we let σn = Id. Let

α⃗
def
=

α1
...
αd

 ∈ Rd. (59)

We point out a slight abuse of notation: what we now denote by α⃗ is a
column vector whereas in the introduction the same notation was used for a
row vector with the same entries. In this section it will be more convenient
to work with column vectors, and this should cause no confusion.

For β ∈ K, let σσσ : K→ Rn be the Q-linear map defined by

σσσ(β)
def
=


σ1(β)

...
σn−1(β)

β

 ∈ Rn. (60)

We will refer to σσσ(β) as the geometric embedding of β. A lattice Λ ∈ Xn is
called of type (σσσ,K) if there exist a basis β1, . . . , βn of K over Q such that
Λ is homothetic to the lattice

{σσσ(β) : β ∈ spanZ {β1, . . . , βn}} =

 | . . . |
σσσ(β1) . . . σσσ(βn)
| . . . |

Zn. (61)

LetA ⊂ SLn(R) denote the group of diagonal matrices with positive diagonal
entries. We say that an orbit AΛ′ ⊂Xn is an orbit of type (σσσ,K) if there is
Λ ∈Xn of type (σσσ,K) such that AΛ′ = AΛ.

Lemma 7.3. Orbits of type (σσσ,K) are compact, and all compact A-orbits are
of type (σσσ,K), for some totally real number field K and some σσσ. If Λ′,Λ ∈
Xn are lattices such that Λ′ is of type (σσσ,K), and StabA(Λ) = StabA(Λ

′),
then AΛ is an orbit of type (σσσ,K) (for the same field K).
Proof. For the first two assertions see [LW01, §6]. For the third assertion,

let ∆
def
= StabA(Λ

′). It is well-known that the Q-linear span of ∆, in the
linear space of n× n real matrices, satisfies

K̃ := spanQ(∆) = {diag (σ1(α), . . . , σn(α)) : α ∈ K} .
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This follows from the fact that any finite index subgroup of the group of
units in the ring of integers of K spans K. For α ∈ K let us denote α̃ :=
diag (σ1(α), . . . , σn(α)). Fix a vector w ∈ Λ all of whose coordinates are
strictly positive. Consider the map

ι : K→ Rn, ι(α)
def
= α̃w.

Note that this is an injective Q-linear map. We claim that its image is

the Q-span of Λ, which we denote by ΛQ. Indeed, any α̃ ∈ K̃ is a linear
combination over Q of elements from ∆, and this implies that ι(K) ⊂ ΛQ.
Since K has dimension n over Q we conclude that ι is a linear isomorphism
between K and ΛQ.

Now let M = ι−1(Λ) and let β1, . . . , βn be a basis of M as a Z-module.
It is clear from the construction that Λ is obtained from σσσ(M) by applying
the diagonal matrix whose diagonal entries are the coordinates of w. This
shows that AΛ = AΛ′′, where Λ′′ is the lattice of type (σσσ,K) obtained from
σσσ(M) by normalizing its covolume to be one. □

Let α⃗ be as in (59). We set

gα⃗
def
=

 . . .
σσσ(α1) . . . σσσ(αd) σσσ(1)

. . .

 , (62)

so the bottom row of gα⃗ is (α⃗t, 1), where α⃗t denotes the transpose of α⃗. It
is well-known that the matrix gα⃗ is invertible. Let

xα⃗
def
= |det gα⃗|−1/ngα⃗Zn ∈Xn. (63)

For M ∈ GLn(R) we denote by M∗ = (M−1)t the inverse of the transpose

ofM . For a lattice x = gZn ∈Xn, the dual lattice is defined by x∗
def
= g∗Zn.

We then have that

x∗α⃗ = cg∗α⃗Z
n, (64)

where c > 0 is chosen so that x∗α⃗ ∈Xn.
Note that the one-parameter group {at} defined in (16) is contained in

A. We will need the following well-known fact:

Proposition 7.4. The orbit Ax∗α⃗ is of type (σσσ,K), and {at} acts uniquely
ergodically on Ax∗α⃗. For any Λ ∈ Ax∗α⃗, and any v ∈ Λ∖ {0}, all the coordi-
nates of v are nonzero.

Proof. Let c′
def
= |det(gα⃗)|−1/n > 0, so that xα⃗

def
= c′gα⃗Zn ∈ Xn. Then

by Lemma 7.3, Axα⃗ ⊂ Xn is a compact orbit. The map M 7→ M∗ is a
continuous group automorphism of SLn(R) which maps the groups A and
SLn(Z) to themselves. Therefore it induces an automorphism Ψ of Xn,
such that x∗α⃗ = Ψ(xα⃗). Since a∗ = a−1 for a ∈ A, the stabilizers satisfy
StabA(x

∗
α⃗) = StabA(xα⃗), and Lemma 7.3 implies that Ax∗α⃗ is an orbit of

type (σσσ,K).
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We now prove the second assertion. The group A is isomorphic (as a Lie
group) to Rd, and we can realize this group isomorphism explicitly using the
exponential map Lie(A) → A. The orbit Ax∗α⃗ is isomorphic to T = Rd/∆
for some lattice ∆ in Rd, and the action at ↷ Ax∗α⃗ is mapped by this
isomorphism to a straightline flow on T, that is, a flow of the form

tP (x) = P
(
x+ tℓ⃗

)
, where ℓ⃗ ∈ Rd ∖ {0} and P : Rd → T

is the projection. Recall that such a straightline flow is uniquely ergodic
unless the straightline orbit of 0 ∈ T is contained in a proper subtorus of
T. Let L be the Galois closure of K/Q and let G = Gal(L/Q) denote the
corresponding Galois group. Then G acts transitively on the field embed-
dings σ1, . . . , σn by post-composition. This gives an identification of G with
a transitive subgroup of the group Sn of permutations of {1, . . . , n}. In
turn, this allows G to act on the group of diagonal matrices by permuting
the coordinates on the diagonal. As the discussion in [LW01, §6] shows (in
particular, from [LW01, Step 6.1]), for N ⊂ Rd ∼= Lie(A), P (N) is a com-

pact subtorus of T if and only if A0
def
= exp(N) ⊂ A is G -invariant. Thus if

{at} ⊂ A0, then A0 contains any group obtained from {at} by acting on it
with G . Because of the transitivity mentioned above, A0 must contain all
the subgroups{

ait : t ∈ R
}
, where ait = diag

(
et, . . . , et, e−dt

ith position
, et, . . . , et

)
.

Since the groups
{
ait
}
generate A, we must have A0 = A, and this establishes

unique ergodicity.
For the third assertion, note that if σσσ(β) has one of its coordinates equal

to zero, then β = 0. This observation, along with (61), implies the third
assertion for Λ = x∗α⃗. The statement now follows for general Λ = ax∗α⃗ by
the definition of the A-action. □

We will denote the A-invariant probability measure on Ax∗α⃗ by mAx∗
α⃗
.

Proposition 7.5. Let

Λα⃗
def
=

(
Id −α⃗
0t 1

)
Zn ∈Xn, (65)

where 0 ∈ Rd is the zero (column) vector, and let

Bα⃗
def
= (bij)i,j=1,...,d where bij

def
= σj(αi)− αi.

Then Bα⃗ is invertible, and for c1
def
= |det (Bα⃗)|−1/n , the matrix

h̄α⃗
def
= c1

(
Bα⃗ 0
0t 1

)
∈ SL(±)

n (R) (66)

satisfies that the trajectory {atΛα⃗ : t > 0} is generic for the measure

mα⃗
def
= (h̄α⃗)∗mAx∗

α⃗
. (67)
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Proof. Note that
Bt
α⃗ = (σi(αj)− αj)i,j=1,...,d .

Also note that the entries of the right-most column of (62) are all equal to
1, and the first d entries of the bottom row in (62) are α⃗t. Thus, letting
1 ∈ Rd be the column vector all of whose entries are 1, we find

gα⃗ =

(
Bt
α⃗ 1

0t 1

) (
Id 0
α⃗t 1

)
, (68)

which implies det(Bα⃗) ̸= 0, and thus det
(
h̄α⃗
)
= ±1.

From (68) we have that

g∗α⃗ =

(
Bt
α⃗ 1

0t 1

)∗ (
Id −α⃗
0t 1

)
=

(
B−1
α⃗ 0
0t 1

)
q

(
Id −α⃗
0t 1

)
, (69)

where q is of the form

q =

(
Id 0
xt 1

)
, for some x ∈ Rd.

In particular we have limt→∞ atqa−t = e; i.e., q ∈ H−, the contracting
horospherical subgroup of {at}.

Let x∗α⃗ = c−1
1 g∗α⃗Z

n. By (69), c1 =
∣∣det (g∗α⃗)∣∣−1/n

, and thus x∗α⃗ is the lattice
as in Proposition 7.4 and satisfies

x∗α⃗ = (h̄α⃗)
−1q

(
Id −α⃗
0t 1

)
Zn = (h̄α⃗)

−1qΛα⃗. (70)

The lattice x∗α⃗ is (at,mAx∗
α⃗
)-generic by Proposition 7.4. Since Λα⃗ = q−1h̄α⃗x

∗
α⃗,

h̄ commutes with the {at} action, and q−1 belongs to the contracting horo-
spherical group for {at}, we have by Proposition 7.2 that Λα is (at,mα⃗)-
generic. □

7.4. The adelic homogeneous space, Case I. We briefly recall facts
and notation regarding the rational adeles. See [Wei82, PR94] for more
details on adeles and arithmetic groups, and see [Gui14] for a gentle recent
introduction. Let P be the set of (rational) primes. Let A = R × Af =

R×
∏′
p∈PQp be the ring of adeles. Here

∏′ stands for the restricted product

— that is, a sequence β = (β∞, βf ) = (β∞, β2, β3, . . . , βp, . . . ) belongs to A if
and only if βp ∈ Zp for all but finitely many p. As suggested by the notation,
we denote the real coordinate of a sequence β ∈ A by β∞ and the sequence of
p-adic coordinates by βf = (βp)p∈P. The rational numbers Q are embedded
in A diagonally, that is, q ∈ Q is identified with the constant sequence
(q, q, · · · ). We let SLn(A) = SLn(R) × SLn(Af ) = SLn(R) ×

∏′
p∈P SLn(Qp)

and use similar notation (g∞, gf ) = (g∞, (gp)p∈P) to denote elements of
SLn(A). It is well-known that the diagonal embedding of SLn(Q) in SLn(A)
is a lattice in SLn(A). Let

Kf
def
=
∏
p∈P

SLn(Zp) (71)
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and

πf : SLn(A)→ SLn(Af ), πf (g∞, gf )
def
= gf .

Then Kf is a compact open subgroup of SLn(Af ). Via the embedding
SLn(Af ) ∼= {e}×SLn(Af ) we also think of Kf as a subgroup of SLn(A). We
shall use the following two basic facts (see [PR94, Chap. 7]):

(i) The intersection Kf ∩ πf (SLn(Q)) is equal to πf (SLn(Z)).
(ii) The projection πf (SLn(Q)) is dense in SLn(Af ).
Let

X A
n = SLn(A)/ SLn(Q),

and let mX A
n

denote the SLn(A)-invariant probability measure on X A
n .

There is a natural projection π : X A
n → Xn which we now describe in

two equivalent ways.
First definition of π: Given x̃ = (g∞, gf ) SLn(Q) ∈X A

n , using (ii) and
the fact that Kf is open, we may replace the representative (g∞, gf ) by an-
other (g∞γ, gfγ), where γ ∈ SLn(Q) is such that gfγ ∈ Kf . We then define
π(x̃) = g∞γ SLn(Z). This is well-defined since, if gfγ1, gfγ2 ∈ Kf , then by

(i), πf (γ
−1
1 γ2) ∈ Kf ∩ πf (SLn(Q)) = πf (SLn(Z)), and so g∞γ1 SLn(Z) =

g∞γ2 SLn(Z).
Second definition of π: View Kf as a subgroup of SLn(A). We

claim that we may identify the double coset space Kf\ SLn(A)/ SLn(Q)
with SLn(R)/ SLn(Z). Indeed, by (ii) and since Kf is open (as a subgroup
of SLn(Af )), each double coset Kf (g∞, gf ) SLn(Q) contains representatives
with gf = ef (the identity element in SLn(Af )). The real coordinates of
all such representatives form a single left coset of Kf ∩ SLn(Q) = SLn(Z).
With this identification π is simply the projection from the coset space
SLn(A)/ SLn(Q) to the double coset space Kf\SLn(A)/ SLn(Q).

We leave it to the reader to check that these two definitions agree and

that π intertwines the actions of G∞
def
= SLn(R) on X A

n ,Xn. Since there is
a unique G∞-invariant probability measure on Xn, we have that π∗mX A

n
=

mXn . In particular, the 1-parameter group {at} ⊂ G∞ acts on both of
these spaces and π is a factor map for these actions. The following standard
statement will be important for us:

Lemma 7.6. The group {at} acts ergodically on
(
X A
n ,mX A

n

)
.

Proof. By the Mautner phenomenon (see e.g. [EW11]), it is enough to show

that G∞ acts ergodically on
(
X A
n ,mX A

n

)
. By duality, this is equivalent

to the ergodicity of the action by right translations, of πf (SLn(Q)) on
G∞\ SLn(A) = SLn(Af ). Since the stabilizer of a measure is a closed group,
by property (ii) above, any πf (SLn(Q))-invariant measure must be SLn(Af )-
invariant, and thus is the Haar measure of SLn(Af ). In particular the action
of πf (SLn(Q)) is uniquely ergodic, and hence ergodic. □
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7.4.1. The adelic homogeneous space, Case II. Let A be the diagonal group,
let x∗α⃗ be as in (64), let h̄α⃗ be as in (66) and let

Āα⃗
def
= h̄α⃗Ah̄

−1
α⃗ , yα⃗

def
= h̄α⃗x

∗
α⃗. (72)

The measure mα⃗ defined in (67) is Āα⃗-homogeneous, more precisely, by
Proposition 7.4, we have that the orbit Āα⃗yα⃗ is compact and mα⃗ is the
Āα⃗-invariant probability measure on Āα⃗yα⃗.

Let

StabĀα⃗
(yα⃗)

def
=
{
ā ∈ Āα⃗ : āyα⃗ = yα⃗

}
(73)

be the stabilizer group of yα⃗ in Āα⃗. Write yα⃗ = g∞Zn for some g∞ ∈ SLn(R),
so that g−1

∞ StabL̃α⃗
(ỹα⃗)g∞ ⊂ SLn(Z) is cocompact in the conjugated group

g−1
∞ Āα⃗g∞. Let ∆ be the diagonal embedding of SLn(Z) in SLn(A), letMα⃗ ⊂
Kf denote the closure of πf ◦∆

(
g−1
∞ StabL̃α⃗

(ỹα⃗)g∞

)
, and let

L̃α⃗
def
= Āα⃗ ×Mα⃗ ⊂ SLn(A).

For ā ∈ StabL̃α⃗
(ỹα⃗) we let

γā
def
= πf ◦∆(g−1

∞ āg∞) ∈Mα⃗,

and

ỹα⃗
def
= (g∞, ef ) SLn(Q) ∈X A

n . (74)

Note that Mα⃗ is a compact abelian group. Note also that the group Mα⃗,
the homomorphism ā 7→ γā, and the point ỹα⃗ all depend on the choice of
the representative g∞ of yα⃗. This dependence will not matter to us and we
suppress it from the notation.

Proposition 7.7. The orbit L̃α⃗ỹα⃗ ⊂ X A
n is compact, and supports a fi-

nite L̃α⃗-invariant measure mL̃α⃗ỹα⃗
. The action of {at} on

(
L̃α⃗ỹα⃗,mL̃α⃗ỹα⃗

)
is

uniquely ergodic, and π∗

(
mL̃α⃗ỹα⃗

)
= mα⃗. Moreover, Mα⃗ acts transitively on

the fibers of π|L̃α⃗ỹα⃗
.

Proof. In order to show that L̃α⃗ỹα⃗ is compact we need to show that StabL̃α⃗
(ỹα⃗)

is a lattice in L̃α⃗. We claim that{
(ā, γā) : ā ∈ StabL̃α⃗

(ỹα⃗)
}
⊂ StabL̃α⃗

(ỹα⃗). (75)

Indeed, for any ā ∈ StabĀα⃗
(yα⃗) we have

(ā, γā)ỹα⃗ =(ā, γā)(g∞, ef ) SLn(Q) = (g∞g
−1
∞ āg∞, γā) SLn(Q)

=(g∞, ef )(g
−1
∞ āg∞, πf ◦∆(g−1

∞ āg∞)) SLn(Q)
=(g∞, ef ) SLn(Q) = ỹα⃗.
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We remark that the other inclusion in (75) is also true, but we will not need
it. Now, since Mα⃗ is compact and StabĀα⃗

(yα⃗) is a lattice in Āα⃗, the graph{
(ā, γā) : ā ∈ StabĀα⃗

(yα⃗)
}
is a lattice in L̃α⃗.

