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DISTRIBUTION OF LATTICE ORBITS ON
HOMOGENEOUS VARIETIES

A. GORODNIK AND B. WEISS

Abstract. Given a lattice I" in a locally compact group G and a closed
subgroup H of G, one has a natural action of I' on the homogeneous space
V = H\G. For an increasing family of finite subsets {I'r : T > 0}, a dense
orbit v-T', v € V and compactly supported function ¢ on V', we consider the
sums Sy (T) = 3°. cr, ¢(v7). Understanding the asymptotic behavior of
Se,w(T) is a delicate problem which has only been considered for certain
very special choices of H,G and {I'r}. We develop a general abstract
approach to the problem, and apply it to the case when G is a Lie group and
either H or G is semisimple. When G is a group of matrices equipped with
a norm, we have Sy, ,(T') ~ [ ¢(vg)dg, where Gr = {g € G : ||g|| < T'}
and I'r = GrNI. We also show that the asymptotics of Sy, ,(T') is governed
by fv @ dv, where v is an explicit limiting density depending on the choice
of vand || -]

1 Introduction

Let V be a manifold equipped with a transitive right action of a Lie

group G, so that V is identified with H\G for some subgroup H of G sta-

bilizing a point of V. Let I" be a lattice in G, that is, a discrete subgroup

of finite co-volume. In this paper we study the asymptotic distribution of

I-orbits. More precisely, we fix a proper function D : G — [0, ), set
Gr={9€G:D(g) <T},

and study, for an arbitrary ¢ € C.(V) and v € V, the asymptotic behavior

of the sum
Sw,v(T) = Z o(v-7)
yeI'NGr

as T — oo.

Keywords and phrases: Lattices in Lie groups, equidistribution, volume asymptotics,
values of quadratic forms
2000 Mathematics Subject Classification: 37A17, 22E40, 11H55



2 A. GORODNIK AND B. WEISS GAFA

We have not assumed that there is an invariant measure on V, and
certainly not a finite one. Thus this problem does not belong to the classical
framework of ergodic theory, and has many surprising features.

1.1 A simple case. Perhaps the simplest nontrivial case is when
V:R2\{O}a G:SL(ZaR)a D(g)=||g||,

a b
(¢ )
Then H is (up to conjugation) the one-parameter group of upper-triangular
unipotent matrices. The distribution of SL(2,Z)-orbits in V' was consid-

ered by Nogueira [N], and the case of a general lattice by Ledrappier [L].
Ledrappier showed that for ¢ € C.(V) and v € V such that v - T is dense

in V, one has )
|4
Spu(T) ~ (cr/idY)T,
. o]l - 1Yl

where dY denotes Lebesgue measure on R?, || - || is the p-norm on R?, and
cr is an explicit constant depending on the lattice I' (here and throughout
the paper, the notation A(T) ~ B(T) means that A(T)/B(T) =700 1)-

In this example, one already notices that the limiting measure H% ﬁ
is not I'-invariant and depends essentially on the choice of v and the choice
of norm used on G. A computation with the Haar measure of G shows
that in this case the asymptotics of S, ,(T) is the same as that of the
corresponding average along the (unique) G-orbit, namely

Soull) ~ SpulD), where 5,0(1) = [ plv-g)amlo).
T
and m is a suitably normalized Haar measure on G.

We reconsider and generalize this example in §12.4.

where

= (laf” + [b]” + |cP + dP)?, 1< p<oo.

1.2 The general problem. It is natural to try to extend this result to a
general case. Namely, given an arbitrary locally compact second countable
topological group G, a lattice I' in G, a transitive G-space V and a proper
function D : G — [0, 00), one would like to:

e Obtain an explicit expression for the asymptotics of Sy, (7).

e Show that Sy, ,(T) ~ Sy,(T)-

A number of special cases of this program were carried out in work
of the first-named author, all involving G = SL(n,R), D(g) = /tr (*g9)

and a general lattice I': in [G1], the case in which V is the Furstenberg
boundary of G, and in [G2], the case in which V is the space of k-frames
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in R”, 1 < k < n. Additional cases were studied in [LP], [Ma], [O], [GM],
[GO].

Our goal in this paper is twofold. First we abstract some ideas of the
above-mentioned papers and develop a general axiomatic framework for
studying the problem. We specify certain explicit conditions on G, H, D,T’
under which the above problems can be solved. Our axiomatic framework
can be applied in principle to investigate previously known equidistribution
results (as we illustrate by the example from section 1.1), but verification
of the conditions on G, H, D,T" may be quite involved. In the second part
of the paper, we check these conditions in two important new cases: when
H is semisimple, or when G is semisimple and the I'-action admits a finite
invariant measure.

1.3 Our two main theorems. For convenience of the reader, in order
to introduce our results, we begin with two special cases and some concrete
examples. We postpone the formulation of our results in their most general
form until section 2. Let G be a connected Lie group, I' a lattice in GG, and
H a connected simple noncompact subgroup of G. We take the function D
to be one of the following:

e Let ¥ : G — GL(d,R) be a representation with compact kernel, || - ||
any norm on Mat,(R), and

D(g) = max {1, ]| %(g)| } - (1)

e Let G be closed subgroup of a semisimple group L, d the Cartan—

Killing metric on the symmetric space Q2 of L, P : L — () the natural

projection, and
D(g) = d(P(g), P(e)) - (2)
In the celebrated paper [EsMS], the asymptotics of discrete I'-orbits in
H\G were determined for a specific choice of D as in (1). Here we give the
complete answer for the case of dense I'-orbits:

Theorem 1.1. For every ¢ € C.(H\G) and x € H\G such that
2T = H\G, -
Spa(T) ~Spu(T) as T — oco.

Moreover, S (T
lim 7%95( ) :/ pdy,
H\G

T—oo AM(H N Gr)
where \ is a Haar measure on H and v, is an explicit smooth measure

on H\G.

Now we consider an action of a lattice I in a simple noncompact Lie
group G, acting by measure preserving transformations on a probability
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measure space (X, u), which we assume is algebraic. Namely, we suppose
that X = L/A where L is a Lie group, A is a lattice in L, y is the normalized
Haar measure, and one of the following holds:

e The group G is a closed subgroup of L and I'" acts on X = L/A by
left multiplication.
e The group G is a closed subgroup of Aut(L) and I" acts on X = L/A
by automorphisms (stabilizing A).
For the sets G defined by either (1) or (2), we have the following equidis-
tribution result:

Theorem 1.2. For every ¢ € C.(X) and zy € X such that Ty = X,

1 -1
TGy > ely :co)—>/X<pdu

ye'NGT
asT — oo.

1.4 Methods. We use two strategies to prove our results. First, in
the presence of a I'-invariant probability measure as in Theorem 1.2, the
standard construction of an induced action gives a G-action, and one may
understand the asymptotic behavior of the I'-orbits by studying the corre-
sponding G-orbits. Secondly, when this assumption is not satisfied (as in
Theorem 1.1) one may use ‘duality’ to replace the question about I'-orbits
on H\G with a problem about H-orbits on G/T" (a similar approach was
introduced in [DuRS] and employed in [EsMS]). Although more general,
the second strategy is more difficult to implement because the question
about H-orbits involves averaging along certain ‘skew-balls’ with respect
to the function D.

Following either strategy, one is led to a question about the distribution
of an orbit of a connected Lie group on a finite measure homogeneous space.
Such questions have been thoroughly studied in recent years, building on
Ratner’s classification of measures invariant under unipotent flows and sub-
sequent work of many authors. The precise result we require follows from
work of Nimish Shah [S]. We refer the reader to [KSS] for a recent and
detailed account of this theory.

Our strategy also requires a precise understanding of the asymptotics
of volumes of certain ‘skew balls’ in H, with respect to a norm in a linear
representation, or with respect to the natural G-invariant metric on the
symmetric space of G. For example, we determine the asymptotics of the
volume of the sets {g € G : ||g|]| < T}, where G is a semisimple Lie group
realized as a matrix group in Mat4(IR) and || - || is an arbitrary linear norm
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on Matg(R). Even this very natural question has only been settled in the
literature in certain special cases.

1.5 Applications. In the next section we establish notation and state
our results in more detail, and at the end of the section, describe the organi-
zation of the paper. To conclude this introduction, we list some applications
which illustrate the scope of our methods. The results of this section are
proved in section 11.

1.5.1 Values of indefinite irrational quadratic forms on frames.
Let @ be a nondegenerate indefinite quadratic form in d > 3 variables,
which is not a scalar multiple of a rational form. Recall that the Oppenheim
conjecture, proved by Margulis [M], states that the set Q(Z?) of its values
at integer points is dense in R. A strengthening of this result was obtained
by Dani and Margulis and by Borel and Prasad. Denote by F; the space
of unimodular frames in R?, i.e.

Fa=A{(fr,---»fa) : fi €RY, VOIRY/(Zf1 & --- ® Lfg)) = 1}.
Let F4(Z) be the space of integer unimodular frames. For a frame f € Fy,

denote by Q(f) the corresponding Gram matrix:
Q) = (QUss £1)); ;1. € Maty(R)
(note that we denote by @Q(-,-) the bilinear form corresponding to Q(-)).
Then it can be shown (see [DM] and [BoP]) that the set Q(F4(Z)) is dense
in Q(F4). Our results imply a quantitative strengthening of this fact. Let
G ={g € GL(d,R) : det g = £1}.

Recall that the map

geG@—gee Fy, (3)
where e is the frame consisting of the standard basis vectors, is a diffeo-
morphism. This endows F; with a natural measure y coming from Haar
measure m on G, which we normalize by requiring that m (G/G(Z)) = 1.
Note that Q(F,) is a submanifold of Maty(R), consisting of symmetric
matrices of a given signature. We have
COROLLARY 1.3. Let Q be as above. Fix any norm || - || on R? and let
A C Q(F,) be a bounded set whose boundary has measure zero. Then
#{f € Fu@): IF1 <T, Q) € A} ~ u({f € Fa: IF] < T, Q) € A})
(here ||(f1,-.-,fa)l| = max;—1,. q4]fill). Explicitly, these quantities are

asymptotic to
crrla—1) if p<gq

ClogTTP®~1) if p=gq
where (p,q), 1 < p < q, is the signature of Q and C' is an explicitly com-
putable constant depending on A, Q and || - ||
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Note that in contrast with the quantitative version of the Oppenheim
conjecture, proved by Eskin, Margulis and Mozes [EsMM], in this result
there are no difficulties arising in signatures (1,2) and (2, 2).

1.5.2 Dense projections of lattices. Suppose G is a semisimple
non-simple group, and I is an irreducible lattice, i.e. the projection of I" onto
each non-cocompact factor of G is dense. Our results imply a quantitative
version of this fact. Here we formulate two special cases.

Let G be a Lie group which is a direct product G = SH of its closed
subgroups S and H. Suppose I is a lattice in G such that HI' is dense
in G. Denote by P : G — S the projection map. Suppose H is simple, and
Uy : H— GL(Vyg), ¥s: S — GL(Vs) are two irreducible representations
with compact kernels.

Let m be a Haar measure on G, normalized by requiring that the co-
volume of I in GG is equal to 1. Let A and v be Haar measures on H and S
respectively, with m = A ® v (note that since G and H are unimodular, so
is S).

COROLLARY 1.4. Let the notation be as above.

(i) Let ¥ : G — GL(Vyg @ Vg) be the direct sum representation of G,
and for a linear norm || - || on Vi & Vg let

Hy={heH:|¥(W)| <T}, Tr={yel:|¥()|<T}.
For every ¢ € C.(S) and every sy € S,

1
> p(s0P(7)) T:;/S‘Pd”'

A Hr) ot

(ii) Let ¥ : G — GL(Vg ® Vs) be the tensor product representation
of G. Choose bases {vi,...,vg}, {u1,...,us} of Vg and Vg, and for
1 < p < oo let | - || denote both the p-norm on Vg associated with
the basis {uy,...,us} and the p-norm on Vg ® Vg associated with the
basis {v; ® u;}. Then for every ¢ € C,(S) and every sg € S,
1 dv(s)

N 2 #0002 [ 90 e

where m and c are explicitly given positive constants.

1.5.3 Lattice actions by translations. Let L be a noncompact
simple connected Lie group, and A and A lattices in L. The group A acts
on L/A by left translation: if 7 : L — L/A is the quotient map, then the
action is given by

Am(g) = m(Ag) .-
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It is a simple application of Ratner’s theorems that for any = = n(g) € L/A,
Az is either finite (in case A and gAg~! are commensurable) or dense. Note
that a special case of this observation was used recently by Vatsal [V] in
his study of Heegner points. A direct application of Theorem 1.2 yields an
equidistribution result for the dense A-orbits in L/A, generalizing recent
results of [O], [GO].

Let m be the Haar measure on L, normalized so that m(L/A) = 1. We
denote the induced finite measures on L/A and L/A also by m. We assume
that L is a closed subgroup of GL(d,R), fix a norm || - || on Mats(R), and
set

Lr={¢eL:|<T}.

