
BADLY APPROXIMABLE VECTORS ON FRACTALS

DMITRY KLEINBOCK AND BARAK WEISS

Revised version, July 2004

Abstract. For a large class of closed subsets C of R
n, we show

that the intersection of C with the set of badly approximable vec-
tors has the same Hausdorff dimension as C. The sets are described
in terms of measures they support. Examples include (but are not
limited to) self-similar sets such as Cantor’s ternary sets or attrac-
tors for irreducible systems of similarities satisfying Hutchinson’s
open set condition.

1. Introduction

We say that x ∈ R
n is badly approximable if there is c > 0 such that

for any p ∈ Z
n, q ∈ N one has

‖qx − p‖ ≥ c

q1/n
. (1.1)

We denote the set of all badly approximable vectors in R
n by BA. It is

well known that Lebesgue measure of BA is zero, but nevertheless this
set is quite large, namely its Hausdorff dimension is equal to n [S2].
When n = 1, a number is badly approximable if and only if its contin-
ued fraction coefficients are bounded. For n > 1 there is no analogous
description, and very few explicit examples of badly approximable vec-
tors are known.

The goal of the present paper is to describe a large class of subsets
of R

n which contain many badly approximable vectors. These sets
will be described in terms of geometric properties of measures which
they support. Thus we will show that whenever a measure µ on R

n

satisfies certain conditions, the intersection of its support with BA has
Hausdorff dimension equal to that of supp µ. The results are new even
in the case n = 1.

Let us introduce some notation and terminology. For x ∈ R
n and

r > 0, B(x, r) stands for the open ball of radius r centered at x. For a
ball B = B(x, r) and a > 0, we denote B(x, ar) by aB. For an affine
subspace L ⊂ R

n we denote by L(ε) the ε-neighborhood of L (with
1
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respect to the Euclidean metric). Hausdorff dimension will be denoted
by ‘dim’.

In what follows, µ will be a locally finite Borel measure on R
n. Fol-

lowing [KLW], given C, α > 0 and U ⊂ R
n we say that µ is absolutely

(C, α)-decaying on U if for any non-empty open ball B ⊂ U of radius
r centered in supp µ, any affine hyperplane L ⊂ R

n, and any ε > 0 one
has

µ
(
B ∩ L(ε)

)
≤ C

(ε

r

)α

µ(B) . (1.2)

Given D ≥ 1, say that µ is D-Federer on U if one has

µ (3B) ≤ Dµ (B)

for every ball B centered in supp µ with 3B ⊂ U . In some papers this
condition (more precisely, its stronger form with U = R

n) is referred
to as the ‘doubling property’.

We will say that a measure is absolutely decaying (resp., Federer) if
for µ-a.e. point of R

n there exist a neighborhood U of this point and
C, α > 0 (resp., D > 0) such that µ is absolutely (C, α)-decaying (resp.,
D-Federer) on U . Measures which are absolutely decaying and Federer
form a subclass of the class of friendly measures, defined and studied
in [KLW]. We refer the reader to §2 and §6 for more on absolutely
decaying measures, and in particular to Remark 6.2 for a discussion of
related conditions on measures considered recently in [PV2, KTV, U2,
U3].

Let us also define the lower pointwise dimension of µ at x by

dµ(x)
def
= lim inf

r→0

log µ
(
B(x, r)

)

log r
,

and for B ⊂ R
n put

dµ(B)
def
= inf

x∈B
dµ(x) .

The following is our main result:

Theorem 1.1. Let µ be an absolutely decaying and Federer measure
on R

n. Then for any open ball B with µ(B) > 0 one has

dim(BA ∩ supp µ ∩ B) ≥ dµ(B) .

We remark that is well known, see e.g. [P, Theorem 7.1], that if
dµ(x) ≥ β for µ-a.e. x, then dim(supp µ) ≥ β. Consequently,

dim(supp µ ∩ B) ≥ dµ(B) ∀ open B with µ(B) > 0 . (1.3)
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Furthermore, equality in (1.3) holds for many natural measures. For
example, take β > 0 and say that µ satisfies a β-power law on an open
subset U of R

n if there are constants c1, c2 such that

c1r
β ≤ µ

(
B(x, r)

)
≤ c2r

β whenever x ∈ supp µ and B(x, r) ⊂ U .
(1.4)

We will say that µ satisfies a β-power law (or sometimes simply satisfies
a power law) if µ-a.e. point of R

n has a neighborhood U such that µ
satisfies a β-power law on U .

This condition is well studied. A set for which the restriction of
the Hausdorff measure, in the appropriate dimension, satisfies a power
law is sometimes called regular or Ahlfors–David regular (see e.g. [Mat,
Chaps. 4–6] and references therein). A measure µ with a β-power law
is obviously Federer, and also satisfies

β = dim(supp µ ∩ B) = dµ(B) = dµ(x) (1.5)

for any open B with µ(B) > 0 and any x ∈ supp µ, see e.g. [Mat, Thm.
5.7].

Corollary 1.2. Assume that µ is absolutely decaying and satisfies a
power law. Then for any open B ⊂ R

n one has

dim(BA ∩ supp µ ∩ B) = dim(supp µ ∩ B) .

A different proof of the above statement has recently appeared in
[KTV].

It is easy to see that Corollary 1.2 is a special case of Theorem 1.1.
Indeed, it is enough to assume that supp µ∩B 6= ∅, in which case one
can write

dµ(B)
Thm. 1.1
≤ dim(BA ∩ supp µ ∩ B) ≤ dim(supp µ ∩ B)

(1.5)
= dµ(B) ,

and the assertion follows.

Note that the absolute decay condition can be used to estimate dµ

from below: namely, µ being absolutely (C, α)-decaying on U implies
that dµ(B) ≥ α for any ball B ⊂ U . However, this estimate is not
necessarily optimal. In the case n = 1, the absolute decay condition is
similar to a condition introduced by W. Veech in [V] (see Remark 6.2).
Besides Lebesgue measure, the simplest example of a measure satisfying
the conditions of Corollary 1.2 is given by the coin-tossing measure on
Cantor’s ternary set C; it follows that badly approximable numbers
inside C form a set of Hausdorff dimension log 2

log 3
= dim(C). Even this

very special case does not appear in the literature, although it is known
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to experts and is provable by other methods. We are grateful to Yuval
Peres for describing a proof to us.

Additional examples of measures which are absolutely decaying and
satisfy a power law are Hausdorff measures, in the appropriate dimen-
sion, restricted to self-similar (or, more generally, self-conformal) sets
satisfying Hutchinson’s open set condition. This was proved in [KLW]
in the self-similar case, and has been recently generalized by Urban-
ski [U2, U3]. We remind the reader of Hutchinson’s setup in §7, and
also describe new examples of measures which are absolutely decaying
and satisfy a power law. These measures need not be supported on
self-similar/self-conformal sets, and may have arbitrarily small dimen-
sion. They provide new examples to which the results of [KLW] and
the present paper apply. In §7 we also construct a measure on the real
line which is absolutely decaying and Federer, but does not satisfy a
power law; thus Theorem 1.1 is applicable to a larger class of measures
than Corollary 1.2.

The proof of Theorem 1.1 involves three intermediate steps. First,
using a theorem of Dani [D1], it is shown that Theorem 1.1 follows from
a dynamical result (Theorem 3.2) about abundance of certain bounded
trajectories in the space G/Γ, where G = SLn+1(R) and Γ = SLn+1(Z).
Bounded trajectories are then constructed by an iterative procedure,
originally introduced in [KM1], using a result (Proposition 5.3) on uni-
form return (in terms of a given measure µ) to large compact subsets
of G/Γ. This procedure is described in detail in §4. Proposition 5.3
in turn is deduced from quantitative nondivergence estimates recently
established in [KLW].

The construction of bounded trajectories using uniform return esti-
mates has several other applications; two of them, to bounded trajecto-
ries of the Teichmüller geodesic flow and to Diophantine approximation
with weights, are briefly discussed in the last section of the paper.

Acknowledgements: This research was supported by BSF grant
2000247 and NSF Grant DMS-0239463. We are grateful to Hillel
Furstenberg and Mariusz Urbanski for helpful discussions, and to Yuval
Peres and Sanju Velani for telling us of different approaches to these
problems. We benefited greatly from many discussions with Elon Lin-
denstrauss during our work on [KLW], in which some of the results of
this paper were announced.

2. Preliminaries

In this section we introduce some notation and collect some well-
known results which we will need in later sections.
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If G is a collection of sets, we let ∪G def
=
⋃

B∈G B . If ϕ is a map defined

on ∪G, we let ϕ(G)
def
= {ϕ(B) : B ∈ G}.