Since Mα⃗ ⊂ Kf we have that π(L̃α⃗ỹα⃗) = Āα⃗yα⃗ and since π intertwines
the Āα⃗-action, we have that π∗mL̃α⃗ỹα⃗

is an Āα⃗-invariant probability measure

supported on Āα⃗yα⃗. As mα⃗ is the unique such measure, we have π∗mL̃α⃗ỹα⃗
=

mα⃗.
It remains to establish the unique ergodicity of the action of at on L̃α⃗ỹα⃗.

By standard facts on translation flows on compact abelian groups (see e.g.
[EW11, Thm. 4.14]), this is equivalent to showing that any character on

L̃α⃗/StabL̃α⃗
(ỹα⃗) which is trivial on the image of {at} is trivial. This is in

turn equivalent to the fact that any character on L̃α⃗ which is trivial on {at}
and on StabL̃α⃗

(ỹα⃗) is trivial. To this end, let χ : L̃α⃗ → S1 be a character

such that

χ|{at} ≡ χ|StabL̃α⃗
(ỹα⃗) ≡ 1.

There are characters χ1 : Āα⃗ → S1, χ2 :Mα⃗ → S1 such that

χ(ā, h) = χ1(ā) · χ2(h).

We claim that there exists k ∈ N such that χk2 is trivial. Let W be a
neighborhood of 1 in S1 which does not contain any nontrivial subgroups.
The group Kf has a collection of clopen subgroups that give a basis of the
topology at the identity, and thus the same is true for Mα⃗. By continuity
of χ2 there is a clopen subgroup M ′ of Mα⃗ such that χ2(M

′) ⊂ W, and
hence M ′ ⊂ kerχ2. This implies that χ2 factors through the finite quotient
of Mα⃗/M

′, proving the claim.
It follows that χ1 is trivial on StabĀα⃗

(yα⃗)
k and on {at} and therefore

induces a character on Āα⃗/ StabĀα⃗
(yα⃗)

k which is trivial on the image of

{at}. Since {at} acts ergodically on Āα⃗/ StabĀα⃗
(yα⃗) and Āα⃗ is connected,

{at} also acts ergodically on Āα⃗/StabĀα⃗
(yα⃗)

k. Hence χ1 is trivial. This in

turn implies that χ2 is trivial on
{
γā : ā ∈ StabL̃α⃗

(ỹα⃗)
}
, which is a dense

subgroup of M . Therefore χ2 is also trivial.
We now establish the transitivity of theMα⃗-action on the fibers of π|L̃α⃗ỹα⃗

.

We need to show that if x, y ∈ L̃α⃗ỹα⃗ are such that π(x) = π(y), then

there exists m ∈ Mα⃗ such that mx = y. Since L̃α⃗ commutes with π, acts
transitively, and is commutative we may assume without loss of generality

that x = ỹα⃗. Recall that ỹα⃗ = (g∞, ef )ΓA, where we set ΓA
def
= SLn(Q).

Since Āα⃗ ×Mα⃗ acts transitively, we can write

y = (ā,mf )ỹα⃗ = (ā,mf )(g∞, ef )ΓA = (āg∞,mf )ΓA.

Applying π we see that

yα⃗ = g∞ SLn(Z) = π(x) = π(y) = āg∞ SLn(Z),
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and therefore by definition of Mα⃗, there exists γ ∈ M ∩ SLd(Z) such that
āg∞ = g∞γ. It follows that

y = (g∞γ,mf )ΓA = (g∞,mfγ
−1)ΓA = (e∞,mfγ

−1)(g∞, ef )ΓA ∈Mỹα⃗.

□

8. Some reasonable cross-sections

We will now define the cross-sections S we will need for our applications,
as well as the cross-section measures µS . In this section we will work with
the real space Xn, and the adelic space X A

n will be discussed in §9.3.

8.1. The cross-section Sr0. We introduce some convenient notation. Re-
call that the set of primitive vectors in Λ is denoted by Λprim. Given a subset
W ⊂ Rn and k ≥ 1 we let

Xn(W,k)
def
= {Λ ∈Xn : #(Λprim ∩W ) ≥ k} . (76)

For k = 1 we will omit k and denote

Xn(W )
def
= Xn(W, 1).

We will be interested in the case when there is a unique primitive vector in
W , and thus we let

X ♯
n (W )

def
= Xn(W )∖Xn(W, 2).

There is a natural map

v : X ♯
n (W )→W, defined by {v (Λ)} = Λprim ∩W. (77)

With this notation we have:

Lemma 8.1. Let W ⊂ Rn be a compact set, V ⊂W a relatively open subset
and k ≥ 1 an integer.

(1) The set Xn(W,k) is closed in Xn.

(2) The set X ♯
n (W ) ∩Xn(V ) is open in Xn(W ).

(3) The map v : X ♯
n (W )→W is continuous.

Proof. Let Λi ∈ Xn(W,k) such that Λi → Λ. We can choose gi → h such
that Λi = giZn and Λ = hZn. We need to show that Λ contains at least k
primitive vectors in W . Since gi → h and W is compact, there is a compact
subset of Rn containing all of the sets g−1

i W . Since Λi ∈ Xn(W,k), each

g−1
i W contains at least k distinct elements of Znprim. After passing to a
subsequence if necessary, there are distinct p1, . . . ,pk ∈ Znprim, such that

g−1
i pj ∈W for j = 1, . . . , k. Since W is closed, their limits h−1pj belong to
Λprim ∩W , and are distinct. This proves (1).

The complement of X ♯
n (W ) ∩Xn(V ) in Xn(W ) consists of lattices that

either contain at least two distinct primitive vectors in W or else, contain a
primitive vector in W ∖V (these cases are not mutually exclusive). That is,

Xn(W )∖ (X ♯
n (W ) ∩Xn(V )) = Xn(W, 2) ∪Xn(W ∖ V ),
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which by part (1) of the Lemma, is a union of two closed subsets of Xn.
This proves (2).

Suppose Λi = giZn → Λ = hZn is a converging sequence in X ♯
n (W ),

with gi → h. As before, the sets g−1
i W are all contained in a fixed compact

set in Rn. Since Λi and Λ belong to X ♯
n (W ), the sets g−1

i W ∩ Znprim and

h−1W ∩ Znprim are singletons. Passing to a subsequence if needed, we may

assume that g−1
i W = {p} for a fixed p. Therefore v(Λi) = gip → hp ∈

Λprim ∩W and hp = v(Λ), proving (3). □

The following Lemma is proved using similar arguments:

Lemma 8.2. Let W ⊂ Rn be an open set. For any k ≥ 1, Xn(W,k) is open
in Xn.

□
Fix a norm ∥ · ∥ on Rd, and denote the Lebesgue measure on Rn by m.

For x = (x1, . . . , xn) ∈ Rn, we refer to πRd(x) as the horizontal component
of x and to xn as the vertical component of x. For positive numbers r and
s, let

Cr(s)
def
= {x ∈ Rn : ∥πRd(x)∥ ≤ r, |xn| ≤ s} and Cr

def
= Cr(1). (78)

Note that this cylinder depends on the choice of the norm; we consider the
norm as fixed and thus it does not appear in the notation. Choose r0 > 0
large enough so that

m(Cr0) ≥ 2n. (79)

By Minkowski’s convex body theorem, this implies that for any Λ ∈ Xn,
Λprim ∩ Cr0 ̸= ∅. In other words, Xn(Cr0) = Xn. Also set

Dr
def
= {x ∈ Rn : ∥πRd(x)∥ ≤ r, xn = 1} , (80)

and define

Sr = Xn(Dr) and S♯r = X ♯
n (Dr). (81)

The set Sr0 will be our cross-section.

Remark 8.3. The reader will note that we have not specified r0 explic-
itly, e.g. we did not specify an equality m(Cr0) = 2n. Two situations in
which this additional flexibility will be useful, are when dealing with ε-
approximations for large ε (in which case we will require r0 ≥ ε), and in the
proof of Proposition 12.5.

Lemma 8.4. Let µ be any {at}-invariant probability measure on Xn. Then
Sr0 is a µ-cross-section for (Xn, µ, {at}). Furthermore, the cross-section
measure satisfies

µSr0
((Xn(Dr0 , 2)) = 0. (82)
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Rd

Ren

en

Upper half of Cr

rDr0

Proof. We verify Definition 4.2. We take X0 to be the set of lattices which
intersect the horizontal space and the vertical axis span {en} only at {0}.
It is easy to see that this is a Gδ-set and therefore (X0,BX0) is a standard
Borel space. In order to show that S is a µ-cross-section we need to check
three things: that µ(Xn ∖ X0) = 0, that for any Λ ∈ X0 the set of visit
times YΛ is discrete and unbounded from below and above, and finally that
the return time function τS : S ∩X0 → R+ is measurable.

Let Λ ∈ Xn. We say that Λ is divergent in positive (negative) time if for
any compact K ⊂ Xn there is t0 ∈ R such that for all t > t0 (respectively,
for all t < t0) we have atΛ /∈ K. Recall that by Mahler’s compactness
criterion, a closed subset K ⊂ Xn is compact if and only if there is ε > 0
such that for all Λ ∈ K, any nonzero v ∈ Λ satisfies ∥v∥ ≥ ε. In particular,
if Λ ∈ Xn ∖ X0 then either it is divergent in positive time or in negative
time. By Poincaré recurrence, Xn ∖X0 is a µ-null set.

Let Λ ∈ X0. We verify (31), that is, we show that {t ∈ R : atΛ ∈ Sr0} is
discrete and unbounded from below and from above.

Note that atΛ ∈ Sr0 if and only if Λprim contains a vector in a−t(Dr0).
Discreteness of the set of visit times readily follows from this, and the fact
that Λprim is a discrete set in Rn. Now suppose by contradiction that there is

T > 0 such that for all s ≥ T , asΛ /∈ Sr0 . The set F
def
= aTΛ∩Cr0 is finite and

since Λ ∈ X0, all vectors in F have non-zero horizontal component. It follows
that for all large enough t > T , at−T (F )∩Cr0 = ∅. By Minkowski’s convex
body theorem and the choice of r0, the lattice atΛ contains a primitive
vector v = (v1, . . . , vn) in the cylinder Cr0 . Since Λ ∈ X0, we have vn ̸= 0,
and we can assume without loss of generality that vn > 0. Let v = atv0 for
v0 ∈ Λprim. By (16) there is a unique s such that asv0 ∈ Dr0 , and since
the vertical component of v is at most 1, we have s ≤ t. This means that
asΛ ∈ Sr0 and by choice of T we have s ≤ T , so that the vertical component
of aT v0 is at most 1. On the other hand

∥πRd(aT v0)∥ = ∥πRd(aT−tv)∥ = et−T ∥πRd(v)∥ ≤ r0,

so that aT v0 ∈ Cr0 . This shows that aT v0 ∈ F and hence v ∈ at−TF , a
contradiction. The argument showing unboundedness from below is similar.
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To complete the verification of Definition 4.2 we need to show that the
return time function is Borel measurable, or equivalently, that the sub-level
sets Sr0,<ε defined in (33) are Borel. The thickened set

Wε
def
= D(−ε,0)

r0 =
⋃

t∈(0,ε)

a−t(Dr0) (83)

is a Borel subset of Rn, and therefore

Sr0,<ε = {Λ ∈ Sr0 : Λprim ∩Wε ̸= ∅} = Xn(Dr0) ∩Xn(Wε) (84)

is Borel as well.
To finish the proof we show (82) holds. This follows since Xn(Dr0 , 2)

R ⊂
Xn ∖ X0 (where we use the notation in (34)) is µ-null and so by Corol-
lary 4.4(iv), Xn(Dr0 , 2) is µSr0

-null. □

8.2. Parameterizing Sr0. One of the advantages of the cross-section Sr0
is that it has a nice description in terms of orbits and groups. Let

H =
{(

A 0
wt 1

)
: A ∈ SLd(R), w ∈ Rd

}
, and (85)

U =
{
u(v) : v ∈ Rd

}
, where u(v) is as in (15) ; (86)

that is, H = H≤ is the group defined in (12) and Proposition 7.2, the orbit
HZn is the space En = Xn(en) of lattices which contain en as a primitive
vector (see (11)), and U is the expanding horospherical group of at in positive
time.

We let B̄r ⊂ Rd denote the closed ball centered at 0 ∈ Rd, with respect
to our chosen norm (note that the norm is suppressed from the notation).
Consider the map

φ : En × B̄r0 → Sr0 , φ(Λ, v)
def
= u(v)Λ.

Note that the map v 7→ u(v)en is a bijection between B̄r0 and Dr0 . It follows
that φ is onto Sr0 , and

for any r ∈ (0, r0), φ(En × B̄r) = Sr. (87)

Furthermore, for Λ ∈ Sr0 ,

#φ−1(Λ) = #(Λprim ∩Dr0) . (88)

Indeed, for any v ∈ Λprim ∩Dr0 ,(
u(πRd(v))−1Λ, πRd(v)

)
∈ φ−1(Λ),

and this assignment is easily seen to be a bijection. Let

ψ : S♯r0 → En × B̄r0 , (89)

ψ(Λ)
def
=
(
u(vΛ)

−1Λ, vΛ
)
,

where

vΛ
def
= πRd(v(Λ)) and {v(Λ)} = Λ ∩Dr0 . (90)
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Lemma 8.5. The set Sr0 is closed in Xn, ψ as in (89) is the inverse of

φ|
φ−1(S♯

r0
)
, and is a homeomorphism between S♯r0 and φ−1(S♯r0).

Proof. The assertions that Sr0 is closed, and that ψ is continuous, follow
from Lemma 8.1. It is clear that φ is continuous. To see that ψ and
φ|
φ−1(S♯

r0
)
are mutual inverses, we see easily that φ◦ψ = IdS♯

r0
. By (88), φ is

injective on φ−1(S♯r0), and thus we also have ψ ◦φ|
φ−1(S♯

r0
)
= Id

φ−1(S♯
r0

)
. □

In the following subsections we will use the map φ to describe the cross-
section measure µSr0

, corresponding to certain invariant measures µ.

8.3. The cross-section measure, real homogeneous space, Case I.
The goal of this subsection is the following result:

Theorem 8.6. The cross-section Sr0 is mXn-reasonable.

For the proof we will need some preparations. The first is an explicit
description of the cross-section measure µSr0

. Let mRd be the Lebesgue

measure on Rd.

Proposition 8.7. In Case I,

µSr0
=

1

ζ(n)
φ∗

(
mEn ×mRd |B̄r0

)
(where ζ(n) =

∑
k∈N k

−n). In particular, µSr0
is finite and supp(µSr0

) =
Sr0.

The proof is a straightforward but lengthy computation which is post-
poned to §8.5.

Here is another result used in the proof of Theorem 8.6. We state it in a
general form which will be useful in the sequel.

Lemma 8.8. Let L ⊂ SLn(R) be a closed subgroup, with left Haar measure
mL. Let Λ0 ∈ Xn such that LΛ0 is a closed orbit supporting a finite L-
invariant measure mLΛ0. Let W ⊂ Rn such that for any v ∈W ∩LΛ0 there
is ε > 0 such that

mL

({
ℓ ∈ BL

ε : ℓv ∈W
})

= 0 (91)

(where BL
ε denotes the ε-ball around the identity element of L, with respect

to some metric inducing the topology). Then mLΛ0 (Xn(W )) = 0.

Proof. By covering W with countably many bounded sets we may assume
that W is bounded. Since W is bounded, for any Λ ∈ LΛ0, the cardinality
of Λprim∩W is finite, and bounded for Λ in a compact subset of LΛ0. Using
the hypothesis we deduce that for each Λ ∈ LΛ0 ∩Xn(W ) there exist ε > 0
such that (91) holds for any v ∈ Λprim ∩W . Since mLΛ0 is the restriction of
mL to a fundamental domain for the action of the stabilizer LΛ0 , it follows
that mLΛ0

(
Xn(W ) ∩BL

ε Λ
)
= 0. We can cover LΛ0 by countably many sets

{BL
ε Λi}i∈N, and therefore mLΛ0(Xn(W )) = 0. □
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For positive r and ε, define

D◦
r

def
= {x ∈ Rn : ∥πRd(x)∥ < r, xn = 1}

(compare with the set Dr defined in (80)), and

Fε,r
def
= (Dr ∖D◦

r)
[−ε,0] .