COROLLARY 1.5. Let w(go) € L/A be such that Am(go) = L/A. Then for
S CC(L/A))
1

m(Lr)

1

-1 — m.
,\e%m:LT P r(a) = m(L/A) /L/A od

1.5.4 Toral automorphisms. Consider I' = SL(d, Z) acting by lin-
ear isomorphisms on the torus T = R¢/Z¢%. Tt is well known that an orbit Tz
for this action is either finite (if z € T(Q)) or dense. Theorem 1.2 implies
a quantitative strengthening of this fact.

COROLLARY 1.6. Fix a norm || - || on Maty(R). Let ¢ € C.(T). Then for
any r € T\ T(Q),

2 ||<T p(v ' 2o) R /apd,u
#Hy eT: |l <T} T-oo Jy
where p is the Lebesgue probability measure on T.

Corollary 1.6 was independently proved by N. Shah (private communi-
cation).

1.6 Acknowledgements. We thank Amos Nevo and Ralf Spatzier for
many useful and insightful conversations. Thanks also to Hee Oh, Dave
Morris and Michael Levin. We thank the Center for Advanced Studies in
Mathematics at Ben-Gurion University for funding Gorodnik’s visit to Be’er
Sheva, when this work was conceived, and the Technion’s hospitality, which
made additional progress possible. The first author is partially supported
by NSF grant 0400631, and the second by the Israel Science Foundation.



8 A. GORODNIK AND B. WEISS GAFA

2 Notation and Statement of Results

2.1 The general setup. Let G be a second countable locally compact
noncompact topological group, let I' be a lattice in G, and let 7 : G — G/T
be the natural quotient map.

There is a natural left-action of G and any of its subgroups on G/T’
defined by g1 7(g2) = 7(g192)-

Since it admits a lattice, G is unimodular, i.e. the Haar measure m
is invariant under both left and right multiplication. Let m' denote the

G-invariant measure on G/T" induced by m, that is,

m'(X) e (@nr X)),

for some Borel fundamental domain 2 for the right-action of I on G. It
follows from the invariance of m that m' is independent of the choice of Q.
Normalize m so that m'(G/T) = 1.

By a distance function on G we mean a function G — [0, 00) which is
continuous and proper. Let D be a distance function on G. The words the
general setup holds mean that G,T", D, m,m' are as above.

Fixing D, for a subset L C G we write

Lr®&{geL:Dg)<T}.

We list some hypotheses about this setup.
UC Right uniform continuity of log D. For any € > 0 there is a neigh-
borhood U of identity in G such that for all ¢ € G, u € U,
D(gu) < (1+¢€)D(g). (4)
I1 Moderate volume growth for balls in G. For any € > 0 there are
6 > 0 and Ty such that for all T' > Tj:
m(Gysr) < (1+€)m(Gr). (5)
12 I'-points equidistributed in G w.r.t. D.
#I'r ~m(Gr) .
2.2 Inducing the action. Suppose X is a space on which I' acts on
the right, preserving a finite invariant measure. There is a standard con-
struction (see §3) of a left G-space Y with a G-map 7g/r : Y — G/T’, such
that the fiber over 7(e) = [I'] € G/T is isomorphic to X. In case X = H\G,
it is simply the action of G on the product H\G x G/T’, given by
g+ (1(92):m(91)) = (7(929™"), w(g91)) (6)
where 7 : G — H\G denotes the natural factor map.

The following reduces the study of asymptotic behavior of I'-orbits on X
to that of G-orbits on Y.
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PROPOSITION 2.1. Suppose hypotheses 11, 12 and UC hold. Let xg € X,
and let yo € Y be the corresponding point in the fiber W&}F([F]) Suppose
that there is a measure y on X such that:
(¥) For any F € C.(Y),
1

—— [ F(g7"-yo)d — [ Fd

Gy Jo PG wmto) o [ Fav,
where dv = dp dm'.

Then for any ¢ € C.(X),
1
#Ty Z <P($07)T:J>O/X<Pd/~t-

Y€l'r
2.3 The general setup, continued. Suppose the general setup holds,
let H be a closed subgroup of G, and let 7 : G — H\G be the natural
quotient map. Let A be a left Haar measure on H. There is a natural
right-action of G on H\G defined by 7(g1) g2 = 7(g192). We have the

following diagram:
G

H\G G/T
If H has been defined, the words the general setup holds mean in addi-

tion that H, A and 7 are as above.
If g1,92,9 € G and L C G, we write

def def
Lrlg1,92) = {€ € L: D(g1lg) < T}, Lrlg)= Lrle,g].  (7)
We sometimes call these ‘skew balls’.
We list some additional hypotheses.

S Locally continuous section. For any z € H\G there is a Borel map
o : H\G — G which is continuous in a neighborhood of z and satisfies
TOO = IdH\G

D1 Uniform volume growth for skew-balls in H. For any bounded
B C G and any ¢ > 0 there are Ty and § > 0 such that for all T' > Tj
and all g;,g2 € B we have

A(H1oyrl91,92]) < (1+€)A(Hrlg1,92]) - (8)
D2 Limit volume ratios. For any gi,gs € G, the limit
daef 1. AHrlgr', g2))
algng2) = Jim == G ©)

exists and is positive and finite.
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2.4 Duality. The following result establishes a link between the asymp-
totic behavior of a ['-orbit on H\G and the behavior of a corresponding
H-orbit on G/T.

Theorem 2.2. Suppose the general setup holds, and conditions S, DI,
UC are satisfied. Let gy € G and assume the following:

(#x) For any b € G and any F € C.(G/T),

D D 7O o P
_ F(h™ " n(gg))dA(h) — F(x)dm' ().
)\(HT[gOab]) Hrlgo.] ( ( 0)) ( )T—)oo a/r ( ) ( )

Then for every non-negative compactly supported ¢ on H\G,

> o(r(g0)y) ~ /G ¢ (7(90)9)dm(g)- (10)

Yel'r T

2.5 The limiting density. The conclusion of Theorem 2.2 describes
the asymptotics of a I'-orbit in terms of the asymptotics of a G-orbit.
In order to calculate the latter we need some more terminology, and an
additional assumption. Note that we are calculating the asymptotics of a G-
orbit in a space on which G acts transitively. Nevertheless the computation
is not trivial.

We have not assumed that H is unimodular, and therefore a G-invariant
measure on H\G need not exist. To remedy this, we need to discuss
measures on H\G. We suppose that condition D2 is satisfied, and define
(g1, 92) by (9).

Let Y be a lift of H\G to G. That is, Y is a Borel subset of G such
that the product map

HXxY — G: (h,y) = hy

is a Borel isomorphism. Since the measures m and A are left H-invariant,

dm(hy) = dA(h) dvy (y) (11)
for some Borel measure vy on Y. Moreover (11) determines vy uniquely.
When H is unimodular, vy is identified with a measure on H\G which we
denote by vg\ . It is independent of Y and is the unique (up to scaling)
G-invariant measure on H\G.

For g = 7(g0) € H\G, define a measure vz, on Y by

vy (y) = (g0, y)dvy (y) (12)
This is easily seen to be well defined (independent of the choice of gp).
Pushing forward the measures v, and vy via the map 7|y defines measures
on H\G, which we denote by the same letters. Although vy (as a measure
on H\G) depends on the choice of Y, the measure v,, depends only on z.
See Proposition 5.1 below for more details.
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Theorem 2.3. Assume the general setup holds, and conditions UC,
D1, D2 are satisfied. For zy € H\G and for every compactly supported
continuous function ¢ on H\G,
1
st L, fonan@ = [ o, (13
Note that the conclusion of Theorem 2.3 may fail if condition D2 does
not hold, see §12.2.
As an immediate corollary we obtain an equidistribution result for cer-
tain I-orbits. To state it, for A C H\G and zy € H\G, let

Nr(A, a:o)(lzef#{'y e€lr:xzyy € A}.

COROLLARY 2.4. Assume the general setup holds, and conditions S, UC,
D1, D2 are satisfied. Let gy € G, o = 7(go), and assume (%) holds. Then
for any ¢ € C.(H\G) we have

1

—_— — 14

() > elzoy) = o i dvy, , (14)
yel'r

and, for any bounded A C H\G with v;,(0A) = 0, we have
Nr (4, zo)
—_ — A). 1
A(HT) T—oo VmO( ) ( 5)

2.6 Distance functions. In order to apply our general results we must
show that the conditions listed above hold in some cases of interest. Show-
ing this can be quite complicated, and requires specific methods for specific
cases. We verify the conditions under several hypotheses on D, G and H.
In all cases we consider in this paper, G will be a Lie group and H a Lie
subgroup of G. In this setup, condition S holds by a standard application
of the implicit function theorem, see e.g. [W, Th.3.58]. Note that if G is
not assumed to be a Lie group, condition S might not hold (see §12.1). In
this paper we will always assume furthermore that at least one of H and
G is semisimple and connected.

2.6.1 Linear norms. Suppose G is realized, via a linear represen-
tation ¥ : G — GL(d,R), as a closed subgroup of Maty(R), and || - || is
a norm on Maty(R) (considered as a vector space). Assume that ker ¥ is
compact. In this setting we call

D(9)® max {1,]¥(g)|}

a matriz norm distance function. Although D depends on both ¥ and || - ||,
to simplify notation we omit this dependence from the notation.
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2.6.2 Symmetric space distance functions. Suppose G is a con-
nected, semisimple Lie group, K a maximal compact subgroup of G, and
H a semisimple subgroup. Thus K\G (resp. G/K) is the right (resp. left)
symmetric space of G. It is equipped with a natural G-invariant Rieman-
nian metric induced by the Cartan-Killing form on the Lie algebra g of G
(see [H1, Ch.IV] or [E, Ch.2]). Let P : G — K\G (resp. P' : G — G/K)
be the natural projection. Let d (resp. d') be the corresponding metric on
K\G (resp. G/K). In this setting we call

D(g)= exp (d(P(e), P(9)))

(respectively exp(d'(P'(e), P'(g)))) a symmetric space distance function.
Note that D is proper since K is compact and = — d(zg,z) is proper on
K\G.

DEFINITION 2.5. Suppose the general setup holds. We say that G, D are
standard if G is semisimple and connected, and D is either a matrix norm
distance function or a symmetric space distance function. We say that
G, H,D are standard in either of the following two cases:

e H is semisimple and connected and D is a matrix norm distance
function.

e Both G and H are semisimple and connected and D is a symmetric
space distance function.

PROPOSITION 2.6. If G,D are standard and G is balanced (see section
2.7 below) then UC, I1 and I2 are satisfied. If G, H,D are standard then
conditions UC, D1, and D2 are satisfied.

We deduce the proposition from the following two results, which are of
independent interest, regarding the asymptotics of volumes of ‘balls’ with
respect to a standard distance function.

Theorem 2.7. Let H be connected noncompact semisimple Lie group
and let ¥ : H — GL(V) be a representation with compact kernel. Then
for any matrix norm distance function we have
A(Hr) ~ C(log T)*T™,
where £ € Z, and m > 0 are explicitly computable constants depending
only on ¥, and C' > 0 is an explicitly computable constant depending
continuously on the choice of norm on Mat4(R).
In §7 we introduce a technical condition, called condition G, about
U (see Definition 7.1). The condition holds for ‘most’ choices of ¥ (cf.
Remark 7.2). We prove Theorem 7.4, which is a precise version of Theo-
rem 2.7, under the assumption that condition G holds, and assuming that ¥
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is irreducible. The proof of Theorem 2.7 without making these assumptions
is a rather lengthy computation which will appear in a separate paper.

In §9 we treat the case of a symmetric space distance function, and
prove

Theorem 2.8. Let G be a connected semisimple Lie group, H a connected
semisimple subgroup, and let D : G — [0,00) be a symmetric space distance
function. There are non-negative constants £ and m, and for any ¢1,gs € G,
a positive constant C = C(g1, g2) such that

)\(HT[gl,gg]) ~ C(log T)eTm. (16)
The constants £ > 0, m > 0, C(g1,g92) > 0 are given explicitly, C(g1,g2)

is continuous in g1, g2, and the convergence in (16) is uniform for gi,go in
compact subsets of G.

2.7 Balanced semisimple groups. We will see below that when H is
simple and G, H, D are standard, condition (**) holds whenever Hr(gg) is
dense in G/T". However, in the case of a general semisimple group, we need
to make an additional assumption.

Suppose that H is a semisimple non-simple Lie group with finite cen-
ter, and thus a nontrivial almost direct product of its simple factors. It
may happen that some of these factors do not contribute to the volume
growth of balls in H, and therefore should be ignored when computing
the asymptotics of H-orbits. To make this precise, we make the following
definition.

Let H = Hy--- H; be the decomposition of H into an almost direct
product of its simple factors. Fix measurable sections o; : H — H;, i =
1,...,t; that is, 0;(h) € H; and h = o1(h) - -- 0¢(h) for each h € H.

DEFINITION 2.9. We say that H is balanced if for every j € {1,...,t},
every g1,gs € G and every compact L. C H IE
lim MR € Hrlg1,90] : 04(h) € L})
im
T—o00 A(HT[gl, 92])

Note that this definition does not depend on the choice of the sections
because for any two sections o, o} we have o(h) € Zo;(h) for every h € H,
where Z is the (finite) center of H. Note also that if H has compact factors
then H is not balanced by our definition.

