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ABSTRACT. Let H be an R-subgroup of a Qalgebraic group G.
We study the connection between the dynamics of the subgroup
action of H on G/Gz and the representation-theoretic properties
of H being observable and epimorphic in G. We show that if H is
a subgroup then H is observable in G if and only if a certain H
orbit is closed in G/Gz; that if H is epimorphic in G then the action
of H on G/Gy is minimal, and that the converse holds when H is
a Q-subgroup of G; and that if H is a Q-subgroup of G then the
closure of the orbit under H of the identity coset image in G/Gz is
the orbit of the same point under the observable envelope of H in
G. Thus in subgroup actions on homogeneous spaces, closures of
‘rational orbits’ (orbits in which everything which can be defined
over Q, is defined over ) are always submanifolds.

1. INTRODUCTION

If G is a Lie group and H and I' are subgroups, there is a natural
subgroup action of H on the homogeneous space G/I'. The dynamics
of these actions have been extensively studied. We will be concerned
with such questions as when is an H-orbit closed, when is the H ac-
tion minimal (all orbits are dense), and when is the H action uniquely
ergodic (there is a unique invariant probability measure). These ques-
tions turn out to be related to some questions in the theory of finite
dimensional representations of algebraic groups.

If G is an algebraic group (in this paper algebraic groups will be
denoted by boldface letters, to distinguish them from Lie groups) and
H is an algebraic subgroup, H is said to be observable in G if it is the
stabilizer of a vector in a finite dimensional algebraic representation,
and epimorphic in G if any H-invariant vector is already G-invariant.
Observable subgroups were introduced by Bialinicki-Birula, Hochschild
and Mostow in 1963 ([BHM]). They wanted to know which H have
the property that every representation of H is the restriction of a G
representation. In characteristic zero, this is equivalent to observability,
as well as to the property that the homogeneous space G/H is quasi-

affine. Epimorphic subgroups were introduced by Bergman in 1970,
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and their study was recently taken up by Bien and Borel in [BBI,
BB2, BB3].

The first result linking observability and subgroup actions is a so-
called ‘bounded denominators argument’. For example, Raghunathan
([Ra], Prop. 10.15), proves that if H and G are the connected compo-
nent of the identity in Q-groups H and G, and H has no nontrivial Q
characters, and I' = Gy, then the H orbit HT is closed. This argument
extends to the case when H is observable in G. Observability is used
to ensure that the image of I' in the quasi-affine H\G be contained
in a discrete set. Since observability and epimorphicity are opposing
properties, this argument can also be used to derive epimorphicity from
the density of a certain H orbit (see Proposition 3).

Using epimorphicity to derive conclusions in the dynamics of sub-
group actions is considerably more difficult. Mozes ([Mo]) was able to
prove that under certain conditions, if H is epimorphic in G and I is
a lattice in G, then the action of H on G/T" is uniquely ergodic. His
proof utilized the fundamental results of Ratner (see [R3] for a survey)
on the actions of unipotent subgroups of G on G/T.

Although unique ergodicity and minimality are independent condi-
tions, they often appear together. Thus it is natural to ask whether,
when H is epimorphic in G, the action of H on G/T" is minimal. That
this is so when H is R-algebraic and I' is arithmetic (Theorem 9) is
the main result of this paper. Raghunathan has given an example of
an epimorphic Lie subgroup (not an algebraic subgroup) whose action
on SL(3,R)/SL(3,Z) is not minimal (but is uniquely ergodic). The
example, which was reported by Ratner in [R3], but never published,
is included for the sake of completeness.

The idea of the proof is as follows: by Mozes’ theorem, it is enough
to show that every H-orbit-closure supports an H-invariant measure,
and by a theorem of Bien and Borel we assume that H is solvable,
and write H = TU with T a torus normalizing the unipotent U. To
produce an H-invariant measure we take a U-invariant measure and
show that when translated by some elements of 7', the measure does
not escape to infinity. To keep the measure from escaping we use some
results of Dani and Margulis giving representation-theoretic conditions
which ensure that unipotent subgroups orbits remain bounded away
from infinity with probability close to 1 (see [DM], and [Sh], [EMS] for
generalizations).

The proof also requires some more information on the structure of
epimorphic subgroups. Particularly, we need a result (Theorem 4) say-
ing that if G is an algebraic group and H is epimorphic in G, then the
intersection of H with G, the subgroup of G generated by unipotent
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elements in G, is epimorphic in Gy. We also need some results about
the structure of epimorphic subgroups of real groups with compact
factors. These are given in Section 3.

In the final section we present several applications. First we show
that rational orbits (that is, H and G are Q-groups, I' is the integer
points of GG, and the orbit contains a point which is the projection of
a Q-point in G) have closures which are orbits of larger groups. We
also show that the density of a rational orbit implies the density of all
orbits. Finally we obtain necessary and sufficient conditions for H to
be observable/epimorphic in G (when both H and G are defined over
Q) in terms of the subgroup action of H on G/Gy.