Rd

Ren

Dr

a−εDr

Fε,r

lattice point in Dr

lattice point that will
hit Dr in time < ε

Figure 1. The set D
(−ε,0)
r bounded by the surface Fε,r and

the disks Dr and aε(Dr). Lattice points in D
(0,ε)
r correspond

to visits to Sr,<ε.

See Figure 1. We will need the following:

Lemma 8.9. For any r ≥ r0, ε > 0 we have that

∂Sr(Sr,<ε) ⊂Xn(Dr, 2) ∪ (Xn(Dr) ∩Xn(a−ε(Dr))) ∪Xn(Fε,r), (92)

and the set Sr,<ε is µSr -JM.

Proof. Let Wε be as in (83) and let W ε be its closure in Rn. Note that

W ε =Wε ∪Dr ∪ a−ε(Dr) ∪ Fε,r. (93)

Recall from (84) that Sr,<ε consists of the lattices containing a primitive
point in Dr and another primitive point in Wε. In particular, Sr,<ε is con-
tained in

E1
def
= Xn(Dr) ∩Xn(W ε, 2),

which is closed by Lemma 8.1. By Lemma 8.2, Xn(Wε) is open and in
conjunction with Lemma 8.1 we deduce that the set

E2
def
= X #

n (Dr) ∩Xn(D
◦
r) ∩Xn(Wε)

is open in Xn(Dr). It follows that

∂Sr(Sr,<ε) ⊂ E1 ∖ E2.

We now show that E1∖E2 is contained in the RHS of (92). Suppose Λ ∈ E1

and hence Λprim contains two distinct vectors v1, v2 such that v1 ∈ Dr and



46 URI SHAPIRA AND BARAK WEISS

v2 ∈ W ε. If Λ does not belong to the RHS of (92), then v1 must be the
unique primitive vector in Dr, it cannot lie in Fε,r and so it must lie in
D◦
r and v2 cannot lie in Fε,r or a−ε(Dr) and so it must lie in Wε. That is,

Λ ∈ E2. This concludes the proof of (92).
In order to show that Sr,<ε is µSr -JM, it suffices to show that the sets

Xn(Dr, 2), Xn(Fε,r), Xn(Dr) ∩Xn(a−ε(Dr))

are all µSr -null. By Theorem 4.4 it is enough to show that the sets

Xn(Dr, 2)
R, Xn(Fε,r)

R, (Xn(Dr) ∩Xn(a−ε(Dr)))
R

are all mXn-null.
The set Xn(Dr, 2)

R is mXn-null because of (82). Next, if we set

Mr
def
=
{
x ∈ Rn : xn · ||πRd(x)||d = rd

}
=
⋃
t∈R

at (Dr ∖D◦
r) , (94)

then

Xn(Dr ∖D◦
r)
R = Xn(Fε,r)

R = Xn(Mr). (95)

Since SLn(R) contains elements which expand the vertical component xn
without affecting ||πRd(x)||, condition (91) is satisfied for W = Mr, so ap-
plying Lemma 8.8 we have that Xn(Mr) is mXn-null.

It remains to show that

Eε
def
= (Xn(Dr) ∩Xn(a−ε(Dr)))

R =
⋃
t∈R

(Xn(at(Dr)) ∩Xn(at+ε(Dr))

is mXn-null. If Λ ∈ Xn(at(Dr)) ∩Xn(at+ε(Dr)) for some t, and v, w are
primitive vectors in Λ such that v ∈ at(Dr) and w ∈ at+ε(Dr), then v, w are
two linearly independent vectors in Λ and the ratio between their vertical
components satisfies wn

vn
= eε.

We use a result of Siegel [Sie45], according to which for a null set in
Ω ⊂ Rn × Rn, the function

χ̂Ω(Λ) =
∑
v,w∈Λ

linearlty independent

χΩ(v, w)

has integral zero with respect to mXn . We apply this with

Ω
def
=

{
(v, w) ∈ Rn × Rn :

wn
vn

= eε
}
.

Since χ̂Ω bounds the characteristic function of Eε from above, we obtain
that Eε is mXn-null. □

Let

Ur0
def
= X #

n (Dr0) ∩Xn(D
◦
r0). (96)

Lemma 8.10. The set Ur0 is open in Sr0, the set (clXn(Sr0) ∖ Ur0)(0,1) is
mXn-null, and the map (t,Λ) 7→ atΛ from (0, 1)× Ur0 to Xn is open.
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Proof. Item (2) of Lemma 8.1 shows that Ur0 is open in Sr0 , and item (1)
shows that Sr0 = Xn(Dr0) is closed in Xn. Therefore

clXn(Sr0)∖ Ur0 =Xn(Dr0)∖ (X #
n (Dr0) ∩Xn(D

◦
r0))

⊂Xn(Dr0 , 2) ∪Xn(Dr0 ∖D◦
r0).

(97)

In the proof of Lemma 8.9 we showed that Xn(Dr0 , 2)
R as well as Xn(Dr0∖

D◦
r0)

R are mXn-null. This proves the second assertion.

For the third assertion, let U and H be as in (85), let Q
def
= {at} ⋉ U ,

and let h, q, g denote respectively the Lie algebras of H, Q and SLn(R). The
product map (t, u) 7→ atu is a homeomorphism R × U → Q, and since
g = q⊕ h, the product map R× U ×H → G is open. This implies that the
map

R× U ×HZn →Xn, (t, u, hZn) 7→ atuhZn

is open, and the map in the statement of the Lemma is its restriction to an
open set because Xn(D

◦
r0) = BU

r0 ·HZ
n (see §8.2). □

Proof of Theorem 8.6. Property (A) of §5 is immediate, property (B) follows
from Proposition 8.7, and property (C) follows from Lemma 8.5. Item (1)
of Definition 5.3 follows from Lemma 8.9, and item (2) follows from Lemma
8.10. □

8.4. The cross-section measure, real homogeneous space, Case II.
In this subsection, the notation is as in §7.3, and we write µ = mα⃗ (see (67)).
We denote by µSr0

the corresponding measure on Sr0 , defined via Theorem
4.4. The goal of this subsection is the following result:

Theorem 8.11. With this choice of µ, the cross-section Sr0 is µ-reasonable.

Remark 8.12. Recall that in Case II we always assume d ≥ 2. The reason
is that for d = 1, for some choices of r0, Sr0 may fail to be µ-reasonable. This
is because the Jordan measurability of some sets may fail. More specifically,
the conclusion of Lemma 8.14 may fail for some values of r.

We will need a detailed description of µSr0
. Let x∗α⃗ be as in (64), let

Āα⃗, yα⃗ be as in (72), so that

supp mα⃗ = h̄Ax∗α⃗ = Āα⃗yα⃗.

Also let

Ā
(1)
α⃗

def
= {ā ∈ Āα⃗ : āen = en}, (98)

and let m
Ā

(1)
α⃗

denote the Haar measure on Ā
(1)
α⃗ . Note that both h̄ and Ā

(1)
α⃗

act on Rn without changing the vertical component of any vector.

Proposition 8.13. The following hold:

(a) The support of µSr0
is the compact set Āα⃗yα⃗ ∩ Sr0;

(b) The support of µSr0
is equal to a finite union

⋃k
i=1OiΛ̄i where each

Oi ⊂ Ā(1)
α⃗ is homeomorphic to a closed ball, and Λ̄i ∈ Āα⃗yα⃗;
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(c) The restriction of µSr0
to each of the subsets OiΛ̄i in (b) is the push-

forward of the restriction of the Haar measure m
Ā

(1)
α⃗

|Oi under the orbit

map ā 7→ āyα⃗.
(d) Āα⃗yα⃗ ∩ Sr0 ⊂ Sr0,≥ε for some ε > 0;
(e) µSr0

is finite.

Proof. Item (a) follows from Corollary 4.4(iv). For item (b), we have from
Proposition 7.4 that the orbit Ax∗α⃗ is of type (σσσ,K). Define N : Rn → R by

N(x)
def
=

n∏
i=1

si, where (s1, . . . , sn)
t = h̄−1

α⃗ x. (99)

In other words, the restriction of N to yα⃗ is obtained from the norm NK/Q by

the geometric embedding and a change of variables. Then N is Āα⃗-invariant
and, since the NK/Q takes a discrete set of values on x∗α⃗, there is a sequence
αi → ∞ such that the vectors comprising yα⃗ all lie in the countable union
of hypersurfaces

⋃∞
i=1N

−1({αi}), and each N−1({αi}) is a finite union of
Āα⃗-orbits. Only finitely many of these hypersurfaces intersect the bounded
set Dr0 and therefore there is a finite set {v1, . . . , vk} ⊂ yα⃗ such that if we
denote

Ōi
def
=
{
ā ∈ Āα⃗ : āvi ∈ Dr0

}
and Wi

def
= Ōiyα⃗,

then

Āα⃗yα⃗ ∩ Sr0 =
k⋃
i=1

Wi.

Let L1
def
= {x ∈ Rn : xn = 1}, so that Ā

(1)
α⃗ is the subgroup of Āα⃗ leaving L1

invariant, and Dr ⊂ L1. Thus we may write Ōi = Oiāi for some āi ∈ Āα⃗
and with Oi ⊂ Ā(1)

α⃗ . Setting Λ̄i = āiyα⃗ we obtain (b).

We show (c). Note that the orbit map ā 7→ āΛ̄i is injective on each Oi
since otherwise yα⃗ would contain two distinct vectors with the same vertical
component, contradicting the boundedness of the orbit {atyα⃗ : t ∈ R}. It
follows that Oi is contained in a fundamental domain for the orbit Āα⃗yα⃗.
Since mα⃗ can be identified with the restriction of the Haar measure of Āα⃗
to a fundamental domain via the orbit map, and since

Āα⃗ = Ā
(1)
α⃗ × {at},

item (c) follows from (35).
To prove item (d), suppose by contradiction that for any j ∈ N there

exists Λj ∈ Āyα⃗ ∩ Sr0,<1/j . Then by compactness we can take a convergent

sequence to conclude that there is Λ̄′ ∈ Āα⃗yα⃗∩Xn(Dr0 , 2). Hence Λ̄
′ contains

a nonzero vector with zero vertical component. The map h̄α⃗ preserves the
horizontal space Rd, and thus h̄−1

α⃗ Λ̄′ ∈ Ax∗α⃗ also contains a nonzero vector
with zero vertical component, contradicting Proposition 7.4. Item (e) now
follows from Theorem 4.4(i). □
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Lemma 8.14. For any norm ∥ · ∥, any r > 0, and any α⃗ as in (59), the set
Mr defined in (94) satisfies mα⃗ (Xn(Mr)) = 0.

Proof. We apply Lemma 8.8, with L = Āα⃗ and W =Mr. We need to check

(91). Let mĀα⃗
, m

Ā
(1)
α⃗

denote respectively the Haar measure on Āα⃗ and Ā
(1)
α⃗ .

Assume by way of contradiction that there exists v ∈ Rn ∩ yα⃗ ∩Mr such
that

mĀα⃗

({
ā ∈ Āα⃗ : āv ∈Mr

})
> 0.

SinceMr is at-invariant, and the action of Ā
(1)
α⃗ commutes with the projection

πRd this implies that for v̄
def
= πRd(v) we have

m
Ā

(1)
α⃗

(B) > 0, where B
def
=
{
ā ∈ Ā(1)

α⃗ : ∥āv̄∥ = ∥v̄∥
}
.

We can make a change of variables to replace Ā
(1)
α⃗ with the group of diagonal

matrices of positive diagonal entries and determinant 1 in SLd(R). We will
denote this group by A2. By Proposition 7.4, after this change of variables,
the coordinates of v̄ are nonzero. Thus, by applying another linear change
of variables on Rd and changing the norm, we may assume that v̄ = 1 is the
vector all of whose coordinates are equal to 1. Furthermore, we can replace
B with b0B for some b0, in order to assume that the identity is a Lebesgue
density point for B. To get a contradiction we will show that there is b ∈ B
such that ||b1|| > ||1||.

Define

Ξ : A2 → Rd, Ξ (diag (x1, . . . , xd))
def
= (x1, . . . , xd)

t,

and ν
def
= Ξ∗mA2 . Then Ξ is a diffeomorphism between A2 and the hyper-

surface
{
x ∈ Rd : xi > 0,

∏d
1 xi = 1

}
. Note that 1 = Ξ(e) and the ray R+ 1

is transverse to Ξ(A). Let B0 be the image under Ξ of the intersection of B
with a bounded neighborhood of e. Then 1 is a density point for ν, i.e.

lim
r→0+

ν(B0 ∩B(1, r))

ν(B(1, r))
= 1. (100)

This implies that the interior of the convex hull of B0 intersects the ray
R+1, since if this did not hold there would be a linear functional vanishing
on 1 and non-negative on B0, and the left hand side of (100) would be at
most 1

2 .
It follows that there are distinct x1, . . . ,xd+1 ∈ Ξ(B) and positive scalars

β1, . . . , βd+1, c, such that

d+1∑
i=1

βi = 1 and
d+1∑
i=1

βixi = c1.
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Write xi = (xi1, . . . , xid). By the inequality of means in the jth coordinate,
for each 1 ≤ j ≤ d we have

d+1∏
i=1

xβiij ≤
d+1∑
i=1

βixij = c,

with strict inequality for at least one j since the xi are distinct. Multiplying
these inequalities for 1 ≤ j ≤ d and taking into account that for each i,∏d
j=1 xij = 1, we get

1 =
d∏
j=1

k∏
i=1

xβiij < cn,

and therefore c > 1.
Since xi ∈ Ξ(B) we have ||xi|| = ||1|| for each i. By the triangle inequality

c||1|| =

∥∥∥∥∥
k∑
1

βixi

∥∥∥∥∥ ≤∑βi||xi|| =
∑

βi||1|| = ||1||,

a contradiction.
□

Proof of Theorem 8.11. Property (A) of §5 is immediate, property (B) fol-
lows from Proposition 8.13(e), and property (C) follows from Lemma 8.5.
Item (1) of Definition 5.3 follows from Proposition 8.13(d). It remains to
prove (2). Define Ur0 using (96). In light of Lemma 8.10, we only need to
show that

mα⃗

(
(clXn(Sr0)∖ Ur0)(0,1)

)
= 0. (101)

For (101) it is enough to show that the two sets on the RHS of (97) are
µSr0

-null, and hence, by Theorem 4.4(iv), that

mα⃗

(
Xn(Dr0 , 2)

R
)
= 0 and mα⃗

(
Xn(Dr0 ∖D◦

r0)
R
)
= 0.

Since any lattice in Xn(Dr0 , 2)
R contains a nonzero horizontal vector, and

h̄α⃗ preserves the horizontal subspace, Proposition 7.4 implies supp mα⃗ ∩
Xn(Dr0 , 2)

R = ∅. The second equality follows from (95) and Lemma 8.14.
□

8.5. Proof of Proposition 8.7. We will need the following:

Lemma 8.15. Let L be Lie group and let L1, L2 be closed subgroups such
that L1 ∩ L2 = {e} and dimL1 + dimL2 = dimL. Then:

(1) the map α : L1 × L2 → L given by α(ℓ1, ℓ2) = ℓ1 · ℓ2 is a diffeomor-
phism onto an open subset U ⊂ L.

(2) If furthermore L is unimodular, and mleft
L1
,mright

L2
denote left and

right Haar measures on L1, L2 respectively, then α∗

(
mleft
L1
×mright

L2

)
is proportional to the restriction to U of a Haar measure on L.
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Lemma 8.15 is standard, see e.g. [EW11, Lemma 11.31].