We remark that if D is a matrix norm distance function, corresponding
to a representation ¥ : G — GL4(R) C Maty(R) with compact kernel, and
a norm || - || on Maty(R), then the condition that H is balanced depends
on ¥ but not on || - || (see Proposition 8.1).

= 0. (17)
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The importance of the assumption that H is balanced lies in the follow-
ing:
Theorem 2.10. Suppose the general setup holds, G, H, D are standard

and H is balanced. Suppose gy € G satisfies Hr(gg) = G/I'. Then (xx*)
holds.

Note that the conclusion of Theorem 2.10 may fail if H is not balanced,
see §12.3.

2.8 Equidistribution results. Collecting the results stated previously,
we obtain the following results concerning the distribution of lattice orbits:

COROLLARY 2.11. Suppose the general setup holds, G, D are standard,
and G is balanced. Suppose there is a I'-invariant probability measure p
on H\G, and zy € H\G satisfies H\G = x(l.
Then for any ¢ € C.(H\G),
1
= 2 @) — pdp.
#I'r ,YEZFT T—o Ji\G
COROLLARY 2.12. Suppose the general setup holds, G, H, D are standard,
and H is balanced. Suppose x € H\G with H\G = zT. Then for any
p € Ce(V), ~
Sw,z(T) ~ Sw,x(T) (18)
Sy(T
Spa(T) — / pdvy . (19)
H\G

and

)\(HT) T—o00

Also, for any bounded A C H\G with vi\g (0A) =0,
. NT(A, .Z‘)

P vorm i e
2.9 Organization of the paper. Insection 3, we develop a framework
for analyzing action preserving finite measure and prove a general version
of Proposition 2.1. In section 4, we prove Theorem 2.2, which relates dis-
tributions of I" orbits in H\G and H-orbits in G/I'. In section 5, we discuss
the limiting density and prove Theorem 2.3. In section 6, we verify some of
the basic properties of distance functions and prove Theorem 2.6. In sec-
tion 7, we compute volume asymptotics for sets defined by matrix norms
proving Theorem 2.7, and in section 9, we compute asymptotics for the
Riemannian metric case proving Theorem 2.8. Section 8 contains discus-
sion of ‘balancedness’. In section 10, we prove Theorem 2.10. Finally, the
results stated in section 1 are proved in section 11. In section 12, we present
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examples to demonstrate necessity of conditions S, D2, and ‘balanced’, and
discuss the example from section 1.1 in more detail.

3 Induction

Let T' act continuously on a locally compact Hausdorff space X from the
right. In this section we recall the definition of the induced action of G, and

relate the asymptotics of a I'-orbit with that of a corresponding G-orbit.

On V¥ x x G, there is a left action of G given by

91+ (z,9) = (x,919),
and a right action of I' given by

(z,9)-7=(z-797)-

It is clear that these actions commute, so that G acts on the quotient
Y =Y /I, and the quotient map T Y — G/T is a continuous G-map.
Since I is discrete in G, the projection is a covering map, so that Y inherits
(locally) the topological properties of Y. As a G-space, Y is a fiber bundle
with base G/T" and fiber isomorphic to X . In particular, if x is a I'-invariant
probability measure on X, then du dm’ defines a finite G-invariant measure
onY.

Assume that o : G/T' — G is a Borel section. Then

v(g) =g 'o(n(g)) €T

and the map

nx =7%:Y =X, wx:y=[(z,9)]— z-v(9)
is well defined (does not depend on the representative (z,g) € Y of the
T-orbit [(z,9)] € Y).

Note that when X = H\G is as in §2.2, the space Y is isomorphic to
H\G x G/T', with the action given by (6) where the isomorphism is defined
by the map

(z,9) = (zg7",9), z€X,9€G.

The following reduces the study of asymptotic behavior of I'-orbits on X
to that of G-orbits on Y. It immediately implies Proposition 2.1.
ProPOSITION 3.1. Suppose hypotheses I1 and UC hold. Let zy € X, let
Yo = (zg,€) € Y and let yoy = [9o] € Y. Suppose that there is a measure u
on X such that for any F € C.(Y),

1 -1
Gy o P wimta) [ v, (20)
where v = du dm/’.
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Then for any ¢ € Cq(X),

1
— Z (xo - —> / odi . (21)
m(GT) ~elr
If in addition I2 holds then
1
- X+ — du . 22
#FT%:T@( 0 V)T%O/Xso 1 (22)

Proof of Proposition 3.1. There is no loss of generality in assuming that
v > 0.
Let € > 0. By condition I1, there are positive §, Ty such that, for all

T > Ty,
m(G(1+6)T)

m(Gr)
By condition UC, there exists a symmetric neighborhood O of the identity
in G such that for every T > 0,

GTO C G(1—|—(5)T . (24)

<l+e. (23)

Let x € Cc(G) be a non-negative function such that suppx C O and
fodm = 1. Define functions F': Y - R, F: Y — R by

F@@) = F(z,9) = x(9)p(x), Fly)=>_ F@Gv),

yer

where y € XN/, y=[y] €Y. Since Fis compactly supported, the sum in the
definition of F' is actually finite, F' € C.(Y'), and

/de_/a/r/ y)dp(mx (y))dm' (7gr(y))
> / o / x(g7)¢ (@ - )dp(z)dm(g)

/wdu(Z/oG/r x(g7)dm(g ))

yel

Z/wdu/xdmz/sodu-
X G X

Applying (20) we obtain

m(éT)/c F(g_lyo)dm(g)Tjo/Xsodu- (25)
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Now let

Ir(mo) € > (/

yer \YGT

= Z/G F((zo,97") - 7v)dm(g) (26)

yel

x(g_lv)dm(9)> o0 -7)

~ [ Plgtwin(e).
Gr
We claim that
Irjaas)(x0) < Y @l@o-7) < Tnysr(zo) - (27)
YEl'T

Let g € G\ G(146)r- Then by (24), g ¢ G7O, and hence g1y ¢ O for all
v € 7. This implies that x(¢~'v) = 0, that is

yelr = x(g™ " y)dm(g) = / x(g™"y)dm(g) = 1.
Gt T G

The right-hand inequality in (27) follows.
Now if v € I' N\ I'r then for all g € Gr/(145) we have g v ¢ O, hence
x(g7%y) = 0 and so

v¢Tr = x(g~")dm(g) = 0.
Gr/(1+9)

This implies the second inequality in (27).

We obtain, for all large enough T,

(27)
> ol@o-y) < Irais(wo)
YEl'r

(25)
< (1 +9)m(Gurgr) /X d

(23) 9
< (1+e) m(GT)/ pdv.
X
Since € > 0 was arbitrary,

1
limsupT Z o(zo-7) S/ pdv.

T—00 m( T) ~elr X

The opposite inequality for lim inf is similarly established. This proves (21),
and (22) immediately follows in light of condition I2. o
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4 Duality

In this section we prove Theorem 2.2.

We first record the following useful consequence of condition UC.
PROPOSITION 4.1.  Suppose the general setup holds and condition UC
is satisfied. Then for any bounded B C G and any n > 0 there is a
neighborhood O of identity in G such that, for allg € G, h € O, b € B, we

have ‘ D(ghb)
D(gb)
Proof. Let ¢ = n and let U be as in the formulation of condition UC. Since
B is bounded, there is a small enough neighborhood O of identity in G
such that for all h € O, b € B, we have b='hb € U NU~'. This implies
that, forg € G, h € O, b € B,
D(ghb) = D(gbb™thb) < (1 +1)D(gb)

(28)

and
D(gb) = D(ghbb™'h™1b) < (1 4+ 1)D(ghb).
Putting these together we obtain

%9’;) < D(ghb) < (1+n)D(gb),

and (28) follows. o
We now make some reductions:
CLAM 1. There is no loss of generality in assuming:
(a) go =e.
(b) There is an open set U C H\G and a Borel section o : H\G — G
such that oy is continuous and supp ¢ C U.

In order to reduce to (a), let H' def 90 LHgo, N be a left-Haar measure

on H', 7' : G — H'\G the natural quotient map and ¢'(7'(g)) déf(p(T(gog)),
and note that the hypotheses and conclusion of the theorem for H' X' ,7/,¢ e
are equivalent to those for H, \, 7, ¢, go.

Using condition S, for each x € supp ¢ there is a section o, : H\G — G
which is continuous in a neighborhood U, of z. Using the compactness of
supp ¢ we may choose a finite subset of {U, : € supp ¢} covering supp ¢,
and using a standard partition of unity argument for this cover we may
assume that, for some z € H\G, suppy C U, and take 0 = o,. This
reduces our problem to the case (b). The claim is proved.

Let def
B = o(supp ),
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a compact subset of GG, in view of Claim 1. Also let
hg dz(ﬁ&(g)g*1 € H, where s¥50r:G>aG.
Given ¢ > 1 we will find 7y such that, for all T > Ty,

> elrt) <e [ elg)m(s). (29)
YEl'r Gr
Let
0<e<+e—1, (30)
and let § > 0 be as in hypothesis D1. Let > 0 be small enough so that
(I+n)*<1+56. (31)

Using hypothesis UC and Proposition 4.1, let O be a small-enough neigh-
borhood of the identity in H so that, for all g € G, h € O, b € B,

D(ghb) < (1+n)D(gb).

Let ¥ : H — R be a non-negative continuous function such that
suppy C O and / $(h)AA(R) =
H

Define a function f : G — R by
f(g) = ¥(hg)e(7(9)) -

Note that f is non-negative, continuous, of compact support, and
7(9) ¢ suppp = Vh € H, f(h™'g) = 0. (32)
We now show
CrLam 2. For any T > 0,

ICOEDD / £ y)dA(R) (33)

yelT ~er Y Haqnyr[o

7(g))dm h=Lg)d\(h)dm(g) . 34
fo@)(mzééwwmﬂﬂ gd(Bydm(g).  (34)

Let g € G, that is, D(h;lﬁ(g)) = D(g) < T. Suppose 7(g) € supp .
Then for A € O one has

D(hy hi(g)) < (1+ )T,
that is, h;'h € Hy 1[0 (g)]. Since suppy C O, this shows that
supp? C th(l-i—n)T[ (9)] .

and
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So, using left-invariance of A and the fact that hyhg = hho—l 9

o(7(9)) = 9(7(9)) / $(h)AA(h)

hgH(14m)7rl0(g)]

o(7(9)) /  Glhgh)dA(R)
Hynmyr[o(g)]

o) (r(h ) dN(R)
H14nrlo(g)]

- / F(h~1g)dA(h).
H1i1nmyrlo(g)]

Specializing to g = v € I'y one obtains (33).
Let G 7= !(supp ). Similarly, it is easy to check that for g € G\ Gr,

supp ¥ N hgHryy14n)lo(g9)] = @.
Therefore, arguing as in the previous computation,

/G /H G DO
@) /G /H gy T 9B
<[ +f \GJ (vtrton | o H(aA®) ) am(o)

_ / o(r(g)) /  G(h)dr(h)dm(g)
Gr hgHr/(144)[0(9)]

< [ elrigyin(o).
Gr
This proves (34).
We now claim
CraM 3. There are by,...,by € B and a symmetric neighborhood O of
the identity in G, such that, forx € Ob;, i =1,..., N,
H(ypyrlz] C Hiyqpyer[bi]

and such that N

Bc|Jow. (35)

i=1
To see this, using hypothesis UC and Proposition 4.1 we let O be a
small enough symmetric neighborhood of identity in G such that for all
g€ H,h €O and b€ B, we have (1 —n/2)D(gb) < D(ghb). This implies
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that H( pr[z] C Hyper[b] for all z € Ob. Taking a finite subcover
{Ob; :i=1,...,N} of the cover {Ob: b € B} proves the claim.

Using a partition of unity subordinate to the cover (35), there is no loss
of generality in assuming that for some b € B,

supp ¢ C 7(Ob). (36)
Thus for some b € B, and for all v € T,
[ swam < [ F(hI)dAR). (3)
Haymyrla(y) H

RESELIL

NE S fgm)

yeT
(actually a finite sum for each g) one obtains, via the monotone convergence

theorem,
S swam
~€eT Hymyr[d(7)]

Now defining

£ F(h17)dA(h) 38)

ver Y Hpypy2r[b]

= / F(h™'n(e))dA(h).
Hy g2 lb]
Using (*%), there is T} such that for all T > T,

fH(H 2l FOm e — F(x)dm'(z)| < ¢
A(H (1427 (b)) G/r ’
hence
/H F(htn(e))dA(h) < (1+5)A(H(1+sz[b]) F(x)dm/(z). (39)
(4m27lt] G/T

Reversing the argument with G in place of I yields
Mo merl]) [ Pla)nd')
G/r

(8),(31)

< (1 + M Hry a2 ) /G f(g)dm(g)

=1 +6)/
Hry4ny2[b
(1+e) / / (b~ g)dA(h)dm(g)

T/(1+77)2

/ f(h™1g)dm(g)dA(R)
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(32),(36) o,
< (1+e) / / £k g)dA(R)dm(g)
G JHryy14q)[0(9)]

(34)
< (4o /G o(7(9))dm(g). (40)

Now putting together (33), (38), (39), (40) and (30) proves (29).
The proof of the second inequality

1
> etr) >3 [ elr@)im(o) (a)
YEl'T Gr
is similar and is left to the reader. The two inequalities (29) and (41), along
with the assumption that gg = e, imply (10). o

5 The Limiting Density

Let the notation be as in §2.5. In particular assume condition D2. In this
section we discuss the measures {v; : z € H\G} and prove Theorem 2.3.
We first introduce some additional notation.