Proposition 2.1 (Besicovitch, see e.g. Theorem 2.7 in [Mat]). For
any n ∈ N there exists N = Nn ∈ N (the Besicovitch constant of R

n)
with the following property: for any bounded subset A of R

n and any
collection G of closed balls in R

n such that each point of A is the center
of some ball of G, there are disjoint countable subcollections G1, . . . ,GN

such that A is covered by
⋃N

i=1 ∪Gi. Consequently, any such G contains
a countable subcovering G ′ of A of multiplicity at most N .

Throughout the paper n ∈ N will be fixed, and the Besicovitch
constant of R

n will be denoted by N .

For a measure µ on R
n and a measurable map ϕ : R

n → R
n, the

pushforward ϕ∗µ of µ under ϕ is defined by ϕ∗µ(A)
def
= µ(ϕ−1(A)). It

will be also convenient to introduce the following notation: for y ∈ R
n

and c ≥ 1 let ϕy,c be the affine transformation of R
n defined by

ϕy,c(x)
def
= c(x − y) . (2.1)

The following immediately follows from the definitions:

Lemma 2.2. Let µ be absolutely (C, α)-decaying (resp. D-Federer) on
U . Then for any y ∈ R

n and any c ≥ 1, (ϕy,c)∗µ is absolutely (C, α)-
decaying (resp. D-Federer) on ϕy,c(U).

The maps ϕy,c will be repeatedly used for ‘zooming in’ on smaller
parts of sets and measures: observe that ϕy,c maps a ball B(y, r/c)
onto B(0, r). It will be important for our purposes, given a measure µ
and a ball B = B(0, r) ⊂ R

n, to consider all measures obtained from
µ by zooming in on sub-balls of B. More precisely, for any a > 1 we
define

Mµ,B,a
def
= {(ϕy,ak)∗µ : y ∈ supp µ, k ∈ Z+, B(y, r/ak) ⊂ B} . (2.2)

If B is a subset of R
n and f is a real-valued function on R

n, let

‖f‖B
def
= sup

x∈B
|f(x)| ;

and if µ is a measure on R
n such that µ(B) > 0, we define ‖f‖µ,B to

be equal to ‖f‖B ∩ supp µ . Given C, α > 0, a subset U of R
n, a measure

µ on U and a real-valued function f on U , say that f is (C, α)-good on
U with respect to µ if for any open ball B ⊂ U centered in supp µ and
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any ε > 0 one has

µ
(
{x ∈ B : |f(x)| < ε}

)
≤ C

(
ε

‖f‖µ,B

)α

µ(B) . (2.3)

See [KM2], [BKM] and [KLW] for various properties and examples.
Here is one of them, a modified version of [BKM, Lemma 3.3]:

Lemma 2.3. Let U be a subset of R
n, µ a measure on U , m ∈ N,

C, α > 0, and let f = (f1, . . . , fm) be a map U → R
m such that each fi

is (C, α)-good on U with respect to µ. Then the function x 7→ ‖f(x)‖,
where ‖ · ‖ is the standard Euclidean norm, is (

√
mC, α)-good on U

with respect to µ.

We will also need the following facts:

Lemma 2.4. Let µ be absolutely (C, α)-decaying on U ⊂ R
n. Then

any affine function f on R
n:

(i) is (C ′, α)-good on U with respect to µ, where

C ′ = C(C−1/α + 2)α ; (2.4)

(ii) satisfies

‖f‖B ≤ (1 + 2C1/α)‖f‖µ,B (2.5)

for any ball B ⊂ U centered in supp µ.

Proof. Without loss of generality we can assume that f is nonzero,
and, after suitable scaling and taking absolute value, replace it by the
distance function from some hyperplane L in R

n. Then the left hand
side of (2.3) coincides with that of (1.2), so, if we denote ‖f‖µ,B by δ,
to establish (i) we need to prove that for any ball B ⊂ U centered in
supp µ radius r one has

µ
(
B ∩ L(ε)

)
≤ C ′

(ε

δ

)α

µ(B) . (2.6)

Denoting by r the radius of B, one has

µ
(
B ∩ L(ε)

)

µ(B)

by (1.2)

≤ C
(ε

r

)α

= C

(
δ

r

)α (ε

δ

)α

. (2.7)

On the other hand, B ∩ L(ε) = ∅ when ε < δ − 2r, and otherwise
one has

µ
(
B ∩ L(ε)

)

µ(B)
≤
(

δ

δ − 2r

)α(
δ − 2r

δ

)α

≤
(

δ

δ − 2r

)α (ε

δ

)α

. (2.8)

The minimum of the right hand sides of (2.7) and (2.8) achieves its
biggest value when δ/r = C−α + 2, hence one has (2.6) with C ′ as in
(2.4).
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To demonstrate (ii), note that for any ε > δ one has

1 =
µ
(
B ∩ L(ε)

)

µ(B)
≤ C

(ε

r

)α

,

hence δ ≥ C−1/αr. On the other hand one clearly has r ≥ ‖f‖B−δ
2

,
which immediately yields (2.5). �

In the remaining part of this section we describe an elementary con-
struction of compact subsets of R

n. Let A0 be a compact subset of R
n,

and let µ be a finite measure on A0. Say that a countable family A
of compact subsets of A0 is tree-like1 relative to µ if A is the union of
finite subcollections Ak, k ∈ N, such that A0 = {A0} and the following
four conditions are satisfied:

(TL0) µ(A) > 0 for any A ∈ A ;

(TL1) ∀ k ∈ N ∀A, B ∈ Ak either A = B or µ(A ∩ B) = 0 ;

(TL2) ∀ k ∈ N ∀B ∈ Ak ∃A ∈ Ak−1 such that B ⊂ A ;

(TL3) ∀ k ∈ N ∀B ∈ Ak−1 Ak(B) 6= ∅, where

Ak(B)
def
= {A ∈ Ak : A ⊂ B} .

The reason for this terminology is quite clear: every member of the
family corresponds to a node of a certain tree, A0 being the root, and
sets from Ak correspond to vertices of the kth generation. Conditions
(TL1–3) say that every vertex of the tree has at least one child and
(except for the root) a unique parent, and sets corresponding to nodes
of the same generation are µ-essentially disjoint.

Let A be a tree-like collection of sets relative to a measure µ. For
each k ∈ N, the sets ∪Ak are nonempty and compact, and from (TL2)
it follows that ∪Ak is contained in ∪Ak−1 for any k ∈ N. Therefore
one can define the (nonempty) limit set of A to be

A∞ =
⋂

k∈N

∪Ak .

Note that A∞ ⊂ supp µ in view of (TL0).
In many cases it is important that, as k → ∞, the sets from Ak

become smaller. We will formalize it by defining the kth stage diameter
dk(A) of A:

dk(A)
def
= max

A∈Ak

diam(A) ,

and saying that A is strongly tree-like if it is tree-like and in addition

1The terminology is borrowed from [KM1], but the definition is slightly changed
for the sake of better exposition.
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(STL) limk→∞ dk(A) = 0 .

Note that any compact subset of R
n is a limit set of a strongly tree-

like collection of sets; for example, for K ⊂ [0, 1]n we may take for Ak

the dyadic cubes of sidelength 2−k in [0, 1]n whose intersection with K
is nonempty, and take Lebesgue measure for µ. On the other hand,
a representation of a compact set as a limit set of a strongly tree-like
collection often helps to estimate its Hausdorff dimension. To state the
desired estimate requires some more terminology.

For k ∈ Z+ and B ∈ Ak let us define the ‘density of children’ of B
in A by

δ(B,A)
def
=

µ
(
∪ Ak+1(B)

)

µ(B)
,

and then let

∆k(A)
def
= min

B∈Ak

δ(B,A) ;

note that the latter is always positive due to (TL3).

The following lemma generalizes results of C. McMullen [Mc, Propo-
sition 2.2] and M. Urbanski [U1, Lemma 2.1].

Lemma 2.5. Let A be a strongly tree-like (relative to µ) collection of
subsets of A0. Then there exists a measure ν with A∞ = supp ν such
that for any x ∈ A∞,

dν(x) ≥ dµ(x) − lim sup
k→∞

∑k
i=0 log ∆i(A)

log dk(A)
. (2.9)

Consequently, for any open ball B intersecting A∞ one has

dim(A∞ ∩ B) ≥ dµ(B) − lim sup
k→∞

∑k
i=0 log ∆i(A)

log dk(A)
.

