
EFFECTIVE COUNTING ON TRANSLATION SURFACES
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Abstract. We prove an effective version of a celebrated result of Eskin and Masur: for
any SL2(R)-invariant locus L of translation surfaces, there exists κ > 0, such that for

almost every translation surface in L, the number of saddle connections with holonomy
vector of length at most T , grows like cT 2 +O(T 2−κ). We also provide effective versions

of counting in sectors and in ellipses.

1. Introduction

The main goal of this paper is the effectivization of a celebrated result of Eskin and Masur
[EM01] which we recall. A translation surface x is a compact oriented surface equipped
with an atlas of planar charts, whose transition maps are translations, where the charts
are defined at every point of the surface except finitely many singular points at which the
planar structure completes to form a cone point of angle an integer multiple of 2π. Such
structures arise in many contexts in geometry, complex analysis and dynamics, and have
various equivalent definitions, see the surveys [MT, Z] for more details. The collection of all
translation surfaces of a fixed genus, fixed number of singular points, and fixed cone angle
at each singular point is called a stratum, and has a natural structure of a linear orbifold.
Furthermore each connected component of the subset of area one surfaces in a stratum is
the support of a natural smooth probability measure which we will call flat measure.

A saddle connection on a translation surface x is a segment connecting two singular
points which is linear in each planar chart and contains no singular points in its interior. The
holonomy vector of a saddle connection is the vector in the plane obtained by integrating the
pullback of the planar form (dx, dy), along the saddle connection. We denote the collection
of all holonomy vectors for x by V (x). The large scale geometry of V (x) has been intensively
studied, and one of the main results of [EM01] is that there is c > 0 such that for a.e. x
(with respect to the flat measure), the number N(T,x) = |V (x) ∩B(0, T )| satisfies

(1.1) N(T,x) = cT 2 + o
(
T 2
)
.

When this holds we will say that x satisfies quadratic growth.
The main purpose of this paper is to estimate the error term in the above result, that is

to establish that

N(T,x) = cT 2 +O
(
T 2(1−κ)

)
for some κ > 0. In order to state our result in its full generality we need to introduce more
precise terminology.

Let H be a stratum of translation surfaces, let G = SL2(R) and let L ⊂ H be the closure
of a G-orbit in H. By recent breakthrough results of Eskin, Mirzakhani and Mohammadi
[EMi15, EMiMo15], L is the intersection of H with a linear suborbifold, and is the support
of a smooth ergodic probability measure µ, which we will call the flat measure of L. We
will refer to (L, µ) as a locus (the terminology ‘affine invariant manifold’ is also in common
use).

A cylinder on a translation surface is an isometrically embedded image of the annulus
[a1, a2]×R/cZ, for some a1 < a2 and c > 0. The image of a curve {b}×R/cZ for a1 < b < a2
is called a waist curve of the cylinder and the integral along a waist curve of the pullback
of (dx, dy) is called the holonomy vector of the cylinder. One can also study the asymptotic
growth of V cyl(x)∩B(0, T ), where V cyl(x) is the collection of holonomy vectors of cylinders
on x. Furthermore, in [EMZ, §3], Eskin, Masur and Zorich defined configurations which are
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a common generalization of saddle connections and cylinders. We will not need to repeat
the definition of a configuration in this paper; in order to give the idea, we note three
other examples of configurations: (i) C consists of a saddle connection joining some fixed
singularity to itself, (ii) C is a saddle connection joining distinct fixed singularities, (iii) C
consists of two homologous saddle connections joining two distinct fixed singularities, and
forming a slit which disconnects the surface into components with a fixed topology. For each
configuration C one can then define a collection of holonomy vectors V C(x) of the saddle
connections or cylinders comprising the configuration, and study the asymptotic growth
of NC(T,x) = |V C(x) ∩ B(0, T )|. A remarkable feature of [EM01, EMZ] is the authors’
foresight: they proved their results in an abstract framework which later (in [EMi15]) was
proved to be sufficient to cover all G-invariant ergodic measures and all configurations.
Namely, they proved that for any locus (L, µ) and any configuration C there is c = c(L, C)
such that for µ-a.e. x ∈ L one has NC(T,x) = cT 2 + o(T 2). Furthermore, [EMZ] also
discussed counting with multiplicities (that is, vectors in R2 are counted according to the
number of saddle connections which have them as holonomy vectors). In the notation of
this paper NC(T,x) may refer to counting either with or without multiplicity, i.e. the count
in question is assumed to be a part of the data associated with C. Finally, for the case
L = H, an algorithm for computing the constants c in the above asymptotic was described,
in terms of so-called Siegel-Veech constants introduced by Veech in [Vee98].

An additional improvement, due to Vorobets [Vo05, Thm. 1.9], concerns counting in
sectors. Let ϕ1 < ϕ2 with ϕ2 − ϕ1 ≤ 2π and let N(T,x, ϕ1, ϕ2) denote the cardinality of
the intersection of V (x) with the sector

ST,ϕ1,ϕ2
= {r(cosϕ, sinϕ) : 0 ≤ r ≤ T, ϕ1 ≤ ϕ ≤ ϕ2} ⊂ R2.

Vorobets showed that there is c > 0 such that for a.e. x ∈ H (with respect to the flat
measure on H), N(T,x, ϕ1, ϕ2) = c(ϕ2 − ϕ1)T 2 + o(T 2). Our main result is an effective
version of the above-mentioned results. Setting NC(T,x, ϕ1, ϕ2) for the number of holonomy
vectors corresponding to the configuration C on x with holonomy vector in ST,ϕ1,ϕ2

, we have:

Theorem 1.1. For any locus (L, µ) there is a constant κ > 0 such that for any configuration
C there is a constant c > 0 such that for any ϕ1 < ϕ2 with ϕ2 − ϕ1 ≤ 2π, for µ-a.e. x we
have

(1.2) NC(T,x, ϕ1, ϕ2) =
c

2
(ϕ2 − ϕ1)T 2 +Ox,ϕ2−ϕ1

(
T 2(1−κ)

)
.

Here, in the basic case that L = H is a stratum and C is one saddle connection (i.e.
V C(x) = V (x)), the constant c is the Siegel-Veech constant of [Vee98] (this is the reason for
the denominator 2 appearing in (1.2)). As we shall see below, κ can be estimated explicitly
in terms of the size of the spectral gap in the unitary representation of G in L2(L); in fact
our proof shows that it can be taken to be λ

5.5+5.5λ for any λ smaller than the size of the
gap. We have chosen to normalize our power savings exponent κ so that the error is written
in the form 2(1− κ) rather than 2− κ, that is to estimate the error as a power of the area
growth, in order to permit easier comparisons with other bounds appearing in the literature
on related problems. Note that in (1.2), the dependence of the implicit constant in the O-
notation on x is unavoidable given the existence of surfaces with different quadratic growth
coefficients.

The proof of Theorem 1.1 does not give any insight into the set of full measure of x
which satisfy (1.2). In fact it is expected that every translation surface x satisfies quadratic
growth (see [EMiMo15] for a remarkable result in this direction). Thus it is of interest to
exhibit explicit surfaces which satisfy quadratic growth with an effective error estimate (in
particular, where κ is known). It is also of interest to count points in the intersection of
V (x) with more general subsets of R2. These questions will be discussed in the forthcoming
work [BNRW].

