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Abstract. We construct generalized polygons (‘parking garages’) in which

the billiard flow satisfies the Veech dichotomy, although the associated trans-
lation surface obtained from the Zemlyakov-Katok unfolding is not a lattice

surface. We also explain the difficulties in constructing a genuine polygon with

these properties.

1. Introduction and Statement of results

A parking garage is an immersion h : N → R2, where N is a two dimensional
compact connected manifold with boundary, and h(∂N) is a finite union of linear
segments. A parking garage is called rational if the group generated by the linear
parts of the reflections in the boundary segments is finite. If h is actually an
embedding, the parking garage is a polygon; thus polygons form a subset of parking
garages, and rationals polygons (i.e. polygons all of whose angles are rational
multiples of π) form a subset of rational parking garages.

The dynamics of the billiard flow in a rational polygon has been intensively
studied for over a century; see [FK] for an early example, and [DeM, MT, Vo, Zo]
for recent surveys. The definition of the billiard flow on a polygon readily extends
to a parking garage: on the interior of N the billiard flow is the geodesic flow on the
unit tangent bundle of N (with respect to the pullback of the Euclidean metric)
and at the boundary, the flow is defined by elastic reflection (angle of incidence
equals the angle of return). The flow is undefined at the finitely many points of
N which map to ‘corners’, i.e. endpoints of boundary segments, and hence at the
countable union of codimension 1 submanifolds corresponding to points in the unit
tangent bundle for which the corresponding geodesics eventually arrive at corners
in positive or negative time. Since the direction of motion of a trajectory changes
at a boundary segment via a reflection in its side, for rational parking garages, only
finitely many directions of motion are assumed. In other words, the phase space of
the billiard flow decomposes into invariant two-dimensional subsets corresponding
to fixing the directions of motion.

Veech [Ve] discovered that the billiard flow in some special polygons exhibits a
striking dichotomy. Namely he found polygons for which, in any initial direction,
the flow is either completely periodic (all orbits are periodic), or uniquely ergodic (all
orbits are equidistributed). Following McMullen we will say that a polygon with
these properties has optimal dynamics. We briefly summarize Veech’s strategy of
proof. A standard unfolding construction usually attributed to Zemlyakov and
Katok [ZK]1, associates to any rational polygon P a translation surface MP , such
that the billiard flow on P is essentially equivalent to the straightline flow on MP .
Associated with any translation surface M is a Fuchsian group ΓM , now known

1but dating back at least to Fox and Kershner [FK].
1
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as the Veech group of M , which is typically trivial. Veech found M and P for
which this group is a non-arithmetic lattice in SL2(R). We will call these lattice
surfaces and lattice polygons respectively. Veech investigated the SL2(R)-action
on the moduli space of translation surfaces, and building on earlier work of Masur,
showed that lattice surfaces have optimal dynamics. From this it follows that lattice
polygons have optimal dynamics.

This chain of reasoning remains valid if one starts with a parking garage instead
of a polygon; namely, the unfolding construction associates a translation surface to
a parking garage, and one may define a lattice parking garage in an analogous way.
The arguments of Veech then show that the billiard flow in a lattice parking garage
has optimal dynamics. This generalization is not vacuous: lattice parking garages,
which are not polygons, were recently discovered by Bouw and Möller [BM]. The
term ‘parking garage’ was coined by Möller.

A natural question is whether Veech’s result admits a converse, i.e. whether
non-lattice polygons or parking garages may also have optimal dynamics. In [SW],
Smillie and the second-named author showed that there are non-lattice translation
surfaces which have optimal dynamics. However translation surfaces arising from
billiards form a set of measure zero in the moduli space of translation surfaces,
and it was not clear whether the examples of [SW] arise from polygons or parking
garages. In this paper we show:

Theorem 1.1. There are non-lattice parking garages with optimal dynamics.

An example of such a parking garage is shown in Figure 1.
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Figure 1. A non-lattice parking garage with optimal dynamics.
(Here 2/n represents angle 2π/n.)
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Veech’s work shows that for lattice polygons, the directions in which all orbits
are periodic are precisely those containing a saddle connection, i.e. a billiard path
connecting corners of the polygon which unfold to singularities of the corresponding
surface. Following Cheung, Hubert and Masur [CHM], if a polygon P has optimal
dynamics, and the periodic directions coincide with the directions of saddle connec-
tions, we will say that P satisfies strict ergodicity and topological dichotomy. It is
not clear to us whether our example satisfies this stronger property. As we explain
in Remark 3.2 below, this would follow if it were known that the center of the
regular n-gon is a ‘connection point’ in the sense of Gutkin, Hubert and Schmidt
[GHS] for some n which is an odd multiple of 3.