Proof of Proposition 8.7. Let G = SLn(R), ΓG
def
= SLn(Z), ΓH

def
= H(Z),

πG : G → G/ΓG and πH : H → H/ΓH the projections, and let mG and
mH denote respectively the Haar measures on G and on H. Recall that
a fundamental domain for G/Γ in G is a Borel subset Ω ⊂ G for which
πG|Ω is a bijection, and that every Borel set on which πG is injective is
contained in fundamental domain. One can describe the measure mG/Γ by

mG/Γ(A) = mG(Ω∩π−1
G (A)), and in particular, this formula does not depend

on the choice of Ω. The same facts hold for H in place of G.
We will first show that there is c > 0 such that

µSr0
= c φ∗

(
mEn ×mRd |B̄r0

)
(102)

and then we will determine the constant. It suffices to show (102) locally,
that is, to prove that for a.e. x0 = φ(Λ0, v0) ∈ Sr0 there is a neighborhood
U = φ(V) of x, where V is open in En× B̄r0 and contains (Λ0, v0), and c > 0,
such that µSr0

|U = c φ∗ ((mEn ×mRd) |V) . Using Lemmas 8.1 and 8.5, and

the discreteness of ΓH , ΓG, we see that for any x0 ∈ S♯r0 there are open sets
WH ⊂ H, WU ⊂ U, WG ⊂ G, and ε > 0, such that πH is injective on WH ,
πG is injective on WG, and⋃

t∈[0,ε]

at (WUWH) ⊂ WG.

We can assume that WG ⊂ ΩG and WH ⊂ ΩH . By Theorem 4.4(iii), it is
enough to show that the product map

Ψ : R× Rd ×H → G, Ψ(t, v, h)
def
= atu(v)h

pushes the measure mR ×mRd ×mH to a multiple of mG|P, where P is the
image of Ψ. (The attentive reader will have noted that we have switched
the order of the factors, that is we work with R×Rd ×H rather than with
R×H ×Rd.) To see this, let mU be the Haar measure on U , i.e., mU is the

image of mRd under the map v 7→ u(v). Note also that mQ
def
= mR×mU is a

left Haar measure on the group Q
def
= {at}⋉U , and, since H is unimodular,

mH is a right Haar measure on H. By Lemma 8.15, ν
def
= Ψ∗(mQ×mH) is a

multiple of mG|P. This proves (102) and moreover shows that supp(µSr0
) =

Sr0 .
We now claim that

c =
1

ζ(n)
. (103)

We normalize the Haar measures used above by requiringmG(ΩG) = mH(ΩH) =
1, and similarly normalize mU by requiring that a fundamental domain for
U/U(Z) has measure one. The preceding discussion shows that c is the
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scalar for which mG = cν. Write

q(t, x1, . . . , xd)
def
=


et 0 · · · etx1
0 et · · · etx2
· · · · · ·

0 0 · · · e−dt

 ∈ Q,
and note, using the fact that mU induces a probability measure on U/U(Z),
that the map

Q→ Rn, q = q(t, x1, . . . , xd) 7→ qen =
(
etx1, . . . , e

txd, e
−dt
)t

sends mQ to the restriction of mRn to the upper half space

Rn+
def
= {(y1, . . . , yn)t ∈ Rn : yn > 0}.

Also, the map

Q×H → G, (q, h) 7→ qh

is injective, since for g = qh we can reconstruct q uniquely from the vector
qen. It is easy to verify that the image QH ⊂ G is open.

Let f = 1E : Rn → R be the indicator of the set E defined by

E
def
=

{(
etx1, . . . , e

txd, e
−dt
)t

: t ∈ [0, 1],∀i, |xi| ≤
1

2

}
⊂ Rn+.

For Λ ∈Xn, write

f̂(Λ)
def
=

∑
v∈Λ∖{0}

f(v) and f̂p(Λ)
def
=

∑
v∈Λprim

f(v).

By the Siegel summation formula [Sie45],

1 = mRn(E) =

∫
Rn

f dmRn =

∫
Xn

f̂ dmXn = ζ(n)

∫
Xn

f̂p dmXn . (104)

We define a lift of f to QH ⊂ G by

F : QH → R, F (qh) = f(qen) · 1ΩH
(h).

It is easily checked that this definition implies∑
γ∈Γ

F (gγ) = f̂p(gZn). (105)

Then

c

∫
G
F dmG =

∫
G
F dν =

∫
Rn
+

f dmRn = 1. (106)

Using Fubini and ‘folding’, we have∫
G
F dmG =

∑
γ∈Γ

∫
ΩGγ

F dmG =

∫
Xn

∑
γ∈Γ

F (gγ) dmXn

(105)
=

∫
Xn

f̂p dmXn .

(107)
Comparing (104), (106) and (107) gives (103). □
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9. Special subsets of the section

The cross-section Sr0 contains two subsets of Diophantine significance,
related respectively to best approximations and to ε-approximations. In this
section we will introduce these subsets, establish their Jordan measurability
under suitable hypotheses, and discuss their temperedness.

9.1. The set B for best approximations. Recall from (90) that for Λ ∈
S♯r0 we denote by vΛ ∈ Rd the horizontal component of the unique vector
v(Λ) ∈ Λprim ∩Dr0 . Let

r(Λ)
def
= ||vΛ|| (108)

be its distance from the vertical axis, and let

B =
{
Λ ∈ S♯r0 : Cr(Λ) ∩ Λprim = {±v(Λ)}

}
, (109)

where Cr is defined in (78).

Rd

Ren

v(Λ)

Cr(Λ)

r(Λ)
Dr0

w

Figure 2. If the cylinder Cr(Λ) defined by the unique vector
v(Λ) ∈ Λ∩Dr0 contains another lattice point w, then Λ /∈ B.

The set B will detect best approximations. It consists of lattices in the
cross-section Sr0 with a unique vector in Dr0 , such that the cylinder Cr(Λ)
they define contains no lattices points besides {0,±v(Λ)} (see Figure 2).
Note that B depends on the norm, although this is not reflected in the
notation.

Lemma 9.1. The set B is open in Sr0. The boundary ∂Sr0
B is contained

in the union of Xn(Dr0 , 2) and

Z
def
= {Λ ∈Xn : ∃v, w ∈ Λprim s.t. v ̸= ±w and ||πRd(v)|| = ||πRd(w)||} . (110)

Proof. We show B is open by showing its complement is closed. Let

K
def
=
{
Λ ∈ S♯r0 : #(Cr(Λ) ∩ Λprim) ≥ 3

}
;
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that is, K consists of the lattices Λ ∈ S♯r0 such that the cylinder Cr(Λ)
contains at least one extra primitive vector besides ±v(Λ). By definition

Sr0 ∖ B = Xn(Dr0 , 2) ∪K.

By Lemma 8.1 Xn(Dr0 , 2) is closed, so we let Λi ∈ K be a sequence con-
verging to some Λ, and show that Λ ∈Xn(Dr0 , 2) ∪K.

By Lemma 8.1, Λ ∈ Xn(Dr0), and suppose that Λ /∈ Xn(Dr0 , 2), so

that Λ ∈ S♯r0 . Since Λi ∈ K, the cylinders Cr(Λi) contain at least three
primitive vectors. By Lemma 8.1, v(Λi) → v(Λ) and so r(Λi) → r(Λ). Let
r′ > r(Λ), then for all large enough i, r(Λi) < r′ and so for all large enough
i, Λi ∈ Xn(Cr′ , 3). Using Lemma 8.1 again we see that Λ ∈ Xn(Cr′(1), 3).
Since this is true for all r′ > r(Λ) we deduce that Λ ∈ Xn(Cr(Λ), 3), and so
Λ ∈ K.

We now prove the second assertion. Let

U0
def
=
{
Λ ∈ S♯r0 : Λprim ∩ C◦

r(Λ) ̸= ∅
}

(where C◦
r denotes the interior of Cr). We claim that U0 is open in Sr0 .

From this, and since Sr0 ∖ B is closed, it will follow that

∂Sr0
B = ∂Sr0

(Sr0 ∖ B) ⊂ (Xn(Dr0 , 2) ∪K)∖ U0.

Since K ∖ U0 ⊂ Z , this will imply the second assertion of the Lemma.
To prove that U0 is open, let Λi be a sequence in Xn(Dr0) that converges

to a lattice Λ ∈ U0. We need to show that for all large enough i, Λi ∈ U0.
Since Λ does not belong to the closed set Xn(Dr0 , 2), Λi /∈ Xn(Dr0 , 2) for
all large i. By Lemma 8.1, v(Λi) → v(Λ) and thus r(Λi) → r(Λ). Since
there exists a primitive vector w ∈ Λprim in the open set C◦

r(Λ), there is some

r′ < r(Λ) such that w ∈ C◦
r′ . In other words, Λ ∈Xn(C

◦
r′). The latter set is

open in Xn by Lemma 8.2, and hence Λi ∈ Xn(C
◦
r′) for all large i. But for

all large i we also have r(Λi) > r′, so Λi must contain a primitive vector in
the open cylinder C◦

r(Λi)
, i.e., Λi ∈ U0. □

Lemma 9.2. In Case I, for any norm on Rd, the set B is µSr0
-JM and

µSr0
(B) > 0.

Proof. The fact that µSr0
(B) > 0 follows from the openness of B in Sr0 (see

Lemma 9.1) and the fact that µSr0
has full support by Proposition 8.7.

By Lemmas 8.4 and 9.1, it is enough to show that µSr0
(Z ) = 0, for Z

as in (110). Since Z is {at}-invariant, this is equivalent to showing that
mXn(Z ) = 0. Let G = SLn(R) and let mG denote the Haar measure on
G, so that mXn is the restriction of mG to a fundamental domain. For
g ∈ G denote the column vectors of g by g1, . . . , gn, and for v ∈ Rn, denote
v̄ = πRd(v). Let

Z̃
def
= {g ∈ G : ||ḡ1|| = ||ḡn||} .
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Then the image of Z̃ in Xn under the projection g 7→ gZn contains Z .

Also mG(Z̃ ) = 0, as can be seen using the invariance of mG under right-
multiplication by elements of {at}. This implies mXn(Z ) = 0. □

Lemma 9.3. In case II with µ = mα⃗, µSr0
(B) > 0.

Proof. Assume by way of contradiction that µSr0
(B) = 0. Since B is open in

Sr0 by Lemma 9.1, it follows from Proposition 8.13(b), that Āα⃗yα⃗ ∩ B = ∅.
The contradiction follows since it is easy to see that for any lattice Λ without
non-zero vectors on the vertical axis, the trajectory {atΛ : t > 0} always
visits B.

□

Let Āα⃗ be the group defined in (72).

Definition 9.4. We say that the norm ∥ · ∥ on Rd is Āα⃗-analytic, if for any
v, w ∈ Rn, the set

Āv,w
def
=
{
ā ∈ Āα⃗ : ∥πRd(āv)∥ = ∥πRd(āw)∥

}
is an analytic subset of Āα⃗ ∼= Rd; that is, the zero-set of an analytic function.

For example, the Euclidean norm is analytic.

Lemma 9.5. In Case II, if the norm is Āα⃗-analytic then the set B is µSr0
-

JM.

Proof. As in the proof of Lemma 9.2, we need to show that mα⃗(Z ) = 0.

Let h̄α⃗, yα⃗ and Ā
(1)
α⃗ be as in (66), (72) and (98). Let mĀα⃗

denote the Haar

measure on Āα⃗, so that mα⃗ is the pushforward under the map ā 7→ āyα⃗, of
the restriction of mĀα⃗

to a measurable set.
Suppose by way of contradiction that mα⃗(Z ) > 0. Then there are fixed

v, w ∈ (yα⃗)prim such that v ̸= ±w, and
mĀα⃗

(
Āv,w

)
> 0.

Since the norm ∥ · ∥ is Āα⃗-analytic, we must have Āα⃗ = Āv,w. Let

ti = h̄α⃗(ei), i = 1, . . . , n

be a basis of Rn consisting of simultaneous eigenvectors for Āα⃗. Write

v =
n∑
i=1

riti, w =
n∑
i=1

siti.

By acting with

āt
def
= h̄α⃗ diag

(
edt, e−t, . . . , e−t

)
h̄−1
α⃗ ⊂ Āα⃗ = Āv,w

we see that that |r1| = |s1|; indeed,
|r1|
|s1|

=
∥āt(r1t1)∥
∥āt(s1t1)∥

=
∥πRd(ātv)∥+ o(t)

∥πRd(ātw)∥+ o(t)
= 1 + o(t).
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In particular, the first coordinate (with respect to the eigenbasis ti) of
v ±w ∈ yα⃗ is zero. Therefore the nonzero vector h̄−1

α⃗ (v ±w) ∈ (x∗α⃗)prim has
one of its coordinates equal to zero, which contradicts Proposition 7.4. □

Lemma 9.6. In Case II, if the norm on Rd is the sup-norm, then the set
B is µSr0

-JM.

Proof. Once again we need to show that mα⃗(Z ) = 0. Supposing by contra-
diction that mα⃗(Z ) > 0, and using the explicit description of mα⃗ given in
Propositions 7.4 and 7.5, we see that there is a lattice Λ1 of type σσσ, and
two linearly independent primitive vectors v, w ∈ Λ1, such that for a set of
positive measure of t = (t1, . . . , td) ∈ Rd,∥∥πRd(h̄α⃗atv)

∥∥ =
∥∥πRd(h̄α⃗atw)

∥∥ , where at
def
= diag

(
et1 , . . . , etd , e−

∑d
j=1 tj

)
.

Using (61) and (66), we obtain that for some βv, βw ∈ K, which are linearly
independent over Q, we have∥∥∥∥∥∥∥

∑d

j=1 e
tj (σj(α1)− α1)σj(βv)

...∑d
j=1 e

tj (σj(αd)− αd)σj(βv)


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥

∑d

j=1 e
tj (σj(α1)− α1)σj(βw)

...∑d
j=1 e

tj (σj(αd)− αd)σj(βw)


∥∥∥∥∥∥∥ .

Since we are working with the sup-norm, this implies that there are indices
1 ≤ k1, k2 ≤ d and ω = ±1 such that for a set of positive measure of t,

d∑
j=1

etj (σj(αk1)− αk1)σj(βv) = ω
d∑
j=1

etj (σj(αk2)− αk2)σj(βw).

This is an equality of analytic expressions, which holds for t in a set of
positive measure, and thus it must hold for all t. In particular, we can take
partial derivatives ∂

∂tj
|t=0 to obtain that for any j = 1, . . . , d we have

(σj(αk1)− αk1)σj(βv) = ω(σj(αk2)− αk2)σj(βw). (111)

If k1 = k2 it follows that βv = ωβw, which is a contradiction. Assume

therefore that k1 ̸= k2. Multiplying (111) by σj(β
−1
w ) and letting β

def
= βv/βw

we get

(σj(αk1)− αk1)σj(β) = ω(σj(αk2)− αk2). (112)

Recall our convention σn = Id, which implies that for γ ∈ K, the trace Tr
satisfies

d∑
j=1

σj(γ) = Tr(γ)− γ.

Summing (112) over j gives

Tr(αk1β)− αk1β − αk1(Tr(β)− β) = ω(Tr(αk2)− αk2 − dαk2),
and thus

Tr(αk1β − ωαk2)− Tr(β)αk1 + nαk2 = 0
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and this is a nontrivial linear dependence over Q between 1, αk1 , αk2 . This
is a contradiction. □

Remark 9.7. There are other norms for which the conclusion of Lemmas
9.5 and 9.6 fails. Here is a sketch of how one can build an example. Let
d = 2. We define a norm, a lattice Λ, two vectors v, w ∈ Λ, and positive r, ε,
so that:

(a) v, w are primitive in Λ and linearly independent;
(b) Λ arises from a number field as in §7.3;
(c) v, w are both in ∂Cr, with C

◦
r ∩ Λ = {0};

(d) for all t ∈ (−ε, ε),

∥gtπR2(v)∥ = ∥gtπR2(w)∥, where gt
def
= diag

(
et, e−t

)
.

One can then see using from Proposition 8.13(c), that in this case the bound-
ary of B must have positive µSr0

-measure.

To this end, we first construct a norm ∥ · ∥, two linearly independent
vectors u1, u2 in R2, and positive ε, r, such that r = ∥gtu1∥ = ∥gtu2∥ for all
t ∈ (−ε, ε). Let

u1 =

(
1

1/4

)
, u2 =

(
2/3
2/3

)
.

We will define the norm in R2 by specifying a symmetric convex body B
which is its unit ball. The boundary of B consists of four small smooth arcs
±γi, i = 1, 2, where γi passes through ui, and four line segments connecting
the ends of these arcs. See Figure 3. The γi are carefully chosen so that (d)

x

y

u1

−u1

u2

−u2

Figure 3. Defining the norm by a carefully chosen convex
set in R2.

is satisfied, for some small ε > 0, and for u1 = πR2(v), u2 = πR2(w). Since γi
passes through ui and determines the norm, the requirement (d) implies that
γ1 uniquely determines γ2, and we have to choose γ1 so that the resulting
figure is convex. This can be shown using an explicit computation in polar
coordinates. Moreover the computation shows that in this construction, we
have freedom to vary u1, u2 in some open set in R2 × R2.
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It is not hard to construct a lattice Λ ⊂ R3 containing two primitive lin-
early independent vectors v, w such that πR2(v) = u1, πR2(w) = u2. More-
over it is not hard to choose Λ so that (c) holds, and again this can be carried
out for u1, u2 in some open set in R2×R2. Using the fact that number field
lattices are dense (up to a rescaling) in the space of lattices, one sees that
one can also arrange that (b) holds.