The author would like to thank Shahar Mozes and Hillel Furstenberg
for many valuable conversations. Shahar Mozes supplied the idea for
the proof of theorem 9. The author would also like to thank F. Bien
for answering questions about epimorphic subgroups, and for a draft
of [BB3], and M.S. Raghunathan, for communicating his example.

2. PRELIMINARIES

2.1. Subgroup Actions on Homogeneous Spaces. Let G be a Lie
Group and I' a closed subgroup. The homogeneous space G/I" is a
manifold. Any subgroup H < G acts on G/I" by left translations:
h(gl') = hgl'. Any continuous transitive G action can be identified
with such a space. For H < G,z € G,A = HNzI'z™!, the orbit Hal’
is closed if and only if the orbit map H/H N A — G/I', defined by
hA +— hzT', is a proper map (a homeomorphism onto its image).

[ is called a lattice if I' is discrete and there is a G' invariant regu-
lar Borel probability measure on the o-algebra of Borel sets on G/T.
This measure is then smooth, and positive on open sets. I' is called
cocompact if G/T" is compact. The set of probability measures on G/T,
equipped with the weak-x topology, is a convex topological G-space,
with G acting by

Jp f@don(e) = [ Fox)du(a),

where f is any continuous function on G/T" with compact support, and
g € G. If T is cocompact then this G-space is compact.

We say that two subgroups I' and A are commensurable if ' N A is
of finite index in both. The action of a subgroup H is called uniquely
ergodic if the only H-invariant probability measure on G/T is the G-
invariant one. The action of H is called minimal if every orbit in G/T’
is dense. If GG is connected, minimality is a property which depends
only on the conjugacy class of H and the commensurability class of I'.
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2.2. Algebraic Groups. Throughout this paper, G will denote an
(affine) algebraic group over C. That is, G is a subgroup of GL(n, C)
which is the set of simultaneous zeros of some set of polynomials in the
matrix elements X;; and (det(X;;))~'. For asubfield £ C C, we say that
G is defined over k, or a k-group, if these polynomials can be chosen
to have coefficients in k. The ring of regular functions on G, denoted
by C[G], is the set of functions on G which are polynomials in the X;;
and in (det(X;;)) '. The subring of polynomials with coefficients in & is
denoted by £[G]. G acts on C[G] on the left by (¢f)(z) = f(zg). f His
an algebraic subgroup of the algebraic group G (notation: H < G), we
denote the regular functions invariant under elements of H by C[G]*.

For any subring R of C (e.g., R =Z or R = Q) we will let G denote
GNGL(n, R) = {(X;;) € G: X;; € R,det(X;;) is a unit of R}. (Note
that Gz depends on the realization of G as a subgroup of GL(n,C),
i.e., is not invariant under an isomorphism defined over Q. Still, its
commensurability class is well defined).

Notation: Throughout this paper, we will write G = G - the
connected component of the identity of the real points of G.

If £ is a subfield of C we say that H is a k-subgroup of G if there are
polynomials { f;}icz and {g;},c7, with coefficients in &, such that G =
{Ae M,(C): fi(A)=0,VieI}and H={Aec G:yg;(A) =0,Vj €

J}. The notation H g G means that H is a Q-subgroup of G. If V
is a d-dimensional vector space over C, then GL(V') denotes the group
of linear automorphisms of V; a choice of basis in V' identifies GL(V)
with GL(d,C). A representation p: G — GL(V) is a homomorphism
defined by regular functions, i.e., in any identification of GL(V') with
GL(d,C), the matrix elements p(g);; are in C[G] for 1 < 4,5 < d. A
representation is said to be defined over k, or a k-representation, if
by choosing a suitable basis for V, all the matrix elements p(g);; are
in k[G]. A vector v € V is said to be in V} if v is in the k-span of
this basis. Note that all representations considered in this paper are
finite-dimensional.

A (k-) character of G is a (k-) representation of G in which V is
one dimensional. The set of all characters (resp., all k-characters) on
G is denoted by X (G) (resp., X(G)x) and carries the structure of an
abelian group.

A theorem of Chevalley says that whenever H is an algebraic sub-
group of G, there exists a representation p : G — GL(V), and a vector
v € V such that H = {g € G : p(9)v € Cv} (where Cv is the line
through v). In this case, H acts on the line through v via a charac-
ter, i.e., there exists x € X(H) such that p(h)v = x(h)v for h € H.
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IfH g G then p, x,v can be chosen so that p is a Q-representation,
X € X(H)g, and v € V. Chevalley’s theorem is used to endow the
homogeneous space G/H with the structure of a quasi-projective alge-
braic variety (an open subset of a projective variety).

For some H and G, more can be said.