Veech also showed that for a lattice polygon P, the number NP(T ) of periodic
strips on P of length at most T satisfies a quadratic growth estimate of the form
NP(T ) ∼ cT 2 for a positive constant c. As we explain in Remark 3.3, our examples
also satisfy such a quadratic growth estimate.

It remains an open question whether there is a genuine polygon which has optimal
dynamics and is not a lattice polygon. Although our results make it seem likely
that such a polygon exists, in her M.Sc. thesis [C], the first-named author obtained
severe restrictions on such a polygon. In particular she showed that there are no
such polygons which may be constructed from any of the currently known lattice
examples via the covering construction as in [Vo, SW]. We explain these results
and prove a representative special case in §4.

1.1. Acknowledgements. We are grateful to Yitwah Cheung and Patrick Hooper
for helpful discussions, and to the referee for a careful reading and helpful remarks
which improved the presentation. This research was supported by the Israel Science
Foundation and the Binational Science Foundation.

2. Preliminaries

In this section we cite some results which we will need, and deduce simple con-
sequences. For the sake of brevity we will refer the reader to [MT, Zo, SW] for
definitions of translation surfaces.

Suppose S1, S2 are compact orientable surfaces and π : S2 → S1 is a branched
cover. That is, π is continuous and surjective, and there is a finite Σ1 ⊂ S1,
called the set of branch points, such that for Σ2 = π−1(Σ1), the restriction of π to
S2 r Σ2 is a covering map of finite degree d, and for any p ∈ Σ1, #π−1(p) < d. A
ramification point is a point q ∈ Σ2 for which there is a neighborhood U such that
{q} = U ∩ π−1(π(q)) and for all u ∈ U r {q}, #

(
U ∩ π−1(π(u))

)
≥ 2.

If M1,M2 are translation surfaces, a translation map is a surjective map M2 →
M1 which is a translation in charts. It is a branched cover. In contrast to other
authors (cf. [GHS, Vo]), we do not require that the set of branch points be distinct
from the singularities of M1, or that they be marked. It is clear that the ramification
points of the cover are singularities on M2.

If M is a lattice surface, a point p ∈ M is called periodic if its orbit under the
group of affine automorphisms of M is finite. A point p ∈M is called a connection
point if any segment joining a singularity with p is contained in a saddle connection
(i.e. a segment joining singularities) on M . The following proposition summarizes
results discussed in [FK, MT, SW, HS]:

Proposition 2.1.
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(a) A non-minimal direction on a translation surface contains a saddle connection.
(b) If M1 is a lattice surface, M2 → M1 is translation map with a unique branch
point, then any minimal direction on M2 is uniquely ergodic.

(c) If M2 → M1 is a translation map such that M1 is a lattice surface, then all
branch points are periodic if and only if M2 is a lattice surface.

(d) If M2 → M1 is a translation map with a unique branch point, such that M1

is a lattice surface and the branch point is a connection point, then any saddle
connection direction on M2 is periodic.

Corollary 2.2. Let M2 → M1 be a translation map such that M1 is a lattice
surface with a unique branch point p. Then:

(1) M2 has optimal dynamics.
(2) If p is a connection point then M2 satisfies topological dichotomy and strict

ergodicity.
(3) If p is not a periodic point then M2 is not a lattice surface.

Proof. To prove (1), by (b), the minimal directions are uniquely ergodic, and
we need to prove that the remaining directions are either completely periodic or
uniquely ergodic. By (a), in any non-minimal direction on M2 there is a saddle
connection δ, and there are three possibilities:

(i) δ projects to a saddle connection on M1.
(ii) δ projects to a geodesic segment connecting the branch point p to itself.

(iii) δ projects to a geodesic segment connecting p to a singularity.