The expectation that any translation surface satisfies quadratic growth, and that the
constant c appearing in (1.1) depends only on the orbit closure Gx, leads to the expectation
that the set of surfaces satisfying (1.1) is G-invariant. Since the assignment x 7→ V (x)
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satisfies V (gx) = gV (x), this can be equivalently stated as a problem on counting in ellipses:
in the definition of N(T,x), one should be able to replace Euclidean balls of radius T ,
with dilates of any fixed ellipse centered at the origin, and the same should be true for
N(T,x, ϕ1, ϕ2). The issue of existence of a full measure G-invariant set of surfaces with
quadratic growth was not discussed in [EM01], but could probably be derived from the
arguments in [EM01, Vo05]. Moreover, it can be derived from a recent result of Athreya,
Cheung and Masur [ACM], in combination with an argument of Veech [Vee98, Thm. 14.11].
Using our technique we obtain the following effective strengthening.

Theorem 1.2. For any locus (L, µ), there is κ > 0 such that for every configuration C there
is c > 0 such that for µ-a.e. x, for every ϕ1 < ϕ2 with ϕ2 − ϕ1 ≤ 2π, and for every g ∈ G,

NC(T, gx, ϕ1, ϕ2) =
c

2
(ϕ2 − ϕ1)T 2 +Ox,ϕ2−ϕ1,g

(
T 2(1−κ)

)
.

Note that Theorem 1.2 implies Theorem 1.1, but we present the proof of Theorem 1.1
separately. This is because the proof of Theorem 1.2 presents additional technicalities which
may obscure the main ideas, and also because our proof of Theorem 1.2 gives slightly weaker
estimates on κ.

1.1. Ingredients of the proofs. Our proof of Theorem 1.1 follows the strategy of [EM01]
(which in turn was inspired by [EMaMo98, Vee98]) of reducing the counting problem to
an ergodic theoretic problem regarding the convergence of the translated circle averages
πL(Σt)f(x) =

´
K
f(atkx)dmK (the notation is introduced in §2.2), as t → ∞. In the

treatment of [EM01], f is the Siegel-Veech transform of an indicator of a rectangle in R2,
and the required convergence of πL(Σt)f(x) was proved by replacing f with a smoothed
version of f , developing various estimates to bound the amount of time the translated circle
average spends outside large compact subsets of H, and appealing to a pointwise ergodic
theorem of the first-named author (see [N]).

Our proof of Theorem 1.1 uses all of the above ingredients and more. The essential new
ingredient is the fact that any (L, µ) possesses a spectral gap (see §3 for the definition).
This was proved by Avila, Gouëzel and Yoccoz [AGY06] for the case of strata, and by
Avila and Gouëzel [AG13] for general loci (again, in an abstract framework, as [AG13] also
preceded [EMi15]). Using the spectral gap it is possible to obtain an effective estimate of
the difference |πL(Σt)f(x)−

´
L fdµ|, in case f is a K-smooth function and t is large enough

(depending on x and f). See §3 for the definition of K-smooth functions. The estimate is
valid for x in a set of large measure depending on f and t. Using a Borel-Cantelli argument
(see Theorem 3.4) we upgrade this to a set of full measure and a countable collection of K-
smooth functions, which we then use in order to estimate effectively the integrals appearing
in the counting problem, and thus the numbers NC(Tn,x, ϕ1, ϕ2) for a countable collections
of radii (Tn). In order to pass from a countable collection of functions to the results, it is
advantageous to replace the rectangle used in [EM01], or the trapezoid used in [E06], with
a triangle with an apex at the origin.

Theorem 1.2 improves Theorem 1.1 in two ways: uniform counting with an error term in
all sectors and in all ellipses. These improvements require two additional ingredients. First
we note that the same Borel-Cantelli argument, and further approximation arguments, make
it possible to use countably many functions in order to approximate all sectors and all ellipses
simultaneously. That is, instead of working only with a countable set of radii, we work with
a countable set of radii, a countable set of ellipses, and a countable collections of sectors.
Furthermore, for uniform counting in ellipses, we replace the circle averages with ellipse

averages πL

(
Σ

(g)
t

)
f(x) =

´
K
f(atkgx)dmK , and obtain an estimate on the rate at which

πL

(
Σ

(g)
t

)
(x)→

´
L fdµ, which is uniform as g ranges over compact subsets of G.
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2. Preliminaries

In this section we will collect results which we will need concerning the moduli space of
translation surfaces.

2.1. The Siegel-Veech formula and the function `. We recall the Siegel-Veech sum-
mation formula:

Theorem 2.1. [Vee98, Thm. 0.5] For any locus L with flat measure µ, and any configura-
tion C, there exists c = c(L, C) > 0 (called a Siegel-Veech constant) such that for any ψ ≥ 0

Borel measurable on R2, if we let ψ̂(x) =
∑
v∈V C(x) ψ(v), then

ˆ
L
ψ̂(x)dµ(x) = c

ˆ
R2

ψ(x)dx.

We stress that the definition of ψ̂ depends on a choice of configuration C, but this choice
will not play an important role in what follows, and will be suppressed from the notation.

Let `(x) be the Euclidean length of a shortest saddle connection in x. Building on earlier
work in [M] and [EMaMo98], a fundamental bound on the number of saddle connections in
a compact set was established by Eskin and Masur as follows.

Theorem 2.2. [EM01, Theorem 5.1] For any stratum H, any configuration C, any compact
set B ⊂ R2, any x ∈ H, and any α1 > 1,∣∣V C(x) ∩B

∣∣�H,B,α1
`(x)−α1 .

Note that in [EM01], the bound was only stated for the set V (x) of all saddle connection
holonomies, that is the case in which the configuration C consists of any saddle connection;
however since any cylinder contain saddle connections along its boundary, the bound for
V (x) implies the same bound for V C(x) for any configuration C.

2.2. Translated circle averages. Consider the elements

(2.1) at =

(
et 0
0 e−t

)
, rθ =

(
cos θ − sin θ
sin θ cos θ

)
and let K = {rθ : θ ∈ R} ⊂ G. When G acts ergodically by measure preserving transfor-
mations on a standard Borel probability space (X,µ), we will say that (X,µ) is an ergodic
p.m.p. G-space. We let πX denote the unitary representation of G in L2(X), given by
πX(g)f(x) = f(g−1x). We extend πX to a representation of the convolution algebra M(G)
of bounded complex Borel measures on G. Each σ ∈ M(G) acts as an operator on L2(X)
via the formula

πX(σ)f(x) =

ˆ
G

f(g−1x)dσ(g), for f ∈ L2(X).

For any two measures σ1, σ2 ∈M(G), we have πX(σ1 ∗ σ2) = πX(σ1) ◦ πX(σ2).
Let mK denote the probability Haar measure on the circle K given in coordinates by

1
2πdθ, and denote the probability measure mK ∗ δa−t by Σt. Thus for f : L → R

πX(Σt)f(x) =

ˆ
K

f(atkx)dmK(k).

An important property of integrability of the function `, and a bound on its translated circle
averages, were established by Eskin and Masur:

Theorem 2.3 (See [EM01] Thm. 5.2, Lem. 5.5 and [Vee98], Cor 2.8). For any x ∈ L, and
for any 1 ≤ α2 < 2,

(2.2) sup
t>0

πL(Σt)
(
`(x)−α2

)
<∞ .