Recall Definition 4.7. The following temperedness result will be important
for our analysis. For related results, see [Lag82], [CC] and [Che13].

Proposition 9.8. The set B is tempered.

Proof. Assume otherwise. Recalling the notation (78), letM be large enough
so that any set of cardinalityM+1 in C1(e) = {( vc ) ∈ Rn : ||v|| ≤ 1, |c| ≤ e}
contains distinct points ( vc ) ,

(
v′

c′

)
such that ||v − v′|| < 1

3 and |c − c′| < 1.
Such a number M exists by the compactness of C1(e). By applying a linear
transformation which dilates the horizontal subspace, one sees that for any
r > 0, in any subset of Cr(e) of cardinality M + 1, there are distinct points
( vc ) ,

(
v′

c′

)
such that ||v − v′|| < r

3 and |c− c′| < 1.
We claim that B is M -tempered. Indeed, suppose by contradiction that

one can find Λ ∈ B and 0 = t0 < t1 < · · · < tM ≤ 1 such that atjΛ ∈ B for

0 ≤ j ≤M . Then, for each j the vector wj
def
= v(atjΛ) (see (77)) satisfies

wj ∈ atjΛprim ∩Dr0 and atjΛ ∩ C◦
πRd (wj)

= {0}.

Applying a−tj , we find vectors a−tjwj =
(
vj

etj

)
∈ Λ such that

Λ ∩ C(j) = {0}, where C(j) def
= C◦

||vj ||(e
tj ).

In particular, this implies ||v0|| ≥ ||v1|| ≥ · · · ≥ ||vM ||, and thus(
vj

etj

)
∈ C∥v0∥(e) for j = 0, . . . ,M.

By the property of M , there are indices j1 < j2 such that ||vj1 − vj2 || <
∥v0∥
3

and |etj2 − etj1 | < 1. The difference

w =
(
vj2
e
tj2

)
−
(
vj1
e
tj1

)
then belongs to the lattice Λ but also to the interior of the cylinder C||v0||(1),
which contradicts the assumption Λ ∈ B. □

9.2. The set Sε for ε-approximations.

Lemma 9.9. In both Cases I and II, for any 0 < r ≤ r0, the sets Sr are
µSr0

-JM.

Proof. By Lemma 8.1, Xn(Dr) is closed in Xn and hence in Xn(Dr0). Again

by Lemma 8.1, S♯r0 ∩Xn(D
◦
r) is open in Xn(Dr0). It follows that

∂Sr0
Sr ⊂Xn(Dr)∖

(
S♯r0 ∩Xn(D

◦
r)
)
⊂Xn(Dr0 , 2) ∪Xn(Dr ∖D◦

r).
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By Lemma 8.4, µSr0
(Xn(Dr0 , 2)) = 0, and hence, by Corollary 4.4, it suffices

to show that
µ (Xn(Mr)) = 0,

whereMr = (Dr∖D◦
r)
R is as in (94). In Case I, this follows from Lemma 8.8

as in the proof of Lemma 8.9; in Case II, this follows from Lemma 8.14. □

Proposition 9.10. For any d > 1, for any ε > 0 and any norm, Sε is not
tempered. For d = 1, and any ε > 0, Sε is tempered.

Proof. Suppose d > 1. Given M and ε, let Λ ∈ Xn be a lattice containing

the primitive vectors u
def
= 1

2M en and v
def
= (v, 1)t, where v ∈ Rd satisfies

∥v∥ < ε
2 . Such a lattice exists because d > 1. Then Λ contains the vectors

vj
def
= v + ju =

(
v

1 + j
2M

)
, j = 0, . . . ,M.

Let tj
def
= log

(
1 + j

2M

)
∈ [0, 1). This choice ensures that atjΛ contains the

vector

atjvj =

(
e

tj
2 v
1

)
which shows that atjΛ ∈ Sε. Since M is arbitrary, Sε is not tempered.

Now suppose d = 1. By Minkowski’s second theorem, there is κ > 0
satisfying the following. For any lattice Λ ∈ X2, denote by v1 a shortest
nonzero vector of Λ, and by v2 a shortest vector such that v1, v2 are linearly
independent. Then ∥v2∥ ≥ κ

∥v1∥ . Thus, for any C > 0 there is c > 0 so

that if ∥v1∥ < c, then there is no v2 ∈ Λprim ∖ {±v1} with ∥v2∥ < C. Now,
given ε > 0, choose C large enough so that the ball of radius C around the

origin contains the rectangle R
def
= [−ε, ε]× [1, e]. Let c be the corresponding

constant, and choose M large enough so that any M points in R contain
a pair of distinct points of distance less than c. With this choice, Sε is M -
tempered. Indeed, if this were not the case, there would be a lattice Λ ∈X2

and 0 = t0 ≤ t1 < · · · < tM ≤ 1 such that atjΛ ∈ Sε. This implies that Λ
contains M + 1 primitive vectors in R, and hence one of their differences,
which is a nonzero vector of Λ, has length less than c. But by the choice of
c and C we get that R ∩ Λprim contains only two vectors ±v1. □

9.3. The adelic space, cross-section and cross-section measure. We
now lift the cross-section Sr0 to the adelic space, and, using the theory
developed so far, derive properties crucial to our discussion.

Let X A
n be the adelic space, let π : X A

n →Xn be the projection, and let
mX A

n
and mL̃α⃗ỹα⃗

be the measures introduced in §7.4 and §7.4.1 respectively.
Let

S̃r0
def
= π−1(Sr0), B̃

def
= π−1(B), and S̃ε

def
= π−1(Sε). (113)

Theorem 9.11. Let µ be mX A
n

(Case I) or µ = mL̃α⃗ỹα⃗
(Case II). Then,

S̃r0 is a µ reasonable cross-section. The sets S̃ε are µS̃r0
-JM, and the set B̃
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is tempered. In Case I, B̃ is µS̃r0
-JM, and the same statement holds in Case

II provided the norm on Rd is either the sup-norm or an Āα⃗-analytic norm
(in particular, if it is the Euclidean norm). In Case I the measure µS̃r0

is

Kf -invariant (where Kf is as in (71)), and in Case II, µS̃r0
is Mα⃗-invariant

(where Mα⃗ is as in §7.4.1).

Proof. The fact that S̃r0 is a µ-cross-section, its µ-reasonability, and the
statements about Jordan measurability and temperedness are immediate
consequences of Proposition 6.3, the fact that π : X A

n → Xn is a Kf -fiber
bundle, and the results in §8 and §9 proved above.

For the invariance of µS̃r0
under Kf in Case I, we use Theorem 4.4, item

(vii), the fact that Kf preserves mX A
n
, and the fact that Kf acts transitively

on the fibers of π and hence leaves S̃r0 invariant (see the discussion of π in
§7.4). For the invariance of µS̃r0

under Mα⃗ in Case II, we use the same

argument, noting that µ is Mα⃗-invariant and Mα⃗ preserves the fibers of
π. □

Given θ ∈ Rd we define Λθ = u(−θ)Zn as in (65) and (15), and define its
lift to the adelic space by

Λ̃θ
def
= (u(−θ), ef ) SLn(Q) ∈X A

n . (114)

Proposition 9.12. Let α⃗ be as in Case II, and let µ = mL̃α⃗ỹα⃗
(see Propo-

sition 7.7 for notation). Suppose the norm on Rd is either the sup norm
or Āα⃗-analytic (see Definition 9.4). Let ε ∈ (0, r0) be large enough so that
µSr0

(Sε) > 0, and let µ′ be equal to any one of µS̃r0
, µS̃r0

|S̃ε
, µS̃r0

|B̃. Then

the point Λ̃α⃗ is (at, µ
′)-generic (see Definition 5.1). Moreover, if tk → ∞

are such that atkΛ̃α⃗ ∈ S̃r0 and limk atkΛ̃α⃗ = x, then x ∈ suppµS̃r0
.

Proof. By Proposition 7.7, any point in L̃α⃗ỹα⃗ is (at, µ)-generic, and thus, by

Propositions 7.2 and 7.5, Λ̃α⃗ is (at, µ)-generic.
The statement will follow by applying Theorem 5.11. We verify its con-

ditions. First observe that Λ̃α⃗ /∈ ∆R
S̃r0

. To see this note that if Λ̃α⃗ ∈ ∆R
S̃r0

,

the orbit
{
atΛ̃α⃗ : t > 0

}
intersects S̃r0,<ε′ for arbitrarily small ε′ > 0. This

leads to a contradiction using a similar argument to the one giving the proof
of Proposition 8.13(d).

Next, we apply Theorem 5.11 to S ′ being one of the three sets un-

der consideration, S̃r0 , S̃ε, B̃. We need to check that S ′ is µS̃r0
-JM and

that µS̃r0
(S ′) > 0. The Jordan measurability of S ′ follows from Lem-

mas 9.5, 9.6, 9.9. The positivity of µS̃r0
(S̃ε) holds by choice of ε and the

positivity of µS̃r0
(B̃) follows from Lemma 9.3 and the fact that µS̃r0

(B̃) =
µSr0

(B) (by Proposition 6.3(b) and Proposition 7.7).
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We prove the last assertion in the statement. Let x be an accumulation

point in positive time of atΛ̃α⃗. Note that by (114), (70), (72), and (74) we

have that Λ̃α⃗ = qΛ̃ where q satisfies atqa−t → e∞. Thus, the accumulation

points of atΛ̃α⃗ in positive time are equal to those of atΛ̃. By Proposition 7.7,
at acts uniquely ergodically on the orbit L̃α⃗ỹα⃗, and hence x ∈ L̃α⃗ỹα⃗ =

suppµ. It is clear that suppµS̃r0
= suppµ ∩ S̃r0 and so x ∈ suppµS̃r0

as

claimed.
□

9.4. The special case d = 1. When d = 1 we can fully describe the cross-
section Sr0 and the sets Sε and B (see Figure 4).

Proposition 9.13. Let d = 1 and let

ux
def
=

(
1 x
0 1

)
, hy

def
=

(
1 0
y 1

)
, Λx,y

def
= uxhyZ2.

Then we can choose r0 = 1, and for ε ∈ (0, 1),

Sε = {Λx,y : |x| ≤ ε, y ∈ [0, 1)} . (115)

Setting

f1(t)
def
= − 1

1 + t
and f2(t)

def
=

1

2− t
,

we have

B =
{
Λx,y ∈ S♯r0 : y ∈ [0, 1), f1(y) ≤ x ≤ f2(y)

}
, (116)

and the map (x, y) 7→ Λx,y is injective on {(x, y) : y ∈ (0, 1), |x| < 1} .

Proof. In case d = 1 the choice r0 = 1 satisfies (79), and the group {hy :
y ∈ R} coincides with the group H in (85). The orbit HZ2 is a periodic
orbit consisting of all lattices that contain e2 as a primitive vector, and
{hy : y ∈ [0, 1)} is a fundamental domain for the quotient H/H(Z) ∼= HZ2.
Clearly (x, 1)t ∈ Λx,y ∩ D1 when |x| ≤ ε, and conversely, for every Λ ∈ Sε
there is x ∈ [−ε, ε] such that (x, 1)t ∈ Λprim, and hence u−x ∈ HZ2. This
proves (115).

To see the injectivity, note that

Λx,y =

(
1 + xy x
y 1

)
Z2 =

{(
m(1 + xy) + nx

my + n

)
: m,n ∈ Z

}
. (117)

Thus, when Λx,y ∈ S♯r0 , the vector (x, 1)t is the unique vector in Λx,y ∩D1.

That is, for Λx,y ∈ S♯r0 , x is uniquely determined, and since u−xΛ ∈ HZ2, it

follows that y ∈ [0, 1) is also uniquely determined. When Λx,y /∈ S♯r0 there
must be a horizontal vector in Λx,y of length less than 2, that is, integers
(m,n) in (117) satisfying

my + n = 0 and |m(1 + xy) + nx| < 2.

Plugging the first of these equations into the second implies m ∈ {−1, 0, 1}.
If y ∈ (0, 1) and (m,n) ̸= (0, 0), my + n = 0 is now impossible. This
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proves the injectivity. We note in passing that the map we have defined is
essentially the map ψ of (89).

We now determine the set of (x, y) ∈ (−1, 1) × [0, 1) for which Λx,y ∈ B.
Using (117) and the definition of B we see that Λx,y /∈ B if and only if

Λx,y /∈ S♯r0 or there is (m,n) /∈ {(0, 0), (0, 1)} such that

my + n ∈ [0, 1) (118)

and
|m(1 + xy) + nx| ≤ |x|. (119)

The condition (118) implies that n = −⌊my⌋. Suppose first that x ∈ [0, 1).
In this case, (119) becomes |x(my + n) + m| ≤ x, and by plugging (118)
into (119) and examining the possibilities for m,n one sees that the only
possibility is m = −1, n = 1. This gives the inequality 1 + xy − x ≤ x,
which is equivalent to x ≥ f2(y). In the second case x ∈ (−1, 0] the only
possibilities becomem = 1, n = 0, leading to 1+xy ≤ −x or x ≤ −f1(y). □

x

y

x = f1(y) x = f2(y)B

Figure 4. The set {(x, y) : y ∈ [0, 1), f1(y) ≤ x ≤ f2(y)}
parameterizing B.

Remark 9.14. For d > 1, our description of Sr0 is not as explicit since it
depends on the choice of an explicit fundamental domain for HZn in H. It
would be interesting to completely describe the set B, for d = 2 and some
fixed norm on R2.

10. Interpreting the visits to the cross-section

Given θ ∈ Rd, let Λ̃θ be as in (114). The goal of this section is to
read off Diophantine properties of θ, from the successive times ti for which

atiΛ̃θ ∈ S̃r0 . More precisely, for B̃, S̃ε as in (113), we will relate the successive

visits to B̃ to best approximations, and the successive visits to S̃ε, to ε-
approximations.

10.1. The adelic cross-section as a Cartesian product. Let ψ : S♯r0 →
En × B̄r0 be as in (89), and S̃♯r0

def
= π−1(S♯r0). We now augment ψ and define

a map

ψ̃ : S̃♯r0 → En × B̄r0 × Ẑn by ψ̃ = (ψ ◦ π, ψf ); (120)
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that is, the first two coordinates of ψ̃ are given by ψ ◦ π, and the third

coordinate is given by a map ψf : S̃♯r0 → Ẑn, which we now define.

Given Λ̂ ∈ S̃♯r0 we may write Λ̂ = (g∞, gf )ΓA with gf ∈ Kf , and then

Λ
def
= π(Λ̂) = g∞Zn. Since Λ ∈ S♯r0 , the vector v(Λ) defined in (90) is the

unique primitive vector of the lattice Λ in Dr0 , and the columns of g∞ are
a basis of Λ. Replacing g∞ by another representative of the coset g∞Γ, we
may assume that the nth column of g∞ is v(Λ). Moreover, the uniqueness
of v(Λ) implies that if γ ∈ Γ satisfies that g∞γ is another representative of
Λ having this property, then

g∞en = v(Λ) = g∞γen,

and hence γ ∈ H(Z). With these choices we define

ψf (Λ̂)
def
= gfen; (121)

that is, if we write gf = (gp)p∈P, then ψf (Λ̂) is the element of Ẑn whose p
coordinate is the n-th column of gp. The above discussion implies that ψf
is well-defined.

Lemma 10.1. The map ψ̃ is Kf -equivariant and continuous.

Proof. The fact that ψ̃ commutes theKf -actions on S̃♯r0 and on Ẑnprim follows

directly from the procedure defining ψ̃ discussed above.
We prove its continuity. We have already seen in Lemma 8.5 that ψ ◦ π

is continuous, and it remains to establish the continuity of ψf . Assume

Λ̂k → Λ̂ in S̃♯r0 and write Λ̂k =
(
g
(k)
∞ , g

(k)
f

)
ΓA, Λ̂ = (g∞, gf )ΓA, where

ΓA
def
= SLn(Q) and where the representatives are chosen so that gf , g

(k)
f ∈ Kf

and g∞en, g
(k)
∞ en ∈ Dr0 . There are γk ∈ ΓA such that(

g(k)∞ γk, g
(k)
f γk

)
→ (g∞, gf ),

and we need to show that g
(k)
f en → gfen. It follows from our choice of

representatives that

γk ∈ ΓA ∩Kf = SLn(Z).