In case (i) and (ii) since M1 is a lattice surface, the direction is periodic on M1,
hence on M2 as well. In case (iii), there are two subcases: if δ projects to a part
of a saddle connection on M1, then it is also a periodic direction. Otherwise, in
light of Proposition 2.1(a), the direction must be minimal in M1, and hence, by
Proposition 2.1(b), uniquely ergodic in M2. This proves (1). Note also that if p
is a connection point then the last subcase does not arise, so all directions which
are non-minimal on M2 are periodic. This proves (2). Statement (3) follows from
(c). �

We now describe the unfolding construction [FK, ZK], extended to parking
garages. Let P = (h : N → R2). An edge of P is a connected subset L of ∂N
such that h(L) is a straight segment and L is maximal with these properties (with
respect to inclusion). A vertex of P is any point which is an endpoint of an edge.
The angle at a vertex is the total interior angle, measured via the pullback of the
Euclidean metric, at the vertex. By convention we always choose the positive an-
gles. Note that for polygons, angles are less than 2π, but for parking garages there
is no apriori upper bound on the angle at a vertex. Since our parking garages are
rational, all angles are rational multiples of π, and we always write them as p/q,
omitting π from the notation.

Let GP be the dihedral group generated by the linear parts of reflections in h(L),
for all edges L. For the sake of brevity, if there is a reflection with linear part g
fixing a line parallel to L, we will say that g fixes L. Let S be the topological space
obtained from N × GP by identifying (x, g1) with (x, g2) whenever g−11 g2 fixes an
edge containing h(x). Topologically S is a compact orientable surface, and the
immersions g ◦ h on each N × {g} induce an atlas of charts to R2 which endows
S with a translation surface structure. We denote this translation surface by MP ,
and write πP for the map N ×GP →MP .
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We will be interested in a ‘partial unfolding’ which is a variant of this con-
struction, in which we reflect a parking garage repeatedly around several of its
edges to form a larger parking garage. Formally, suppose P = (h : N → R2) and
Q = (h′ : N ′ → R2) are parking garages. For ` ≥ 1, we say that P tiles Q by
reflections, and that ` is the number of tiles, if the following holds. There are maps
h′1, . . . h

′
` : N → N ′ and g1, . . . , g` ∈ GP (not necessarily distinct) satisfying:

(A) The h′i are homeomorphisms onto their images, and N ′ =
⋃
h′i(N).

(B) For each i, the linear part of h′ ◦ h′i ◦ h−1 is everywhere equal to gi.
(C) For each 1 ≤ i < j ≤ `, let L′ij = h′i(N) ∩ h′j(N) and L = (h′i)

−1(L′ij).

Then (h′j)
−1 ◦ h′i is the identity on L, and L is either empty, or a vertex,

or an edge of P. If L is an edge then h′i(N) ∪ h′j(N) is a neighborhood of
L′ij . If Lij is a vertex then there is a finite set of i = i1, i2, . . . , ik = j such
that

⋃
h′is(N) contains a neighborhood of Lij , and each consecutive pair

h′it(N), h′it+1
(N) intersect along an edge containing Lij .

Vorobets [Vo] realized that a tiling of parking garages gives rise to a branched
cover. More precisely:

Proposition 2.3. Suppose P tiles Q by reflections with ` tiles, MP ,MQ are the cor-
responding translation surfaces obtained via the unfolding construction, and GP , GQ
are the corresponding reflection groups. Then there is a translation map MQ →MP ,
such that the following hold:

(1) GQ ⊂ GP .
(2) The branch points are contained in the GP -orbit of the vertices of P.
(3) The degree of the cover is `

[GP :GQ] .

(4) Let z ∈MP be a point which is represented (as an element of N×{1, . . . , r})
by (x, k) with x a vertex in P with angle m

n (where gcd(m,n) = 1). Let

(yi) ⊂ MQ be the pre-images of z, with angles kim
n in Q. Then z is a

branch point of the cover if and only if ki - n for some i.

Proof. Assertion (1) follows from the fact that Q is tiled by P. Since this will be
important in the sequel, we will describe the covering map MQ →MP in detail. We
will map (x′, g) ∈ N ′ × GQ to πP(x, ggi) ∈ MP , where x′ = h′i(x). We now check
that this map is independent of the choice of x, i, and descends to a well-defined
map MQ →MP , which is a translation in charts.