Definition 1. H s said to be observable in G if there exists a repre-
sentation p: G — GL(V) and a vector v € V such that H= {g € G :
p(g)v = v}. This will be denoted by H <, G. If G is a Q-group and p
can be chosen to be a Q-representation with v € Vg, then H s said to
be Q-observable.

The following theorem is due to [BHM] and [G]:

Theorem 1. The following are equivalent:

1. H<, G.

2. Every representation p : H — GL(V) is a restriction of a repre-
sentation p: G — GL(W), that is, W is a vector space containing
the p(H) invariant subspace V', and p is the restriction of p to H
and to V.

3. The homogeneous space G/H is a quasi-affine variety (i.e., can
be embedded in an affine algebraic variety).

4. H=1{g € G:VfeCG®,gf = f} (the pointwise fizer of
C[GH).

Also, H <, G & HY <, G, where H" is the connected component of

the identity in H.

The equivalent conditions in Theorem 1 above can be relativized to
Q. For example, we may substitute Q-observable for observable, QQ rep-
resentations for representations, QG| for C[G], and so on. The proof
given in [BHM] can be “Q-relativized” to show that all the relativized
notions are equivalent. For our purposes, however, the following will
suffice:

Proposition 1. IfH g G, with H connected, then H is observable in
G if and only if H is Q-observable in G.

Proof (see [G]): It is clear that if H is Q-observable in G, then it is
observable.

Conversely, if H <, G then H is the pointwise fixer of C[G|®. Since
G is a Q-group, C[G] = Q[G]®¢ C (see [Bo], AG 14.2). Since H is a
connected Q-group, Hg is Zariski dense in H and therefore C[G]H =
Q|G]He ®q C. By the Noetherian property of algebraic varieties, there
are fi,..., [, € QG|H suchthat H={g € G: gfi= fi,i=1,... ,n}.
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Each f; is contained in a finite dimensional G-invariant subspace V; of
C|G], defined over QQ, namely V; = span({gf; : ¢ € G}). Thus H
is the stabilizer of the Q-vector (fi,...,f,) in the Q-representation
Vied...dV, of G. O

In [BHM] it is shown that H <, G if H is normal in G, unipotent,
or reductive. It is obvious that observability is transitive:

G <, GQ, Gy <, G3 = Gy <, Gs.

Also,

G, <o G‘3,G‘1 <Gy < G'3 = Gy <o Go.

Sukhanov [Su] has shown that H <, G if and only if Rad(H) <, G,
where Rad(H) is the radical of H. Sukhanov has also given representation-
theoretic necessary and sufficient conditions for observability.

The following is essentially Proposition 10.15 in [Ra]; the quasi-affine
structure of G/H ensures that the image of Gy is contained in a discrete
set.

Proposition 2. Let H be Q-observable in G, and letI' = Gy. If ¢ €
Gg and ™ : G — G/T is the projection map, then the orbit Hm(x) is
closed in G/T.

Proof: Since the identity component Hy < H is a normal Q-
subgroup of finite index, we may assume that H is connected. We
may also assume that x = e is the identity, since Hn(z) is closed if
and only if z 'Hxm(e) is closed, and z 'Hz is also a Q-observable
Q-subgroup. Let p: G — GL(V) be a - representation, and v € Vy
be such that H={g € G : p(g9)v = v}.

We want to show that HT is closed in G. Suppose h,v, = vy, h, €
H, 7, € T. Then p(y~")v < p(v,'h,")v = p(;, ).

The sequence p(7, ')v is contained in a discrete subset of V, defined
by a common denominator for the rational coefficients appearing in p
and in v. Therefore for some ng, p(y~')v = p(7;,")v, which means that
p(yv,)) fixes v and thus y € HT.

U

Definition 2. Let H < G. We say that H is epimorphic in G if for
any representation p : G — GL(V), if v € V is p(H)-invariant then v
is p(G)-invariant. We denote this by H <, G. We say that H is Q-
epimorphic if the same holds for all Q representations p : G — GL(V)
and all v € V.

Epimorphic subgroups were introduced by Bergman in [Ber] in the
context of category theory, and studied by Bien and Borel in [BBI,
BB2, BB3].
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Theorem 2. [BB1] Let G be connected, and H < G. Then the fol-
lowing are equivalent:

1. H<, G.

2. C[G]® is one dimensional (i.e., an H invariant reqular function
on G is constant).

3.If p: G = GL(V), and V = V1 @ Vs, where each V; is p(H)

invariant, then each V; is p(G) invariant.