We claim that γken = en for all large enough k; this will imply g
(k)
f en =

g
(k)
f γken → gfen and conclude the proof. To prove the claim, suppose by

contradiction that γken ̸= en for infinitely many k, then along a subse-

quence, the lattices Λk = π(Λ̂k) contain the two distinct primitive vectors

vk = g
(k)
∞ en, wk = g

(k)
∞ γken, and the sequence Λk converges in Xn. Note

that by assumption vk, wk ∈ Dr0 . By passing to a further subsequence we
may assume that the sequences (vk) and (wk) converge to limits in Dr0 .
Since the sequence of lattices (Λk) is bounded in Xn, and since vk, wk are
distinct, the limits lim vk, limwk are distinct vectors in Dr0 which belong
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to the limit lattice π(Λ̂) = g∞Zn. This contradicts the assumption that

Λ̂ ∈ S̃♯r0 . □

We now describe the image of the cross-section measure under ψ̃. We first
set up some notation. Denote the natural projections by

P1 : En × Rd × Ẑnprim → En

P2 : En × Rd × Ẑnprim → Rd

P3 : En × Rd × Ẑnprim → Ẑnprim
P12 : En × Rd × Ẑnprim → En × Rd.

(122)

Also let Proj : Rd → Sd−1 be the radial projection as in (26). Given an
{at}-invariant measure µ on X A

n , let µS̃r0
be the cross-section measure, and

define a measure on En × Rd × Ẑnprim by

ν
def
= ψ̃∗µS̃r0

. (123)

Let ν(En), ν(R
d), ν(f), ν(∞), ν(S

d−1), ν(Xd) denote the projection of ν under

the maps P1, P2, P3, P12,Proj◦P2, πXd
◦P1 respectively. Let Ā

(1)
α⃗ ,Mα⃗ be the

groups in (98) and §7.4.1 respectively, and note that Ā
(1)
α⃗ and acts linearly

on Rd and on En via the embedding Ā
(1)
α⃗ ⊂ H.

We have:

Proposition 10.2. In Case I, with µ = mX A
n
, we have

ν =
1

ζ(n)

(
mEn ×mRd |B̄r0

×mẐn
prim

)
; (124)

in particular, the measures ν(En), ν(R
d), ν(f), ν(Xd) are scalar multiples of the

measures mEn , mRd |Br0
, mẐn

prim
, mXd

, and the measures ν(R
d) and ν(S

d−1)

are invariant under any linear transformations of Rd preserving the norm
∥ · ∥.

In Case II, with µ = mL̃α⃗ỹα⃗
, we have ν = ν(∞) × ν(f), and there exist

finitely many subsets Oi ⊂ Ā1 homeomorphic to closed balls, lattices Λ̄i ∈
Āα⃗yα⃗ ∩ En, and vectors vi ∈ Λ̄i, i = 1, . . . , k, such that the following hold:

(1) The measure ν(En) is the sum of the push-forwards of the restriction
to each Oi of a Haar measure on Ā1, via the orbit map ā 7→ āΛ̄i. In
particular, ν(En) is supported on a (d − 1)-dimensional submanifold
of En.

(2) The measure ν(R
d) is the sum of the pushforwards of the restriction

to each Oi of a Haar measure on Ā1, via the orbit map ā 7→ āvi. In

particular, ν(R
d) is supported on a (d − 1)-dimensional submanifold

of Rd.
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(3) The measure ν(f) is the unique Mα⃗-invariant probability measure

supported on the orbit Mα⃗en ⊂ Ẑprim.

(4) The measure ν(∞) is the sum of the pushforwards of the restriction
to each Oi of a Haar measure on Ā1, via the orbit map ā 7→ ā(Λ̄i, vi).
In particular, it is supported on a (d − 1) dimensional submanifold

and is singular with respect to ν(En) × ν(Rd).

(5) The measure ν(S
d−1) is supported on a proper subset of Sd−1, and in

particular, is not invariant under the group of orthogonal transfor-
mations of Rd.

Proof. We have the following commutative diagram:

X A
n ⊃ S̃

♯
r0

ψ̃ //

π
��

En × Rd × Ẑnprim

P12

��
Xn ⊃ S♯r0 ψ

// En × Rd

(125)

Recall from Lemma 10.1, that ψ̃ is Kf -equivariant. The map ψ has the

following weak equivariance property: LetH0
def
=
{(

g 0
0 1

)
: g ∈ SLd(R)

}
⊂ H.

Note that Ā1 ⊂ H0 and that H0 acts diagonally on En ×Rd. If Λ ∈ S♯r0 and

h ∈ H0 is such that hΛ ∈ S♯r0 and hvΛ = vhΛ, then ψ(hΛ) = hψ(Λ).
Suppose we are in Case I. By Theorem 9.11, the measure µS̃r0

is Kf -

invariant. By the Kf -equivariance of ψ̃, ν is Kf -invariant as well. Since Kf

acts transitively on Ẑprim and mẐprim
is the unique Kf -invariant probability

measure there, we see that ν must be the product of ν(∞) and mẐprim
.

Also, by Proposition 8.7 and the commutativity of the diagram, (P12)∗ν =
1

ζ(n)

(
mEn ×mRd |B̄r0

)
, and (124) follows. The fact that ν(Xd) is proportional

to mXd
is immediate from (14). Finally, the additional assertion about the

invariance properties of ν(R
d) and ν(S

d−1) follows from the fact that a linear
transformation preserving ∥ · ∥ also preserves Sr0 (which can be readily seen
from (80) and (81)), Theorem 4.4(vii), and the weak equivariance property
of ψ discussed above.

Now suppose we are in Case II. By Theorem 4.4(vii) the group Mα⃗ pre-
serves µS̃r0

. It also preserves the fibers of P12 and using Proposition 7.7

and the fact that S̃r0 is Mα⃗-invariant we conclude that it acts transitively

on the intersection of each fiber with suppµS̃r0
. Therefore, ν = ν(∞)× ν(f).

Assertion (3) now follows from equations (121) and (74). Assertion (4), and
consequently (1) and (2), follows from Proposition 8.13 and the weak equiv-
ariance property of ψ discussed above. Assertion (5) follows from Propo-

sition 7.4; indeed, if supp ν(S
d−1) contained an eigendirection for the group
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Ā then some Λ ∈ AΛ0 would contain a vector whose horizontal component
was in the direction of one of the axes. □

10.2. Hitting the subsets B and Sε.

Definition 10.3. We say that two infinite sequences (ak)
∞
k=1, (bk)

∞
k=1 are

prefix-equivalent if there exist k0, ℓ0 such that ak0+i = bℓ0+i for all i ≥ 0.
By convention, any two finite sequences are prefix-equivalent, and a finite
sequence is not prefix-equivalent to an infinite sequence.

For θ ∈ Rd, let

Yθ
def
= {t ≥ 0 : atΛθ ∈ Sr0} and Y♯θ

def
=
{
t ∈ Yθ : atΛθ ∈ S♯r0

}
.

If t ∈ Yθ∖Y♯θ then Λθ contains two vectors with the same vertical component

et, and with horizontal components differing by a vector of size O
(
e−t/d

)
.

Thus, by discreteness of Λθ, Yθ∖Y♯θ is finite, and thus Yθ and Y♯θ are prefix-
equivalent. Observe that in the notation of (90), for each t ∈ Y♯θ, there is a
unique primitive vector v(atΛθ) ∈ (atΛθ)prim ∩Dr0 . In particular,

u(θ)a−tv(atΛθ) ∈ Znprim.
The next proposition is key to our analysis:

Proposition 10.4. Let ∥ · ∥ be a norm on Rd, ε > 0, and θ ∈ Rd.

(1) Let {tk} be the ordering of
{
t ∈ Y♯θ : atΛθ ∈ B

}
as an increasing se-

quence. Then the sequence vk = (pk, qk)
def
= u(θ)a−tkv(atΛθ) ∈ Znprim

is prefix-equivalent to the sequence of best-approximations of θ.

(2) Let {tk} be the ordering of
{
t ∈ Y♯θ : atΛθ ∈ Sε

}
as an increasing

sequence. Then the sequence wk = (pk, qk)
def
= u(θ)a−tkv(atΛθ) ∈

Znprim is prefix-equivalent to the sequence of ε-approximations of θ.

(3) For t ∈ Y♯θ, if we let u = u(θ)a−tv(atΛθ) ∈ Znprim, then (with the

notation (17), (2)),

ψ̃
(
atΛ̃θ

)
= (ρEn(u), disp(θ,u),u) . (126)

Proof. Since Yθ ∖ Y♯θ is finite, we can restrict attention to t ∈ Y♯θ. We first
treat ε-approximations. Note that for u = ( pq ) ∈ Zn,

u is an ε-approximation of θ ⇐⇒ q1/d||p− qθ|| ≤ ε and u ∈ Znprim.

This in turn implies that for t = 1
d log q, the lattice atΛθ satisfies

(atΛθ)prim ∋diag
(
q1/d, . . . , q1/d, q−1

)
u(−θ)

(
p
q

)
=

(
q1/d(p− qθ)

1

)
=

(
disp(θ,u)

1

)
∈ Dε.

(127)
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Reversing this computation shows that if t ≥ 0 is such that atΛθ ∈ Sε, i.e.
(atΛθ)prim ∩Dε is not empty, then there exist q ∈ N and p ∈ Zd such that
u = (p, q)t ∈ Znprim and for t = 1

d log q we have atu(−θ) ( pq ) ∈ Dε. In other
words, u is an ε-approximation of θ.

The bijection between visits of atΛθ to B and best approximations de-
scribed in the statement follow the same computation coupled with the
following observation: a primitive vector ( pq ) ∈ Znprim with q ∈ N is a best
approximation of θ if and only if

C||p−qθ||(q) ∩ Λθ =

{
0,±u(−θ)

(
p
q

)}
where

C||p−qθ||(q) =

{(
x
y

)
∈ Rn : ||x|| ≤ ||p− qθ||; |y| ≤ q

}
.

Acting with at on Λθ = u(−θ)Zn with t = 1
d log q to bring u(−θ) ( pq ) to Dr0 ,

we see that u is a best approximation for θ if and only if atΛθ ∈ B with t as
above and v(atΛθ) = atu(−θ)u.

The third assertion is a straightforward computation combining (127)
with (2), (17), (89) and (120). □

Using Proposition 10.4, we now show that for ε > ε0 which appears in (7)
the condition appearing in Proposition 9.12 is satisfied.

Lemma 10.5. Let α⃗ be as in Case II and let µ = mL̃α⃗ỹα⃗
(see Proposition 7.7

for notation). Let ε0 be as in (7). Then, for any ε > ε0 we have that

µS̃r0
(S̃ε) > 0.

Proof. Let ε > ε′ > ε0. By definition of ε0 and by Proposition 10.4, there

exists a sequence tk →∞ such that atkΛ̃α⃗ ∈ S̃ε′ . Since the orbit
{
atΛ̃α⃗

}
t>0

is bounded in X A
n and since S̃ε′ is closed, we may assume without loss of

generality that atkΛ̃α⃗ converges to some point x. By Proposition 9.12 we

deduce that x ∈ S̃ε′ ∩ suppµS̃r0
. Furthermore, since x is an accumulation

point of a bounded forward orbit of at, it follows that the two-sided orbit

of x is bounded. Therefore x ∈ S̃♯r0 (since if π(x) contains two vectors with
the same vertical coordinate, the orbit atx diverges in negative time). By

Lemma 8.1, Xn(D
◦
ε) ∩ S

♯
r0 is open in Sr0 , and hence its preimage in X A

n is

open in S̃r0 . By choice of ε′ we have Sε′ ⊂Xn(D
◦
ε), therefore

x ∈ π−1(Xn(D
◦
ε) ∩ S♯r0) ⊂ S̃ε,

and we deduce that µS̃r0
(S̃ε) > 0. □
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11. Properties of the cross-section measures

In this section we will describe some properties of measures on the product

space En×Rd× Ẑn. The measures we will consider arise as follows: in Case
I let µ = mX A

n
, and in Case II let µ = mL̃α⃗ỹα⃗

be as in §7.4.1. Let µS̃r0
be

the cross-section measure, let ψ̃, B̃ and S̃ε be as in (120) and (113), and let

λ
def
=

ψ̃∗

(
µS̃r0
|S̃ε

)
(ε-approximations)

ψ̃∗

(
µS̃r0
|B̃
)

(best approximations).
(128)

Note that although our notation does not reflect this, both measures depend
on the norm, and in the case of ε-approximations, λ depends on ε. For

such a measure λ, let λ(En), λ(R
d), λ(f), λ(∞) denote the image of λ under

the projections P1, P2, P3, P12 as in (122), and let λ(Xd), λ(S
d−1) denote the

image under the maps πXd
◦ P1 and Proj ◦ P2 (see (13), (26)). We will go

through the different cases and give some properties of these measures.
The case of ε-approximations is much simpler. The following two propo-

sitions are immediate from (87) and Proposition 10.2.

Proposition 11.1 (Case I, ε-approximations). Let ε ∈ (0, r0), where r0 is
large enough to satisfy (79). Let µ = mX A

n
, and let λ be as in (128) (ε-

approximations). Let Bε denote the ball of radius ε around the origin in Rd
and let Vd = mRd(B1). Then

λ(En) =
εdVd
ζ(n)

mEn , λ(R
d) =

1

ζ(n)
mRd |Bε ,

λ(f) =
εdVd
ζ(n)

mẐn
prim

, λ(Xd) =
εdVd
ζ(n)

mXd
.

The measures λ(R
d), λ(S

d−1) are preserved by any linear transformations of
Rd preserving the norm ∥ · ∥.

Proposition 11.2 (Case II, ε-approximations). Let d ≥ 2 and let ε ∈
(0, r0), where r0 is large enough to satisfy (79). Let µ = mL̃α⃗ỹα⃗

be as in

§7.4.1 and let λ be as in (128). Then λ is proportional to λ(∞) × λ(f), λ(∞)

is not proportional to λ(En) × λ(Rd), and the projections λ(En), λ(R
d) satisfy

statements (1), (2), (3) of Proposition 10.2. The measures λ(R
d), λ(S

d−1) are
not invariant under the group of orthogonal transformations.

We now turn to best approximations. Let

B̂ def
= ψ(B) ⊂ En × Rd,

so that

(Λ, v) ∈ B̂ ⇐⇒ φ(Λ, v) ∈ B, (129)

and denote the indicator function of B̂ by 1B̂.
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Proposition 11.3. Let λ be the measure as in (128) (best approximations).

Then λ = λ(∞) × λ(f), where in Case I, λ(f) is a multiple of mẐn
prim

, and in

Case II, using the notation of §7.4.1, λ(f) is a multiple of the Mα⃗-invariant

measure on an Mα⃗-orbit on Ẑnprim. The measure λ(∞) is absolutely contin-

uous with respect to the measure ν(∞) as in (123), and the Radon-Nikodym
derivative is given by

dλ(∞)

dν(∞)
(Λ, v) = 1B̂(Λ, v). (130)

Proof. The proof that λ can be written as a product λ(∞) × λ(f), and that
λ(f) is either the unique (up to scaling) Kf -invariant measure, or an Mα⃗-
invariant measure on an Mα⃗-orbit, is identical to the one used for ν, in
the proof of Proposition 10.2. Formula (130) is clear from (113), (125) and
(128). □

Formula (130) is an explicit formula for λ(∞). We will now use it to de-

scribe λ(En), λ(Xd), λ(R
d), λ(S

d−1) in more detail. For this we need to consider
Case I and Case II separately. We begin with the simpler Case II.

Proposition 11.4. Let d ≥ 2, and suppose the norm on Rd is either Āα⃗-
analytic (see Definition 9.4), or is the sup-norm. Let µ = mL̃α⃗ỹα⃗

be as

in Proposition 7.7, let λ be given by (128) (best approximations), and let

λ(En), λ(R
d), λ(f), λ(∞), λ(Xd) be as above.

We have

(1) The measures λ(En), λ(R
d), λ(Xd) are singular with respect to the mea-

sures mEn , mRd , mXd
.

(2) The measure λ(S
d−1) is not globally supported. In particular λ(R

d) is
not invariant under all orthogonal transformations.

(3) The measure λ(∞) is not a scalar multiple of λ(En) × λ(Rd).