The bound can be taken to be uniform as x ranges over compact sets in L. Furthermore, for
any locus (L, µ), `(·)−α2 ∈ L1(L, µ).
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To account for sectors, we will use the family of measures on the circle

πX(Σν,t)f(x) =

ˆ
K

f(atkx)ν(k)dmK(k)

where ν is a bounded density on K. In fact, in this paper ν will be a characteristic function
of the angular sector [ϕ1, ϕ2] that is either slightly contracted or slightly thickened. It is
clear that (2.2) also holds for such Σν,t, uniformly for all ν ≤ 1.

3. Spectral gap and pointwise ergodic theorem

Let (X,µ) be a p.m.p. G-space, and denote by L2
0(X,µ) the zero mean functions in

L2(X,µ). The action is said to have a spectral gap if the associated unitary representation
of G is isolated from the trivial representation. That is, there does not exist a sequence of
unit vectors (un)n∈N in L2

0(X,µ) which is asymptotically invariant under the representation,
namely such that limn→0 ‖πX(g)un − un‖ = 0 for every g in G.

In the special case G = SL2(R) the spectral gap condition implies the following quan-
titative estimate (see [C, R, CHH88] and references therein). It is formulated in terms of
K-eigenvectors, namely functions f ∈ L2(X) satisfying that there exists a character χ of K
such that πX(k)f = χ(k)f for all k ∈ K.

Theorem 3.1. Let G = SL2(R) and let (X,µ) be a p.m.p. G-space with a spectral gap.
Then there are positive C, λ such that for any f1, f2 ∈ L2

0(X) which are eigenvectors for K,
and for any g ∈ G, written in Cartan polar coordinates as g = k1atk2, we have

(3.1) |〈πX(g)f1, f2〉| ≤ Ce−|t|λ‖f1‖2‖f2‖2 .

The supremum of λ > 0 for which one can find C such that (3.1) is satisfied for K-
eigenvectors f1, f2, will be denoted by λX and will be called the size of the spectral gap.

We briefly review some basic results and explain the relation of our notation to that
used in other papers. The functions g 7→ 〈πX(g)f1, f2〉, for fi ∈ L2(X,µ), are known
as matrix coefficients for the action on (X,µ). If f is a finite linear combination of K-
eigenvectors, it is called K-finite. It is known (see [C, Thm. 2.5.3]) that if the action of
G on (X,µ) has a spectral gap, then there is q < ∞ such that all its matrix coeffients
are in Lq(G). Suppose (X,µ) has a spectral gap, and let p be the infimum of q < ∞
such that for every ε > 0 and every pair of K-finite functions f1, f2, the matrix coefficient
g 7→ 〈πX(g)f1, f2〉 is in Lq(G); this parameter is often called the integrability exponent of
πX . By [C, Cor. 2.2.4], the integrability exponent p is also the smallest number such that
〈πX(g)f1, f2〉 = O(‖g‖−2/(p+ε)) for all ε > 0, with implicit constant depending on ε, f1, f2,
and on the norm chosen on Mat2(R). It follows from more detailed estimates obtained in
[CHH88, Corollary (b)], that in terms of the integrability exponent, the size of the spectral
gap is λX = 2/p. The case in which the unitary representation is tempered, i.e. absence of
the complementary series in πX (see the discussion in [AGY06, Prop. B.2]), one has p = 2
which in our notation corresponds to λX = 1.

Our results are based on the following important result:

Theorem 3.2. [AGY06, AG13] The representation of G on L2
0(L, µ) possesses a spectral

gap.

Note that the results of [AGY06, AG13] do not give explicit bounds on the size of the
spectral gap.

A standard norm-comparison argument implies that for any choice of norm on Mat2(R),
for any f1, f2 ∈ L2

0(X) which are eigenvectors for K, and for 0 < λ < λX ,

(3.2) |〈πX(g)f1, f2〉| � ‖g‖−λ ‖f1‖2‖f2‖2.

Fix ω =

(
0 −1
1 0

)
as a generator of the Lie algebra of K. A function f ∈ L2(X) is called

K-smooth of degree one if

(3.3) πX(ω)f = lim
t→0

1

t
(πX(exp(tω)f − f)
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exists, where the convergence is with respect to the L2(X)-norm (one may also consider the
obvious extension to smoothness of degree d for ω, but we will not need this). Define the
(degree one) Sobolev norm by

SK(f)2 = ‖f‖22 + ‖πX(ω)f‖22.

We denote the space of K-Sobolev functions with finite SK(f)-norm by SK(X), and set

SK,0(X) = SK(X,µ) ∩ L2
0(X,µ).

The estimates (3.1) and (3.2), which are stated in terms of K-eigenvectors, can also be
formulated in terms of K-Sobolev functions f1, f2 ∈ SK,0(X), as follows. For g = k1atk2

|〈πX(g)f1, f2〉| ≤ C ′(λ)e−|t|λSK(f1)SK(f2),

and for any matrix norm on Mat2(R) and any 0 < λ < λX ,

(3.4) 〈πX(g)f1, f2〉 � ‖g‖−λSK(f1)SK(f2)

which follows from a standard proof of the Sobolev inequality via Fourier series (see e.g.
[Ei10]).

As shown by Eskin, Margulis and Mozes, from estimates such as those in Theorem 3.1,
one can derive an estimate for the norm of the operator πX(Σν,t), ν ≤ 1, viewed as operator
from the K-Sobolev space SK,0(X) to L2(X).

Theorem 3.3 (See [EMaMo98](3.32) and [Vee98], §14). Let G = SL2(R) and let (X,µ)
be a p.m.p. G-space with a spectral gap of size λX . Then for any λ < λX , there exists
C > 0 such that for any interval I ⊂ S1 ' K of length |I| 6= 0, any f ∈ SK,0(X), and all
t > 1

2 log 1
|I| ,

(3.5) ‖πX(Σν,t)f‖22 ≤ Ce−2ληtSK(f)2 |I|2−λη ,

where η = 1
λ+1 and ν is the indicator function of the interval I.

We note that if one normalizes ν to be the density of a probability measure then the
quality of the rate in (3.5) diminishes as the length of the interval decreases. We will
not normalize ν in this way because it will turn out to be less natural for some geometric
considerations involved in the counting problem.

For completeness, and in order to have precise control of constants, we repeat the argu-
ment found in [EMaMo98, Vee98].

Proof. Writing ν∗ ∗ν(k) =
´
K
ν(k′)ν(k′k)dmK(k′) = Dν(k), by G-invariance of the measure

µ one has
(3.6)

‖πX(Σν,t)f‖22 = 〈πX(δat ∗ ν∗ ∗ ν ∗ δa−t)f, f〉 =

ˆ
X

ˆ
K

f(atka−tx)f̄(x)Dν(k)dmK(k)dµ(x).

Replacing I with a slightly smaller interval will only require a small increase in C, so with
no loss of generality we can assume that |I| ≤ π/4. Then using a rotation we can assume

that I = [0, φI ] ⊂ [0, π/4]. We identify K with S1 using (2.1) so that ν(K) = |I|
2π ≤ |I|. For

a parameter 0 < λ′ < 1 to be fixed below, we set J = {φ ∈ I : | sinφ|e2t < e2λ
′t}. To put

ourselves in the case that J is a proper subset of I, we assume that sinφI > e2t(λ
′−1), which

implies that φI = |I| > e2t(λ
′−1), and thus λ′ < log|I|

2t + 1.

Write k = rφ so that, using the supremum norm in (3.4), we have ‖atka−t‖ ≥ e2λ
′t for

k ∈ I \J. Since I ⊂ [0, π4 ], ν∗ ∗ ν can be computed using convolution on R. Since φ ≤ 2 sinφ

in the interval I, and since ‖Dν‖∞ ≤ |I|, we conclude that
´
J
Dν(k)dmK < 2 |I| e2t(λ′−1).