Suppose G is connected. If H g G and H is Q-epimorphic in G then
H <. G (see [BB3]). Parabolic subgroups (i.e., H < G such that G/H
is complete) are epimorphic. There are no epimorphic proper subgroups
of solvable groups. If G; <, Gy and Gy <. G3 then G; <, G3. If G is
generated by subgroups G;, ¢ € Z, and for each 1 € Z, HN G; <. G,
then H <, G. If ¢ is a homomorphism of algebraic groups and H <, G
then ¢(H) <. ¢(G). If H <. G then H contains a solvable subgroup
H, such that Hy <. G. Moreover, according to a theorem of Bien
and Borel (see [BB1], Theorem 2) if H and G are defined over R, G
is generated by its unipotent elements and H <, G then there is a
solvable subgroup Hy of H, which splits over R, such that Hy <. G.
If G is simple, it contains a 3 dimensional epimorphic subgroup (see
[BB1, BB3, Mo)).

Observability and epimorphicity are opposite properties. More pre-
cisely, we have:

Theorem 3. [G, BB1, BB3| Let H < G. Then there exists a unique
algebraic subgroup E such that H <, E <, G. E is the largest subgroup
of G in which H is epimorphic, and the smallest subgroup of G con-
taining H which is observable in G. E is the pointwise fizer of C[G]H.
If H is connected then so is E. If H is a k-subgroup of G for some
subfield k of C then E is also a k-subgroup of G.

E is called the observable envelope of H in G.

Proposition 3. Let H g G, with G connected. Assume that the orbit
Hr(e) is dense in G/, where ' = Gy and m : G — G/T is the
projection. Then H <, G.

Proof: Assume otherwise; then E, the observable envelope of H in
G, is a proper -subgroup of G. Since G is connected, E has strictly
lower dimension. By Proposition 2, E7(e) is a proper closed subset of
G/T, containing Hr(e).

U
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3. EPIMORPHIC SUBGROUPS

This section presents several auxilliary results about the structure of
epimorphic groups.

It is often useful to know for which subgroups E < G, H <, G
implies HN E <, E. In this context, we mention that Bien and Borel
have constructed examples of H <, G such that H does not contain
the unipotent radical of G, and of H <., G, G reductive, such that H
does not contain the center of G. The following is also worth noting:

Example: Let G = SL(2,C) x SL(2,C), and let

o {((3 23 ) meeed

Then H is epimorphic in G but HNSL(2, C) x {e} is not epimorphic
in SL(2,C) x {e}.

Theorem 4. Let G be an algebraic group, and let Xo C X(G). Let
Go = Nyex, ker(x), Hy = HN Gy. Then H <. G if and only if Hy <,
G(), G = HGO

Proof: The ‘if’ part is clear.

Conversely, let H <. G. Let 7 : G — G/Gg be the quotient map.
Then 7(H) is epimorphic in the torus G/Gy, and is therefore equal to
it. This implies that G = HGy,.

We may assume that H is solvable, and write H = TU, where T is
a torus, U is the unipotent radical of H, and T normalizes U. Since
7|U : U — G/Gy is a homomorphism from a unipotent group to a
torus, it is trivial and U < Hy. Therefore we may write H = T, T,U,
where Hy = T¢U and «|T is an isomorphism between T; and G/Gy.
This isomorphism induces an isomorphism X (T;) 2 (X,), where (Xj)
is the subgroup of X (G) generated by Xj.

Let p: Gy — GL(V). Since Gy <, G, p is the restriction to (Gg, V)
of a representation p : G — GL(V). For any x € (Xy), p is also the
restriction to (Gg, V') of the representation g — x(g)p(g)-

Let W be the subspace of V consisting of p(H,) invariant vectors.
T, normalizes Hy and therefore p(T;) leaves W invariant. Thus we
may write W = @, ¢(x,) Wy, where for each x, and each w € W, t €
Ty, p(t)w = x(t)w. Multiplying p by x !, we get a representation of G
in which each w € W, is p(H) invariant, and therefore p(G) invariant.
This means that each w € W, is p(Gy) invariant, and thus every w € W
is p(Gy) invariant.

U
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Corollary 1. If G is reductive, G = S X Z, where S is semisimple
and Z 1s the center of G, and if H <, G, then HN S <, 5.

O

The following propositions are useful when dealing with epimorphic
subgroups of real algebraic groups with compact factors.

Assume in Propositions 4,5,6 and Corollaries 2 and 3 that G is an
algebraic connected R-group, H a connected R-subgroup with H <, G.
If Gy is a normal R-subgroup of G with G/G, compact, we say that
Gy is cocompact in G. If G is such that for any R-homomorphism
¢ : G — G with ¢(G) compact, ¢(G) is trivial, we say that G has no
compact factors.

Proposition 4. If p : G — GL(V) is an R-representation with p(H)
compact, then any p(H)-invariant subspace defined over R is p(G)-
wnvariant.

Proof: Let W be a p(H) invariant subspace, defined over R, and let
w € A} W be a nonzero vector, where d is the dimension of W. Then
p(H) leaves the line through w invariant, acting on it via a character
defined over R. Since p(H) is compact, the connected component of
unity in p(H) leaves w invariant, and since this component is Zariski
dense in p(H), so does p(H). By epimorphicity, so does p(G). O

Proposition 5. Let ¢ : G — G be an R-homomorphism with ¢(H)
compact. Then ¢(H) = ¢(G).