Let Ng(H) denote the normalizer of H in G. There is a homomor-
phism A : Ng(H) — Ry such that for any Borel subset A of H and any
n e Ng(H ),

MnAn™t) = A(n)A(A). (42)
Note that A|g is the modular function of H.

PROPOSITION 5.1. Let g9 € G, g = 7(g0). Suppose that condition D2 is
satisfied. Then a(g1,g2) and the measure vy, have the following properties:

(i) For h € H, n € Ng(H) and g1, 92 € G,

a(nhgi,ng2) = A(n)a(gi, g2) -
In particular, for h1,ho € H, g1,92 € G,

a(h1g1, haga) = A(h2)a(g1, g2) -
(ii) vy, is well defined (does not depend on gg) and does not depend on
the section Y .
(iii) If G, H are Lie groups then vy, is absolutely continuous with respect
to the smooth measure class on H\G.
(iv) If H is unimodular then

agy t H\G = Ry, ag(7(9)) = @(90,9)
is well defined and dvy,(v) = ag,(x)dvp\g(z), where vy\g is the
G-invariant measure on H\G.
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Proof. For h € H, n € Ng(H), g1,92 € G we have
Hy[(nhgi) t,ngs] = {h € H: D(g7t(nh) *h'ngs) < T}
= {h € H: D(g;*(nh)"'nn"'h'ngs) < T}
=n{h" € H:D(g7"h™'h"gy) < T}n~"

— nh{h”’ c H D(gl—lhlllg2) < T}n—l

=nhHrlgy ', goln ™,

hence, using (42) and the left-invariance of A,

)\(HT[(’I’th]_)_l, 7192]) = A(In‘)>‘(}IT[917 92])
and (i) follows.

It follows from (i) that a(hgo,y) = a(go,y) for all h € H, so vy, is well
defined. Suppose Y, Z are two different sections for 7. There are maps
h:Z — H,y:Z — Y defined by the formula z = h(z)g(z) for all z € Z.
Let y.vz denote the measure on Y obtained by pushing forward vz via y.
Using (11) we have for each h € H,

dm(hz) = dm(hh(2)§(2)) = dA(hh(z))dvy (5(2))
= A(h(2))dA(h)dg.vz(y) -
By the uniqueness of the decomposition (11) we have A(h(2))dg,vz(y) =

dvy (y). In particular, setting 5(z) =y, h(z) = h = zy~! we have

al(go, y)dvy (y) = algo, yz~ 2)A(zy~ ) dF.vz(y)
= A(yz Yalgo, 2) A(zy~dvz(2)
= a(go, z)dvz(z)
proving (ii).

If H is a Lie subgroup of a Lie group G then there is a manifold struc-
ture on H\G which is obtained locally by finding, for each zq € H\G, a
submanifold &4/ C G such that zy € 7(U) and 7|y is one to one. Now,
using (ii), we can assume that the lift Y contains Y. It is clear from (11)
and G-invariance of m that vy |y is smooth and (iii) follows.

The last assertion follows immediately from the preceding ones. o

Proof of Theorem 2.3. By separating ¢ into its negative and positive
parts, we may assume without loss of generality that ¢ > 0. Assume
also that ¢ # 0 (otherwise there is nothing to prove). Let Y = o(H\G)
where o : H\G — @G is a Borel section, and let B = o(supp ). We may
assume that B is bounded, e.g. by applying condition S and a partition of
unity argument. Let vy be the measure on Y satisfying (11). In view of
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Proposition 5.1, there is no loss of generality in defining v,, by (12). We
have

o(r(g0)g) dm(g) = / ot PO
9 90

/ / I o(r(y))dr(h)dvy (y)  (43)
{h:D(gq 'hy)<T}
— [ elrt)AHilgy ) dor (o).

Let Tj be as in condition D1. We claim that there is C' such that for all
T >1Tyand all y € B, .
A(Hrlgy 5 y])

A(Hr)
Let Cy > 1. By Proposition 4.1, there exists a neighborhood O of
identity in G such that for all h € O and b € B, D(gyhb) < C1D(gy'b).
Choose a finite cover B C UN.; Ob; for some b; € B. Then for every y € B,

Gr

<C.

N
Hrlgy',y) € | Heyrlgg ' bi)
i=1

MHrlgy ")) < NmaxA(Heyrlgy ' bil) -
Using condition D1 a finite number of times (depending on C7) we find a
constant Cy such that \(He,7[g, ', bi]) < Col(Hr[gy *,bi]). Since the limit
defining a(go, b;) exists, there is a constant C3 > 0 such that
M(Hr[gy ", bil)
A(Hr)

and

<(C3, foralT >Tyandi=1,...,N.

Therefore

)\(HT[gal,y]) def
— 2 2 < NCy(Cs =C.
A(HT) 24V3

Hence, by (9), (43), and Lebesgue’s dominated convergence theorem,

-1
GT@(T(go)g)dm(g) :/B‘P(T(y))TliiﬂoWdW(y)

1
T1—>Hc§o A HT)

~ [ elr@algo.v)dvr )
B

:/gadywo. o
Y

Proof of Corollary 2.4. Statement (14) is immediate from (10) and (13),
and (15) follows by a standard argument for approximating 14 from above
and below by continuous functions, which we omit. o
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6 Properties of Distance Functions

Our next goal will be to verify the conditions we have listed. Most of
the verification is reduced to the computation of asymptotics of volumes
of certain sets. We make the reduction in this section, and also list some
simple relations between our conditions.

We first show that 12 follows from I1, UC, and a very special case of (xx).
Namely, we have
PROPOSITION 6.1. Suppose that I1 and UC hold, and for any F € C.(G/T),

1 -1 !
mGr) /GT F(g~'n(e))dm(g) e /G/Fde. (44)

Then 12 holds, that is, #T'r ~ m(Gr) as T — oo.

Proof. Let € > 0. By UC, there exists a symmetric neighborhood O of e
in G such that

G0 C G(l—l—s)T (45)
for every T'> 0. Let f € C.(G) be such that
£20, swp()co, [ fam=1, (16)

and let F' € C.(G/T") be defined by F(7(g)) g > ver (7). We have
[ #eta Namta) =3 [ sta7 o

T ~er

(45),(46) Z / f(g—ly)dm(g)

Y€l (14e)T Gr

(46)
= ) fdm < #Tsor,

—1
Vel (14)T Gr v

and

| F(ag™))dmie) = 3 / g i)

yeT
(45),(46)
> > fdm =#T7/14e -
YET 1/ (14¢) Gr
This implies that

r
lim sup Al < limsup F(m(g™"))dm(g)

1
Tooo mM(GT) T M(GT) /G(1+5)T

(44) G1se Gi1se
< limsup w Fdm' =lim sup w
Too  M(GT)  Jor T—oo  m(GT)
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for every € > 0. Thus, by 11,
#Ir

lim sup <1.
T—o00 m( T)
The lower estimate for lim inf is proved similarly. o

PROPOSITION 6.2. If D is a matrix norm distance function then D satisfies
condition UC.

Proof. The set

Mat}(R) < {z € Matq(R) : 2] =1}

is compact. Hence, given € > 0, there is a small enough neighborhood V of
identity in Maty(RR) such that for all z € V and all z € Mat)(R),

llzz]] < (1+¢).
Let « = U~1(V). There is a bounded set B C G such that for all g € G\ B
and all ¢’ € U we have || T(g)|| > 1 and ||¥(gg’)|| > 1 so that

D(g) = [¥(g)ll and D(gg") = || (9g")]|-

Forany ge G\ B, z = E gll € Mat}(R), hence for any ¢' € U we have

13
D(gg') _ 1%(g9")l — ||=u(y

D(g)  [[¥(g)l
By making U smaller if necessary we can also ensure that

D(gg")
D(g)
for all g € B and ¢’ € Y. This implies UC. o

”<1+€

<l+e¢

PROPOSITION 6.3. Suppose (X, d) is a metric space equipped with a right
(resp. left) action of G which is continuous and isometric. Then for any
o € X, the function

D(g) = exp (d(zo,z0g))  (resp. exp(d(zo,gz0)))
satisfies UC.

Proof. Suppose the action is on the right. Given ¢ > 0, let
d f
(g € G dlao,m09) < log(l +2)}
Then for every g € G and u € U,
d(l‘o, .I'()gu) - d(Ioaxog) = d(IL'()’u,_l, ‘/I;Og) - d(xoaxog)
< d(mout,m0) < log(l+¢).

This implies UC. The proof for a left action is similar. o
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PROPOSITION 6.4. Suppose F' : [0,00) — [0,00) and C : G x G — (0, 00)
are continuous functions such that for all § > 0,

F((1+6)T)

_ 1.

F(T) 7o
If the general setup holds and m(Gr) ~ F(T) then I1 holds.
If the general setup holds and
A(Hrlg1, g2]) ~ Clg1,92) F(T)

as T — oo, uniformly for g1,go in compact subsets of G, then conditions
D1 and D2 are satisfied.

Proof. Given a bounded B C G and ¢ > 0, there is 77 such that for all
T >1T; and all g1,92 € B,

Clg1,92)F(T) < MHrlg1,92]) < (1+¢)/*Clg1,92) F(T).

(1+¢)l/3
Also there is T» > 0 such that for all T > T,
F((A+0)T) 1
Sl 1 /3
FT) <(1+¢)

Then setting Ty = max{T3,T>} we obtain for T > T,
M H1oyrlor g2]) < (1+)/3Clg1,92) F((1+ 6)T)
< (1+¢)*C(gr,92) F(T)

< (1 + E)A(HT[gl,gg]) .
This proves D1.
Now for any g1, g2 € G we have

i AMHrlor ) . A(Hrlgr L ge)) F(T) _ Clgi's90)
T—o00 A(HT) T—o0 F(T) A(HT) C(e, 6) ’
and we obtain D2. The proof of I1 is similar and is omitted. O

Proof of Proposition 2.6. Condition UC follows from Propositions 6.2, 6.3.
If G,D are standard and G is balanced, then condition I1 follows from
Theorems 2.7 and 2.8 and Proposition 6.4, and condition 12 follows from
Proposition 6.1 and Theorem 2.10.

If G,H,D are standard, then conditions D1, D2 follow from Theo-
rems 2.7 and 2.8 and Proposition 6.4. m

7 Matrix Norms and Volume Computations

In this section we consider the asymptotics of volumes of ‘balls’ Hy with
respect to a matrix norm distance function. We first recall some standard
details on Cartan (or polar) decomposition and Haar measure.
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Let H be a connected semisimple Lie group. Let K be a maximal
compact subgroup of H and let A be the associated split Cartan subgroup
of H; by this we mean that A is a maximal connected group which is
invariant under a Cartan involution associated to K, such that Ad(A) is
diagonalizable over R. Denote by h and a the Lie algebras of H and A

respectively. One can write
b =bo® P ba

acd
for & C a*, the dual space of a, where

o = {X €5:VY €a, Ad(exp(Y))X =¥ X},
and @ is the restricted root system of H relative to A. Let ®T be the set
of positive roots with respect to some ordering and
at ={Y €a:Vaedt, oY) >0}
the corresponding (closed) Weyl chamber. Let p € a* be defined by
p= % Z mqe, where my =dimb,. (47)
acd

Let A = {ai,...,op} C ®* be the set of simple roots that corresponds
to a® and {f41,..., 3} the dual basis of a, that is,

i(B;) = Gij -
It will be convenient to rescale each 3; according to p. Namely, let

Bi
/Bi = ~
2p(5;)

so that
2p<thﬂi) =Yt and i#j= ai(B;)=0. (48)
i=1 i=1

Every h € H can be written as h = kjako, where ki,ky € K and

ac At def exp(at). Note that this decomposition is not unique. Never-
theless, A can be expressed in terms of this decomposition of G (see [H2,
p. 186]). Namely, letting dk denote the probability Haar measure on K we
have, for f € C.(H),

)
[swaxw= [ [ [ sepimerianay a, @)
H KJa K
where dY is a scalar multiple of the Lebesgue measure on a, and

()= [J sinh™ (a(Y)). (50)

aedt
Now suppose ¥ : H — GL(V) is an irreducible representation. Let
d=dmV and V = V1 @---@ Vs be a direct sum decomposition into
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the weight-spaces of a with weights A1,...,\s € a*, that is, for all Y € q,
vev,

T(exp(Y))v = My (51)
One of the \;’s is a highest weight — indeed, this is well known over C and
holds also over R, see e.g. [GuJT, Ch.IV]. By re-ordering the basis of V'
assume with no loss of generality that the highest weight is A1, i.e.

VY €at, Vi€ {2,...,s}, M(Y)>N(Y). (52)
Now let
my = min X (5;). (53)
By re-ordering (i, ..., 8, assume with no loss of generality that
my = A1 (B1) .