Furthermore, clearly
´
I\J Dν(k)dmK ≤ |I|2. By Fubini, the matrix coefficient (3.6) is equal

to ˆ
J

〈πX(atka−t)f, f〉Dν(k)dmK(k) +

ˆ
IrJ
〈πX(atka−t)f, f〉Dν(k)dmK(k).
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We apply the previous estimate to the integral over J , and apply (3.4) to the integral over
I r J , to arrive at

‖πX(Σν,t)f‖22 � |I| e2t(λ
′−1)‖f‖22+|I|2 e−2λλ

′tSK(f)2 ≤
(
|I| e2t(λ

′−1) + |I|2 e−2λλ
′t
)
SK(f)2.

To obtain (3.5), note that both terms on the right hand side are exponentially decreasing
in t, but one term increases with λ′ and the other decreases. Thus the best choice is to take
λ′ for which both terms are equal, and this yields (3.5). More precisely, we set:

(3.7) λ′ =
1

λ+ 1

(
1

2t
log |I|+ 1

)
.

With this choice, using t > 1
2 log 1

|I| and |I| < 1 we find 0 < λ′ < 1. �

The next result follows from the bound (3.5) combined with the Borel-Cantelli Lemma
and the Markov inequality.

Theorem 3.4. Let (X,µ) be a p.m.p. G-space with a spectral gap of size λX . Let λ < λX ,
let tn ∈ R+, let η = 1

1+λ and let η1 be such that

(3.8)
∑
n∈N

e−λη1tn <∞.

Let 0 ≤ νn ≤ 1 be a sequence of functions on K as in Theorem 3.3, satisfying νn(K) =´
νndmK > e−2tn . Let (fn)n∈N be a collection of functions in SK,0(X). Then for almost all

x ∈ X there exists n0 = n0(x) such that if n ≥ n0 then

(3.9) |πX(Σνn,tn)fn(x)| ≤ e−(η−
η1
2 )λtnSK(fn)νn(K)1−

λη
2 .

Here η is as in (3.5).

Note that we will only be interested in the nontrivial case where the right hand side of
(3.9) decays with t, i.e. when η1 satisfies 0 < η1

2 < η.

Proof. Using (3.5), there is C > 0 such that for fn ∈ SK,0(X) we have

(3.10) ‖πX(Σνn,tn)fn‖22 ≤ Ce
−2ληtnCn, where Cn = SK(fn)2νn(K)2−λη.

Consider for each n the set of ‘bad points’

Un =
{
x : e−λη1tn/2 |πX(Σνn,tn)fn(x)| ≥ e−ληtnC1/2

n

}
.

By Markov’s inequality and (3.10),

µ(Un) ≤ e−λη1tn ‖πX(Σνn,tn)fn‖22
e−2ληtnCn

≤ Ce−λη1tn .

By (3.8)
∑
n∈N µ(Un) <∞, so by the Borel-Cantelli lemma, almost every x ∈ X belongs to

at most finitely many of the sets Un. We conclude that for almost every x ∈ X, there exists
n0 such that for all n ≥ n0 we have x /∈ Un. �

Now let

πX

(
Σ

(g)
ν,t

)
f(x) = πX(Σν,t)f(gx) =

ˆ
K

f(atkgx)ν(k)dmK(k)

denote the ‘dilated ellipse average’ associated with g ∈ G. For the proof of Theorem 1.2 we
will need the following uniform versions of Theorems 3.3 and 3.4:

Theorem 3.5. With the notations of Theorems 3.3 and 3.4, for every λ < λX there exists
C > 0 such that for all t > 1, any interval I ⊂ S1 with |I| > e−2t, any f ∈ SK,0(X), and
any g ∈ G, we have

(3.11)
∥∥∥πX (Σ

(g)
ν,t

)
f
∥∥∥2
2
≤ Ce−2ληtSK(f)2|I|2−λη.

Furthermore, if (tn) ⊂ R+, η1 > 0 satisfy (3.8), 0 ≤ νn ≤ 1 is a sequence of characteristic
functions on K satisfying νn(K) > e−2tn , (fn) is a sequence of functions in SK,0, and (gn)
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is a countable subset of G, then for almost all x ∈ X there is n0 such that for all n ≥ n0 we
have ∣∣∣πX (Σ

(gn)
tn,νn

)
f(x)

∣∣∣ ≤ e−(η− η12 )λtnSK(fn)νn(K)1−
λη
2 .

Proof. A change of variables y = gx shows that ‖πX(Σ(g))t,νf‖2 = ‖πX(Σt,ν)f‖2 and thus
(3.11) follows from the same argument as for (3.5).

The proof of the second assertion for any fixed choice of sequence (gn) is similar to the
proof of Theorem 3.4, using (3.11) instead of (3.5). �

4. Control over the cusp

The results of the previous section apply to every action with a spectral gap, and we will
want to apply them to the action on the moduli space of flat surfaces, taking the functions
fn to be Siegel-Veech transforms of compactly supported functions on R2. However in this
setting, the Sobolev norms SK(fn) might not be bounded, owing to a large contribution
coming from surfaces in the thin part, i.e. surfaces x with `(x) small. When dealing with
this issue it is helpful to note that the Sobolev norm we have used above involves only
differentiation in the K-direction, and as we shall now see, this fact will allow us to use a
simple argument for “cutting off the cusp”. We let Mε = `−1([ε,∞)). By a well-known
compactness criterion (see [MT]) the sets Mε are an exhaustion of H by compact sets.
Theorems 2.2 and 2.3 give bounds on the measure of the complement M c

ε = H rMε, and
on the time a translated circle spends in M c

ε . We will use these to cut off any function at
the cusp without affecting its asymptotic behavior.

Before proceeding with this argument, note that since we used the Euclidean metric in the
definition of the function `, the set M c

ε is K-invariant, and hence its characteristic function
is K-smooth. Below we let ∂θ denote the partial derivative in the spherical direction in
polar coordinates. In terms of the action of K on the plane, it is defined as πR2(ω) in the
notation (3.3). Equivalently, at a point y ∈ R2,

∂θϕ(y) =
d

dt

∣∣∣∣
t=0

ϕ(exp(tω)y).

Lemma 4.1. Suppose R > 0 and ψ : R2 → R is a non-negative bounded function which

is supported in the ball B(0, R), such that ∂θψ is also bounded, and denote by f = ψ̂ its
Siegel-Veech transform as in Theorem 2.1, with respect to some configuration C. Let χε
denote the characteristic function of the cusp M c

ε . Then the decomposition

f = fmain + fε, where fmain = f(1− χε) and fε = fχε

satisfies for any 1 < α1 < α2 < 2,

(4.1) SK(fmain)�R,α1
max
r≤R

(ˆ
K

(
ψ2 + |∂ψ|2

)
(kre1)dmK(k)

)1/2

ε−α1 ,

(4.2)

ˆ
L
fε dµ�R,α1,α2 ‖ψ‖∞εα2−α1 ,

and

(4.3) πL(Σt)fε(x)�x,R,α1,α2
‖ψ‖∞εα2−α1 .