If x′ = h′i(x1) = h′j(x2) then x1 = x2 since (h′i)
−1 ◦ h′j is the identity. If x′ is in

the relative interior of an edge Lij then

(1) πP(x′, ggi) = πP(x′, ggj)

since (ggi)
−1ggj = g−1i gj fixes an edge containing h(x1). If x1 is a vertex of P

then one proves (1) by an induction on k, where k is as in (C). This shows that the
map is well-defined. We now show that it descends to a map MQ →MP . Suppose
(x′, g), (x′, g′) are two points in N ′ ×GQ which are identified in MQ, i.e. x′ ∈ ∂N ′
is in the relative interior of an edge fixed by g−1g′. By (C) there is a unique i such
that x′ is in the image of h′i. Thus (x′, g) maps to (x, ggi) and (x′, g′) maps to
(x, g′gi), and g−1i g−1g′gi fixes the edge through x = g−1i (x′). It remains to show
that the map we have defined is a translation in charts. This follows immediately
from the chain rule and (B).

Assertion (2) is simple and left to the reader. For assertion (3) we note that
MP (resp. MQ) is made of |GP | (resp. ` |GQ|) copies of P. The point z will
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be a branch point if and only if the total angle around z ∈ MP differs from the
total angle around one of the pre-images yi ∈MQ. The total angle at a singularity
corresponding to a vertex with angle r/s (where gcd(r, s) = 1) is 2rπ, thus the total
angle at z is 2mπ and the total angle at yi is 2kimπ

gcd(ki,n)
. Assertion (4) follows. �

3. Non-lattice dynamically optimal parking garages

In this section we prove the following result, which immediately implies Theorem
1.1:

Theorem 3.1. Let n ≥ 9 be an odd number divisible by 3, and let P be an isosceles
triangle with equal angles 1/n. Let Q be the parking garage made of four copies
of P glued as in Figure 1, so that Q has vertices (in cyclic order) with angles
1/n, 2/n, 3/n, (n− 2)/n, 2/n, 3(n− 2)/n. Then MP is a lattice surface and MQ →
MP is a translation map with one aperiodic branch point. In particular Q is a
non-lattice parking garage with optimal dynamics.

Proof. The translation surface MP is the double n-gon, one of Veech’s original
examples of lattice surfaces [Ve]. The groups GP and GQ are both equal to the
dihedral group Dn. Thus by Proposition 2.3, the degree of the cover MQ →MP is
four. Again by Proposition 2.3, since n is odd and divisible by 3, the only vertices
which correspond to branch points are the two vertices z1, z2 with angle 2/n (they
correspond to the case ki = 2 while the other vertices correspond to 1 or 3). In
the surface MP there are two points which correspond to vertices of equal angle
in P (the centers of the two n-gons), and these points are known to be aperiodic
[HS]. We need to check that z1 and z2 both map to the same point in MP . This
follows from the fact that both are opposite the vertex z3 with angle 3/n, which
also corresponds to the center of an n-gon, so in MP project to a point which is
distinct from z3. �

Remark 3.2. As of this writing, it is not known whether the center of the regular
n-gon is a connection point on the double n-gon surface. If this turns out to be
the case for some n which is an odd multiple of 3, then by Corollary 2.2(2), our
construction satisfies strict ergodicity and topological dichotomy. See [AS] for some
recent related results.

Remark 3.3. Since our examples are obtained by taking branched covers over
lattice surfaces, a theorem of Eskin, Marklof and Morris [EMM, Thm. 8.12] shows
that our examples also satisfy a quadratic growth estimate of the form NP(T ) ∼ cT 2;
moreover §9 of [EMM] explains how one may explicitly compute the constant c.

4. Non-lattice optimal polygons are hard to find

In this section we present results indicating that the above considerations will not
easily yield a non-lattice polygon with optimal dynamics. Isolating the properties
necessary for our proof of Theorem 3.1, we say that a pair of polygons (P,Q) is
suitable if the following hold:

• P is a lattice polygon.
• P tiles Q by reflections.
• The corresponding cover MQ → MP as in Proposition 2.3 has a unique

branch point which is aperiodic.
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In her M.Sc. thesis at Ben Gurion University, the first-named author conducted
an extensive search for a suitable pair of polygons. By Corollary 2.2, such a pair
will have yielded a non-lattice polygon with optimal dynamics. The search begins
with a list of candidates for P, i.e. a list of currently known lattice polygons. At
present, due to work of many authors, there is a fairly large list of known lattice
polygons but there is no classification of all lattice polygons. In [C], the full list of
lattice polygons known as of this writing is given, and the following is proved:

Theorem 4.1 (M. Cohen). Among the list of lattice surfaces given in [C], there is
no P for which there is Q such that (P,Q) is a suitable pair.