We now make the following assumption.
DEFINITION 7.1. Say that VU satisfies condition G if
mo = ,_n%inr)\l(ﬁj) >my = )\1(,31) . (54)

REMARK 7.2. Irreducible representations of H are usually described in
terms of the corresponding dominant weights. Note that if condition G
fails, then for some i # j, the dominant weight A of ¥ satisfies
P(B)A(Bi) = p(Bi) A(B;) -
Thus the condition fails only for a subset of ¥ whose dominant weight is
contained in a finite union of proper linear subspaces of a*.
Let
J={jie{1,....s}: X(B1) =mi}.
Note that 1 € J, and by (52), we have for j € 7,
A (B1) = max M(By).

We fix a basis V such that ¥(A) is a diagonal subgroup. For j =1,...,d
let E; € Matq(R) denote the matrix whose j, j-th entry is 1 and all other

entries are zero, and for 7 = (to,...,t,) € R"™!, define
T
T = Z t:Bi, E;= Z 6)"“(7_—)Ej . (55)
i=2 (j.k):kET E; € Vi,

Also, let R
®={aed:ap)=0},

that is, ® contains those roots whose expression as a linear combination of
simple roots does not involve a1, and let

R 1 Zaeéma 1 1 Ma .
S | I - Disati
5(7_) (2) L (2 26204(’?)) € 2
acd
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We say that a collection N of norms on Maty(R) is bounded if there
is ¢ > 1 such that for any two norms || - ||1, || - ||2 in A/, and any nonzero
A € Maty(R), 1/c < ||All1/11All2 < c.

PROPOSITION 7.3. For any norm || - || on Maty(R), the indefinite integral

D= / L?/ dr (56)
T7€[0,00)7 1 ”ET” m

converges, and the convergence is uniform for || - | in a bounded collection
of norms.

Theorem 7.4. Let H be connected and semisimple, and let ¥ : H— GL(V)
be an irreducible representation satisfying condition G. Choosing a basis
of V, identify U (H) with a subset of Mat4(R), where d = dim V. Then for
any linear norm || - || on Mat4(R) we have

AHr) ~CT™,
where m = 1/my, m, is given by (53), and

£(r)
C:// / dr dki dko .
k Ji Jrcoooy1 1 (k1) Er T (kg)[m =

REMARK 7.5. 1. In the above expression, m depends only on ¥, and C
depends continuously on || - ||; this means that, for any € > 0 there is § > 0
such that for a norm | - |,

Vo £0, ‘1—% <6 = |c(I-h-c(-N|<e.

2. Since for any ki,k2 € G, the map A — ||¥(g1)A¥(g2)|| is a linear
norm on Mat4(R), the integral for C converges in light of Proposition 7.3.

3. In the general case, that is when ¥ is reducible or does not satisfy
condition G, there exist k € Z4, m > 0 and C > 0, where k£ and m depend
only on ¥, and C depends continuously on || - ||, such that

MHr) ~ C(log T)*T™.
Details will appear elsewhere.

PROPOSITION 7.6. Suppose N is a bounded collection of norms on
Matgy(R). Then for any 6 > O there is Ty such that for all T > T, and
all || - || € N we have

/ EY)Y —DT™| < 6T™, (57)
at(T||-]])

where
o (T, || -[) = {Y € a™ : [ ¥(exp(Y))[| < T},
D is as in (56), and m = 1/m;.
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Proof of Theorem 7.4 assuming Proposition 7.6. Note that the collection
of norms

{.T — ||\If(k1)$\11(k2)|| : kl,kg c K}
is bounded. Thus the result follows using (49). o

Proof of Proposition 7.3. Let N be a bounded collection of norms on
Matg4(R). For the purpose of this proof, the notation X < Y will mean
that X and Y are quantities depending on various parameters, and there
is C, depending only on N and independent of the other parameters, such
that X < CY.

First note that for a fixed basis B of Mat4(R), for every || - || € N, and
every A=) p.pgapE € Maty(R),

A All.
4]l < wpax |ag| < |14

Since Ej,...,E4 can be completed to a basis of Maty(R), this im-
plies that ||E;|| is bounded below by a positive constant independent of
7 € [0,00)"! and of || - || € M. Thus we need only consider the behavior of
the integrand as 7 — oo. For E; € Vi, we have

. (54) - ) - (55)
em izt & i | By = MONE| < | (58)

On the other hand it is clear that
£(1) < eXi=2ti, (59)
Putting together (58) and (59), and using condition G we obtain

D :/ 75(7;) dr
T€[0,00)7—1 (P2 /m

(58) eXizati
2
T€0,00)771 (M2 Liza ti)

i dr

= / e(l_m2/m1)2222 tidT (zé) o0 . o
T€[0,00)r—1

Proof of Proposition 7.6. We first show that for all sufficiently large M,
for all T > 0, we have

/ (V)Y < (é) ™ (60)
b+ (M,T|)) 3
where

bt (M, T, |-]) = {thﬂi eat(T,||-]): Fje{2,....r}, t; > M}. (61)

i=1
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It suffices to show that for any j € {2,...,r} there is My such that for
M > My and any T > 0

/b (V)Y < (%) ™ (62)

b= {thﬂi eat (T, 1) 4 > M}-
=1

To prove (62) we will need the following easy lemma, which is proved
by induction on k:

LEMMA 7.7. Given k € N and 0 < m; < -++ < my, there is ¢ > 0 such
that for all S > 0,

where

/ eZthidtl e dty < ceSI™,
A
where

k
A= {(tl,...,tk) Vi, t; >0, ZmitiSS}.
1

By (52), and by comparing with the max-norm, we find that there is C
such that for all || - || € N and all T > 0,

T T
CH’(T, Il - ||) C {Zszﬂz :Vi, s, >0, ZSZ)\I(ﬂZ) <logT + C} . (63)
=1 1=1
Suppose j € {2,...,r} and t; > M. To simplify notation suppose j = r.
Then we obtain that

T T
bC {Zsiﬁi Vi, 5020, > M, Y sih(B) < logT+C}.
i=1 i=1
Now using condition G, choose m; < mg < --- < m, such that
m1 = m; and T?Lj S)\l(ﬁj)a j € {2,...,7“}.
Then it follows that b C M3, + ¢ (that is, the translation of ¢ by the vector
M B,) where

T T

¢ = {Zszﬂi :Vi, 85 >0, Zsifﬁ,' < logT+5—m2M}.
i=1 i=1

Applying Lemma 7.7 we find that

/f(Y)dY < /62/)(2? tib’i)dtl -oedty < / 1 tidtl . dt,
b b Mﬂr‘}‘c

— eM /‘ezg tldtl I dtr S C€M+(logT+6’fm2M)/m1
c

< ceCe(l—mz/ml)M Tl/ml.
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Since mg > my, this implies (62), and we have proved (60).

Now set é( )
.
C, = , 64
AR (64
so that
D = C.dr. (65)
[0,00)1*71

Using Proposition 7.3, we may assume by enlarging M that
/ Crdr| < §/3. (66)
R\ [0,M]7~1

We will show below that

CrAM 4.  There is Ty such that for all |- || € N, all T > T, and all
T = (ta,...,t,) € [0, M]",

fa(T,T) (X011 tifi) dty 1 0 67

c.Tm TS 3Mr—1 max;¢[o, m]r—1 c,’ (67)

where
o1, T) = {t1: (t1,ta,...,t,) €aT (T, -]} -

Assuming the validity of Claim 4, and writing
a:a+(T,||-||), b:b+(M7Ta||||)a
we have, for all T' > Tp,

/a§(Y)dY _ DTm‘

(65)
< / EY)dY — Tm/ C.dr
axb [0,Mm]r—1
4 /f(Y)dY‘ o / Crdr
b R —I\[0,M] 1
60),(66 2
(60),466) / |:/ E(t1f1 + T)dtr — CTTm:| dr| + —5Tm
[0,M]"—1 LJo(r,T) 3
(67)
< 6T™.

In order to prove the claim, we will first show that, for any n > 0, there
is Ty such that, for all || - || € N and all T > Ty,
logT — log || E;|| — logT — log || E;
mi mi
Indeed, suppose that ¢; € 9(7,T), that is,

(o (500))| <
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Write u = max,¢ 7 As(B1) < m1. Then we have
T

(oo (Zeo))]-1 2 s

=1 (4,k): E; €V},
— Z et AR (B1) 207, th(ﬁi)Ej H
(jsk): Bj€Va
= |lemt B+ 3 (B I tA(B) EJH

(4,k):k¢ T ,E; €V

> ™ || - O

(here C' is a constant depending only on N and M). Adjusting C' if neces-
sary, we obtain

e™b|| B, ||(1 - Celv—mltt) < 1. (69)
Taking t; and T large enough we can ensure that
—log (1 — Ce(ufml)tl) <n,
and by plugging this in (69) and taking logs, we find
maty <logT —log || E;| + 7.
This proves the right-hand inclusion in (68). The proof of the left-hand
inclusion is similar.
For any o € ® . &, a(Y0_, tiBi) =00 00 and hence
suh (o(S, 68) 1
(35— tiBi) t1—00 2

Hence for fixed 7,

(i tifs) _ (i tifi) s,

el 622:1 t;
_ [Taeo sinh (o357 #:6:))™ o iies b
629( 22:1 ti/i;)

(S i) ¢
acd
~ . mOC
R (1)2"@% 11 (Smh (a(%j;"_ltiﬂi))) it
t1—oo \ 2 ae&) ea i=1 tzﬂz)
=£(7).
Note also that the convergence is uniform for 7 in compact sets. It follows
that .
&(7) [y € dty

(70)

— 1,
fa(r,T) f( erzl tzﬂi)dh T—00
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and the convergence is uniform for 7 € [0, M]" 1.

We now have

Jotery €(Xizs t1Bi) it @ E(T) forry €1

lim

T—s00 c;rm T—o0 c;Tm
(68) . é(T) fO(IOgT*108||Er||)/m1 etrdty
- T—00 CTTm

3 T \'™ (6

TR0 (69 |
T—00 C.T™ \ | E;||

The convergence in the above expression is uniform in 7, therefore Claim 4

is valid. This completes the proof of the proposition. o

8 Balanced Semisimple Groups

As a corollary of the computations in the previous sections, we obtain some
information about balanced semisimple groups (cf. Definition 2.9). First we
have

ProprosITION 8.1. If D is a matrix norm distance function, corresponding
to a representation ¥ : G — GL4(R) C Maty(R) with compact kernel and
a norm | - || on Maty(R), then the condition that H is balanced depends
on ¥ but not on || - |.

Proof. Let || - |, || - ||' be two norms on Maty(R), and suppose that H is

balanced with respect to ||-||. Then for some C' > 1 and every x € Maty4(R),
]

< el < Cllall. ()

Let H;, i« = 1,...,t, be the simple factors of H and let o; : H — H;
be measurable sections. Given j € {1,...,t}, g1,92 € G and a compact
L C Hj, let

St = Srlg1,92) = {h € Hrlg1,92) : 0j(h) € L},
Hr = Hrlg1,92) = {h € H : ||g1hgo|' < T},
St = Stlgi, go] = {h € Hylg1,92] : 0j(h) € L} .
It follows from (71) that
Séw C Scr and HT/C C Héw

It is a consequence of Theorem 2.7 that

. MHer)
limsup ———+ <
T—o0 A(HT/C)
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Therefore
AMSy) o ASer) _ MSer) MHer)
MHT) = MHyie)  MHer) MHyyc) T—-oo
This shows that H is balanced with respect to the norm || - ||’ o

We also have the following result, showing that balanced representations
of semisimple nonsimple groups are rather atypical.

ProproOSITION 8.2. Let H be a semisimple nonsimple Lie group, realized as
a matrix group via an irreducible representation ¥ : H — GL(V'). Suppose
condition G is satisfied. Then H is not balanced.

Proof. Let H = Hy---Hy, t > 2, be a representation of H as an almost
direct product, let K be a maximal compact subgroups of H, let A be an
associated split Cartan subgroup of H, and for each i € {1,...,¢} write
A; = H; N A, so that A; is a split Cartan subgroup of H;. We write
® =Py U---U P, where ®; is the root system corresponding to (H;, A;).
Also fix measurable sections o; : H — H;.
Let the notation be as in §7. There is a partition
A=AU---UA;

of the simple roots of a such that, for each j € {1,...,t}, A; is a set
of simple roots for a;. Assume by reordering that oy € Ay, and let j €
{2,...,t}. Since A is indexed by {1,...,r}, we think of A; as a subset of
{1,...,7r}. For each M > 0 and 7" > 0, and each norm || - || on Mat4(R),
define

T
o (M, T, -]|) = {Y = sificat(T,]-]):Vied;, s < M}-
i=1
Then a; Na™ (M, T, || -||) is compact for each M > 0 and hence
L=L(M) = Jo;(K exp(a® (M, T, | - ) K) C H;
T
is precompact.
Now let g1 = g2 = e, let C be as in Theorem 7.4, let 0 < § < C, and
let b(M,T,|| -|) be as in (61). Since the complement of b(M,T,| - ||) is
contained in a™ (M, T, ||-||), we see that for large M (60) contradicts (17). o

9 Riemannian Skew Balls and Volume Computations

Suppose G is a connected semisimple Lie group and H is its connected
semisimple Lie subgroup. The main result of this section is a computation
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of the asymptotics of the volume growth for certain ‘skew balls’ in H, with
respect to a symmetric space distance function.