Proof. Assertions (1) and (2) follow from Propositions 10.2 and 11.3. Fur-

thermore, suppose that (Λ, v) ∈ supp λ(∞). In particular Λ1
def
= φ(Λ, v) ∈ B.

Since B is open in Sr0 (see Lemma 9.1) and ψ is a continuous inverse of φ

on B, there is a neighborhood U of the identity in Ā
(1)
α⃗ , and a neighborhood

V of (Λ, v) ∈ En × Rd, such that

supp λ(∞) ∩ V = {ψ(āΛ1) : ā ∈ U}.

Restricting the measures λ(∞), λ(En), λ(R
d) to the image of U under each of

the maps

ā 7→ ψ(āΛ1), ā 7→ āΛ, ā 7→ āv,

we see that in these open sets, each of these measures is supported on a d−1
dimensional manifold, and this implies (3). □
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11.1. Further properties of the measures for best approximations,
Case I.

Proposition 11.5. In Case I, for best approximations, the measures

λ(En), λ(Xd), λ(R
d), λ(S

d−1)

are absolutely continuous with respect to mEn , mXd
, mRd , mSd−1, and we

have the following formulae for the Radon-Nikodym derivatives:

dλ(En)

dmEn

(Λ) =
1

ζ(n)

∫
Br0

1B̂(Λ, v) dmRd(v) (131)

dλ(R
d)

dmRd

(v) =
1

ζ(n)

∫
En

1B̂(Λ, v) dmEn(Λ) (132)

dλ(Xd)

dmXd

(Λ′) =
1

ζ(n)

∫
Br0

∫
TΛ′

1B̂(Λ(Λ
′, f, en), v) dmTΛ′ (f) dmRd(v) (133)

where TΛ′ is as in (23) and Λ(·) is as in (24), and, for some c > 0,

dλ(S
d−1)

dmSd−1

(ω) = c

∫ r0

0
td−1

∫
En

1B̂(Λ, tω) dmEn(Λ) dt. (134)

Proof. Equations (131), (132) both follow immediately from (124) and (130).
For (133), we give an expression for mXd

in terms of mEn . Let H be the
group as in (12), let G0 and W denote respectively the subgroup of H
obtained by setting x = 0 and A = 0 in (12). Thus G0

∼= SLd(R), W ∼= Rd,
and H = G0 ⋉W . By Lemma 8.15, the Haar measure on H can be written
as dmH(Ax) = dmG0(A)dmW (x). The discussion in the last paragraph of
§2 shows that the matrix A gives the projected lattice Λ′ = AZd, and the
vector x gives the lift functional f ∈ TΛ′ . Therefore, for fixed Λ′ ∈Xd,

dmXd
(Λ′) =

∫
TΛ′

dmEn(Λ(Λ
′, f, en)) dmTΛ′ (f),

and using this, in combination with (131) and the uniqueness of disinte-
gration of measures, we obtain (133). By polar coordinates, there is some
c > 0 such that dmRd(tω) = ctd−1dmSd−1(ω), and thus (134) follows from
(132). □

Proposition 11.6. In Case I, for best approximations, the measures

λ(En), λ(R
d), λ(Xd), λ(S

d−1)

satisfy:

(a) λ(∞) is not a scalar multiple of λ(En) × λ(Rd).

(b) The measures λ(En), λ(Xd), λ(S
d−1) have full support, and the support of

λ(R
d) contains a neighborhood of the origin.
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(c) For d > 1, there is c > 0 such that for any Λ ∈ En and any Λ′ ∈Xd,

dλ(En)

dmEn

(Λ) ≤ c · sys(πRd(Λ))d and
dλ(Xd)

dmXd

(Λ′) ≤ c · sys(Λ′)d, (135)

where sys(Λ′) is the length of the shortest nonzero vector of Λ′ ∈Xd. In

particular λ(En) and λ(Xd) are not scalar multiples of mEn and mXd
.

(d) For any Λ ∈ En with no nonzero horizontal vectors, and any ω ∈ Sd−1,
the set

{t ∈ R : φ(Λ, tω) ∈ B} (136)

is an interval containing 0. In particular, for any ω ∈ Sd−1, the function

t 7→ dλ(R
d)

dmRd

(tω) (137)

is monotone non-increasing, is not a.e. an indicator function, and supp λ(R
d)

is star-shaped around the origin.

(e) The measures λ(R
d), λ(S

d−1) are invariant under any linear transforma-
tion of Rd preserving the norm ∥ · ∥. In particular, for the Euclidean

norm, λ(R
d) and λ(S

d−1) are SOd(R)-invariant.

Proof. Assume first that d = 1. In this case, the assertions all follow easily
from Proposition 9.13. Indeed, in this case there is only one norm on Rd = R,
the bundle En is isomorphic to R/Z via the map y 7→ hyZ2, and the measures

λ(En), λ(R
d) are simply the pushforwards to the x and y axes, of the set in

(116).
We now assume that d > 1, and note that for any Λ ∈ En there is

ε = ε(Λ) > 0 such that for all v ∈ Rd with ∥v∥ < ε, we have φ(Λ, v) ∈ B.
Indeed, this follows from the discreteness of Λ and the fact that the cylinders
Cr get smaller and smaller as r → 0. This implies that the integrands in
(131), (132), (133), (134) are positive on sets of positive measure, and (b)
follows.

For (c), let Λ ∈ En, let Λ′ = πRd(Λ) ∈ Xd, and let x′ ∈ Λ′ with ∥x′∥ =
sys(Λ′). Then Λ contains a vector x ∈ π−1

Rd (x
′) whose horizontal component

is x′ and whose vertical component is in
[
−1

2 ,
1
2

]
. Let v ∈ Rd with ∥v∥ >

2 sys(Λ′) and let u(v) be as in (15). By the triangle inequality,

∥πRd(u(v)x)∥ ≤ ∥x′∥+ ∥v∥
2

< ∥v∥ = ∥πRd(u(v)en)∥,

and hence u(v)Λ /∈ B. Using (131) we obtain

dλ(En)

dmEn

(Λ′) ≤ 1

ζ(n)
mRd(B(0, 2 sys(Λ′))),

and the first inequality in (135) follows. For the second inequality, repeat
this argument for every Λ of the form Λ = Λ(Λ′, f, en) as in (24), and use
(133).



72 URI SHAPIRA AND BARAK WEISS

For assertion (a), note from Proposition 10.2 that ν(∞) is a scalar multiple

of mEn × mRd |Br0
. By (130) and the fact that λ(En) and λ(R

d) are of full

support, if λ(∞) were a scalar multiple of λ(En) × λ(R
d) then its Radon-

Nikodym derivative would be constant on En × Br0 . This contradicts the
first inequality in (135).

For (d), let Λ ∈ En have no horizontal vectors and let ω ∈ Rd, ∥ω∥ = 1.
Then φ(Λ, v) ∈ B if and only if for every nonzero x ∈ Λ with vertical

component xn ∈ (−1, 1), we have ∥v∥ < ∥x′+xnv∥, where x′ def= πRd(x) ̸= 0.
In other words, the set in (136), which we denote by Ī(Λ, ω), can be written
as ⋂

x∈Λ∖{0}
xn∈(−1,1)

I(x, ω), where I(x, ω)
def
=
{
t ∈ R : ∥tω∥ < ∥x′ + xntω∥

}
.

In order to show that supp λ(R
d) is star-shaped, it suffices to show that

Ī(Λ, ω) is an interval containing 0 for each Λ, and for this it is enough to
show that I(x, ω) is an interval containing 0 for every x. Clearly I(x, ω)
is bounded and contains 0, and if it were not an interval, there would be
0 < t1 < t2 such that ∥tiω∥ = ∥x′ + xntiω∥ for i = 1, 2. This implies

t2 − t1 = ∥t2ω∥ − ∥t1ω∥ = ∥x′ + xnt2ω∥ − ∥x′ + xnt1ω∥
= ∥x′ + xnt2ω∥ − ∥x′ + xnt2ω + xn(t1 − t2)ω∥ ≤ ∥xn(t1 − t2)ω∥ < t2 − t1,

a contradiction. The assertion about monotonicity in (d) now follows using
(132). If the function in (137) were an indicator function for some ω, by
(132), the interval Ī(Λ, ω) would actually be the same for almost all Λ. To see
that this cannot be the case, let Λ be some lattice, and let x ∈ Λ∖{0} so that
sup I(x, ω) = sup Ī(Λ, ω). For almost every Λ, x is unique with this property.
Now for almost all nearby lattices Λ′ ∈ En, containing a small perturbation
x′ of x, we will have sup Ī(Λ′, ω) = sup I(x′, ω) ̸= sup I(x, ω) = sup Ī(Λ, ω).

Assertion (e) follows immediately from Proposition 10.2 and the fact that
B is invariant under any linear transformation of the horizontal plane pre-
serving the norm. □

11.2. Cut-and-project structure of approximations to algebraic vec-
tors. This section is not needed for the proof of our main results. Its pur-
pose is to highlight a certain structure that the set of approximations to
algebraic vectors posses.

A cut-and-project set is a subset X0 ⊂ Rr for which there are s ∈ N, a
lattice ∆ ⊂ Rr+s, and W ⊂ Rs for which

X0 = {x ∈ Rr : ∃y ∈W such that (x,y)t ∈ ∆}.
Here (x,y)t denotes the vector whose first r entries are those of x and whose
last s entries are those of y. In some cases the vector spaces Rr,Rs,Rr+s ap-
pearing in the above definition are taken to be more general locally compact
abelian groups. We will refer to the more general case of cut-and-project
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sets arising in this way as generalized cut-and-project sets. Cut-and-project
sets are widely studied in the field of mathematical quasicrystals, see [BG13]
for a comprehensive introduction.

For discrete sets X ′ ⊂ X ⊂ R, we say that X ′ has full density in X if
#(X′∩[0,T ])
#(X∩[0,T ]) →T→∞ 1, and say that discrete X,Y ⊂ R are strongly asymptotic

if there are subsets X ′, Y ′ of full density and a bijection τ : X ′ → Y ′ such
that

|x′ − τ(x′)| −→x′→∞ 0 (x′ ∈ X ′).

Let K be a compact abelian group, let G = K × R, let πR : G → R
be the projection, and let dG be a translation invariant metric on G. For

X ⊂ G and T ∈ R we set X≥T def
= {(k, x) ∈ G : x ≥ T}, and say that

X,Y ⊂ G are strongly asymptotic if there are subsets X ′, Y ′ of X and Y ,
such that πR(X

′), πR(Y
′) are of full density in πR(X) and πR(Y ), and there

is a bijection τ : X ′ → Y ′ such that dG(x, τ(x))→ 0 as πR(x)→∞.
Our analysis yields the following:

Proposition 11.7. Let α⃗ be as in Case II, let ∥ · ∥ be some norm on
Rd, let ε > 0, and let uk = (pk, qk) ∈ Zn be either the sequence of best
approximation of α⃗, or its sequence of ε-approximations. Then the se-
quence (log(qk))k∈N ⊂ R is strongly asymptotic to a one-dimensional cut-

and-project set, and the sequence (pk, log(qk)) ⊂ Ẑn×R, is strongly asymp-
totic to a generalized cut-and-project set.

Sketch of proof. We will not be using this statement in the sequel, and we
only sketch the proof. Let T = Rd/∆ be a torus, where ∆ is a lattice in Rd,
let πT : Rd → T be the projection, let z ∈ Rd ∖ {0}, and let αt ↷ T be the
corresponding straightline flow defined by αtπT(x) = πT(x+ tz). A cut-and-
project set in R can also be described as the set of visit times as in (30), to
a section S which is a bounded linear section; i.e., the image under πT of a
bounded subset of an affine subspace of dimension d−1; see [ASW22, Prop.
2.3] for a proof.

Let Āα⃗, yα⃗ be as in (72), let Āyα⃗ be the stabilizer group as in (73), let ā ∼=
Rd be the Lie algebra of Āα⃗, let exp : ā → Āα⃗ be the exponential map and
denote its inverse by log. Then the map exp induces an isomorphism between

the compact orbit Āα⃗yα⃗ and the torus T def
= ā/ log(Āyα⃗), and this map

conjugates the at-action on Āα⃗yα⃗ to a straightline flow on T. Moreover, as in
Proposition 8.13, this isomorphism maps the cross-section Sr0 to a bounded
linear section. Therefore, for S ′ = B or S ′ = Sε, {t ∈ R : atyα⃗ ∈ S ′} is a cut-
and-project set. Recall from Proposition 10.4 that the set of denominators
qk of convergents to α⃗, and the set of visit times {t ≥ 0 : atΛα⃗ ∈ Sr0} are
related by tk =

1
d log(qk), and from Proposition 7.5 that yα⃗ = qΛα⃗ for some

q ∈ H−, the contracting horospherical subgroup of {at}. Using this, and
the fact that S ′ is µSr0

-JM, one can prove that for any ε > 0, for all large
enough t, there is a bijection between the visit times of the two trajectories
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{atyα⃗}, {atΛα⃗} to points which are of distance at least ε from the boundary
of S ′; and from this, one can deduce that these sets are strongly asymptotic.

For the second assertion, we use the notation of §7.4.1. We let ∆
def
=

StabL̃α⃗
(ỹα⃗). In the cut-and-project construction, we now replace Rr with

{at}×Mα⃗, and R
s with Ā

(1)
α⃗ , and use Proposition 10.4 and a generalization

of [ASW22, Prop. 2.3]. □

12. Invariance under the weak stable foliation

The goal of this section is to explain how our results translate to state-
ments about Lebesgue almost every θ ∈ Rd as they appear in the introduc-

tion. For θ ∈ Rd, let Λ̃θ be as in (114). Let X A
n and µ = mX A

n
be as in §7.4,

let S̃r0 be as in (113), and let µS̃r0
be the cross-section measure.

It follows easily from the ergodicity of the at-action with respect to µ that

for Lebesgue almost any θ, Λ̃θ is (at, µ)-generic. It does not follow that such
points are also (at, µS̃r0

)-generic. In this section we address this issue and

prove the following:

Proposition 12.1. For Lebesgue a.e. θ ∈ Rd, Λ̃θ is (at, µS̃r0
)-generic.

Moreover, it is (at, µS̃r0
|B̃)-generic as well as (at, µS̃r0

|S̃ε
)-generic for any

ε ∈ (0, r0).

Recalling the distinction in Definition 5.1, we define

Ω1
def
=
{
Λ̃ ∈X A

n : Λ̃ is (at, µ)-generic
}

and

Ω2
def
=
{
Λ̃ ∈X A

n : Λ̃ is (at, µS̃r0
)-generic

}
.

Remark 12.2. Recall from Proposition 5.9 that if S were tempered and
reasonable, or if we were interested in µS |E for some tempered subset, then
we would have Ω1 = Ω2, and the arguments of this section could be avoided.

Let G = SLn(A) and let H− and H0 be the groups defined in (57) and

(58), and let H≤ def
= H−H0 be the group as in Proposition 7.2. We refer to

H≤ as the weak stable subgroup corresponding to {at}. Also write

H+ def
= {g ∈ G : atga−t →t→−∞ Id} =

{
u(v) : v ∈ Rd

}
,

where u(v) is as in (15). Note that H+ ∼= Rd is unimodular. We denote
its Haar measure by mH+ . This is simply the image of Lebesgue measure
under the map v 7→ u(v).

We will derive Proposition 12.1 from the following three statements.

Proposition 12.3. For any open subgroup W ⊂ H≤, any W -invariant sub-

set Ω ⊂X A
n of full µ-measure, and any Λ̃ ∈X A

n , the set
{
h ∈ H+ : hΛ̃ ∈ Ω

}
is of full mH+-measure.
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Proposition 12.4. The set Ω1 is H≤-invariant and of full µ-measure.

Proposition 12.5. There is an open subgroup W ⊂ H≤ and a W -invariant
set Ω3 ⊂ X A

n such that the set ∆R
S̃r0

defined via (40) and (34) is contained

in Ω3, and µ (Ω3) = 0.

Proof of Proposition 12.1 assuming Propositions 12.3, 12.4, 12.5. LetW and
Ω3 be as in Proposition 12.5. By Theorem 5.11(i),

Ω1 ∖ Ω3 ⊂ Ω1 ∖∆RS̃r0

⊂ Ω2.