Moreover the implicit constant in (4.3) can be taken to be uniform as x ranges over compact
subsets of L.
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Proof. We first bound the L2-norm of fmain. Since the measure µ and the set Mε are
K-invariant, and y 7→ V (y) is K-equivariant, we have

‖fmain‖22 =

ˆ
L
|f(1− χε)|2dµ =

ˆ
`(y)≥ε

∣∣∣∣∣∣
∑

v∈V (y)

ψ(v)

∣∣∣∣∣∣
2

dµ(y)

=

ˆ
`(y)≥ε

ˆ
K

∣∣∣∣∣∣
∑

v∈V (ky)

ψ(v)

∣∣∣∣∣∣
2

dmK(k) dµ(y)

≤
ˆ
`(y)≥ε

(
max
r≤R

ˆ
K

|ψ(rke1)|2 dmK(k)

)
|V (y) ∩B(0, R)|2 dµ(y).

In the last inequality above we have used Cauchy-Schwarz for the estimate
∣∣∣∑v∈V (ky) ψ(v)

∣∣∣2 ≤(∑
v∈V (ky) |ψ(v)|2

)
|V (y) ∩B(0, R)|, and then exchanged summation and integration.

Using Theorem 2.2, we conclude that

(4.4) ‖fmain‖22 �R,α1
ε−2α1 max

r≤R

ˆ
K

|ψ(kre1)|2dmK(k)

We repeat this calculation for the angular derivative of ψ. Here we also use the fact that
since the set of saddle connections satisfies V (gy) = gV (y) for any y ∈ L and g ∈ G, which
implies that taking derivatives in the K direction commutes with the Siegel-Veech transform.
Namely, for any compactly supported ψ : R2 → R for which ∂θψ exists everywhere,

πL(ω)ψ̂ = lim
t→0

1

t

(
πL(exp(tω)ψ̂ − ψ̂

)
= lim
t→0

1

t

 ∑
u∈V (exp(tω)y)

ψ(u)−
∑

v∈V (y)

ψ(v)



= lim
t→0

1

t

 ∑
v∈V (y)

(ψ(exp(tω)v)− ψ(v))

 =
∑

v∈V (y)

∂θψ(v)

(where we have used the fact that ψ is compactly supported to ensure that the sum is finite
and hence we can switch the order of summation and differentiation). Thus

πL(ω)ψ̂ = ∂̂θψ.

By K-invariance of (1− χε),

πL(ω)fmain = (1− χε)πL(ω)f + fπL(ω)(1− χε) = (1− χε)∂̂θψ + 0

and consequently, applying the argument used to prove inequality (4.4) to πL(ω)fmain, we
obtain (4.1).

Now we set β = α2 − α1, and proceed to bound
´
fε dσ in the two cases σ = µ, σ =

πL(Σt) =
´
K
δatkxdmK(k). By Theorem 2.2,

ˆ
fε dσ =

ˆ
`(y)<ε

ψ̂dσ ≤
ˆ
`(y)<ε

‖ψ‖∞|V (y) ∩B(0, R)|dσ

�R,α1
‖ψ‖∞

ˆ
`(y)<ε

`(y)−α1dσ < ‖ψ‖∞
ˆ
`(y)<ε

εβ

`(y)β
`(y)−α1dσ.

The term
´
`(y)<ε

`(y)−α1−βdσ is bounded by ‖`(·)−α2‖L1(σ) for α2 = α1 + β, which in turn

is bounded by Theorem 2.3 for any α2 < 2 (where for σ = πL(Σt) the bound depends on x
uniformly on compact subsets of L, and is independent of t). �
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θ

S1(θ)

S2(θ)

W1(θ)

W2(θ)

Figure 1. The four planar domains S1(θ) ⊂W1(θ) ⊂W2(θ) ⊂ S2(θ).

5. Effective counting of saddle connections

We now give the proof of Theorem 1.1, dividing the argument into three steps. In the first
we use a geometric counting method introduced in [EMaMo98, Lem. 3.6] and [EM01, Lem.
3.4] to estimate the quantity N(et,x, ϕ1, ϕ2) by orbit integrals πL(Σt)f(x), where f is a
Siegel-Veech transform of the indicator of a triangle. We will follow the simplified approach
outlined in the survey [E06], but replacing a trapezoid used in [E06] with a triangle. In the
second step we will replace f with certain smooth approximations and use Theorem 3.4 and
Lemma 4.1 to estimate the resulting orbit integrals. Since it relies on the Borel-Cantelli
lemma, Theorem 3.4 only gives information about N(T,x, ϕ1, ϕ2) for a countable number
of values of T . In the third and final step we use an interpolation argument to pass from
countably many values, which get denser and denser on a logarithmic scale, to all T .

Step 1. Triangles, and reduction of counting to orbit integrals. We fix a configu-
ration C and use it to define a Siegel-Veech transform as in Theorem 2.1. For θ ∈ (0, 1) we
define two triangles W1 = W1(θ) and W2 = W2(θ) in the plane as follows. Let e2 = (0, 1)
and let W1 have vertices (0, 0), rθe2, r−θe2 and W2 have vertices (0, 0), 1

cos θ rθe2,
1

cos θ r−θe2.
That is, W1 and W2 are similar isosceles triangles with apex at the origin, apex angle 2θ,
symmetric around the positive y-axis, and with height cos θ and 1 respectively. In particular
W1 ⊂W2. See Figure 1.

Now let t > 1 be a parameter. Applying the diagonal flow a−t transforms W1,W2 into
triangles with a narrow apex angle and large height, specifically the apex angle 2θt of both
a−tW1 and a−tW2 satisfies

(5.1) tan θt = e−2t tan θ.

We will obtain lower and upper bounds for NC(et,x, ϕ1, ϕ2) using radial averages over
shrinking versions of these triangles.

Let ϕ1 < ϕ2 be as in Theorem 1.1. By a rotation, assume with no loss of generality that
ϕ2 = ϕ > 0 and ϕ1 = −ϕ so that I = [−ϕ,ϕ] is symmetric around 0 and ϕ2 − ϕ1 = 2ϕ.
Recall the notation rs for an element of K (see (2.1)). We will identify angles in R with their
image modulo 2πZ and functions on K with functions on R/2πZ without further mention.

Define

(5.2) I−t = [−(ϕ− θt), ϕ− θt], I+t = [−(ϕ+ θt), ϕ+ θt],

so that I−t ⊂ I ⊂ I+t , and let ν−t , ν, ν
+
t denote respectively the indicator functions of I−t , I, I

+
t

(note that the dependence of these indicators on ϕ2 − ϕ1 is suppressed from the notation).
Also let 1W1

,1W2
denote the indicators of W1 and W2.

We claim that for any x,

(5.3) πL(Σν−t ,t
)1̂W1(θ)(x) ≤ θt

π
NC(et,x, ϕ1, ϕ2) ≤ πL(Σν+

t ,t
)1̂W2(θ)(x).



EFFECTIVE COUNTING ON TRANSLATION SURFACES 11

v1

v2

a−tW1(θ)
v3

Figure 2. The arc K(I−t )v1 cuts through a−tW1 but the arcs K(I−t )v2
and K(I−t )v3 miss a−tW1(θ).

To see the left hand inequality, recall that by the definition of the Siegel-Veech transform
and the operator Σν,t we have

(5.4) πL(Σν−t ,t
)1̂W1(θ)(x) =

∑
v∈V C(x)

ˆ
K

1W1(θ)(atkv)ν−t (k)dmK(k).