Before formulating the precise result we introduce some notation. We
are given a semisimple Lie group G, a semisimple Lie subgroup H and a
maximal compact subgroup K. It follows from a theorem of Mostow [Mo]
that for a conjugate H' of H, we can choose a maximal compact subgroup
L of H' respectively so that L. C K and split Cartan subgroups D and A of
G and H' (associated to K and L) respectively so that A C D. Let g,5,0,a
denote the corresponding Lie algebras.

Let X = K\G be the right-symmetric space of G, and let P : G — X,
d(-,-) be as in §2.6.2. For the case of the left-symmetric space G/K, see
Remark 9.5 below. We will write § = P(g) to simplify notation. Our
goal will be to determine the asymptotics of the volumes of all skew balls
Hrlg1,g2], as in (7). Since applying a conjugation in G permutes the set
of skew balls, with no loss of generality we will replace H with H'. The
Riemannian metric on X induces a scalar product (-,-) on 2. We denote
the corresponding norm by || - ||, and write

W={veo:|Y]|=1}, a®=and’
We recall the following facts about the geometry of X, see e.g. [B], [E] for
more details.

PROPOSITION 9.1. (1) X is a complete Riemannian manifold of nonposi-
tive curvature.

(2) The map 0 — X, Y — P(exp(Y')) is an isometry. In particular, the
submanifold P(D) is a totally geodesic subset and for any Y € °, the path

t— vy (t) = eexp(tY)
is a unit speed geodesic. There is a continuous Busemann function f :
X x 9% = R such that

tl_iglod(’YY(t)ax) —1= /B('Ta Y)
and the convergence is uniform over compact subsets of X x 0°.
(3) Forany g€ G,z € X, and Y €2°,
tlim d(g exp(tY),;v) — d(g exp(tY), é) = B(x,Y)
— 00
and the convergence is uniform over compact subsets of G x X x 0°.

Proof. Parts (1) and (2) are well known. To prove (3), note that
d(eexp(tY),gexp(tY)) = d(e, g),

that is, {gexp(tY) : ¢ > 0} stays within bounded distance of the geodesic

{eexp(tY) : t > 0}. Now the result can be proved using [B, Prop.2.5]. o
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Let a' be a positive Weyl chamber in a that corresponds to a system
of positive roots @ C ®. For T > 0, put af = {a € a* : |ja]| < T}. We
will require the following standard fact concerning the functional p defined
in (47).

LEMMA 9.2. There is a unique Yy ,x € af Nint at such that p(Ypax) =
maxy ¢ o+ p(Y).

With this notation we have
Theorem 9.3. Let G be a semisimple Lie group and H a connected
semisimple subgroup. Then for any g;, g2 € G,

A(Hrlgi, g2]) ~ Clg1,g2)T(* V2T, (72)
where d = dim A, § = 2p(Yax), and

C(91,92) Z(/LGXP (—dB(g1¢, —Ymax))cw)

x </Lexp (—55 (Efl,ymax)) de) .

The convergence in (72) is uniform for g1, g2 in compact subsets of G.

We will need another standard result about integration of exponential
functions on balls. Lebesgue measure on R" is denoted by dY. We call
S C R" a convez cone S is convex and for any s € S, the ray {ts:¢ > 0} is
contained in S.

LEMMA 9.4. Let A be a linear functional on R", and let § = maxy ¢+ AY).
Assume that S C a™ is an open convex cone such that § = max, catns AY).
Then there is a constant C' such that
PNy ~ [ AW ay ~ T DT,
a}'ﬁS a}'
Proof of Theorem 9.3 assuming Lemmas 9.2 and 9.4. Define £ by (50).
Let

arlgr,g2) = {Y € a* : d(gi exp(Y)go,€) < T}
af = affe,e] ={Y ea :|[Y| <T}.
First, we determine the asymptotics of

def
7/’91,92 (T) = f(Y)dY
ﬂ;[gl,gz]
as T — oo with uniform convergence for g1 and g in a fixed compact set
FE C G. To do this we will replace £ by an exponential function.

By the triangle inequality, there exists C = C(E) > 0 such that for

g1,92 € Ea + + +
ar_cle,e] Cagplgr, g2] Car e el. (73)
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Expanding (50) we obtain that there are Aj,..., Ay € a*, a1,...,a; € R

such that
e2r(Y)

k
_ A (Y
V) =~ —|—;aie )

where m =3 .o Ma, and for all Y € inta™,
2p(Y) > max \;(Y).
(2

Therefore .

1 .
V) =g [ ay Y [ AWy
a+[91,g2] =1 a;[ghQZ]

Let C' be a constant such that for all 7 > 0 and all ¢g1,90 € E,
the Lebesgue measure of a}.[g1,gs] is at most C'T7. Let Yiax be as in
Lemma 9.2. Using the compactness of af’, we find that there is 7 > 0 such
that for each i € {1,...,k},

max )\ (Y) <0 —7.
Yeaf'
This implies that
_ k .

Vg1,90 (T)-2"m fa;[gl,m] e?Y)dy _ Zizl a; at[g1,92] MY)dy

oT - eJT
i1 C'T" ay MaxXyeat o N

<
= 0T

k
< (emaxi /\i(C)CITr Z |az|> efnT
=1
0. (74)

T—o0
Hence, in order to derive the asymptotics of g, g,(T), it suffices to find

> 0 such that
/ V) Y ~ Dy, 4, TU4D/2¢T (75)
‘1;[91,92]

(&

Dg1 g2

as T — oo uniformly on g1,¢92 € E.
We will use polar coordinates on a™. Thus we will represent each Y € a™
as tw, where t = ||Y]| and w € a = a® Na'.
Let
rr = TT(waglaQQ) = inf {T. >0:rw ¢ a’}t[gl’gZ]}

= inf{r >0:d (ﬁ exp(rw),f) > T} ,
Ry = Ry(w,g1,92) =sup {r > 0:rw € aflg1, 9]}
= sup {T >0:d (g_l exp(rw),E) < T} .
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Then
{rw:wed,0<r <rp} Ca}'[gl,gg] C{rw:weal,0<r<Ryp}. (76)
By (73), rr(w,91,92) — o0 as T — oo uniformly for ¢1,¢90 € E and
w € al. S
Let sp > 0 be such that d(ﬁexp(sTw),ggl) =T and s — oo. It
follows from continuity that this condition holds for s = rr as well as for
st = Rr. By Proposition 9.1(3),
lim (T — s7)

T—00

= Tim [d (grexp(srw), 5" ) —d (g7 exp(s1w),€) +d (g7 exp(s7w), @) —s7

T—o0
= 8(g"w) + lim (d(zexp(~srw), 1) - s7) (77)

=8 (95" \w) + B8 (g1, ~w).
In particular, this shows that
Rr(w,q1,92) —rr(w,g1,92) =0 as T — o0 (78)
with uniform convergence for w € a! and g1, g2 € E. By (76),

/A(TT(Wa91792))dw§/ e2PYV)qy
1

a a}.[91,92]

< /1 A(Rr(w, g1, 92))dw,
a
where

A(r) = /r e?P(w) gd=1gg
0

and dw is a volume form on a! such that dY = ¢4 'dtdw. One can check
that for every € > 0, there exists 6 > 0 such that A(r +6) < (1 4+ ¢)A(r)
for all sufficiently large 7. Thus, it follows from (78) that

/1 A(Rr(w, g1,92)) dw ~ /1 A(rr(w, g1, 92))dw

a
as T' — 00, uniformly on g1, g2 € E, and to prove (75), it suffices to derive
asymptotics of one of these integrals.
Let

1 _
Cg1,92 = /6 (92 7Ymax) + ﬁ (gla _Ymax) .
Let € > 0. Since the Busemann function is continuous, we may choose an

open cone S C a™ sufficiently close to the ray through Yi.x, so that for
weSNal and g1,90 € E,

18 (027w) + BT, ~w) — o] <=
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Then by (77) for all sufficiently large T, g1,g2 € E, and w € S Nal,
‘T —Cg1,92 — TT(W,91,92)| < 2.
This implies that
+ ) 0 +
SN OT ¢y, gy 26 C {rw:wea’NS, 0<r<rp} C SN OF ¢y gyt 267
hence, using Lemma 9.4,

2p(Y)
lim su fal A(TT(W’ L, 92)) du = limsu fa;_cgbm +2e € dy
Tom  TW@ D2l TP T a2 T
d— S(T—
< lim sup (T ~ Cg1,92 + 26)( 1)/26 (T'—cgy,95+2¢)
T—o0 T(d-1)/20T

Since cg, 4, is bounded, convergence is uniform for g;, g2 € E.

Similarly, one has

5(_591,92"'25)_

=€

A g1, d
lim inf fal (rr(w, 91, 92)) dw
T—o0 T(d_l)/Qe‘sT
and since € was arbitrary, we have
/ A(rp(w, g1,92))dw ~ e o192 L D/20T
1

a

as T' — oo. This proves (75) with

Dy, g, = e 01,92 — exp (—5 (/3 (g{l’YmaX> + 8 (g1, _Ymax)>) )
Thus we have proved that
1/}_(;1,92 (T) ~ Dgl,g2T(d71)/266Ta

as T — oo, with uniform convergence for g1,g2 € E.
We now obtain (72) via (49). o

> 65(_091 192 _25)’

REMARK 9.5. We use notation from section 2.6.2. To treat the case of
the left-symmetric space G/K, we observe that the transformation
g+ g~ maps Riemannian balls {g : d(P(e), P(g)) < T} to the balls
{g : d'(P'(e),P'(g9)) < T}. Hence, denoting

Hrlg1,902] = {h € H:d'(P'(e), P'(91hg2)) < T},
we have

Hrlgi, 9] = Hrlgy ', 977"

This implies Theorem 9.3 for the balls H}.[g1, g2]-

Proof of Lemma 9.2. For any x € a*, let v, € a so that for all Y € a,

(v, Y) = x(Y).
Since a; is strictly convex, maxy¢q, p(Y') is attained at a unique point which
we denote by Ynax. It is a standard application of Lagrange multipliers
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that Ymax = v,/||v,||, so it remains to show that v, € int a™, that is, for all
a € P,
(va,vp) > 0. (79)
The inner product ( -, -) is invariant under the action of the Weyl group,
that is, for any o, 8,7 € @,

(Vra(8) Vra(n) = (v8:77)
where 7, : ¢ — a* denotes the reﬂection in the root a. Let

¥ = ®" \ span(a ngﬁ,
pev
so that
p=p +3 Z mgf.
Bed+t\ VU

It is a standard fact about root systems (see e.g. [Wa, Prop.1.1.2.5])
that 74(p") = p'. This implies that
(’Uaavp’) = (/U'ra(a)avra(p’)) = (U—a’lup’) = _(Uaavp’) )
so that (vg,vy) = 0. Moreover any 8 € &+ \ U is a positive multiple of «
and hence satisfies (vq,vg) > 0. Therefore

(Vas Vp) = (Va,vp) + 3 Z mg (va,vg) > 0,
BedT\T
and we have (79). o

Proof of Lemma 9.4. Let
gr(z) = e—%5(r—1)/2 (2 - %)(r—n/z when 0 < 7 < 2T,
0 when z > 2T,

and let
g(z) — 2(7‘71)/2 efzz(rfl)/Q.

By Lebesgue’s dominated convergence theorem,

/0 gr(2)dz —>/ z)dz =C (80)

By rescaling, we may assume that § = 1. Let Vol, ; denote Lebesgue
measure on the subspace ker A. By translation it induces a measure on each
affine subspace parallel to ker . For each z € [ T,T],

Brgy={Y € B(0,T) : A(Y) =z}
is a ball of radius vT2 — 22 in a translate of ker A and hence
VOl'r—l(BT,m) — C, (T2 _ 1_2)(7‘—1)/2’

where C' is a constant depending only on 7.



GAFA DISTRIBUTION OF LATTICE ORBITS

Decomposing the integration into slices parallel to ker A, we have

fB(o,T) Ay B /T e*Vol,_1(Br,)

IT(r—1)/2 T2 dz

T r—1)/2
o T (TQ_mQ)( )/ .
- 7 eTT(r-1)/2 *

2T _ (r—1)/2
= CI/ e_z (@) dz
0

o
= C'/ gr(z)dz .
0
Applying (80) we obtain
[ Wy ~orebi,
B(0,T)

43

(81)

Since B(0,1) is strictly convex, the maximum maxy¢p(o1) A(Y) is at-
tained at a unique point Yy. By the hypothesis Yo € S C int a™. There is
e > 0 such that for all Y € B(0,1) \ S, A(Y) < § — €. Furthermore, there

is a cube C C R" of side length 2, such that

B(0,1)~ScC
and
maxA(Y) <d—e.
YeC
For T > 0, let
TC={tc:ceC,t€[0,1]}.
We have

/ e)‘(Y)dYg/ 2V qy
B(0,T)~S TC

< (27)" max e*Y)
YeTC

< o't
Comparing with (81) we obtain
fB(o,T)\S Ay
fB(o T) ANy

and so fB(O NS AY) gy ~ fB(O ) erY) dY. The assertion follows.