Proof. We basically follow the argument of [U1]. Define measures νk

inductively as follows: put ν0 = µ|A0, and, given νk−1, set

νk(A)
def
=

∑

B∈Ak−1

µ
(
∪ Ak(B) ∩ A

)

µ
(
∪ Ak(B)

) νk−1(B) . (2.10)

This definition makes sense since by (TL0) and (TL3) one knows that
µ
(
∪Ak(B)

)
> 0 for any B ∈ Ak−1. The countable additivity of νk can

be easily shown using (TL1) and (TL2), and one can see by induction
that

νk(∪Ak) = µ(A0) for every k ∈ N .

Further, in view of (TL1) one has νk+1(A) = νk(A) for each A ∈ Ak.
Hence one can conclude, using induction, that ν`(A) = νk(A) for each
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A ∈ Ak and ` ≥ k. It follows then from (STL) that the sequence {νk}
has a unique weak limit, a finite measure ν with supp ν = A∞ such
that

ν(A) = νk(A) for any A ∈ Ak . (2.11)

Making use of (2.10) and (2.11), one inductively computes that

ν(A) ≤ µ(A)
∏k−1

i=0 ∆i(A)
for any A ∈ Ak . (2.12)

Now take x ∈ A∞ and 0 < r < supk dk(A). Then there exists k = k(r)
such that dk+1(A) ≤ r < dk(A), and one can write

ν
(
B(x, r)

)
≤ ν

(
∪ {A ∈ Ak+1 : A ∩ B(x, r) 6= ∅}

)

(2.12)

≤ µ
(
∪ {A ∈ Ak+1 : A ∩ B(x, r) 6= ∅}

)
∏k

i=0 ∆i(A)
≤ µ

(
B(x, 2r)

)
∏k

i=0 ∆i(A)
.

Therefore

log ν
(
B(x, r)

)

log r
≥ log µ

(
B(x, 2r)

)
−∑k

i=0 log ∆i(A)

log r

≥ log µ
(
B(x, 2r)

)

log(2r)

(
1 +

log 2

log r

)
−
∑k

i=0 log ∆i(A)

log dk(A)
.

Since limr→0 k(r) = 0 due to (STL), taking lim infr→0 of both sides of
the above inequality yields (2.9). It remains to mention that the second
part of the lemma follows immediately from (1.3). �

3. From bounded trajectories to badly approximable

vectors

Let G = SLn+1(R), Γ = SLn+1(Z), and denote by π : G → G/Γ, g 7→
gΓ, the natural projection map. G acts on G/Γ by left translations via
the rule gπ(h) = π(gh), g, h ∈ G. Equivalently one can describe G/Γ
as the space of unimodular lattices in R

n+1, with π(g) corresponding
to the lattice gZ

n+1 ⊂ R
n+1, and the action of G on G/Γ coming from

the linear action of G on R
n+1. We will be interested in the action of

the one-parameter subsemigroup

F
def
= {gt : t ≥ 0}

of G on G/Γ, where

gt
def
= diag(et/n, . . . , et/n, e−t) . (3.1)

Note that the action of elements of F on a lattice Λ contracts the last
component of every vector of Λ and expands the remaining components.
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Fix a norm ‖ · ‖ on R
n+1, and for ε > 0 let

Kε
def
= π

({
g ∈ G : ‖gv‖ ≥ ε ∀v ∈ Z

n+1
r {0}

})
, (3.2)

i.e., Kε is the collection of all unimodular lattices in R
n+1 which con-

tain no nonzero vector smaller than ε. Recall that G/Γ is noncom-
pact and has finite G-invariant measure. Each Kε, however, is com-
pact (Mahler’s Compactness Criterion, see e.g. [R, Chapter 10]), and
{Kε}ε>0 is an exhaustion of G/Γ.

Let us also define the following map from R
n to G:

τ(x)
def
=

(
In x

0 1

)
(3.3)

(here In stands for the n × n identity matrix). Note that the lattice
τ(x)Zn+1 is given by

τ(x)Zn+1 =

{(
qx − p

q

)
: q ∈ Z, p ∈ Z

n

}
,

thus serving as a connecting tool between the two sides of the inequality
(1.1). From this observation it is not hard to interpret badly approx-
imable points of R

n in terms of bounded F -trajectories on G/Γ as
follows:

Proposition 3.1 (Dani [D1]). x ∈ BA iff Fτ(x)Zn+1 ⊂ Kε for some
ε > 0.

It is clear from the above proposition that Theorem 1.1 will imme-
diately follow from

Theorem 3.2. Let µ and B be as in Theorem 1.1. Then for any
Λ ∈ G/Γ, one has

dim ({x ∈ supp µ ∩ B : Fτ(x)Λ is bounded}) ≥ dµ(B) . (3.4)

It is important that the group

H
def
= {τ(x) : x ∈ R

n}

is the so-called expanding horoshperical subgroup of F ; in other words,
H-orbits on G/Γ are exactly the unstable leaves with respect to the
F -action. More precisely, for any fixed t > 0 the conjugation by gt

gives rise to an expanding homothety of H of the form

gtτ(x)g−t = τ
(
e(1+1/n)tx

)
. (3.5)
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Let us observe that taking µ equal to Lebesgue measure in Theo-
rem 3.2 (or equivalently, Haar measure on H) one can deduce that

for every Λ ∈ G/Γ , the set
{
h ∈ H : FhΛ is bounded

}

has full Hausdorff dimension at any point of H.
(3.6)

As a historical remark, let us point out that Dani in [D1] used the
correspondence of Proposition 3.1 and Schmidt’s result on the full
Hausdorff dimension of the set BA to derive (3.6); and that later a
dynamical proof of a generalization of (3.6) appeared in [KM1]. See
[K4, §3] for a more detailed historical account.

One of the main technical tools used in [KM1] was an iterative
procedure of constructing points with bounded trajectories based on
Lemma 2.5, which can produce many of them assuming that a certain
‘uniform return’ condition is satisfied. In the present paper we follow
a similar strategy. Namely, in the next section we describe a modified
version of the aforementioned procedure, thereby reducing Theorem 3.2
to verifying a uniform return property (Corollary 5.4). The latter is
deduced in §5 from the quantitative nondivergence estimates of [KLW].

4. From uniform return to bounded trajectories

The goal of this section is to describe an abstract scheme for con-
structing bounded trajectories of certain actions, which, in particular,
will be applicable in the context of the previous section, that is, the
action of F and H on G/Γ. Namely, for n ∈ N and a > 0 let us denote
by Sn,a the semidirect product R

n
o Z of R

n and Z ∼= {gk : k ∈ Z}
given by

Sn,a
def
= 〈Rn, g | gxg−1 = ax ∀x ∈ R

n〉 .

Note that, in view of (3.5), for any t > 0 the subgroup of G as in the
previous section generated by gt and H is isomorphic to Sn,e(1+1/n)t .

Let us assume now that we are given an action of the group Sn,a on an
abstract set Y , which we will simply denote by (γ, y) 7→ γy, γ ∈ Sn,a,
y ∈ Y . Suppose also that we are given a family M of measures on R

n,
a ball B ⊂ R

n, two subsets K, Q of Y , and a positive η. Say that M
has the η-uniform return property with respect to the triple (B, K, Q)
if for any ν ∈ M and any y ∈ Q one has

ν
(
{x ∈ B : (gx)y ∈ K}

)
≥ (1 − η)ν(B) .

The following theorem is the main result of this section:

Theorem 4.1. Given a ≥ 2, D > 0 and a neighborhood U of 0 in R
n,

let µ be a D-Federer measure on U with 0 ∈ supp µ, and let a closed
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ball B ⊂ U centered at 0, two subsets K, Q of an Sn,a-space Y and
0 < η < 1/DN satisfy:

(i) (2B)K ⊂ Q
(ii) the family Mµ,B,a has the η-uniform return property with respect

to (B, K, Q).

Then for any y ∈ Q one has

dim
({

x ∈ supp µ ∩ B : (gkx)y ∈ Q ∀ k ∈ N
})

≥ dµ(B)−
log( 1

1/DN−η
)

log a
.

