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Abstract. We define Ratner-Marklof-Strömbergsson measures (fol-
lowing [MS14]). These are probability measures supported on cut-
and-project sets in Rd pd ě 2q which are invariant and ergodic for
the action of the groups ASLdpRq or SLdpRq. We classify the mea-
sures that can arise in terms of algebraic groups and homogeneous
dynamics. Using the classification, we prove analogues of results
of Siegel, Weil and Rogers about a Siegel summation formula and
identities and bounds involving higher moments. We deduce re-
sults about asymptotics, with error estimates, of point-counting
and patch-counting for typical cut-and-project sets.

1. Introduction

A cut-and-project set is a discrete subset of Rd obtained by the fol-
lowing construction. Fix a direct sum decomposition Rn “ Rd ‘ Rm,
where the two summands in this decomposition are denoted respec-
tively Vphys, Vint, so that

Rn
“ Vphys ‘ Vint,

and the corresponding projections are

πphys : Rn
Ñ Vphys, πint : Rn

Ñ Vint.

Also fix a lattice L Ă Rn and a window W Ă Vint; then the correspond-
ing cut-and-project set Λ “ ΛpL,W q is given by

ΛpL,W q def
“ πphys

`

LX π´1
int pW q

˘

. (1.1)

We sometimes allow L to be a grid, i.e., the image of a lattice under
a translation in Rn, and sometimes require Λ to be irreducible, a no-
tion we define in §2. Cut-and-project sets are prototypical aperiodic
sets exhibiting long-term-order, and are sometimes referred to as model
sets or quasicrystals. Beginning with work of Meyer [Mey70] in connec-
tion to Pisot numbers, they have been intensively studied from various
points of view. See [BG13] and the references therein.
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Given a cut-and-project set, a natural operation is to take the clo-
sure (with respect to a natural topology) of its orbit under transla-
tions. This yields a dynamical system for the translation group and
has been studied by many authors under different names. In recent
years several investigators have become interested in the orbit-closures
under the group SLdpRq (respectively ASLdpRq), which is the group
of orientation- and volume-preserving linear (resp., affine) transforma-
tions of Rd. In particular, in the important paper [MS14], motivated by
problems in mathematical physics, Marklof and Strömbergsson intro-
duced a class of natural probability measures on these orbit-closures.
The goal of this paper is to classify and analyze such measures, and
derive consequences for the statistics and large scale geometry of cut-
and-project sets.

1.1. Classification of Ratner-Marklof-Strömbergsson measures.
We say that a cut-and-project set is irreducible if it arises from the
above construction, where the data satisfies the assumptions (D), (I)
and (Reg) given in §2.1. Informally speaking, (D) and (I) imply that
the set cannot be presented as a finite union of sets whose construc-
tion involves smaller groups in the cut-and-project construction, and
(Reg) is a regularity assumption on the window set W . We denote by
C pRdq the space of closed subsets of Rd, equipped with the Chabauty-
Fell topology. This is a compact metric topology whose definition is
recalled in §2.2, and which is also referred to in the quasicrystals lit-
erature as the local rubber topology or the natural topology. Since the
groups ASLdpRq and SLdpRq act on Rd, they also act on C pRdq. We
say that a Borel probability measure µ on C pRdq is a Ratner-Marklof-
Strömbergsson measure, or RMS measure for short, if it is invariant
and ergodic under SLdpRq and gives full measure to the set of irre-
ducible cut-and-project sets. We call it affine if it is also invariant un-
der ASLdpRq, and linear otherwise (i.e., if it is invariant under SLdpRq
but not under ASLdpRq).

A construction of RMS measures was given in [MS14], as follows. Let
Yn denote the space of grids of covolume one in Rn, equipped with the
Chabauty-Fell topology, or equivalently with the topology it inherits
from its identification with the homogeneous space ASLnpRq{ASLnpZq.
Similarly, let Xn denote the space of lattices of covolume one in Rn,
which is identified with the homogeneous space SLnpRq{ SLnpZq. Fix
the data d,m, Vphys » Rd, Vint » Rm, πphys, πint, as well as a set W Ă

Vint, and choose L randomly according to a probability measure µ̄ on
Yn. This data determines a cut-and-project set Λ, which is random
since L is. The resulting probability measure µ on cut-and-project
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sets can thus be written as the pushforward of µ̄ under the map L ÞÑ
ΛpW,Lq, and is easily seen to be invariant and ergodic under SLdpRq
or ASLdpRq if the same is true for µ̄. One natural choice for µ̄ is the
so-called Haar-Siegel measure, which is the unique Borel probability
measure invariant under the group ASLnpRq. Another is the Haar-
Siegel measure on Xn (i.e., the unique SLnpRq-invariant measure). It
is also possible to consider other measures on Yn which are ASLdpRq-
or SLdpRq-invariant. As observed in [MS14], a fundamental result of
Ratner [Rat91] makes it possible to give a precise description of such
measures on Yn. They correspond to certain algebraic groups which
are subgroups of ASLnpRq and contain ASLdpRq (or SLdpRq).

Our first result is a classification of such measures. We refer to §2 and
§3 for more precise statements, and for definitions of the terminology.