We will estimate the contribution of each individual v ∈ V C(x) to the sum (5.4). For any
v ∈ R2,

(5.5)

ˆ
K

1W1(atkv)ν−t (k)dmK(k) =
1

2π

ˆ ϕ−θt

−ϕ+θt
1a−tW1(rsv)ds

is at most θt
π , since the apex angle of a−tW1 is 2θt. The quantity (5.5) vanishes if ‖v‖ ≥ et

or ](v, e2) /∈ I, since in these cases the arc K(I−t )v = {rβv : β ∈ I−t } never enters the
triangle a−tW1 (see Figure 2). Furthermore, if ‖v‖ ≤ et and ](v, e2) ∈ I then the arc
K(I+t )v intersects a−tW2 along its entire apex angle, and so

´
K
1W2(atkv)ν+t (k)dmK = θt

π ,
and this implies the right hand inequality.

Step 2. Smooth approximations, ergodic theorem, and cutting off the cusp.
Our goal will be to estimate the left and right hand sides of (5.3). To this end we will

replace 1̂W1
, 1̂W2

with smooth approximations and apply Theorem 3.4 and Lemma 4.1
to the approximating functions, where the n-th function will give a bound on (5.3) for a
certain time Tn = etn . Our approximation depends on functions and parameters which we
now describe (omitting their dependence on n). The first parameter θ controls the apex
angle of the triangles Wi, as above. We will bound 1Wi from above and below by K-smooth
functions ψ(−,δ), ψ(+,δ) on the plane, supported respectively in a slightly contracted (resp.
expanded) copy of W1 (resp. W2), where the dilation is controlled by a smoothing parameter

δ. The corresponding Siegel-Veech transforms ψ̂(±,δ) will be denoted by f(±,δ). They will
be truncated using Lemma 4.1 along with a cutoff parameter ε, for an appropriate choice of
parameters α1, α2. Finally Theorem 3.4 will be applied to the main term (f(±,δ))main, and
all resulting errors will be collected and bounded.

We now make this discussion more precise and record some estimates for the errors
incurred at the various stages. After collecting these bounds we will choose our parameters
and optimize the error terms in the next step. Our optimization gives θ = δ1/2, and so in
order to reduce the number of parameters we will use this dependence of θ and δ throughout.

Let θ < 1 and R = cos(1)−1. We approximate both triangles W1(θ),W2(θ) by sectors
around the positive vertical axis, that is by sets of the form

Sr0,ϕ0
= {r(cosβ, sinβ) : 0 ≤ r ≤ r0, |β − π/2| ≤ ϕ0}.
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The sector S1(θ) = Scos θ,θ is contained in W1(θ) and the sector S2(θ) = S(cos θ)−1,θ contains

W2(θ) (see Figure 1). Let δ = θ2 and let H : R→ R be a continuously differentiable function
which vanishes outside [−θ, θ], is equal to 1 on [−θ+ δ, θ− δ], and such that ‖H ′‖∞ ≤ 2δ−1,
and define

(5.6) ψ(−,δ)(r cosβ, r sinβ) =

{
H(β − π/2) r ≤ cos θ

0 r > cos θ

Then ψ(−δ) is supported in B(0, R) and we have pointwise inequalities

ψ(−,δ) ≤ 1S1(θ) ≤ 1W1(θ),

and an estimate

‖∂θψ(−,δ)‖∞ � δ−1.

Similarly, we define functions ψ(+,δ) which satisfy a pointwise inequality 1W2(θ) ≤ ψ(+,δ),

are supported in B(0, R), and also satisfy ‖∂θψ(+,δ)‖∞ � δ−1. Since ∂θψ(±,δ)(kre1) is only
supported on an arc of angular width 2δ, this implies that

(5.7) max
r≤R

(ˆ
K

|∂θψ(±,δ)(kre1)|2dmK(k)

)1/2

� δ−1/2.

Since we also have pointwise bounds 1S1(θ−δ) ≤ ψ(−,δ) ≤ ψ(+,δ) ≤ 1S2(θ+δ), we obtain a
bound

(5.8)

ˆ
R2

(ψ(+,δ) − ψ(−,δ))dx ≤ Area (S2(θ + δ) r S1(θ − δ))� δ + θ3 � δ.

Similarly, we obtain the bounds

(5.9)

ˆ
R2

(1W1(θ) − ψ(−,δ))dx� δ and

ˆ
R2

(ψ(+,δ) − 1W2(θ))dx� δ.

Since

Area(W1(θ)) = cos θ sin θ and Area(W2(θ)) = tan θ,

(5.9) also implies that∣∣∣∣ˆ
R2

ψ(−,δ)dx− cos θ sin θ

∣∣∣∣� δ,

∣∣∣∣ˆ
R2

ψ(+,δ)dx− tan θ

∣∣∣∣� δ.

Using (5.1) and expanding the Taylor series for sin, cos, arctan we find

sin θ cos θ

e2tθt
=
θ +O(θ3)

θ +O(θ3)
= 1 +O(θ2), and also

tan θ

e2tθt
= 1 +O(θ2),

so that (using e2tθt = θ +O(θ3))

1

e2tθt

ˆ
R2

ψ(±,δ)dx = 1 +
1

e2tθt
O(θ2 + δ) = 1 +O(δ1/2).

Note that the appearance of θ2 + δ in this bound explains our choice θ2 = δ.
We have (provided 0 < θ ≤ π

4 )∣∣∣∣ˆ
K

ν±t dmK −
ϕ2 − ϕ1

2π

∣∣∣∣ ≤ θt
π
≤ tan θt

π
≤ e−2t tan θ ≤ e−2t,

and we will make our choices so that

(5.10) e−2t = o(δ1/2),

so that we have

(5.11)
1

e2tθt

(ˆ
R2

ψ(±,δ)dx

) (ˆ
K

ν±t dmK

)
=
ϕ2 − ϕ1

2π
+O(δ1/2).

Let f(±,δ) = ψ̂(±,δ) be the Siegel-Veech transform of the functions defined in (5.6). The
transform preserves pointwise inequalities of functions, and so (5.3) implies

(5.12)
π

θt
πL(Σν−t ,t

)f(−,δ)(x) ≤ NC(et,x, ϕ1, ϕ2) ≤ π

θt
πL(Σν+

t ,t
)f(+,δ)(x).
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We apply Lemma 4.1 with parameters α1, α2, ε. Decompose f(±,δ) as the sum (f(±,δ))main +
(f(±,δ))ε, where (f(±,δ))main = f(±,δ)(1− χε) and (f(±,δ))ε = f(±,δ)χε, and let

f(±,δ,ε) = f(±,δ)(1− χε)− I±(δ,ε), where I±(δ,ε) =

ˆ
f(±,δ)(1− χε)dµ,

i.e. f(±,δ,ε) is the projection
(
f(±,δ)

)
main

to the space of zero integral functions. Inequality

(4.4) in the proof of (4.1) shows that

(5.13) ‖f(±,δ,ε)‖22 = ‖(f(±,δ))main‖22 − (I±(δ,ε))
2 ≤ ‖(f(±,δ))main‖22 � ε−2α1 θ2 = ε−2α1δ.

Similarly, using (4.4) and (5.7),

(5.14) SK(f(±,δ,ε))
2 � ε−2α1δ−1.

Note that the implicit constants in (5.13) and (5.14) depend only on the support of ψ(±,δ),
which is uniformly bounded.

Having recorded these bounds, we turn to the application of Theorem 3.4. We will choose
a sequence tn → ∞, choose parameters λ ∈ (0, λL), set η = 1

λ+1 , and for each n, define
parameters δn, εn, thus giving functions

f±n = f(±,δn,εn).