Proof: Let G' = ¢(G) and H = ¢(H) . Then H <., G  and
H' is compact. Consider the adjoint representation of G’ on its Lie
algebra &. This is an R-representation in which H' stabilizes its Lie
algebra $), an R-subspace. By Proposition 4, G' also stabilizes $), so
H' is a normal subgroup of G'. But a proper normal subgroup is never
epimorphic, and therefore H = G'.

O

Proposition 6. Let Hy be a normal cocompact R-subgroup of H, and
let Gg be the observable envelope of Hy in G. Then Gg is a normal
subgroup of G, and G/Go = H/HNGy. In particular, Gy is cocompact,
contains the unipotent radical of G, and G/Gy is a factor of H/Hj.

Proof: The last three assertions follow from the fact that HN Gy
contains Hy and is therefore cocompact, and from the fact that a co-
compact R-subgroup of G contains all the R-unipotent elements of G.

Let p : G — GL(V) be an R-representation and v € Vg be such
that Gy = {g € G : p(g)v = v}. Let W denote the subspace of p(Hy)-
invariant vectors. Then any element of W is also p(Gyg)-invariant, and



10 BARAK WEISS

W is a p(H)-invariant subspace since Hy is normal in H. By Proposi-
tion 4, W is also p(G) invariant, and we restrict p to W (retaining the
name p).

Then Gy is the kernel of p. This implies that G is normal in G. Also
p(G) = p(H) by Proposition 5. We have therefore G/Gy = p(G) =
p(H) 2 H/HN Gy.

U

Corollary 2. Suppose Gy is a connected cocompact normal R-subgroup
of G with no compact factors, and let Hy = GoNH. Then Hy <, Gy.

Corollary 3. Let G be semisimple, and let Hy be a normal cocompact
R-subgroup of H. If Hy has a nontrivial projection on every compact

factor of G then Hy <. G.

We conclude our discussion of the structure of epimorphic groups
with the following:

Theorem 5. Let G be an R-algebraic group and H an R-subgroup.
Let Gg be the subgroup of G generated by R-unipotent elements in G
and let Hy = HN Gy. Then H <. G if and only if Hy <. Gg and
G’ - HG’O

Proof: The ‘if’ part is clear.

For the converse, let G1 = yex(g)ker x. By Theorem 4, H; =
H N G, is epimorphic in G; and G = HG;. Also Gy < G;. So in
proving the theorem we can replace G with Gy, i.e., assume that G
has no characters.

Now Gy has no compact factors. We claim that since G has no
characters, GG is cocompact in G. To see this, write G = TSN, where
N is the unipotent radical of G, S is semisimple, and T is a torus
centralizing S. It is clear that the restriction map X(G) — X (T) is
an isomorphism, and therefore G = SN. Now Gy = SgIN, where S
is the product of all noncompact simple factors of S. This proves our
claim.

By Corollary 2, Hy <. Gy and by Proposition 5, H projects onto
G /Gy, that is, G = HG,.

O

The following Lemma, shows, loosely speaking, that if H <, G and
we are given a finite number of H-characters arising as subrepresenta-
tions of G-representations, then there is a sector in H along which all
the characters increase simultaneously (compare with 4.7 of [BB3]).

Let G be an R-algebraic group generated by the R-unipotent ele-
ments contained in G, and let H be an R-split solvable algebraic sub-
group with H <, G. Let C denote the subset of X(H) consisting of
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characters x for which there exists a representation p : G — GL(V)
and v € V such that v is not p(G)- invariant and for all h € H, p(h)v =
X(h)v. Write H = TU, where T is an R-split torus and U is unipotent.
Identifying T' = Ty with its Lie algebra, and characters with their dif-
ferentials at the identity, X (H) = X(T) = X (T)g is just a subgroup
of T, the space of linear functionals on the real vector space T. We
let (t,x),t € T,x € X(T), denote the duality.

Lemma 1. Let G,H, T, U,C be as above. C is closed under addition.
For any finite Cy C C, the convex hull of Cy does not contain zero, and
there exists an open subsemigroup T of T, generating T as a group,
such that for all x € Co,t € T, (t,x) > 0.

Proof: For i = 1,2, let p; : G — GL(V;) be two representations,
and v; € V; two vectors on which H acts via x;. Then H acts on v; @ vy
(in the representation p; ® ps : G — GL(V; ® V3)) via the character
X1 + Xxe- Since G has no characters, p;(G) doesn’t leave any of the
lines Cv; invariant. This implies that (p; @ p2)(G) does not leave the
line through v; ® vy invariant, and thus v; ® v, isn’t p(G)-invariant.
Therefore x1 + x2 € C.