The proof of Theorem 4.1 contains a detailed case-by-case analysis for each of
the different possible P. These cases involve some common arguments which we
will illustrate in this section, by proving the special case in which P is any of the
obtuse triangles investigated by Ward [W]:

Theorem 4.2. For n ≥ 4, let P = Pn be the (lattice) triangle with angles

(
1

n
,

1

2n
,

2n− 3

2n

)
.

Then there is no polygon Q for which (P,Q) is a suitable pair.

Our proof relies on some auxilliary statements which are of independent interest.
In all of them, MQ → MP is the branched cover with unique branch point corre-
sponding to a suitable pair (P,Q). These statements are also valid in the more
general case in which P,Q are parking garages.

Recall that an affine automorphism of a translation surface is a homeomorphism
which is linear in charts. We denote by Aff(M) the group of affine automorphisms
of M and by D : Aff(M) → GL2(R) the homomorphism mapping an affine auto-
morphism to its linear part. Note that we allow orientation-reversing affine auto-
morphisms, i.e. detϕ may be 1 or -1.

We now explain how GP acts on MP by translation equivalence. Let πP :
N × GP → MP and S be as in the discussion preceding Proposition 2.3, and
let g ∈ GP . Since the left action of g on G is a permutation and preserves the
gluing rule πP , the map N ×GP → N ×GP sending (x, g′) to (x, g−1g′) induces a
homeomorphism ϕ : S → S and g ◦ h ◦ ϕ is a translation in charts. Thus g ∈ GP
gives a translation isomorphism of MP , and similarly g ∈ GP gives a translation
isomorphism of MQ.

Lemma 4.3. The branch point of the cover p : MQ →MP is fixed by GQ.

Proof. Since GQ ⊂ GP , any g ∈ GQ induces translation isomorphisms of both MP
and MQ. We denote both by g. The definition of p given in the first paragraph of
the proof of Proposition 2.3 shows that p◦g = g ◦p; namely both maps are induced
by sending (x′, g′) ∈ N ′ ×GQ to πP(x, gg′gi), where x′ = h′i(x). Since the cover p
has a unique branch point, any g ∈ GQ must fix it. �

Lemma 4.4. If an affine automorphism ϕ of a translation surface has infinitely
many fixed points then Dϕ fixes a nonzero vector, in its linear action on R2.

Proof. Suppose by contradiction that the linear action of Dϕ on the plane has zero
as a unique fixed point, and let Fϕ be the set of fixed points for ϕ. For any x ∈ Fϕ
which is not a singularity, there is a chart from a neighborhood Ux of x to R2 with
x 7→ 0, and a smaller neighborhood Vx ⊂ Ux, such that ϕ(Vx) ⊂ Ux and when
expressed in this chart, ϕ|Vx

is given by the linear action of Dϕ on the plane. In



8 MEITAL COHEN AND BARAK WEISS

particular x is the only fixed point in Vx. Similarly, if x ∈ Fϕ is a singularity,
then there is a neighborhood Ux of x which maps to R2 via a finite branched cover
ramified at x 7→ 0, such that the action of ϕ in Vx ⊂ Ux covers the linear action
of Dϕ. Again we see that x is the only fixed point in Vx. By compactness we find
that Fϕ is finite, contrary to hypothesis. �

Lemma 4.5. Suppose M is a lattice surface and ϕ ∈ Aff(M) has Dϕ = −Id. Then
a fixed point for ϕ is periodic.

Proof. Let

F1 = {σ ∈ Aff(M) : Dσ = −Id}.
Then ϕ ∈ F1 and F1 is finite, since it is a coset for the group kerD which is known
to be finite. Let A ⊂ M be the set of points which are fixed by some σ ∈ F1. By
Lemma 4.4 this is a finite set, which contains the fixed points for ϕ. Thus in order
to prove the Lemma, it suffices to show that A is Aff(M)-invariant.

Let ψ ∈ Aff(M), and let x ∈ A, so that x = σ(x) with Dσ = −Id. Since -Id is
central in GL2(R), D(σ ψ) = D(ψ σ), so there is f ∈ kerD such that ψ σ = f σ ψ.
Therefore

ψ(x) = ψ σ(x) = fσ ψ(x), and fσ ∈ F1.