The theorem will be applied twice, to each of the two sequences f+n , f
−
n . We will choose

0 < η1 < 2η so that (3.8) is satisfied. Then, since the νtn(K) are bounded, plugging (5.13)
and (5.14) into (3.9) we will obtain the bound

(5.15)
∣∣∣πL(Σν±tn ,tn

)f±n (x)
∣∣∣� e−(η−

η1
2 )λtnDn,

where

(5.16) Dn = ε−α1
n δ

− 1
2

n .

In what follows we continue with the set of full measure of x for which (5.15) holds, and thus
the implicit constants in the � and O(·) notations may depend on x. Let I±n = I±(δn,εn).

Since f(±,δn)(1− χεn) = f±n + I±n , (4.2) and (5.15) imply

πL(Σν±tn ,tn
)(f(±,δn)(1− χεn))(x) =

ˆ
K

I±n ν
±
tndmK +O(e−(η−

η1
2 )λtnDn)

=

(ˆ
f(±,δn)dµ

) (ˆ
K

ν±tndmK

)
+O(εβn + e−(η−

η1
2 )λtnDn),

(5.17)

where

β = α2 − α1.

Moreover (4.3) implies

(5.18) πL(Σν±tn ,tn
)(f(±,δn)χεn)(x) ≤ πL(Σtn)(f(±,δn)χεn)(x)�x,α1,α2

εβn.

By Theorem 2.1 we have
´
f(±,δn)dµ = c

´
R2 ψ(±,δn)dx, where c = c(L, C) is the Siegel-Veech

constant. Combining this with (5.17) and (5.18) we obtain
(5.19)∣∣∣∣πL(Σν±tn ,tn

)f(±,δn)(x)− c
(ˆ

R2

ψ(±,δn)dx

) (ˆ
K

ν±tndmK

)∣∣∣∣�x ε
β
n + e−(η−

η1
2 )λtnDn.

Combining (5.11) and (5.19), and using again e2tθt = θ +O(θ3) = δ1/2 +O(δ3/2), we get∣∣∣∣ 1

e2tnθtn
πL(Σν±tn ,tn

)f(±,δn)(x)− c(ϕ2 − ϕ1)

2π

∣∣∣∣� δ1/2n + δ−1/2n (εβn + e−(η−
η1
2 )λtnDn).

Plugging this estimate into (5.12) and using (5.16), we find that for any n,

(5.20)

∣∣∣∣NC(etn ,x, ϕ1, ϕ2)

e2tn
− c

2
(ϕ2 − ϕ1)

∣∣∣∣� δ1/2n + δ−1/2n εβn + e−(η−
η1
2 )λtnε−α1

n δ−1n .
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Step 3. Choosing parameters and deriving bounds for any T . Let λL be the size of
the spectral gap for L, µ as in §3, and let λ < λL. We will show that if σ = 5.5 + 3.5λ then
κ = λ

σ satisfies the conclusion of the theorem (see the discussion following the statement of
Theorem 1.1). Let tn be the sequence defined by the equation

(5.21) etn = n
σ
λ .

Fix 1 < α1 < α2 < 2 and β = α2 − α1 as in Lemma 4.1, and set

(5.22) η1 =
α1

σ

(note that with this choice, 0 < η1 < 2η). This choice is necessary if we want to satisfy
(3.8), since α1 > 1 implies∑

n∈N
e−λη1tn =

∑
n∈N

n−ση1 =
∑
n∈N

n−α1 <∞.

The right hand side of (5.20) is optimized when the three terms appearing in it are equal
to each other. After some algebraic manipulations, this leads to

(δn)
3
2+

α1
β = e−(η−

η1
2 )λtn

and therefore

δn = e

−(η− η1
2

)λtn
3
2
+
α1
β

and the right hand side of (5.20) becomes (up to constants)

(5.23)
(
e2tn

)−κ
, where κ = λ

η − η1/2
6 + 4α1/β

.

This expression is decreasing in α1 and increasing in β, and we are allowed to take arbitrary
α1 > 1 and β < 2− α1. Thus we may let α1 → 1 and β → 1, plugging in (5.22), to obtain
κ arbitrarily close to

κ(σ) =
λ

10

(
η − 1

2σ

)
,

and thus for times Tn = etn , (5.20) can be written as∣∣∣NC(Tn,x, ϕ1, ϕ2)− c

2
(ϕ2 − ϕ1)T 2

n

∣∣∣� T 2(1−κ(σ))
n .

Now for arbitrary T , let n satisfy Tn < T ≤ Tn+1. By monotonocity,
(5.24)
c(ϕ2 − ϕ1)

2
T 2
n

(
1−O

(
T−2κ(σ)n

))
≤ NC(T,x, ϕ1, ϕ2) ≤ c(ϕ2 − ϕ1)

2
T 2
n+1

(
1 +O

(
T
−2κ(σ)
n+1

))
.

Since etn = n
σ
λ we have

max

(
T 2

T 2
n

,
T 2
n+1

T 2

)
�

T 2
n+1

T 2
n

=

(
1 +

1

n

) 2σ
λ

= 1+O

(
1

n

)
= 1+O

(
e−

tnλ
σ

)
= 1+O

(
T 2(− λ

2σ )
)
.

So both sides of (5.24) are c(ϕ2−ϕ1)
2 T 2

(
1 +O

(
T−

λ
2σ

)2
+O

(
T−κ(σ)

)2)
. Thus we can

do no better than to set κ(σ) = λ
2σ . Solving this equation leads to σ = 5.5η = 5.5 + 5.5λ, as

claimed. We leave it to the reader to verify that with this choice of σ, (5.10) is satisfied. �

6. Effective counting in all sectors and all dilates of an ellipse

In order to change the order of quantifiers and obtain an estimate simultaneously true
for all ϕ1, ϕ2 and all {gx : g ∈ G}, we will use two distinct techniques. Firstly we will use
Theorem 3.5 instead of 3.4, as this will allow us to control countably many ellipses. Secondly
we will give an additional approximation argument which shows how to use countably many
functions, approximating a countable dense set of sectors, along with a countable dense set
of ellipses, of countably many radii, to simultaneously control all ellipses and all sectors.
We proceed to the details.
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Proof of Theorem 1.2. We will use the notations and estimates as in the proof of Theorem
1.1, and follow the same steps. We fix a configuration C and use it throughout, and let c be
the corresponding Siegel-Veech constant. In analogy with (5.2), for fixed ϕ1, ϕ2 we set

I = [ϕ1, ϕ2], I−t,ϕ1,ϕ2
= [ϕ1 + θt, ϕ2 − θt], I+t,ϕ1,ϕ2

= [ϕ1 − θt, ϕ2 + θt],

and let ν, ν−t,ϕ1,ϕ2
, ν+t,ϕ1,ϕ2

denote respectively the indicator functions of these intervals
(where we have selected a different notation to reflect the dependence on ϕ1, ϕ2). Us-

ing (5.3), and using that πL

(
Σν±t ,ϕ1,ϕ2

)
(gx) = πL

(
Σ

(g)

ν±t ,ϕ1,ϕ2

)
(x), we find that for every

x ∈ H and every g ∈ G,

πL

(
Σ

(g)

ν−t,ϕ1,ϕ2
,t

)
1̂W1(θ)(x) ≤ θt

π
NC(et, gx, ϕ1, ϕ2) ≤ πL

(
Σ

(g)

ν+
t,ϕ1,ϕ2

,t

)
1̂W2(θ)(x).