(4.1)

Proof. First note that it is enough to prove the theorem for Y = Sn,a

(that is, for the left action of Sn,a on itself). Indeed, if for y ∈ Y one
denotes by πy the (Sn,a-equivariant) map Sn,a → Y , γ 7→ γy, it is not
hard to see that (ii) is equivalent to saying that for any y ∈ Q

the family Mµ,B,a has the η-uniform return

property with respect to (B,K,Q) ,
(4.2)

where K = K(y)
def
= π−1

y (K) and Q = Q(y)
def
= π−1

y (Q). Likewise, (i) is
equivalent to saying that for any y ∈ Q one has

(2B)K ⊂ Q . (4.3)

On the other hand, if, given y ∈ Q, one knows that

dim
({

x ∈ supp µ ∩ B : gkxγ ∈ Q ∀ k ∈ N
})

≥ dµ(B) −
log( 1

1/DN−η
)

log a
(4.4)

for any γ ∈ Q, one can let γ be the identity element in Sn,a (which
belongs to Q as long as y ∈ Q), and deduce (4.1). Thus it is enough
to start with two subsets K,Q of Sn,a, assume (4.3) and (4.2), and
demonstrate (4.4).

In order to do this, given a D-Federer measure ν on U and an element
γ of Sn,a, we are going to define a (possibly empty) collection H =
H(γ, ν) of disjoint closed balls A of radius r/a each contained in B =
B(0, r) and centered in supp ν such that

gAγ ∩ K 6= ∅ (4.5)

for any A ∈ H(γ, ν), and

ν
(
∪ H(γ, ν)

)
≥ ν(B)

DN
− ν
(
{x ∈ B : gxγ /∈ K}

)
. (4.6)

Indeed, first consider the collection G of all balls of radius r/a centered
in B(0, r/3) ∩ supp ν (note that all those balls are contained in B since
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we have assumed that a ≥ 2). Using Proposition 2.1 one can choose a
disjoint subcollection G ′ such that

ν (∪G ′) ≥ ν
(
B(0, r/3)

)

N

Federer

≥ ν(B)

DN
. (4.7)

Now define H to be the set of balls A in G ′ satisfying (4.5). Then
(4.6) follows from (4.7) and

ν (∪H) ≥ ν (∪G ′) − ν
(
{x ∈ B : gxγ /∈ K}

)
.

Note that if in addition γ ∈ Q and ν ∈ Mµ,B,a, it follows from (4.6)
and (4.2) that

ν
(
∪H(γ, ν)

)

ν(B)
≥ 1/DN − η ; (4.8)

in particular, the collection H is non-empty as long as η < 1/DN .

Next, let us fix γ and construct a certain collection A of subsets of

B. Here is the inductive construction. First let A0
def
= {B}, then define

A1
def
= H(γ, µ) ;

and, more generally, if Ai is defined for all i ≤ k, we let

Ak+1
def
=

⋃

A∈Ak

Ak+1(A) ,

where for A = B(y, r0/ak) = ϕ−1
y,ak(B) we define

Ak+1(A)
def
= ϕ−1

y,ak

(
H
(
gkyγ, (ϕy,ak)∗µ

) )
.

Lemma 4.2. For any k ∈ Z+ and A ∈ Ak+1, one has

(a) gk+1Aγ ∩ K 6= ∅;
(b) gk+1Aγ ⊂ Q;
(c) A is centered in supp µ.

Proof. By definition, A ∈ Ak+1 if and only if

A = ϕ−1
y,ak(A

′) = g−kA′gky , (4.9)

where A′ ∈ H
(
gkyγ, (ϕy,ak)∗µ

)
. Therefore gk+1Aγ = gA′gkyγ, which

has non-empty intersection with K in view of (4.5), hence (a). As for
(b), it is an immediate consequence of (a) and (4.3). For (c), note that
A′ is centered in supp (ϕy,ak)∗µ, and apply (4.9). �

Note that if one in addition assumes that γ ∈ Q, then part (b) of
the above lemma implies that

gkyγ ∈ Q whenever k ∈ Z+ and B(y, r/ak) ∈ Ak . (4.10)
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We now claim that A is strongly tree-like relative to µ as long as γ
is chosen to lie in Q. Indeed, properties (TL1), (TL2) and (STL), with
dk(A) = 2r/ak, are immediate from the construction. As for (TL3), it
follows from the choice of η < 1/DN and

Lemma 4.3. For any k ∈ Z+ and A ∈ Ak, one has

δ(A,A) ≥ 1/DN − η .

Proof. Let A = B(y, r/ak) = ϕ−1
y,ak(B), denote (ϕy,ak)∗µ by ν, and

write

δ(A,A) =
µ
(
∪ Ak+1(A)

)

µ(A)
=

µ
(
∪ ϕ−1

y,ak

(
H(gkyγ, ν

) )

µ
(
ϕ−1

y,ak(B)
) =

ν
(
∪H(gkyγ, ν

)

ν(B)
,

which is not less than 1/DN − η in view of (4.8) and (4.10). �

Applying Lemma 2.5, we conclude that the dimension of the limit
set A∞ of A is at least

dim(A∞) ≥ dµ(B) − lim sup
k→∞

∑k
i=0 log(1/DN − η)

log(2r/ak)

= dµ(B) − lim sup
k→∞

k + 1

k
· log(1/DN − η)

log(2r)
k

− log a
= dµ(B) −

log( 1
1/DN−η

)

log a
.

It remains to observe that parts (b) and (c) of Lemma 4.2 imply that
A∞ is contained in the set in the left hand side of (4.4). �

5. From quantitative nondivergence to uniform return

We now return to the setup of §3. That is, let G = SLn+1(R), Γ =
SLn+1(Z), π : G → G/Γ the projection map, and Kε defined as in (3.2).
We also define

W def
= the set of nonzero rational subspaces of R

n+1 .

Fix a Euclidean structure on R
n+1, and for g ∈ G and V ∈ W define

`V (g) to be the covolume of gV ∩ gZ
n+1 in gV . Equivalently, one can

extend the Euclidean norm ‖ · ‖ from R
n+1 to its exterior algebra, and

set

`V (g)
def
= ‖g(v1 ∧ · · · ∧ vk)‖ ,

where {v1, . . . ,vk} is a generating set for Z
n+1∩V ; note that the above

quantity does not depend on the choice of {vi}.
The following ‘abstract nondivergence’ theorem is a special case of

[KLW, Theorem 4.3].
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Theorem 5.1. Given n ∈ N, and positive constants C, D, α, there
exists C1 = C1(n, C, D, α) > 0 with the following property. Suppose
B ⊂ R

n is a ball, µ is measure on R
n such that B is centered at supp µ

and µ is D-Federer on B̃
def
= 3n+1B, h : B̃ → G is a continuous map, %

is a positive number not greater than 1; and suppose also that for each
V ∈ W

(i) the function `V ◦h is (C, α)-good on B̃ with respect to µ,

and

(ii) ‖`V ◦h‖µ,B ≥ %.

Then for any 0 < ε ≤ %,

µ
({

x ∈ B : π
(
h(x)

)
/∈ Kε

})
≤ C1

(
ε

%

)α

µ(B) .

We remark that this theorem generalizes [KM2, Theorem 5.2], which,
in its turn, builds on quantitative estimates for non-divergence of unipo-
tent flows due to Dani and Margulis [Mar, D2]. A more general ver-
sion can be found in [KT], where in particular an explicit value of
C1 = (n + 1)C(D2N)n+1 is given.

We are going to apply the above theorem choosing h of a special
form. Namely, using gt as defined in (3.1) and τ as defined in (3.3),
and taking an arbitrary u ∈ G and t > 0, let

ht,u(x)
def
= gtτ(x)u . (5.1)

The following has been essentially proved in [KM2]:

Lemma 5.2. Let ht,u be defined as in (5.1).

(a) For any u ∈ G, t > 0 and w ∈
∧

(Rn+1), the map x 7→ ht,u(x)w
is affine.

(b) For any compact subset Q of G/Γ and any nonempty ball B ⊂
R

n there exists t0 = t0(Q, B) > 0 such that

‖`V ◦ht,u‖B ≥ 1 (5.2)

for all u ∈ π−1(Q), t ≥ t0 and V ∈ W.