X(T) is a discrete cocompact subgroup of 7%, and so contains a basis
(over R) of T* which Z-spans X (T).

Let D be the convex hull of C4. Suppose, by way of contradiction,
that D contains zero. Then 0 = }_ ¢, X, where the ¢, are non-negative
real numbers, not all zero, and the sum is taken over x € Cj. Let
C1 C Cy be the set of x for which ¢, # 0.

We may assume that all the ¢, are rational numbers. Indeed, the
space of all vectors (by)yec, such that > b,x = 0 is a linear subspace
in R, defined over Q, and we know it contains a vector (c,)yec, in
the positive sector {(vy) : Vx € Ci,v, > 0}. By continuity, this sector
contains a vector with rational coefficients. Multiplying by a common
denominator, we get that 0 = 3_ a, X, where a, is a non-negative integer
for all x € Cy. This means that 0 € C, contradicting the assumption
that H <, G.

Thus D is a closed convex subset of R? (where d is the dimension
of T') not containing zero, and therefore there is some ¢ € T such
that (¢, x) > 0 for all x € D. Therefore the subsemigroup 7" = {t €
T : (t,x) > 0,Vx € Cy} is nonempty, open, and satisfies the required
conditions.

O

4. MINIMALITY

We now quote some theorems we will be using.
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Theorem 6. [Mo]

Let G be an algebraic R-group, and suppose H and E are R-subgroups
with H <, E. Let T be a lattice in G. Then any Borel probability mea-
sure on G /T which is H-invariant is also E-invariant. In particular,
if H <. G then the action of H on G/T' is uniquely ergodic.

Remarks:

1. Combining Theorem 6 with Proposition 3, we see that if H and G
are (Q-groups, satisfying the assumptions of the theorem, I' = G
is a lattice and the action of H on G/I" is minimal, then the action
of H on G/T is uniquely ergodic.

2. The theorem is stated differently in [Mo]. The assumption that H
is algebraic is not stated, though it is used. Also, Mozes assumes
that E is generated by the unipotent elements contained in it.
To show that the latter assumption is unnecessary, we argue as
follows: Let Ey be the subgroup of E generated by R-unipotent
elements contained in it, and let Hy = H N Ey. By Theorem 5,
H, <. Eq and HE; = E. An H-invariant measure is obviously
Hy-invariant, and by Mozes’ theorem (as stated in [Mo]), is also
invariant under E,. Since EF = HE), such a measure is also F-
invariant.

Theorem 7. [DM] Let G be an algebraic group defined over Q, without
Q-characters, let T = Gy, a lattice in G, and let w : G — G/T be the
projection. Let G = SN denote the algebraic Levi decomposition of G,
where S is a reductive Q-subgroup and N is the unipotent radical of G,
and let 7 : G — S be the quotient map. Let 'y = Sz, a lattice in S,
with my : S — S/Ty the projection (see diagram accompanying Remark
2 below).

Then for i =1,...,r, there are Q-representations p; : S — GL(V;),
pi € (Vi)g, and a finite subset F' of Sq, such that for any e > 0,0 > 0,
there is a compact subset K C G/T', such that for any one-parameter
unipotent subgroup V- = {u; : t € R} of G, and any zo € G, one of the
following holds:

1. For all T large enough,

1
T\{t €[0,T]: um(zo) € K} > 1 —,

where | - | denotes Lebesque measure on R.

2. There is some 1 < i <1 and some X € T'oF such that p;(To\)p; is
a p;(V)-invariant vector and ||p;(Zo))(p;)|| < 0, where V = 7(V)
and Ty = 7(xo)-

Remarks:
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1. Since all norms on the V; are equivalent, we may choose the norm
appearing in the second case above as we please.

2. Dani and Margulis actually proved Theorem 7 for G' a reductive
Q-group without Q-characters; however, the fiber of the map 7
induced from 7 (replacing I', if necessary, by a commensurable
lattice [') as in the following diagram, has compact fiber N/Ny.
This shows that the theorem as stated reduces immediately to the
case in which G is reductive.

G —+ G/T

Let U be a Lie group. We say that a condition C' is satisfied
by almost all one parameter subgroups of U, if the set {X € U :
{exp(tX)} satisfies C'} is conull in the Lie algebra i of U, with re-
spect to the Lebesgue measure class.

Let G be a Lie group and I' a closed subgroup. Suppose p is a
probability measure on G/I', o € G/T'. We say that a one-parameter
subgroup {g(t) : t € R} is (u,xo) generic if for any f € C.(G/T') (a
continuous function with compact support on G/I") we have

T
Jim /T [ flo(zo)de = [ fdu.

We say that an element v € G is Ad-unipotent if its image Ad(u) €
GL(®) is unipotent. If G is an algebraic group, unipotent elements
are Ad-unipotent.