This estimate generalizes (5.3) and constitutes the first step of the proof.
In the second step of the proof we again need to record certain bounds, but this time

we will record their dependence on three additional parameters. Namely, as before, we will
have parameters 1 < α1 < α2 < 2, β = α2 − α1, η1 > 0, as well as sequences of times
tn ↗ ∞, smoothing parameters δn and cutoff parameters εn. In addition we will have

sequences of ‘ellipse parameters’ (gn) ⊂ G and ‘angular sector parameters’ ϕ
(n)
1 < ϕ

(n)
2 with

ϕ
(n)
2 − ϕ(n)

1 ≤ 2π.
Using a smoothing parameter δ = δn, defining the functions f(±,δ) (Siegel-Veech trans-

forms of smooth approximations of 1W1 ,1W2) as before, and in analogy with (5.12), we
obtain

π

θt
πL

(
Σ

(g)

ν−t,ϕ1,ϕ2

)
f(−,δ)(x) ≤ NC(et, gx, ϕ1, ϕ2) ≤ π

θt
πL

(
Σ

(g)

ν+
t,ϕ1,ϕ2

)
f(+,δ)(x).

Note that these upper and lower bounds are valid for any g ∈ G and any ϕ1, ϕ2.
In the proof of (5.20), there are two sources for the dependence of the estimate depending

on x. The first arises in deriving (5.18) by way of (4.3), and gives rise to an estimate which
is uniform as x ranges over a compact subset of H, and the second arises from Theorem
3.4, and gives rise to a condition n ≥ n0(x). Thus the same argument (with Theorem 3.5
instead of Theorem 3.4) gives

(6.1)

∣∣∣∣∣∣
NC

(
etn , gnx, ϕ

(n)
1 , ϕ

(n)
2

)
e2tn

− c

2

(
ϕ
(n)
2 − ϕ(n)

1

)∣∣∣∣∣∣
�δ1/2n + δ−1/2n εβn +

(
ϕ
(n)
2 − ϕ(n)

1

)1−λη/2
e−(η−

η1
2 )λtnε−α1

n δ−1n ,

as long as n ≥ n0(x) and where the implicit constant depends on gn and x and can be taken
to be uniform in compact subsets of G and L. This completes the second step of the proof.

We now choose λ, α1, α2 satisfying λ < λL, 1 < α1 < α2 < 2. For each n ∈ N, we define
an auxiliary variable

m = mn = bn1/7c,
which we will refer to as the scale of n. For fixed m, let

Nm = {n : mn = m}

denote the indices of scale m. Note that as n → ∞, the scales mn also tend to infinity at

a slower rate, and the cardinality of Nm is approximately m6. Now choose ϕ
(n)
1 , ϕ

(n)
2 , gn so

that for all large enough m, the collection of triples{(
ϕ
(n)
1 , ϕ

(n)
2 , gn

)
: n ∈ Nm

}
is 1

m(logm) -dense in

(6.2)
{

(ϕ1, ϕ2, g) : ϕ1 ∈ [0, 2π], ϕ2 − ϕ1 ∈ [0, 2π], g ∈ G, max(‖g‖, ‖g−1‖) < logm
}
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(with respect to the sup-norm in the first two coordinates and the operator norm in the
third coordinate). This is possible since (6.2) defines a 5-dimensional manifold of diameter
O(logm).

Now following (5.21) we choose tn so that etn = m
σ
λ
n , where σ is a parameter we will

optimize. It will turn out that the optimal value will be

(6.3) σ = 8.5 + 8.5λ.

Let

(6.4) η1 =
7α1

σ
>

7

σ
,

so that ∑
n∈N

e−λη1tn =
∑
m∈N

∑
n∈Nm

m−ση1 �
∑
m∈N

m6−ση1 <∞,

so that (3.8) holds. Also note that the lengths of intervals at scale mn is bounded below by

e−
λtn
σ /tn and in particular, since λ

σ < 2, satisfies the lower bound |I| > e−2tn for all large
enough n. Thus we can apply Theorem 3.5, and deduce (6.1).

As before, we optimize the right hand side of (6.1) by setting all three summands equal to
each other, and we obtain that it is bounded by a constant (depending on ‖gn‖) multiplied
by the expression (5.23). Letting α, β → 1 in (5.23) and using (6.4) instead of (5.22), we

find that the right hand side of (6.1) is on the order of
(
e2tn

)−κ
where

κ = κ(σ) =
λ

10

(
η − 7

2σ

)
,

Denote
S(r0, ϕ1, ϕ2) = {r(cosβ, sinβ) : β ∈ [ϕ1, ϕ2], 0 ≤ r ≤ r0}.

Let g ∈ G and ϕ1 ∈ [0, 2π] and ϕ2 ∈ R with ϕ2 − ϕ1 ≤ 2π. When ‖gj − g‖ < 1
m(logm) , and

g, gj are as in (6.2), then max(‖Id− gjg−1‖, ‖Id− gg−1j ‖) < 1
m . Thus there is a constant c1

such that for all large enough m there are k, ` ∈ Nm such that

ϕ
(`)
1 < ϕ1 < ϕ

(k)
1 < ϕ

(k)
2 < ϕ2 < ϕ

(`)
2 ,∣∣∣ϕ(`)

i − ϕ
(k)
i

∣∣∣ < c1
m
, i = 1, 2,

and for any r0 we have the inclusions

g−1k S
(
r0

(
1− c1

m

)
, ϕ

(k)
1 , ϕ

(k)
2

)
⊂ g−1S (r0, ϕ1, ϕ2) ⊂ g−1` S

(
r0

(
1 +

c1
m

)
, ϕ

(`)
1 , ϕ

(`)
2

)
.

Hence for all T ,

NC
(
T
(

1− c1
m

)
, gkx, ϕ

(k)
1 , ϕ

(k)
2

)
≤ NC (T, gx, ϕ1, ϕ2) ≤ NC

(
T
(

1 +
c1
m

)
, g`x, ϕ

(`)
1 , ϕ

(`)
2

)
.

Choosing n so that etn ≤ T < etn+1 , and assuming T and hence m are large enough so that
the preceding estimates are all satisfied, arguing as in the preceding proof, we obtain the
following analogue of (5.24):(

ϕ
(`)
2 − ϕ

(`)
1

) c
2
e2tn

(
1−O((e2tn)−κ)

)(
1−O

(
1

m

))
≤NC(T, gx, ϕ1, ϕ2)

≤
(
ϕ
(k)
2 − ϕ(k)

1

) c
2
e2tn+1

(
1 +O((e2tn+1)−κ)

)(
1 +O

(
1

m

))(6.5)

(with implicit constants depending on ‖g‖). As before

e2tn+1

e2tn
= 1 +O

(
T 2(− λ

2σ )
)
,

and since

max

[
ϕ2 − ϕ1

ϕ
(k)
2 − ϕ(k)

1

,
ϕ
(`)
2 − ϕ

(`)
1

ϕ2 − ϕ1

]
= 1 +O

(
1

m

)
= 1 +O

(
(e2tn)

−λ
2σ

)
,
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both sides of (6.5) are (ϕ2 − ϕ1) c2T
2
(

1 +O
(
T−κ

′
))

, where

κ′ = min

{
κ(σ),

λ

2σ

}
.

Setting both of these terms equal to each other and computing σ gives (6.3) and completes
the proof. �
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