Proof. Let us fix a basis e1, . . . , en+1 of R
n+1, and for I = {i1, . . . , ik} ⊂

{1, . . . , n+1}, i1 < i2 < · · · < ik, we let eI
def
= ei1 ∧· · ·∧eik ∈ ∧k(Rn+1),

with the convention e∅ = 1. Expand uw with respect to the corre-
sponding basis of

∧
(Rn+1):

uw =
∑

I⊂{1,...,n+1}
wIeI . (5.3)
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To prove (a), it suffices to show that the map x 7→ ht,u(x)eI is affine
for each I, which is easily verified. Indeed, the action of τ(x) leaves
e1, . . . , en invariant and sends en+1 to en+1 +

∑n
i=1 xiei, therefore

τ(x)eI =

{
eI if n + 1 /∈ I

eI +
∑n

i=1, i/∈I ±xieI∪{i}r{n+1} otherwise ,
(5.4)

and an application of gt clearly does not make things any worse.
For (b), take V ∈ W of dimension k, 1 ≤ k ≤ n + 1, let {v1, . . . ,vk}

be a generating set for Z
n+1 ∩ V , and denote v1 ∧ · · · ∧ vk by w. It

follows from Minkowski’s Convex Body Theorem, see e.g. [S3, Chapter
II, Theorem 2B], that uV ∩ uZ

n+1 contains a nonzero vector of norm

at most 2v
−1/k
k `V (u)1/k, where vk is the volume of the unit ball in R

k.
Now recall that u is chosen so that lengths of all nonzero vectors of
uZ

n+1 are uniformly bounded away from zero. Therefore there exists
% depending only on Q and n such that at least one of the coefficients
wI in (5.3) has absolute value not less than %.

Note that `V ◦ht,u(x) = ‖ht,u(x)w‖, and that (5.2) holds trivially for
any t > 0 if k = n+1, so let us assume 1 ≤ k ≤ n. Using (5.3), (5.4) and

(3.1), write ht,u(x)w as a sum of two terms: e−(1− k−1
n

)t
∑

n+1∈I wIeI

and

e
k
n

t
∑

n+1/∈I

(
wI +

∑

i∈I

±wI∪{n+1}r{i}xi

)
eI . (5.5)

Then observe that every component wI of w appears in the sum
(5.5), which implies that for some I the projection of ht,u(x)w onto eI

is an affine function with at least one coefficient of absolute value not
less than %e

k
n

t ≥ %et/n. Therefore (5.2) holds whenever et is not less
than (% · diam(B)/2)−n. �

Proposition 5.3. Given n ∈ N and C, D, α, η > 0, there exists a
compact subset K of G/Γ with the following property: for any compact
Q ⊂ G/Γ and any nonempty ball B ⊂ R

n centered at 0, there exists
t0 > 0 such that ∀ t > t0, ∀ u ∈ π−1(Q), and for any measure µ on R

n

with 0 ∈ supp µ which is absolutely (C, α)-decaying and D-Federer on
3n+1B, one has

µ
({

x ∈ B : π
(
ht,u(x)

)
∈ K

})
≥ (1 − η)µ(B) . (5.6)

Proof. It follows from Lemma 5.2(a), Lemma 2.4(i) and Lemma 2.3
that for any u ∈ G, t > 0 and w ∈

∧
(Rn+1), the function `V ◦ht,u is

(2n/2C ′, α)-good on 3n+1B with respect to µ, where C ′ is as in (2.4).
Choosing u ∈ π−1(Q) and t > t0, with t0 as in Lemma 5.2(b), one
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deduces from Lemma 2.4(ii) that

‖`V ◦ht,u‖µ,B ≥ (1 + 2C1/α)−1 .

Thus one can take % = (1 + 2C1/α)−1 and

C2 = C1

(
n, 2n/2C(C−1/α + 2)α, D, α

)
(1 + 2C1/α)α ,

and apply Theorem 5.1 with h = ht,u to establish that for any 0 < ε <
(1 + 2C1/α)−1 one has

µ
({

x ∈ B : π
(
ht,u(x)

)
∈ Kε

})
≥ (1 − C2ε

α)µ(B) .

To deduce (5.6), it remains to take K = Kε, where ε is small enough
so that C2ε

α < η. �

Corollary 5.4. Given n ∈ N and C, D, α, η > 0 with η < 1/DN ,
there exists a compact subset Q of G/Γ with the following property: for
any Λ ∈ G/Γ and any ball B ⊂ R

n centered at 0 there exists t0 > 0
such that for any measure µ on R

n with 0 ∈ supp µ which is absolutely
(C, α)-decaying and D-Federer on 3n+1B one has

dim ({x ∈ supp µ ∩ B : gktτ(x)Λ ∈ Q ∀ k ∈ N}) ≥ dµ(B)−
log( 1

1/DN−η
)

(1 + 1
n
)t

(5.7)
for any t > t0.

Proof. As was mentioned before, for any fixed t > 0 the subgroup of G
generated by gt and H is isomorphic to Sn,a where a = e(1+ 1

n
)t. With

some abuse of notation, let us identify Sn,a with its image under the
isomorphism sending x ∈ R

n to τ(x) and g to gt.
We claim that K as in Proposition 5.3 has the following property:

for any compact Q ⊂ G/Γ, any ball B ⊂ R
n centered at 0 and any

a > e(1+ 1
n

)t0 , where t0 is as in Proposition 5.3, the family

M def
=

{
all measures ν on R

n ⊂ Sn,a with 0 ∈ supp ν which are

absolutely (C, α)-decaying and D-Federer on 3n+1B

}

(5.8)
has the η-uniform return property with respect to (B, K, Q). Indeed,
if Λ ∈ G/Γ is given by Λ = uZ

n+1, it is clear that π
(
ht,u(x)

)
coincides

with gtτ(x)Λ, and Λ ∈ Q ⇐⇒ u ∈ π−1(Q) for any subset Q of G/Γ.

Letting a = e(1+ 1
n

)t with t > t0, one observes that the η-uniform return
property of M with respect to (B, K, Q) is an immediate consequence
of (5.6).

To establish (5.7), note that it follows from Lemma 2.2 that for any
µ as in the statement of the Corollary and any a > 1, Mµ,B,a is a
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subfamily of M as in (5.8). Thus it remains to choose a compact

subset Q of G/Γ containing both Λ and (2B)K, if needed increase t0
so that e(1+ 1

n
)t0 ≥ 2, and apply Theorem 4.1 to conclude that (5.7)

holds for any t > t0. �

Proof of Theorem 3.2. One knows that there exists x0 ∈ supp µ ∩ B
and constants C, D, α such that µ is absolutely (C, α)-decaying and D-
Federer on a neighborhood of x0. Thus, by shrinking the size of B and
changing coordinates, one can assume that B is centered at 0 ∈ supp µ,
and µ is absolutely (C, α)-decaying and D-Federer on 3n+1B. Hence
Corollary 5.4 applies, resulting in estimate (5.7) for any t > t0. It
remains to observe that

⋃
k∈N

gktτ(x)Λ ⊂ Q implies that Fτ(x)Λ is
contained in a compact set

⋃
0≤s≤t g−sQ, and that the right hand side

of (5.7) tends to dµ(B) as t → ∞. �

6. Conditions on measures

In this section we discuss the conditions on measures which we have
used. First we show that, under the assumption that µ is Federer,
the absolute decay of µ can be expressed in several equivalent ways, in
particular, it suffices to consider hyperplanes L passing through centers
of balls.

We will use the following notation: for two open subsets U1, U2 of
R

n, say that U1 ⊂3 U2 if for any ball B ⊂ U1, 3B is contained in U2.

Proposition 6.1. For a Federer measure µ on R
n, the following con-

ditions are equivalent:

(1) µ is absolutely decaying.
(2) For µ-a.e. point of R

n there exist a neighborhood U of this point
and C, α > 0 such that for all affine hyperplanes L and all balls
B = B(x, r) ⊂ U with x ∈ supp µ ∩ L, (1.2) holds.

(3) µ-a.e. point of R
n has a neighborhood U for which

sup
x∈supp µ, B(x,r)⊂U,L3x

µ
(
B(x, r) ∩ L(δr)

)

µ
(
B(x, r)

) −→δ→0 0 . (6.1)

(4) µ-a.e. point of R
n has a neighborhood Û for which

sup
x∈supp µ,B(x,r)⊂Û , any L

µ
(
B(x, r) ∩ L(δr)

)

µ
(
B(x, r)

) −→δ→0 0 . (6.2)

Proof. The implications (1) =⇒ (2) =⇒ (3) are immediate. Suppose
(3) holds; for µ-a.e. x0 ∈ R

n choose U 3 x0 as in (3), and also assume,
as we may, that µ is D-Federer on U for some D > 0. Then take a
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neighborhood Û ⊂3 U of x0. After that, given a ball B = B(x, r) ⊂
Û centered in supp µ and any affine hyperplane L, choose y ∈ B ∩
supp µ ∩ L(δr) (if there is no such y, then there is nothing to worry
about). Let Ly be the affine hyperplane parallel to L passing through
y. Then for any δ > 0,

L(δr) ⊂ L(2δr)
y

and B ⊂ By

def
= B(y, 2r) ⊂ 3B ⊂ U .