By Proposition 12.4, Ω1 ∖Ω3 is a W -invariant set of full measure, and thus

by Proposition 12.3, {θ ∈ Rd : Λ̃θ ∈ Ω1 ∖ Ω3} is a set of full measure,
proving the first assertion. Moreover, applying Theorem 5.11 and taking
into account the fact that Ω3 contains ∆S̃r0

, we see that any θ in this set is

also (at, µS̃r0
|B̃)-generic as well as (at, µS̃r0

|S̃ε
)-generic. □

Proof of Proposition 12.3. Let Gf = SLn(Af ), G∞ = SLn(R) be as in §7.4,
and let

H≤
∞

def
= H≤ ∩G∞. (138)

The groups H+ and H≤ are complementary, in the following sense:

H≤ ∩H+ = {e}, H≤ = H≤
∞ ×Gf , dimH≤

∞ + dimH+ = dimG∞.

It follow that there are neighborhoods U1,U2 of the identity in H≤ and H+

respectively, such that the map

U1 × U2 → G,
(
h≤, h+

)
7→ h≤h+

is a homeomorphism onto its image in G. For any any Λ̃ ∈ X A
n , using the

fact that W is open in H≤ and the stabilizer of Λ̃ in G is discrete, we can
replace U1,U2 with smaller open sets around the identity, to obtain that
U1 ⊂W and the map

U1 × U2 →X A
n ,

(
w, h+

)
7→ wh+Λ̃

is a homeomorphism onto its image, which is a neighborhood of Λ̃ in X A
n .

Furthermore, by Lemma 8.15, in this neighborhood of Λ̃, the measure µ can

be written as dµ(wh+Λ̃) = dmleft
W (w)dmH+(h+). Since Ω is W -invariant,

this implies that mH+-a.e. h+ ∈ H+ satisfies h+Λ̃ ∈ Ω. □

Proof of Proposition 12.4. By Lemma 7.6, the flow {at} ↷ X A
n is ergodic

and hence Ω1 is of full µ-measure. To see that Ω1 is H≤-invariant, use
Proposition 7.2 and the fact that µ is H0-invariant. □

For the proof of Proposition 12.5 we will need the following Lemma. We

recall from (81) that S♯r is the subset of the cross-section consisting of lattices
whose intersection with the disk Dr contains exactly one primitive point.
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Lemma 12.6. Let Λ be a lattice and let YΛ(Sr)
def
= {t ≥ 0 : atΛ ∈ Sr}. Then{

t ∈ YΛ(Sr) : atΛ /∈ S♯r
}

is finite.

Proof. For each t ∈ YΛ(Sr) such that atΛ /∈ S♯r, we have two distinct vectors
in the intersection of atΛ with the disc Dr. This means that Λ contains two
distinct vectors in a−tDr whose diameter is e−tr, and so Λ contains their
difference, which is a non-zero vector of length at most e−tr. By discreteness
of Λ we obtain an upper bound on t, and since YΛ(Sr) intersects any interval
in a finite set, the lemma is proved. □

Proof of Proposition 12.5. Take a sequence ri ↗∞ and define Sri by (81).
Using the projection π : X A

n →Xn, let

S̃i
def
= π−1(Sri), ∆i

def
= ∆RS̃i

.

The sets S̃i are reasonable cross-sections by Theorem 8.6 and Proposition
6.3, and the sets ∆i satisfy µ(∆i) = 0 by Lemma 5.8.

Let

Ω3
def
=

∞⋃
i=1

∆i.

It is clear that µ(Ω3) = 0. Let W
def
= H0 ×Kf where H0 is the connected

component of the identity in H≤
∞. We claim that Ω3 is W -invariant. The

invariance under Kf is automatic since each ∆i is a preimage under π. The
invariance under at is clear from the definition of each ∆i. As any element
of H0 can be written in the form h =

(
B 0
x 1

)
at, we will be done by proving

the following:

Claim 12.7. For any r > 0, h =
(
B 0
x 1

)
∈ H0, and Λ ∈ ∆RSr

there exists

r′ > r such that hΛ ∈ ∆RSr′
.

Let YΛ(Sr) = {t1 < t2 < . . . }. The assumption that Λ ∈ ∆RSr
is equivalent

(see (40)) to saying that there exist δ > 0 such that for any ε > 0 there exists
a subsequence tkj for which

0 < |tkj+1 − tkj | < ε and lim sup
j→∞

j

tkj
> δ. (139)

We will establish a similar statement for YΛ′(Sr′), where Λ′ def= hΛ and r′ > r
is large enough.

Let vk ∈ Λ be a sequence of vectors satisfying that atkvk ∈ Dr. We may
write

vk =

(
v̄k
edtk

)
.
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Since atkvk ∈ Dr, we have that ||v̄k|| ≤ e−tkr. Denoting by ⟨·, ·⟩ the standard
inner product on Rd, we then have

hvk =

(
Bv̄k

edtk + ⟨x, v̄k⟩

)
∈ Λ′.

If we let

τk
def
=

1

d
log(1 + ⟨x, e−dtk v̄k⟩),

then we see that

atk+τkhvk =

(
etk+τkBv̄k

1

)
.

We claim that sk
def
= tk + τk ∈ YΛ′(Sr′) for any r′ large enough. Indeed,

because B,x are fixed and by the bound ||v̄k|| ≤ e−tkr, we have that |τk| ≤ c
for some c > 0. Hence r′ could be taken to be ec||B||r.

If for some k we have that that sk = sk+1, then this means that the
lattice atk+τkΛ

′ = atk+1+τk+1
Λ′ contains the two distinct vectors atk+τkvk

and atk+τkvk+1 which are in the disc Dr′ and so this is a visit time to

Sr′ ∖ S♯r′ . From Lemma 12.6 we know that this can only happen for finitely
many values of k.

Let δ, ε, {kj} be as in (139). Since τk is bounded (and in fact converges
to 0), we deduce that along the same subsequence kj , excluding potentially
finitely many values of j,

0 < |skj+1 − skj | < ε and lim sup
j

j

skj
= lim sup

j

j

tkj
> δ.

This shows that Λ′ ∈ ∆RSr′
. This establishes Claim 12.7, concluding the

proof of the Proposition. □

13. Concluding the proofs

As discussed in §2, Theorems 1.1, 1.2 and 1.5 all follow from Theorem
2.1.

Proof of Theorem 2.1. In all cases, the measure λ in (128) is finite (see
Propositions 8.7, 8.13, 6.3) but need not be a probability measure. We
fix a norm on Rd and ε > 0, and define the following probability measures:

µ(en) is the normalization of λ in Case I, best approximations

µ(en,α⃗) is the normalization of λ in Case II, best approximations

ν(en) is the normalization of λ in Case I, ε-approximations

ν(en,α⃗) is the normalization of λ in Case II, ε-approximations,

where in Case II we require that d ≥ 2 and in Case II for best approximations
we also require that the norm is either the sup-norm, or is Āα⃗-analytic.

In Case I, let µ = mX A
n
. Then for Lebesgue a.e. θ, by Proposition

12.1, Λ̃θ is
(
at, µS̃r0

|B̃
)
-generic and

(
at, µS̃r0

|S̃ε

)
-generic. The map ψ̃ is



78 URI SHAPIRA AND BARAK WEISS

continuous but is only defined on S̃♯r0 . Since S̃♯r0 is open (by Lemma 8.1)

and of full measure (by Lemma 8.4), ψ̃ coincides with a map on S̃r0 whose
set of discontinuities has zero measure with respect to µS̃r0

. Using Lemma

4.9, we obtain that ψ̃ maps an equidistributed sequence in S̃♯r0 (with respect
to either 1

µS̃r0
(B̃)
µS̃r0
|B̃ or 1

µS̃r0
(S̃ε)

µS̃r0
|S̃ε

) to an equidistributed sequence

in En × Rd × Ẑnprim (with respect to the pushed-forward measure). Using

Proposition 10.4, we find that the sequences (18), (19) are equidistributed

with respect to µ(en) and ν(en) respectively. Proposition 11.6 shows that
the projected measures in the statement of the theorem have the stated
properties.

In Case II, let µ = mL̃α⃗ỹα⃗
. By Lemma 10.5 any ε > ε0 satisfies µS̃r0

(S̃ε) >

0. By Proposition 9.12, the lattice Λ̃α⃗ is both
(
at, µS̃r0

|B̃
)
-generic and(

at, µS̃r0
|S̃ε

)
-generic. Using Proposition 10.4, we find that the sequences

(18), (19) are equidistributed with respect to the pushforwards µ(en,α⃗) and

ν(en,α⃗) respectively. The desired properties of these measures are given in
Propositions 11.4 and 11.2. □

Remark 13.1. It is interesting to find other measures on Rd which give
full measure to the set of θ which satisfy the conclusions of Theorems 1.1
and 1.2. In this regard, we note the following. An examination of the
proof of Theorem 2.1 shows that its conclusion holds for every θ for which

Λ̃θ is
(
at, µS̃r0

)
-generic. Since B̃ is tempered, by Proposition 5.9, for best

approximations it suffices to show that Λ̃θ is (at, µ)-generic for µ = mX A
n
.

It is thus an interesting question to provide examples of measures on Rd
satisfying that Λ̃θ is (at, µ)-generic for µ = mX A

n
for a.e. θ. Note that this

reduction is not valid in the case of ε-approximations.
Additionally one might want to find measures for which for typical θ,

the first two sequences in (3) are equidistributed with respect to µ(∞). In
this regard, we can work with the real space Xn instead of X A

n and with
µ = mXn . Using the same strategy, we are led to the question of finding a
measure µ satisfying that Λθ is

(
at, µSr0

)
-generic for a.e. θ. Examples of such

measures can be found in [SW19]; they include natural measures on some
self-similar fractals, like the middle-thirds Cantor set, Sierpinski triangle or
Koch snowflake.

Proof of Corollary 3.1. In light of Theorem 2.1, it suffices to compute the
measures λ(E2) in Case I, for both ε-approximations and best approxima-
tions. For ε-approximations we find from Proposition 11.1 that λ(E2) is a
scalar multiple of mE2 , which is just Lebesgue measure on

[
−1

2 ,
1
2

] ∼= T1.
For best approximations we use Propositions 9.13 and (131) to compute the
density F . We leave the details to the reader. □
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Proof of Corollary 3.4. Let µ = mXn , let Sε, B be as in (81) and (109), and
let

τ (ε) : Sε → R+ and τ (best) : B → R+

denote respectively the functions giving the first return time of the {at}-
flow to Sε and B, as in (32). Let λ

(KL)
ε and λ

(KL)
best denote respectively the

normalized pushforward of µSr0
|Sε and µSr0

|B under τ (ε) and τ (best). In both
cases, the map τ is Riemann integrable, in the sense that its discontinuity set
is a nullset with respect to µSr0

. This can be proved using arguments similar

to those used in §8.3, and we omit the proof. Thus (see [Bil68, Thm. 2.7])

the sequences (29) equidistribute with respect to λ
(KL)
ε and λ

(KL)
best , showing

the first assertion.
The finiteness of the expectation of both λ

(KL)
ε , λ

(KL)
best follows from the

Kac formula given in Theorem 4.4(vi) and equals the reciprocal of the total
mass of the cross-section measure of Sε and B respectively. In the case of
Sε, we have the following explicit formula:

1

µSr0
(Sε)

Prop.8.7
=

ζ(n)

mXn(Xn)mRd(Bε)
=

ζ(n)

Vd,∥·∥ εd
.

□

14. Conclusions regarding equidistributed compact torus
orbits

Until now we have dealt with two types of at-invariant and ergodic mea-
sures: µ = mX A

n
(Case I) and µ

L̃α⃗ỹα⃗
(Case II). We proved results regarding

the best approximations and ε-approximations of Lebesgue almost any θ
(Case I) and the algebraic vector α⃗ (Case II). The two discussions regarding
Case I and Case II were carried out simultaneously but were completely in-
dependent to one another. We now wish to establish a connection between
the two cases which occurs when one varies the algebraic vector α⃗ under
some assumptions. First we need the following.

Lemma 14.1. We have that{
µ ∈ P(X A

n ) : µ is a1-invariant and π∗µ = mXn

}
=
{
mX A

n

}
.

As a consequence, if µk ∈ P(X A
n ) is a sequence of a1-invariant probability

measures such that π∗µk → mXn, then µk → mX A
n
.

Proof. The proof relies on two facts about entropy. The probability measures
mXn and mX A

n
are the unique a1-invariant measures of maximal entropy

for the dynamical systems (Xn, a1), (X A
n , a1), and in fact they have equal

entropies:

h(a1,mXn ,Xn) = h(a1,mX A
n
,X A

n ) = n.
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For the space Xn this follows from [EL10, Corollary 7.10]. For the space X A
n

this follows from [EL10, Theorem 7.9] together with the unique ergodicity
of the SLn(R) action on X A

n .
Assume that µ ∈ P(X A

n ) satisfies π∗µ = mXn . Then, since π is a factor
map,

h(a1, µ,X
A
n ) ≥ h(a1, µ,X

A
n ) = n.

From the uniqueness of measure of maximal entropy we deduce that µ =
mX A

n
as desired.

Now let µk ∈ P(X A
n ) be a sequence of a1-invariant probability measures

satisfying that π∗µk → mXn . It follows that any weak* accumulation point
of µk must be an a1-invariant probability measure that projects under π to
mXn . By the first part of lemma, µk has only one accumulation point -
mX A

n
. We conclude that µk → mX A

n
as desired. □

Theorem 14.2. Assume d ≥ 2 and that the norm || · || on Rd we use to
define the notion of best approximations is either the Euclidean norm or the
sup norm. Let α⃗k = (αk1, . . . , αkd)

t ∈ Rd be a sequence of vectors such that
for each k, {1, αk1, . . . , αkd} span a totally real number field of degree n over
Q. Let h̄α⃗k

be as in (66) and xα⃗k
∈ Xn be as in (63). If the sequence

of periodic probability measures supported on the periodic orbits h̄∗α⃗k
Axα⃗k

converge weak* to mXn, then

µ(en,α⃗k) −→ µ(en), (140)

where µ(en,α⃗k), µ(en) ∈ P(En × Rd × Z̃n) are the probability measure cor-
responding to best approximations of α⃗k (resp. Lebesgue almost any θ) by
Theorem 2.1.

Proof. To reduce notational clutter we let xk
def
= xα⃗k

and h̄k
def
= h̄α⃗k

. We
assume that the sequence of homogeneous measures of the periodic orbits
h̄∗kAxk converge weak* to mXn . By applying the involution x 7→ x∗ of Xn

we deduce that the same holds for the sequence of periodic orbits h̄kAx
∗
k =

Āα⃗k
yα⃗k

, where Āα⃗k
and yα⃗k

are as defined in (72). That is

mĀα⃗k
yα⃗k
−→ mXn . (141)

Consider the periodic orbits L̃α⃗k
ỹα⃗k

in X A
n appearing in Proposition 7.7.

Let us denote

µ(k)
def
= mL̃α⃗k

ỹα⃗k
; µ

def
= mX A

n
, (142)

By Proposition 7.7, π∗µ
(k) = mĀα⃗k

yα⃗k
. Thus, (141) says that π∗µ

(k) → mXn .

Furthermore, µ(k) is at-invariant and so by Lemma 14.1 we deduce that

µ(k) −→ µ (143)

Let µ
(k)

S̃r0

, µS̃r0
be the corresponding cross-section measures. We apply

Proposition 5.12, where for the tempered subset we take B̃ ⊂ S̃r0 . Regard-
ing the applicability of Proposition 5.12, we note that if ν denotes any of
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the measures in (142), then the ν-reasonability of S̃r0 , the ν-Jordan mea-
surability of B and its temperedness follow from Theorem 9.11 (note that
this is the point where we use the fact that the norm on Rd is either the
Euclidean norm or the sup norm).

The conclusion of Proposition 5.12 is that µ
(k)

S̃r0

|B̃ −→ µS̃r0
|B̃, where the

convergence is tight convergence. In particular, the convergence holds after
renormalizing the restricted measures to be probability measures:

1

µ
(k)

S̃r0

(B̃)
µ
(k)

S̃r0

|B̃ −→
1

µS̃r0
(B̃)

µS̃r0
|B̃.

Let ψ̃ be as in (120). By definition (see the proof of Theorem 2.1 in §13),

ψ̃∗

 1

µS̃r0
(B̃)

µS̃r0
|B̃

 = µ(en); ψ̃∗

 1

µ
(k)

S̃r0

(B̃)
µ
(k)

S̃r0

|B̃

 = µ(en,α⃗k).

By continuity of ψ̃∗ at µS̃r0
(see Lemma 4.9) we obtain (140). □

Remark 14.3. At the moment we do not have a version of Theorem 14.2 for
ε-approximations. The reason is that Proposition 5.12 requires tempered-
ness and we only know temperedness for B and not for Sε.
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