Theorem 8. [R1, R2]

Let G be a connected Lie group, I' a lattice in G, m : G — G/T the
projection, xog € G, and U < G a connected Lie subgroup generated by
Ad-unipotent elements. Then there is a U-invariant U-ergodic proba-
bility measure p supported on the closure of Un(xg). If all the elements
of U are Ad-unipotent then almost every one parameter subgroup of U
is (xo, 1) generic.

Remark: See [R3] for a survey of Ratner’s results. The second
conclusion stated here follows from [R3], Theorems 4, 5 and 6, since the
one parameter subgroups not satisfying the conclusion are contained
in a countable union of subgroups of U of strictly lower dimension.

We now state and prove our main theorem.

Theorem 9. Let G be an algebraic Q-group, let H be an R-subgroup
with H <. G, and let I' = Gg. Then the action of H on G/T is
minimal.
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Proof: We first show that we may assume that G has no Q-characters.
Let G = Nyex(q) ker(x) (a Qgroup), ' =T NG, H=HNG. Then,
by Theorem 4, H <, G, and G = HG. The closure of HI' is an H-
invariant closed set containing the closure of HI'; once we have proved
that the last set is G, it will follow that the closure of HI' must be
G. To prove that HzI' is dense in G for any x € G, replace H with
x~'Hz, and repeat the argument.

If G is a Q-group without Q-characters, it satisfies the hypotheses
of Theorem 7. Let Gg be the subgroup of G generated by R-unipotent
elements contained in G, and let Hy = H N Gy. By Theorem 5,
Hy <. Gy and G = HGy. By Theorem 2 of [BB1], Hy contains
an R-split solvable subgroup Hy, with H; <. Gy.

Let 2y € G. We claim that in order to prove that Hm(zo) is dense in
G/T, it suffices to produce a Borel probability measure supported on
Hr(zo) (the closure of Hm(xg) in G/I') which is Hy-invariant. Indeed,
such a measure will be Gy-invariant by Theorem 6, and so Hr(xq) will
contain the support of the measure, a nonempty Gy-invariant set. Since
G = HG,, this will imply that Hn(z¢) = G/T.

We will write Hy = TU, with T a torus and U unipotent. Let
X = G/T'U {oo} be the one point compactification, and P the set of
probability measures on X, a compact convex G-space. Let M be the
closure of Hr(zy) in X and let M C P be the set of measures which
are U-invariant and supported on M. We know from Theorem 8 that
M contains the U-ergodic U-invariant measure v supported on U (zg).
We have v(oo) = 0. Let Tt be a subsemigroup of T, generating T as a
group, and satisfying the conclusions of Lemma 1 with respect to a set
of characters Cy, which will be specified later. M, the convex closure
of T*vin P, is a T invariant compact convex set which is contained in
M. We will show that M, consists of measures p such that p(oo) = 0.
By the amenability of T, there will be a T -invariant measure in M,
and since Tt generates T, this measure will be invariant under both T
and U, giving us what we are after.

We need to show that for any ¢ > 0, there is a compact subset
K C G/T, such that for any ¢t € T*,tv(K) > 1 — e. It suffices to show
that for some # > 0 and any ¢ € T, there is a one-parameter unipotent
subgroup V = {u, : s € R} which is (tv, t7(zg)) generic, and does not
satisfy the second condition in Theorem 7.

Assume the notation of Theorem 7. For i =1,... ,r, let W; denote
the vector subspace of p;(U)-invariant vectors in V;. Since T’ normalizes
U, the W; are p;(T)-invariant spaces, and therefore each W; splits as a
sum @, x () Wy, with p;(h)w = x(h)w for all w € W,,h € H. Let Cy
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denote all the nontrivial characters in X (H) appearing in these sums,
and note that they satisfy the conditions of Lemma 1. On each W;
define a norm by stipulating a basis, which is the union of bases of the

various W, to be orthonormal, and extend this to a norm || - ||; on V;.
Then for t € T, w € W;, since dx(t) > 0 for t € T*, we have
loi@®)wlli = [lwl]:- (1)
Let 0 be

min [pi(zoA)pil;-

This minimum exists because the set {p;(A\)p; : A € ['F'} is contained
in a discrete subset of (V;)g with ‘bounded denominators’ , as in the
argument of Proposition 2.

Let t € T be given. Since tv is the U-ergodic U-invariant measure
on the closure of Utmr(z), we know that almost every one parameter
subgroup of U is (tv,tm(xy)) generic. For i = 1,...,r, A € T'F, let
U(i, \) be the subset of X € Y for which:

(*) if the one parameter subgroup {exp(¢X)} is contained in the
stabilizer of p;(txoA)(p;), then so is the whole group U.