Hence

µ
(
B ∩ L(δr)

)

µ(B)
≤

µ
(
By ∩ L(2δr)

y

)

µ(By)

µ(By)

µ(B)

Federer
≤ D

µ
(
By ∩ L(2δr)

y

)

µ(By)
,

which shows that (6.2) is a consequence of (6.1).

Now suppose (4) holds. For µ-a.e. x0 ∈ R
n choose Û 3 x0 as in

(4), and again assume that µ is D-Federer on Û for some D > 0.

Then take a neighborhood U ⊂3 Û of x0. After that take an arbitrary
0 < η < 1/DN , and choose δ so that

sup
x∈supp µ, B(x,r)⊂Û , any L

µ
(
B(x, r) ∩ L(δr)

)

µ(B(x, r))
< η . (6.3)

Let c
def
= δ/2. We will show by induction on k that for any ball B ⊂ U

centered at supp µ of radius r and any hyperplane L,

µ
(
B ∩ L(ckr)

)

µ(B)
≤ (DNη)k. (6.4)

The case k = 1 follows from (6.3). For k > 1, let

B def
=

{
B

(
x,

ckr

2

)
: x ∈ B ∩ supp µ ∩ L(ck+1r)

}
,

and, using Proposition 2.1, choose B′ to be a subcollection of multi-
plicity at most N covering B ∩ supp µ ∩ L(ck+1r). Note that

∪B′ ⊂ 3B ∩ L(ckr). (6.5)
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We therefore have:

µ
(
B ∩ L(ck+1r)

)
≤ µ

(
⋃

B′∈B′

B′ ∩ L(ck+1r)

)
≤
∑

B′∈B′

µ
(
B′ ∩ L(δckr/2)

)

(6.3)

≤ η
∑

B′∈B′

µ(B′)
Prop. 2.1

≤ ηN µ (∪B′)

(6.5)

≤ ηN µ
(
3B ∩ L(ckr)

) (6.4)

≤ ηN(ηND)kµ(3B)

Federer
≤ (ηND)k+1µ(B).

This proves (6.4).

Now let α
def
= log η0

log c
, where η0

def
= DNη, let C

def
= 1

η0
, let r > 0 and let

ε > 0 with ε
r
≤ c. Suppose B ⊂ U is a ball of radius r centered in

supp µ. Choose k so that

ck+1 <
ε

r
≤ ck . (6.6)

We obtain:

µ
(
B ∩ L(ε)

)
= µ

(
B ∩ L( ε

r
r)
) (6.6)

≤ µ
(
B ∩ L(ckr)

)

(6.4)

≤ ηk
0 µ(B) =

ηk+1
0

η0
µ(B)

(6.6)

≤ η
log ε/r
log c

0

η0
µ(B) = C

(ε

r

)α

µ(B) .

Enlarging C if necessary to account for the case ε
r

> c, we obtain
(1). �

Note that the above proof shows that, if one in addition assumes
that µ is D-Federer on R

n, all the above conditions are equivalent to

(5) For µ-a.e. point of R
n there exist a neighborhood Û of this

point, δ > 0 and 0 < η < 1/DN such that (6.3) holds.

Remark 6.2. Several recent papers, such as [PV2, KTV, U2, U3], deal
with a more uniform version of the absolute decay condition. Let us say
that a measure µ on R

n is uniformly absolutely decaying if there exist
positive C, α, r0 such that (1.2) holds for any affine hyperplane L ⊂ R

n,
any ε > 0, and any open ball B centered in supp µ of radius r < r0.
Clearly this is a property which implies absolute decay. On the other
hand, the difference is not significant, as in all naturally arising abso-
lutely decaying measures (see e.g. the subsequent section) the uniform
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property can be established as well. Note however that our condition
has an advantage of being invariant with respect to restrictions to open
subsets of R

n.
Arguing as in the proof of Proposition 6.1, one can easily show that

µ is uniformly absolutely decaying if and only if for some r0 > 0 one
has

sup
x∈supp µ, 0<r<r0,L3x

µ
(
B(x, r) ∩ L(δr)

)

µ
(
B(x, r)

) −→δ→0 0 . (6.7)

Note that in the case n = 1, that is, if µ is a measure on the real
line, condition (6.7) may be restated as follows:

sup
x∈supp µ, 0<r<r0

µ
(
B(x, δr)

)

µ
(
B(x, r)

) −→δ→0 0 .

An a-priori stronger requirement, introduced by Veech [V] in the study
of quadratic differentials, is:

sup
x∈R, 0<r<1

µ
(
B(x, δr)

)

µ
(
B(x, r)

) −→δ→0 0.

Later, in [W], the following condition was used:

There are C, α > 0 such that ∀ x ∈ R, δ > 0, 0 < r < 1,

µ
(
B(x, δr)

)
≤ Cδαµ

(
B(x, r)

)

Still later, Urbanski [U2] used the following condition:

There are 0 < η < 1, δ > 0, r0 > 0 such that ∀ x ∈ R, 0 < r < r0,

µ
(
B(x, δr)

)
≤ ηµ

(
B(x, r)

)
.

Using arguments as in the proofs of Proposition 6.1 and [U2, Prop. 3.1],
it may be shown that these four conditions on µ are actually equivalent
(and imply absolute decay). In this case one need not impose the
condition that µ is Federer. Details are left to the reader.

We now observe that measures obeying a β-power law for large
enough β are absolutely decaying.

Proposition 6.3. Suppose µ satisfies a β-power law, with β > n − 1.
Then µ is absolutely decaying, with α = β + 1 − n.

This is simple and well known, see e.g. [PV2, U2]. We include a
proof for completeness.

Proof. For µ-a.e. x0 ∈ R
n choose U 3 x0 and c1, c2 > 0 such that (1.4)

holds, and take a neighborhood Û ⊂3 U of x0. Let B = B(x, r) ⊂ Û
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with x ∈ supp µ, let L be an affine hyperplane, and let 0 < ε < r. Let

G def
=
{
B(y, 2ε) : y ∈ B ∩ L(ε) ∩ supp µ

}
.

Note that all the above balls are contained in U . Using Proposition
2.1, take G1 to be a disjoint subcollection such that

µ(∪G1) ≥
µ
(
B ∩ L(ε)

)

N
. (6.8)

For each A ∈ G1, A ∩ L is a (n − 1)-dimensional ball of radius at least
ε, contained in L ∩ 3B, and these balls are disjoint. Also L ∩ 3B is a
(n− 1)-dimensional ball of radius at most 3r. Considering the (n− 1)-
dimensional volume we find that there is a constant c, depending only
on n, such that

#G1 ≤ c
(r

ε

)n−1

. (6.9)

We therefore have:

µ
(
L(ε) ∩ B

)

µ(B)

(1.4), (6.8)

≤ N

c1rβ
µ (∪G1)

(1.4)

≤ N

c1rβ
#G1c2ε

β
(6.9)

≤ Ncc2

c1

(ε

r

)β+1−n

.

Enlarging the constant Ncc2
c1

if necessary to account for the case ε ≥
r, we conclude that for some C > 0, µ is absolutely (C, β + 1 − n)-
decaying. �

To conclude this section, we describe the absolute decay condition
in terms of limits of the ‘zooming in’ process. Namely, suppose U is a
bounded open subset of R

n, µ a measure on R
n,

R
def
= max{r > 0 : B(x, r) ⊂ U for some x ∈ supp µ} ,

and B̃
def
= B(0, R). A measure ν on B̃ is called a U-mini-measure for µ

if there are x ∈ supp µ and a ≥ 1 such that B(x, R/a) ⊂ U and

ν =
1

µ(B(x, R/a))

(
(ϕx,a)∗µ

)
|B̃

(where ϕx,a is defined by (2.1)); that is, ν is obtained from µ by ‘zoom-
ing in’ on B(x, R/a) and renormalizing. We say that ν is a U-micro-
measure for µ if it is an accumulation point of U -mini-measures for µ,
with respect to the weak-∗ topology on measures on B̃. A measure µ
is called nonplanar if for any affine hyperplane L, µ(L) = 0.
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The terminology of micro-measures, which was introduced by Fursten-
berg, enables us to formulate another characterization of absolute de-
cay. Since we will not use it, we leave the proof (based on Proposition
6.1) as an exercise.

Proposition 6.4. A Federer measure µ on R
n is absolutely decaying

if and only if µ-a.e. point of R
n has a neighborhood U such that all of

U-micro-measures for µ are nonplanar.