—T—00 0 )

10 Ratner Theory and Linearization

Our goal in this section is to prove Theorem 2.10. We will derive it from

the following result:
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Theorem 10.1. Suppose the general setup holds, where H is connected,
semisimple, and balanced, and assume also that UC and D1 hold. Suppose
go € G satisfies Hn(gg) = G/T'. Then for every F € C.(G/T") and any
gi,92 € G we have

1 / ,
e F(h(go)) dA(h) — Fdm/. (82
N(Erlar,92) Jripignan (hm(g0)) dA(h) —— - (82)

The proof of Theorem 10.1 relies on the fundamental results of Ratner
on the dynamics of unipotent flows on homogeneous spaces, and subsequent
work of Dani, Margulis, Mozes, Shah, and others. Specifically, we use a
result of Nimish Shah.

We say that a sequence {h,} C H is strongly divergent if its projection
on every simple factor is divergent. In the case of a matrix group, and using
the notation of §2.7, {h, } is strongly divergent if and only if {o;(h,)} C H;
has no convergent subsequence for every simple factor H; of H.

Theorem 10.2 (Shah). Let H be a connected semisimple Lie subgroup of
a Lie group G. Let A be a split Cartan subgroup of H, A" a closed Weyl
chamber and K a maximal compact subgroup of H. Let I' be a lattice
in G. Let p be a finite Borel measure on K that is absolutely continuous
with respect to Haar measure on K. Suppose that for x € G/T', Hz is
dense in G/T. Then for every f € C.(G/I') and every strongly divergent
sequence {an} C AT,
/ flapkz)du(k) — p(K) fdm' as n— oco.
K G/T

REMARK 10.3. Theorem 10.2 is proved, but not formulated explicitly,
in [S] (see the proof of Corollary 1.2).

Proof of Theorem 10.1. Let F € C.(G/T), and assume without loss of
generality that F > 0. Let gg, g1, 92 be as in the statement of the theorem.
In proving (82), to conserve ink and computer memory, we will omit g;
and go from the notation. Thus Hy stands for Hr[g1, g2], D(x) stands for
D(g1xg2) and so on.

Fix ¢ > 0, let &g > 0 such that (1 +¢¢)? < 1+¢, and by D1, let § > 0
such that for all large enough T,

A (Hetopr) < (14 €0)X (Hr) -

By UC, there exists a symmetric neighborhood O of identity in K such
that for all g € G and k € O,

D(gk) < (1+6)D(g). (83)
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Since K is compact, there exists a finite cover

N
K=Jto, 0, .. tveK.
i=1
Denote by x the probability Haar measure on K. Using a partition of

unity, there are measures u;, 2 = 1,..., N on K, absolutely continuous
with respect to x, such that

N
suppu; C 4,0, i=1,...,N and Z,ui:n. (84)
=1

Let v denote the measure on a™ which is equal to £(Y)dY, where dY
is Lebesgue measure. We decompose A as in (49), so that

dA(R) = dr(kr) dv(Y) dr (ko)

for k; € K, Y € a™, h = ky exp(Y)ks.
Let H = Hy--- H; be the decomposition of H into an almost direct
product of simple factors and let o; : H — H; be measurable sections.

Taking z = m(go) in Theorem 10.2, we find that there are compact subsets
C; C Hj, j=1,...,t such that for any h € H

<eé€o, (85)

‘/I(F(hkﬂ(go))dui(k) —Mz'(K)/ Fdm!

G/1

where N
H:{hEHZUj(h)¢Cj, jZl,...,t}.

For each k1,ke € K and T > 0 write
b(k1, ko, T) = {Y cat:Vy, oj(exp(Y)) ¢ C;, D(ki1exp(Y)ks) < T}.

By enlarging each C; we may assume that (85) holds for any h =
kiexp(Y), with ki € K, Y € a such that oj(exp(Y)) ¢ C; for j =1,...,t.
Further, we may assume that

ﬁIT: U klexp (b(kl,kg,T)) kg.
k1,k2€K

It follows from (83) and (84) that if ko € supp p; then for all 7" > 0,
b(kl,kQ,T) C b(kl,éi, (1 + 5)T) C b(k‘l,kg, (1 + (5)2T) . (86)
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Writing = 7(go), we have

/~ F(hz)dA(R)
Hr

_ /K di(ky) /K drs(ks) /b o F e haz) ()

N
(8_4) K ; X T vV
84 Z/ d (kl)/v d,uz(kQ)/b(kl’kz’T)F(kle p(Y ko) du(Y)

(86
Z / dr (k) / dv(Y) / (k1 exp(Y)koz)dp;(k2)
kl,“(l—F(S)T

(835) (1 + ) Fdm/ Z/ dr(ky) / i (K)dv(Y)

G/F kl; 11(1+5) )

(86)

< (1+&) / Fdm/ Z/ dr(k1) / duz(kz)/ dv(Y)
G/T b(k1,k2,(146)2T)

<(1+ 60))\(H(1+5)2T) / Fdm'
ar

< (14 €0)) (HT) / Fdm'.
G/r

Thus
1

A(Hr) /g,

Since H is balanced and ¢ was arbitrary we have

1
lim su 7/ F(hzx)d\(h S/ Fdm'.
T—>oop>‘(HT) Hp (ha) dA(h) G/T

The proof of the opposite inequality for liminf is similar, and we have
proved (82). o

F(hx)dA(h) < (1 +¢) /G/F Fdm'.

Proof of Theorem 2.10.  Clearly (xx) follows from (82) if we replace h
by h~!l. To justify this, let

D(g)=D(g ")
and apply Theorem 10.1 to G,H,D instead of G,H,D. Note that D1

for D holds since H is unimodular, and UC for D can be proved as in
Propositions 6.2 and 6.3. O
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11 Applications

In this section we prove the results stated in section 1.5.1. Note that
Theorem 1.1 follows from Corollary 2.12.

Proof of Theorem 1.2. Suppose that the general setup holds for a balanced
semisimple Lie group G and a standard distance function D. Let I" be a
lattice in G.

First, we suppose that G is a closed subgroup of a Lie group L, A is a
lattice in L, and T" acts on X = L/A by right multiplication. Let H = G x L
and G be the diagonal embedding of G in H, and let D((g,9)) = D(g),
g € H. Our choices of G, D show that the general setup holds, and that
G, D are standard. Since T'm(gy) is dense in L/A, G7'(yo) is dense in
H/(T x A), where yop = (go,e) and #' : H — H/(T x A) is the quotient
map. By Theorem 2.10, we find that (+) holds for G. Since the G-action
on H/(T x A) is isomorphic with the G-action on ¥ = I'\G x L/A, it
follows from Theorem 2.10 that () holds for the G-action on Y. Using
Proposition 2.6 we find that I1, I2 and UC hold, and using Proposition 3.1
we obtain the desired result.

Now we suppose that G acts smoothly on a Lie group L by automor-
phisms and I'-A C A. Thus, I acts on X = L/A. By Proposition 2.6, I1, 12
and UC are satisfied. Define Y = G x X and Y = Y/T as in §3. The map
Gx L — Gx X induces a G-equivariant homeomorphism of (Gix L)/(I'x A)
and Y. Let #' : ¥ — Y be the quotient map. Since Gn'(e, o) = Y, the
statement follows from Theorem 2.10 and Proposition 3.1. o

REMARK 11.1. Arguing as in the proof of Theorem 2.10, it is possible in
Theorem 1.2 to replace v~ with 7.

Proof of Corollary 1.3. In terms of the identification (3) of Fy4 with G, the
map -

Fa — Matg(R), f— Q(f)
is given by

G — Maty(R), g~ ‘gAgg, (87)
where Ag is the matrix of the quadratic form () with respect to the standard
basis e. The set ~

Q(F4) = {'9Aqg : g € G}

consists of symmetric matrices that have the same determinant and the
same signature as Ag, and we have an identification

p:H\G = Q(Fq), p(r(9)) ="g9Aq9 = Q(ge),
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where H is the orthogonal group of Q. It can be shown that Q(F,) is an
algebraic variety and that p is an isomorphism of algebraic varieties.

Given a norm || - || on R¢, we define a norm on Maty(R), which we also
denote by || - ||, by

Il = max lgeill, 9= (9i) € Mata(®).

Then for g € G, ||lge|| < T if and only if ||g|| < T. Let I' = G(Z) and
A C Q(F,) as in the statement of the corollary. We have

#{f e Fa(Z): IFI < T, Q(f) € A}
=#{yel:|I<T, Qve) € A}

=#{vel: | <T, 7(v) € p~(A)}.

Let H? be the connected component of the identity in H. Since d > 3,
the group H? is a connected semisimple Lie group, and it is simple unless @)
is of signature (2,2). If H is simple, then it is balanced. If H is of signature
(2,2), then it can be shown by a direct computation that it is balanced.

Let P : H°\G — H\G be the projection map. Since P has finite fibers,
the set A = P~1(p~1(A)) is a relatively compact subset with boundary of
measure zero with respect to the smooth measure class on H°\G. It is a
well-known consequence of Ratner’s orbit-closure theorem (see e.g. dense
in G/T. Thus we may apply Corollary 2.12, and obtain that

#{yeT:|ly| <T, yH® € 4}
~m({geG:llgl <T, gH® € A})
=m({geG:llgll <T, Qge) € A})
=m({f € Fa: If| <T, Q(f) € A}).

This proves the first assertion, and shows that these quantities are asymp-
totic to v(A)A(Hr), where v is the measure vy, for o = 7(e) defined
by (12).

For the second assertion, we need to compute the asymptotics of A\(Hr).
We use the notation of §7. For the volume computation, we may assume
that @ is given by

Q(T1,...,Tprg) = T1Tprqg + - + TpTgi1 +:c12,+1 —I—...+:c2.
Then the split Cartan subgroup of SO(Q) can be chosen to be
A = diag(e®,...,e°?,1,..., 1, e %7 ... e %),
and the weights of the representation map Y = (s1,...,5p,0,—5p,...,—51)
to its coordinates s1,...,sp,0,—5s1,..., —5,. Choosing an order on roots so
that the positive root spaces are upper triangular, we find that the positive
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roots are
si—s8;, 1<41<j<p, multiplicity=1,
Si, 1<:<p, multiplicity = ¢ — p,
si+s;, 1<i<j<p, multiplicity =1.
The dominant weight is A;(s) = s; and

2p(s) = Z(p +q—2i)s;.

First, we consider the case when p < g. Then the system of simple roots
is
{s1—82,...,8-1— 8p,Sp}.
The dual basis of a is 8, k =1,...,p, where
Br=(1,...,1,0,...,0) (k ones).

and
By 1 1
B = —— = yenes ,0,...,0].
2p(Bk) kp+qg—k—1) klp+q—k—1)
We have \1(Bk) = m. Note that A;(8k) is strictly decreasing for
0<k<p< ’%_1. Thus, m; = zﬁ and condition G is satisfied, so by
Theorem 7.4

A Hyp) ~ CTP=Y),

Now if p = ¢, it may be shown that condition G is not satisfied. Recall
that in Remark 7.5(3) we mentioned a generalization of Theorem 7.4 in the
case when condition G does not hold. Using this generalization we are able
to show that in this case the asymptotics is C(log T)TP?®~1). We omit the
details. o

Proof of Corollary 1.4. For both assertions we apply Corollary 2.12 to the
matrix norm distance function corresponding to ¥ and ||- ||, with H\G = S
and x = P(sg). Note that all conditions are satisfied, and v, in our case is
equal to (s, s) dv(s). So it remains to calculate the density a.

We begin with the first case. Since V=V @ Vg, forany s € S, h € H,
U(sh) = U(s)+ ¥(h)—1d, where Id is the identity matrix on V. Therefore,
given a bounded Sy C S there is M > 0 such that for h € H and s € Sy,

D(h) — M < D(sh) < D(h)+ M.
This implies that for s1,s9 € S,
)‘(HT*M[e’ e]) < )‘(HT[SMSQ]) < )‘(HT-FM[G’ e]) :
Via Theorem 2.7 we obtain that e = 1, and the first assertion follows.
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For the second assertion, we proceed as before to calculate . Note that
for s € S and h € H and using the p-norms on Vg and Vg,

| T(sh)|| = (dim Vs - dim Vi)~ || s(s)]| - || T u ()] -
Therefore
Hr[so,s] = {h € H : ||[¥(sohs)|| < T}
={h € H: | ¥(hsos)|| < T}
— {he H: | Ua(h)]| < T},

where

(dim Vs - dim Viz) /P
[ s(s0s)ll

Cl —

It follows using Theorem 2.7 that
. A (HT[SO’ 3])
= lim 2ATP020
also,s) = Jim =
. C(logeiT)¥ (1 T)™
= lim
Tso  C(logT)tT™

=

= [ ¥s(s0s)
with
¢ = (dim Vg - dim Viz)™?.

This proves the second statement. O

12 Examples

In this section we collect some examples showing that our hypotheses are
not automatically satisfied, and that they are important for the validity of
our results.