This proves that ψ(x) ∈ A. �

Remark 4.6. This improves Theorem 10 of [GHS], where a similar conclusion is
obtained under the additional assumptions that M is hyperelliptic and Aff(M) is
generated by elliptic elements.

The following are immediate consequences:

Corollary 4.7. Suppose (P,Q) is a suitable pair. Then

• −Id /∈ D(GQ).
• None of the angles between two edges of Q are of the form p/q with gcd(p, q) =

1 and q even.

Proof of Theorem 4.2. We will suppose that Q is such that (P,Q) are a suitable
pair and reach a contradiction. If n is even, then Aff(MP) contains a rotation by
π which fixes the points in MP coming from vertices of P. Thus by Lemma 4.5
all vertices of P give rise to periodic points, contradicting Proposition 2.1(c). So n
must be odd.

Let x1, x2, x3 be the vertices of P with corresponding angles 1/n, 1/2n, (2n −
3)/2n. Then x3 gives rise to a singularity, hence a periodic point. Also using
Lemma 4.5 and the rotation by π, one sees that x2 also gives rise to a periodic
point. So the unique branch point must correspond to the vertex x1. The images
of the vertex x1 in P give rise to two regular points in MP , marked c1, c2 in Figure
2. Any element of GP acts on {c1, c2} by a permutation, so by Lemma 4.3, GQ
must be contained in the subgroup of index two fixing both of the ci. Let e1 be the
edge of P opposite x1. Since the reflection in e1, or any edge which is an image of
e1 under GP , swaps the ci, we have:

(2) e1 is not a boundary edge of Q.
We now claim that in Q, any vertex which corresponds to the vertex x3 from P is

always doubled, i.e. consists of an angle of (2n− 3)/n. Indeed, for any polygon P0,
the group GP0

is the dihedral group DN where N is the least common multiple of
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c1

c2

X

X

X

1

2

3

Figure 2. Ward’s surface, n = 5

the denominators of the angles at vertices of P0. In particular it contains -Id when
N is even. Writing (2n− 3)/2n in reduced form we have an even denominator, and
since, by Corollary 4.7, −Id /∈ GQ, in Q the angle at vertex x3 must be multiplied
by an even integer 2k. Since 2k(2n− 3)/2n is bigger than 2 if k > 1, and since the
total angle at a vertex of a polygon is less than 2π, we must have k = 1, i.e. any
vertex in Q corresponding to the vertex x3 is always doubled. This establishes the
claim. It is here that we have used the assumption that Q is a polygon and not a
parking garage.

There are two possible configurations in which a vertex x3 is doubled, as shown
in Figure 3. The bold lines indicate lines which are external, i.e. boundary edges
of Q. By (2), the configuration on the right cannot occur.

Figure 3. Two options to start the construction of Q

Let us denote the polygon on the left hand side of Figure 3 by Q0. It cannot
be equal to Q, since it is a lattice polygon. We now enlarge Q0 by adding copies
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of P step by step, as described in Figure 4. Without loss of generality we first
add triangle number 1. By (2), the broken line indicates a side which must be
internal in Q. Therefore, we add triangle number 2. We denote the resulting
polygon by Q1. One can check by computing angles, using the fact that n is
odd, and using Proposition 2.3(4) that the cover MQ1

→MP will branch over the
points a corresponding to vertex x2. Since the allowed branching is only over the
points corresponding to x1, we must have Q1 ( Q, so we continue the construction.
Without loss of generality we add triangle number 3. Again, by (2), the broken line
indicates a side which must be internal in Q. Therefore, we add triangle number
4, obtaining Q2. Now, using Proposition 2.3(4) again, in the cover MQ2

→MP we
have branching over two vertices u and v which are both of type x1 and correspond
to distinct points c1 and c2 in MP . This implies Q2 ( Q.

1

a

1
2

v

u

3

4

3

Q0 Q1

Q2

Figure 4. Steps of the construction of Q

Since both vertices u and v are delimited by 2 external sides, we cannot change
the angle to prevent the branching over one of these points. This means that no
matter how we continue to construct Q, the branching in the cover MQ →MP will
occur over at least two points – a contradiction. �
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