Since the complement of U(i, \) is a subvariety of U of strictly lower
dimesion, the set ;—; .. ,aerr U(4, A) is conull, and therefore there are
one parameter subgroups which are both (tv, tm(x¢)) generic and satisfy
condition (*) foreach 1 <i<randeach A€ T'F. If V = {u,: s € R}
is one such subgroup, then the second condition in Theorem 7 cannot
be satisfied. If it were, for some 1 < ¢ < r, A € I'F, then V would be
contained in the stabilizer of p;(tzoA)(p;), therefore so would U, and
we would have p;(txo))(p;) € W;. However, ||p;i(tzo))(p)|li < 0 <
|l pi (2o ) (pi)]:, contradicting (1).

0

Let G be a semisimple R-group. Recall that a lattice I' in G is called
arithmetic if there is a semisimple Q-group Gy and a homomorphism
7 : Gy — G with compact kernel, such that I and a conjugate of 7(Gy)
are commensurable.

Corollary 4. Let G be a semisimple algebraic R-group, and let H be
an R-subgroup with H <, G. Let I" be an arithmetic lattice in G. Then
the action of H on G/I" is minimal.

Proof: Let the notation be as above. G can be considered a sub-
group of Gy, and 7 can be extended to a homomorphism 7 : Gy — G.
Let K = ker 7 and K = ker(7). Then Gy is generated by K and G and
therefore HK <. Gg. By the previous theorem, the action of HK on
Go/(Go)z, which is the lift of the action of H on G/T" (see diagram), is

minimal.
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HK O Go/(Go)z
HOGT

Therefore the action of H on G/I is also minimal.

5. APPLICATIONS

In this section, we let H g G,I' = Gy, 7m: G — G/T the quotient
map, and e € G the identity element.

5.1. Closure of Rational Orbits.
Definition 3. The orbit Hn(z) is called a rational orbit if x € Gg.

Corollary 5. Let Hr(x) be a rational orbit. Let E be the observable
envelope of H in G. Then the closure of the orbit Hn(z) is En(x). In
particular, the closure of a rational orbit is a submanifold of G/T.

Proof: By conjugating we may assume that z is the identity in G.
E is a Q-group, so by Proposition 2 the orbit Em(x) is closed, and
therefore the orbit map ¢, : E/Ez; — G/T is a proper map. So it
remains to show that the image of the map ¢, : H/Hz; — E/Ey is
dense (see diagram).

H - E -G

| | I

This results immediately from the fact that H <, E and Theorem 9.
O
From Theorem 9 and Proposition 3 we conclude also:

Corollary 6. If any rational orbit is dense, then all orbits are dense.
5.2. Necessary and Sufficient Conditions.

Corollary 7. 1. H <. G if and only if the action of H on G/T is
mainimal.
2. H <, G if and only if the orbit Hrm(e) is closed.

Proof:

1. Proposition 3 and Theorem 9.
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2. The ‘only if’ part is Proposition 2.

Conversely, if H is not observable in G, then the dimension
of the observable envelope E of H in G is strictly greater than
the dimension of H, and by Corollary 5, the closure of Hr(e) is
En(e).

U

6. RAGHUNATHAN’S EXAMPLE

Here is an example due to Raghunathan, which was mentioned by
Ratner in [R3] but never published. The author thanks Hee Oh for help
in understanding the example. Let G = SL(3,R),[' = SL(3,Z),r :
G — G/T the projection, and let H = TU, where U is the subgroup
of unipotent upper triangular matrices in G and 7 is the one param-
eter subgroup 7'(t) = diag(exp(t), exp(—at),exp((a — 1)t)), with « an
irrational number greater than one.

T is a Lie group normalizing U, but since « is irrational, it is not
algebraic. In fact it is Zariski dense in the diagonal matrices of G, and
therefore H is Zariski dense in the upper triangular matrices in G - a
Borel subgroup; this shows that H <. G. Notice that H doesn’t satisfy
the conclusions of Lemma 1.

We will show that the action of H on G/T" is not minimal by showing
that the orbit Hm(e) is closed. Since the orbit Un(e) is compact, it
suffices to show that for any v € U, the sequence T'(t,)urn(e) can
only converge in G/T" if ¢, is bounded. This can be seen by applying
Mahler’s criterion: Let e, eq, e3 denote the standard basis of R3. As
t, — —oo, the vector T'(t,)ue; tends to zero in R, and therefore ,
must be bounded below. The two-dimensional plane spanned by e
and e, is invariant under H, and as ¢, — oo, the volume element on
this subspace tends to zero. Therefore the subspace contains integer
vectors whose length goes to zero, and %, is bounded above.

Although H is not algebraic, Theorem 6 applies to the action of H.
This is because in the proof given in [Mo], the fact that H is algebraic
is used only to reduce to the case that H is R-split solvable (via a
Theorem of Bien and Borel), and in this case H is already R-split
solvable. Therefore the action of H on G/T" is uniquely ergodic, and
we obtain an example of a subgroup action which is uniquely ergodic
but not minimal.
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