7. Examples

In this section we construct measures µ which are absolutely de-
caying and satisfy a power law, that is, measures to which Corollary
1.2 applies. Note that such measures are also ‘friendly’ in the sense
of [KLW]. We also exhibit examples of measures which satisfy the
assumptions of Theorem 1.1 but not those of Corollary 1.2.

7.1. Hutchinson’s construction and its generalizations. A map
ϕ : R

n → R
n is a similarity if it can be written as ϕ(x) = %Θ(x) + y ,

where % ∈ R+, Θ ∈ O(n) and y ∈ R
n. It is said to be contracting if

% < 1. It is known (see [H] for a more general statement) that for any
finite family ϕ1, . . . , ϕm of contracting similarities there exists a unique
nonempty compact set K, called the limit set of the family, such that

K =
m⋃

i=1

ϕi(K).

Say that ϕ1, . . . , ϕm as above satisfy the open set condition if there
exists an open subset U ⊂ R

n such that

ϕi(U) ⊂ U for all i = 1, . . . , m ,

and

i 6= j =⇒ ϕi(U) ∩ ϕj(U) = ∅ .

The family {ϕi} is called irreducible if there is no finite collection of
proper affine subspaces which is invariant under each ϕi. Well-known
self-similar sets, like Cantor’s ternary set, Koch’s curve or Sierpinski’s
gasket, are all examples of limit sets of irreducible families of contract-
ing similarities satisfying the open set condition.

Suppose {ϕi}m
i=1 is a family of contracting similarities of R

n satisfying
the open set condition, let K be its limit set, β the Hausdorff dimension
of K, and µ the restriction of the β-dimensional Hausdorff measure to
K. J. Hutchinson [H] gave a simple formula for β and proved that µ
is positive, finite, and satisfies a β-power law. Assuming that {ϕi} is
irreducible, it was proved in [KLW, §8] that µ is absolutely decaying,
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and announced without proof in [KLW, §10] that dim(BA ∩ K) = β.
The latter is now clearly seen to be a consequence of Corollary 1.2.

In a recent preprint [U3], Urbanski extended the results of [KLW]
to a larger class of measures. In particular, he proved that if {ϕi}m

i=1

is a conformal irreducible iterated function system in R
n, n ≥ 2, K is

its limit set (see [U3, §1] for definitions) and β = dim(K), then the β-
dimensional Hausdorff measure restricted to K is absolutely decaying.
The fact that it satisfies a power law was known before, see [B] or [MU,
Lemma 3.14]. Hence, by Corollary 1.2, the intersection of K with BA

has full Hausdorff dimension. Another preprint [U2] of Urbanski con-
tains examples of absolutely decaying and Federer measures on the real
line, in particular those coming from certain infinite iterated function
systems.

7.2. More tree-like collections. We now look more closely at limit

measures constructed in the proof of Lemma 2.5. Let A0
def
= [0, 1]n be

the unit cube. Fix

M ∈ N, 0 < λ < 1 such that λMn ∈ N

(in particular λ ≥ 1/Mn), and let µ be Lebesgue measure on A0. De-
fine a tree-like (relative to µ) family A of subsets of A0 inductively as

follows. Set A0
def
= {A0}, and, given a cube A ∈ Ak, subdivide A into

Mn subcubes of equal size, with edges parallel to the coordinate axes,
and let Ak+1(A) consist of λMn of them, chosen arbitrarily. Then by
an easy induction, the following properties hold for all k ∈ N:

• Each A ∈ Ak is a cube with sidelength equal to M−k;
• #Ak = (λMn)k.

From this it is easy to see that the union A of Ak over k ∈ Z+ is strongly
tree-like relative to µ. Furthermore, the limit measure ν, defined as the
unique weak limit of sequence {νk} given by (2.10), satisfies

ν(A) = (λMn)−k ∀A ∈ Ak . (7.1)

Proposition 7.1. The limit measure ν satisfies a β-power law, where

β = dim(A∞) = n − log(1/λ)
log M

.

Proof. It is immediate from the construction that supp νk = ∪Ak for

all k ∈ N, and that the diameter of A ∈ Ak is
√

n
Mk . Let x ∈ supp ν, 0 <

r ≤ √
n/M, B = B(x, r), and let k ∈ N be such that

√
n

Mk+1
< r ≤

√
n

Mk
(7.2)



BADLY APPROXIMABLE VECTORS ON FRACTALS 25

Since x ∈ supp ν ⊂ supp νk+1, there exists A ∈ Ak+1 with x ∈ A. By
(7.2) we see that A ⊂ B, hence

ν(B) ≥ ν(A) = 1/(λMn)k+1. (7.3)

On the other hand, by (7.2), diam(B) = 2r ≤ 2
√

nM−k and hence
there exists C, depending only on M and n, such that

#E < C, where E def
= {A ∈ Ak+1 : A ∩ B 6= ∅}. (7.4)

This implies that
ν(B) ≤ C/(λMn)k+1. (7.5)

Reworking (7.2), we have

log
√

n − log r

log M
< k + 1 ≤ log M + log

√
n − log r

log M
, (7.6)

and putting together (7.3), (7.5) and (7.6) gives the required inequali-
ties. �

Example 7.2. Take λ > 1/M in the above construction. Then, by
Propositions 6.3 and 7.1, the limit measure ν is absolutely decaying
and satisfies a power law, hence satisfies the assumptions of Corollary
1.2.

Proposition 7.3. Suppose that in the above construction there is a
constant c > 0 such that for each k ∈ N and each cube A ∈ Ak the
following condition holds:

for every affine hyperplane L ⊂ R
n

#{B ∈ Ak+1(A) : B ∩ L(c/Mk) = ∅} ≥ 1 .
(7.7)

Then the limit measure ν is absolutely decaying.

Proof. Note that (7.7) implies that λMn is at least n+1, so, by Propo-
sition 7.1, ν satisfies a power law and hence is D-Federer for some D.
So, in view of the remark after the proof of Proposition 6.1 is enough
to find δ > 0 and 0 < η < 1/DN such that

ν
(
B(x, r) ∩ L(δr)

)

ν(B(x, r))
< η (7.8)

for any x ∈ supp ν, any affine hyperplane L and small enough r.
Take r ≤ √

n/M , define k by (7.2), put B = B(x, r), and let C, E
be as in (7.4). Suppose A ∈ E . Then by (7.3),

ν(A) ≤ ν(B) . (7.9)

Note that for any ` ∈ N,

#Ak+1+`(A) = (λMn)` . (7.10)
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Also, (7.7) and a straightforward induction on ` show that for any
` ∈ N,

#G` ≤ (λMn − 1)` , (7.11)

where

G`
def
= {A′ ∈ Ak+1+`(A) : A′ ∩ L(c/Mk+`) 6= ∅}.

Let %
def
= λMn−1

λMn . Then one has

ν(A ∩ L(c/Mk+`))

ν(A)

(7.1)

≤ #G`

#Ak+`(A)

(7.10),(7.11)

≤ %` . (7.12)

Choose ` ∈ N large enough so that η
def
= C%` < 1

DN
, and set

δ
def
=

c√
nM `

. (7.13)

Putting together previous computations, one has

ν(B ∩ L(δr))

ν(B)

(7.2),(7.13)

≤ ν(B ∩ L(c/Mk+`))

ν(B)

(7.9)

≤
∑

A∈E

ν(A ∩ L(c/Mk+`))

ν(A)

(7.4),(7.12)

≤ C%` < η ,

proving (7.8). �

Example 7.4. It is clear that one can keep choosing as few as n+1 sub-
cubes at each stage, and not necessarily in the self-similar way, and still
satisfy (7.7). See Figure 1 for examples. This gives a way to construct
limit sets A∞ of tree-like families of subsets of A0 with dim(A∞) =
log(n+1)

log M
arbitrarily small, which are not limit sets of families of con-

tracting similarities, and such that dim(BA ∩ A∞) = dim(A∞).
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Figure 1. Three collections satisfying (7.7). Here n = 2
and M = 8.
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Example 7.5. We now construct a measure on the real line which
is Federer and absolutely decaying (thus scaling) but does not satisfy
a power law. Choose an integer M ≥ 3 and a sequence m` ↑ ∞, to
be specified later. Then perform a tree-like construction using M -adic
intervals, as follows. Take A0 = [0, 1] and A = {A0}. Given k, let
` = `k be such that k ∈ {m` + 1, . . . , m`+1}. If `k is odd and A ∈ Ak,
then Ak+1(A) consists of (say) the leftmost and rightmost subintervals
of A; and if `k is even, then Ak+1(A) contains all the subintervals of A.