12.1 Condition S. Let
S'€zeC: 2| =1}, GE][s, HE [[{+1},
1 1

equipped with the Tychonov topology, and let 7 : G — H\G be the natural
map. Then G is compact and H is a compact subgroup. Any section
o : H\G — G induces a section {£1}\S! — S! in each factor. Let U
be an open subset of H\G. By the definition of the product topology
on G, 77 1(U) contains a subset of the form V1 x --- x V. x [73; S*, where
Vi,...,V, are open, and in particular contains a copy of S' in one factor.
Since there is no continuous section {£1}\S' — S, there is no continuous

section defined on .
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12.2 Condition D2. Let G% SL(3,R) and let
etcost —efsint =z
H= elsint e'cost Y rx,y,t € R
0 0 e 2

In coordinates t, z, y, the left-Haar measure on H is given by d\=e?*'dx dy dt.
For a constant ¢ > 1 to be specified below, let D be a matrix norm
distance function given by D(g) = ||g||, where

def
i)l % max {\fea?, + a2y, yfead, + a3y, \fa%y + ady, lasi ool ass | }

We first compute the volume A\(Hy) along two subsequences. In (¢, x,y)
coordinates, Hr is given by the inequalities

Vat+y? < T, e_2t<T,

f(t) <T, where f.(t) = eV c2cos? t + sin®t . (88)
For ¢ > 1 small enough, f.(¢) is a monotonically increasing function

of t. This means that (88) is satisfied along a ray of the form (—oo,7),
where T' = f.(7).

\(Hr) = /H e dt dx dy
T

-
= / / et dt dz dy
—logT/2 Jx2+y?2<T? (89)

-
= 7TT2/ e?tdt
—logT/2

=IT%(* — (2/T)?%) .

Now let 7 = 7, = 2nm, for n € N. We have for T}, = f.(,,) = ce*"",

and

A(Hr,) = ng ((Tn/0)® = (2/Tn)?) ~ ;?Tﬁl as m — 00. (90)
Similarly, for 7, © (2n+1/2)7, Sy, = fe(m) we have
MHs,) = 282 (52— (2/Sn)) ~ 258 asn—oo.  (91)

In particular the quantity A(Hp) is not asymptotic to a function of the
form kT* as T — oo for any constant k.
Now taking
0 1
gi=g2=1-1 10
0

0
01,
0 1
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and computing the shape of Hr[g] 1 go] in (t,2,y) coordinates we find the
role of sin and cos switched in (88). This implies that the roles of 7,, and
S, are reversed, that is,

_ ™ _ T
A(HTn[gl 1592]) ~ ETsa A(I{Sn[gl 1792]) ~ @Sﬁ .

In particular,
AMHr[9: 59D 5 AMHse el 1
A(HTn) n—0o0 ? )\(HSH) n—oQ 62 ?
and D2 is not satisfied.
To show that condition D2 is indeed necessary for the validity of our
results, we have the following:

Theorem 12.1. Let H,G, || - ||, {Sn}, {Tn} be as in the above example.
Then there are two equivalent but different measures v1, vo on H\G such
that for any lattice I’ in G, any zo € H\G such that H\G = zy I, and any
bounded A C H\G with v;(0A) = 0 we have

N, (4, z0)
) W n:Zo vi(4) (92)
an NTn (A, .CE())

Sketch of proof. Suppose I' is given. The subgroup of H given by the
requirement ¢ = 0 is the unipotent radical of a parabolic subgroup of G.
Using the methods of [S], one can show that condition () holds for any
go € G for which 2o = H\G (where ¢ = 7(go)) -

We now claim that D1 is satisfied. Let N be any bounded collection of
norms on Matg(R). For |-| € NV, let

Hyl = {heH: |1 <T}.

We will show that there is a function f(|-|,7), which depends continuously
on both its arguments, such that

A(Hz) ~ f(|-|, )T (94)
and such that, for all |- | € M and all T > 0,
f(-1,a) = f(-1.T), where @ = ?7. (95)
It is easily seen that this implies D1.

For
w = (70,0, 50) € S* = {(z0,Y0,50) : 7§ + yg + s5 =1}
and for T, r > 0, write
rso coslog(rsg) —rsgsinlog(rsg) TTQ
h(w,r) = | rsgsinlog(rsg)  rso coslog(rsy) Yo
0 0 (rso) 2



GAFA DISTRIBUTION OF LATTICE ORBITS 53

and
7(w, T,|-]) ={r>0:|h(w,r)| <T}.
Then, letting dw denote the standard volume form on S?, we have

)\(H;‘) z/ / 30r3drdw.
52 Jr(w,Ty|-])

Also write
cosf —sinf 0 0 01
Ey=|sinf@ cos® 0], E;=1{(0 0 0],
0 0 1 000
0 00 000
E,=10 0 1], Es=10 0 0
0 00 0 01
Then we have, for w = (zg, 40, 50) € S2,

1
T(w,T, | - |) = {7" > 0:|rsoElog(rse) + TT0EL + 1Yo B2 + —5 F3

(rsp)?
Define
T(w, T, [ - [) = {r > 0:|rsoBiog(rsy) + rzoB1 + ryoBa| < T}

={r>0:r <T/|E(r,w)|},

<1},

where

E(r,w) = s0Eiog(rso) T ZoE1 + yoEs -
By the computation (89), and since the collection N is bounded, there are
constants ¢, ¢z such that for all | -| € NV:

\E NCH
0<01§11Trgiorc1>f (T4T) Sli;n_f;p (T4T) <y <. (96)
Given ¢ > 0, there is a constant C such that for each w with sy > ¢,
and each |-| € N, the symmetric difference of the sets 7(w,T,| - |) and

T(w,T,| - |) is contained in an interval of length C/T. Using this and (96)
it is not hard to show that

A(HY) ~ / / ridr dw. (97)
52 J7(wT})

Since E(r,w) = E(ar,w) we have, for all T > 0 and w € S?,
T(w,aT) = a7(w,T),
therefore by a change of variables, for any w € $2,

/ r3dr dw = a4/ rdrdw, (98)
T(w,aT) T(w,T)

Jor Jyguryy 7 do
$(0-17) = fo ey

hence
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depends continuously on both its parameters and satisfies (95). Now (94)
follows from (97) and (98).
Now we may apply Theorem 2.2 to obtain, for any ¢ € C.(H\G),

Scp,wo (T) ~ Scp,xo (T) :
Fix a sequence t, = e?™"ty, for any ty > 0. The ratio

H, Ta—1
Qg (91592) = nligolo A( ;n([.‘lg;tn;gﬂ)
exists, is positive, and depends continuously on g;,g2 by (94). Let v, be
defined by (12), but using a4, in place of a. Now repeating the arguments
of §5, but taking limits as » — oo, we obtain the conclusion of Corollary 15.
In particular, taking in turn ¢, = Sy, t, = T,, we obtain (92) and (93). Note
that the two limiting measures in this case are different by (90) and (91). o

12.3 Non-balanced semisimple groups. We now construct a non-
balanced semisimple group and show that Theorem 2.10 fails for this group,
i.e. find an action of this group on a homogeneous space which does not
satisfy (#x).

Let

H1:H2:SL(2,R), H:H1XH2.

Abusing notation, we consider H; and Hs as subgroups of H.

Denote by A; a Cartan subgroup of H;, a; its (one-dimensional) Lie
algebra, Y; a generator of ;. Then A = A; A, is a Cartan subgroup of H.
We will write (s1, s2) = s1Y1 +s2Y2 € a. With respect to these coordinates,
a root system of (H, A) is {£aq,*as}, where

a;(s1,82) = 2s;
and
CL+ = {(31,82) 181 2 0,32 Z 0} .
In the notation of §7 we have
p=s(+as), Bi=%, i=12.

We consider H as a subgroup of G = SL(2¢,R) where H is embedded
in G via the tensor product of irreducible representations of H; and Ho of
dimensions 2 and ¢ > 2 respectively. Note that the set of weights of a is

{(s1,80) —isi+jsa:ie{xl}, je{l—£,3—¢,...,0—1}},
and a highest weight corresponding to the choice of a* is
)\1(51,82) =51+ (6 - 1)82 .

We have 01

A(Br) = 5

=M (ﬁQ) ’

N =
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so condition G is satisfied, and by Proposition 8.2, H is not balanced, that
is, there is a bounded open L C Hj such that

N(HE
¢ = limsup (Hy) >0, where HE = {h=(h1,ho) : |h|| < T, hy € L}
T—o0 )‘(HT)
for some (any, see Proposition 8.1) norm || - || on Maty,(R). We have

CraM 5. There is a Q-subgroup M of G containing H; and an element
m € M such that m 'Hm is not contained in any proper Q-subgroup
of G. In particular, setting x = w(m) and I' = SL(2¢,Z) we have that
Hix C M7(e) = Mn(e) and Hz = G/T.

Assuming the claim is true, let Xo = LM7(e) C G/T". This is the clo-
sure of a locally closed submanifold of G/T, being the image of M/A x L C H
under the proper map (gA,¢) — fgz, where A = M N mI'm~'. Since
dim M < dim G, we have m'(Xy) = 0. Therefore, for any compact Ky C
G/T we can find ¢ € C.(G/T) such that fG/F pdm' < ¢/2and p|x,nKk, = 1.
It follows from the non-divergence results used in [S] that we can make Ky
large enough so that

. )\{hEHT:hLE¢K0} c
1 <.
Toeo A(Hr) 2

This yields

1
lim inf ———
0o A(Hr) /HT (hz) dA(h)
)\{hGHT:hLE EKoﬂXo}

> lim inf
= e \(Hr)

HE Hyp - K,
> liminf AT iy g M0 € T 2 he & Ko}

T—oo )\(HT) T—00 )\(HT)

2c—c/2>/ odm/,
G/T
and (xx) fails.

It remains to prove Claim 5. Let {u1,us} and {v1,...,vs} be the stan-
dard bases of R? and R’ respectively, and let B = {u; ® v}, a basis of
R? ® R¢ = R%. The Q-structure on @ is defined via B, and the H;-action
(respectively, the Hj) action on R?* is induced by its action on the u;’s
(respectively, v;’s). Now let M be the subgroup of G leaving invariant
each of the subspaces V; = span{u; ® vj,up ® vj}. Clearly each Vj is Hi-
invariant and hence Hy C M. It is also clear that M is defined over QQ
and hence M (e) is closed. It remains to show that there exists m € M
so that m~' Hm is not contained in any proper Q-subgroup of G. Suppose
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otherwise; since the number of Q-subgroups of GG is countable, this would
imply that there is a fixed proper Q-subgroup ' C G such that for all
m € M, m 'Hm C T. However it is not difficult to show (we omit the
computation) that the set {m 'hm : m € M,h € H} generates G, and this
is a contradiction.

12.4 A simple case revisited. Our results also enable us to generalize
Ledrappier’s result, discussed in §1.1, to general norms. Namely we have
Theorem 12.2. Let T" be a lattice in SL(2,R) and let || - || be a norm on
Mats(R). Suppose that v € V = R? satisfies v-T =V, and let dw denote
Lebesgue measure on R%. Then for every p € C.(V),

Sp(T) ~ (CF / so(w)av(w)dw) T, (99)

where cr > 0 is a constant depending on I' and

_ 00 —v2W1  —V2W2
av(w)_ (1 0) ( V1w v1we )'

Proof. Via the map
7:G—=>V, 17:9~(1,0)-9,
the space V'~ {0} is identified with H\G, where G = SL(2,R) and

m-fu= (10 )uees).

Note that Haar measures on H and G are only defined up to a constant
multiple; we equip H with the Haar measure dt, and choose Haar measure
p on G so that vy, ¢ is Lebesgue measure. This induces a choice u' of G-
invariant measure on G/T'. Since our results were formulated for the choice
making p’ a probability measure, we set cr = 1/u’'(G/T’), and m' = crp'.

We check that the hypotheses of Theorems 2.2 and 2.3 hold in this case.
For g1,92 € G,

-1

Hrlg1,92) = {u¢ : la+tb]| < T}
for a = g1go and b= g1 (9 9) go. This implies

T — T
{ut : |t‘ < #} C HT[gl,gg] C {ut : ‘t| < w}

Hence

A(Hrlg1, g2]) ~ % (100)

with uniform convergence for g;, g2 in a compact subset of G. In particu-
lar, hypotheses D1 and D2 are satisfied. Hypothesis (xx) follows from the
equidistribution of the horocycle flow [DS]. Thus, Corollary 2.4 applies,
and (99) holds for the function a,(w) as in Proposition 5.1(iv).
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To calculate ay (w), define Vo = {(x1,22) € V : 21 # 0} and assume that
v € Vp and supp ¢ C V. Consider a measurable section o : V' — G whose
restriction to Vj is continuous and defined by

I )
oz, 2) = | | w1 |-

T1

By (9) and (100),

_ . AdHT[o(v) T o(w)])
a(w) = [fim : \(Hr)

(3 o) o (3 0) o)

for v,w € V. This implies the corollary. If v ¢ Vi or supp ¢ ¢ Vi we

-1

complete the proof by taking a different section in the obvious way. o
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