It follows immediately from Proposition 7.3 that the limiting measure
ν is absolutely decaying. Let us show that ν is Federer. Let B = B(x, r)
with x ∈ supp ν, and choose k by the requirement

1/Mk ≥ r > 1/Mk+1.

Let A ∈ Ak with x ∈ A, then B contains at least one element of Ak+1,
and 3B intersects at most 2 elements of Ak−1. All elements of Ak−1

have the same ν-measure, say z, and the ν-measure of any element of
Ak+1 is at least z/M 2. Therefore

ν(3B)

ν(B)
≤ 2z

z/M2
= 2M2 ,

as required.
On the other hand, it follows from the discussion in [Mat, Chapter

5] that, if the sequence m` increases sufficiently rapidly, then the upper
(respectively lower) Minkowski dimension of A∞ is equal to 1 (respec-
tively log 2/ log M). In particular they are not equal, and hence, by
[Mat, Thm. 5.7], the measure ν does not satisfy a power law.

8. Further results

In this section we discuss two more manifestations of the idea of
applying uniform return estimates to produce bounded trajectories.

8.1. Quadratic differentials. There are many interesting analogies
between the study of the dynamics of flows on homogeneous spaces of
Lie groups, and flows on the moduli space of quadratic differentials.
In this section we present a result, analogous to Theorem 3.2, in the
quadratic differential setup. We refer the reader to [MW] and [KW]
for all definitions which will be used in this section.

Let S be a compact orientable surface of genus g with n punctures,
where 3g + n ≥ 3, and let Q be the moduli space of unit-area holo-
morphic quadratic differentials over complex structures on S. This is

a noncompact orbifold on which G
def
= SL(2, R) acts continuously. It

is partitioned into finitely many G-invariant suborbifolds called strata.
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Say that X ⊂ Q is bounded in a stratum if its closure is a compact
subset of a single stratum.

For t ∈ R, let gt =

(
et/2 0
0 e−t/2

)
∈ G and F

def
= {gt : t ≥ 0} . For

s, θ ∈ R let

hs
def
=

(
1 s
0 1

)
, rθ

def
=

(
cos θ − sin θ
sin θ cos θ

)
.

The actions of {gt}, {hs}, {rθ} are often called the (Teichmüller) ge-
odesic, horocyclic, and circle flows, respectively.

The following holds:

Theorem 8.1. Let q ∈ Q, and let µ be an absolutely decaying and
Federer measure on R. Then for any open interval B with µ(B) > 0
one has

(i) dim
(
{s ∈ supp µ∩B : Fhsq is bounded in a stratum }

)
≥ dµ(B) .

(ii) dim
(
{θ ∈ supp µ∩B : Frθq is bounded in a stratum }

)
≥ dµ(B) .

The case in which µ is Lebesgue measure is the main result of [KW];
its proof is similar to that of Theorem 3.2 of the present paper, and
can be modified to yield Theorem 8.1. Specifically, one can view Q
as an S1,a-space where S1,a is a subgroup of G generated by H

def
= {hs}

and a = et, and repeat the argument as in the proof of Corollary 5.4
to derive the needed Hausdorff dimension estimate from Theorem 4.1
and the following uniform return estimate similar to Proposition 5.3:

Proposition 8.2. For any positive C, α, D, η there exists a compact
K ⊂ Q with the following property: for any compact L ⊂ Q and any
interval B ⊂ R centered at 0, one can find t0 = t0(L, B) > 0 such
that whenever t > t0, q ∈ L and µ is an absolutely (C, α)-decaying and
D-Federer measure on 3B with 0 ∈ supp µ, one has

µ
(
{s ∈ B : gthsq ∈ K}

)
≥ (1 − η)µ(B) .

Proposition 8.2 can be derived from a quantitative nondivergence
result for the horocycle flow on moduli space, in terms of a general
measure, which is a variant of [MW, Thm. 6.10]. To state it, we intro-

duce the following notation. Let Q̃ be the space of (marked) unit area

quadratic differentials over complex structures on S, let π : Q̃ → Q
be the natural quotient map, and for q ∈ Q̃ let Lq denote the set of
saddle connections for q. Note that there is a natural identification of
Lq with Lgq for any g ∈ G. Now for δ ∈ Lq let lδ(q) denote the norm
of the holonomy vector of δ with respect to the flat metric determined
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by q, and let

Kε
def
= π

({
q ∈ Q̃ : ∀δ ∈ Lq, lδ(q) ≥ ε

})
.

Note that, as in the homogeneous space set-up, each Kε is compact,
and for each stratum M, {M ∩ Kε}ε>0 is an exhaustion of M. Then
one has the following analogue of Theorem 5.1:

Proposition 8.3. There are positive constants γ, ρ0, depending only
on S, such that for any positive C, α, D there is a positive C ′ such that
the following holds for any absolutely (C, α)-decaying and D-Federer
measure µ on an interval B ⊂ R. Suppose J ⊂ R is an interval

with 3J ⊂ B, 0 < ρ ≤ ρ0, q ∈ Q̃, and suppose that for any δ ∈
Lq, supt∈J lδ(htq) ≥ ρ. Then for any 0 < ε < ρ:

µ ({s ∈ J : hsπ(q) /∈ Kε}) ≤ C ′
(

ε

ρ

)γα

µ(J).

The proof of Proposition 8.3 will appear elsewhere; it is similar to
that of [MW, Thm. 6.10], but with the assumption that µ is Federer
substituting for condition (36) of that paper.

The deduction of Proposition 8.2 from Proposition 8.3 follows the
lines of the argument of §5 and is left to the reader.

8.2. Diophantine approximation with weights. Given an n-tuple
r = (r1, . . . , rn) with

ri > 0 and

n∑

i=1

ri = 1 ,

say that x = (x1, . . . , xn) ∈ R
n is r-badly approximable if there is c > 0

such that for any p = (p1, . . . , pn) ∈ Z
n, q ∈ N one has

max
i

|qxi − pi|1/ri ≥ c

q
.

Denote the set of all r-badly approximable vectors in R
n by r-BA.

This definition was originally introduced in [K1] but can be traced

back to [S4]. Note that one has BA = n-BA where n
def
= ( 1

n
, . . . , 1

n
), so

that one can think of the components of r as the weights assigned to
different coordinates of x, recovering the standard definition in the case
of equal weights. It follows from W. Schmidt’s general version of the
Khintchine-Groshev Theorem [S1] that Lebesgue measure of r-BA is
zero. On the other hand, it is mentioned in [S4] that one can prove the
existence of r-badly approximable vectors by a variation of a method
due to Davenport. The fact that the set r-BA has full Hausdorff
dimension was conjectured in [K2] and was recently proved in [PV1].



30 DMITRY KLEINBOCK AND BARAK WEISS

This was further extended in the preprint [KTV], where the following
was shown: let µ = µ1 × · · · × µn, where each µi is a measure on R

satisfying a power law; then dim(r-BA ∩ supp µ) = dim(supp µ).
Using the method of the present paper, it is possible to develop an

alternative proof of the aforementioned result, and in fact establish a
slight generalization:

Theorem 8.4. Let µ = µ1×· · ·×µn, where each µi is an absolutely de-
caying and Federer measure on R, and let B1, . . . , Bn be open intervals
with µi(Bi) > 0. Then

dim
(
r-BA ∩ supp µ ∩ (B1 × · · · × Bn)

)
≥

n∑

i=1

dµi
(Bi) .

The first step of the proof is a reduction to a dynamical result; gen-
eralizing Dani’s correspondence (Proposition 3.1), one can interpret
r-badly approximable points of R

n in terms of boundedness of certain
trajectories on G/Γ as follows:

Proposition 8.5 ([K1]). x ∈ r-BA if and only if the trajectory

{g(r)
t τ(x)Zn+1 : t > 0}

is bounded in G/Γ, where

g
(r)
t

def
= diag(er1t, . . . , ernt, e−t) .

To construct many bounded g
(r)
t -trajectories, one applies Theorem

5.1 with h of the form

ht,u(x)
def
= g

(r)
t τ(x)u .

The proofs of Lemma 5.2 and Proposition 5.3 go through with minor

changes, since the g
(r)
t -action still contracts the last component of vec-

tors and expands the remaining components. However the expansion
rates are now different, which in particular replaces (3.5) by a more
complicated conjugation relation, namely

g
(r)
t τ(x)g

(r)
−t = τ

(
Arx

)
, where Ar

def
= diag(e(1+r1)t, . . . , e(1+rn)t) .

As a result, the uniform return method of §4 has to be modified,
which in particular demands more restrictive assumptions on the mea-
sure µ.
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