Theorem 1.1. Let µ be an RMS measure on C pRdq. Then, up to
rescaling, there are fixed m and W Ă Rm such that µ is the pushforward
via the map

Yn Ñ C pRd
q, L ÞÑ ΛpL,W q

of a measure µ̄ on Yn, where n “ d`m, W satisfies (Reg), the measure
µ̄ is supported on a closed orbit HL1 Ă Yn for a connected real algebraic
group H Ă ASLnpRq and L1 P Yn. There is an integer k ě d, a real
number field K and a K-algebraic group G, such that the Levi subgroup
of H arises via restriction of scalars from G and K, and one of the
following holds for G:

‚ G “ SLk (as a K-group) and n “ k ¨ degpK{Qq.
‚ G “ Sp2k (as a K-group), and d “ 2, n “ 2k ¨ degpK{Qq.

Furthermore, in the linear (resp. affine) case µ is invariant under none
of (resp., all of) the translations by nonzero elements of Vphys.

Here the group Sp2k is the group preserving the standard symplectic
form in 2k variables; we caution the reader that this group is sometimes
denoted by Spk in the literature. As we will see in Proposition 3.3, any
choice of K and G satisfying the description in Theorem 1.1 gives rise
to an affine and a linear RMS measure. We note that the vertex sets
of the famous Ammann-Beenker and Penrose tililngs, which are well-
known to have representations as cut-and-project constructions, are
associated with the real quadratic fields K “ Qp

?
2q and K “ Qp

?
5q,

resepctively, with d “ 2 and G “ SL2, see also §5.
Theorem 1.1 is actually a combination of two separate results. The

first extends work of Marklof and Strömbergsson [MS14]. They intro-
duced the pushforward µ̄ ÞÑ µ described above, where µ̄ is a homoge-
neous measure on Yn, and noted that the measures µ̄ could be classified
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using Ratner’s work. Our contribution in this regard (see Theorem 3.1)
is to give a full list of the measures µ̄ which can arise. The second result,
contained in our Theorem 4.1, is that this construction is the only way
to obtain RMS measures according to our definition (which is given in
terms of Vphys rather than Yn).

1.2. Formulae of Siegel-Weil and Rogers. In geometry of num-
bers, computations with the Haar-Siegel probability measure on Xn

are greatly simplified by the Siegel summation formula [Sie45], accord-
ing to which for f P CcpRnq,

ż

Xn

f̂pLq dmpLq “
ż

Rn
fpxq dvolpxq, where f̂pLq “

ÿ

vPLrt0u

fpvq.

(1.2)
Here m is the Haar-Siegel probability measure on Xn, and vol is the
Lebesgue measure on Rn. The analogous formula for RMS measures
was proved in [MS14]. Namely1, suppose µ is an RMS measure, and
for each Λ P suppµ, and for f P CcpRdq, set

f̂pΛq
def
“

$

’

’

&

’

’

%

ÿ

vPΛrt0u

fpvq µ is linear

ÿ

vPΛ

fpvq µ is affine.
(1.3)

We will refer to f̂ as the Siegel-Veech transform of f . Then it is shown
in [MS14, MS20], that for an explicitly computable constant c ą 0, for
any f P CcpRdq one has

ż

f̂pΛq dµpΛq “ c

ż

Rd
fpxq dvolpxq. (1.4)

A first step in the proof of (1.4) is to show that f̂ is integrable, i.e.,
belongs to L1pµq. As a corollary of Theorem 1.1, and using reduction
theory for lattices in algebraic groups, we strengthen this and obtain the
precise integrability exponent of the Siegel-Veech transform, as follows:

Theorem 1.2. Let µ be an RMS measure, let G and K be as in The-

orem 1.1, let r
def
“ rankKpGq denote the K-rank of G, and define

qµ
def
“

"

r ` 1 µ is linear
r ` 2 µ is affine.

(1.5)

1Our notations differ slightly from those of [MS14], but the result as stated here
can be easily shown to be equivalent to the one in [MS14].
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Then for any f P CcpRdq and any p ă qµ we have f̂ P Lppµq. Moreover,
if the window W contains a neighborhood of the origin in Vint, there are
f P CcpRdq for which f̂ R Lqµpµq.

The proof involves integrating some characters over a Siegel set for a
homogeneous subspace of Xn. The special case for which K “ Q, G “

SLk and the measure µ is linear was carried out in [EMM98, Lemma
3.10]. Note that

rankKpGq “

"

k ´ 1 if G “ SLk
k if G “ Sp2k.

(1.6)

We will say that the RMS measure µ is of higher rank when qµ ě 3; in
light of the above this happens unless d “ 2, G “ SL2, and µ is linear.
It follows immediately from Theorem 1.2 that f̂ P L1pµq, and in the

higher-rank case, that f̂ P L2pµq.
The proof of (1.4) given in [MS14] follows a strategy of Veech [Vee98],

and relies on a difficult result of Shah [Sha96]. Following Weil [Wei82],
we will reprove the result with a more elementary argument. Combined
with Theorem 1.2, the argument gives a strengthening of (1.4).

Given p P N, write
Àp

1 Rd “ Rdp, and for a compactly supported
function f on Rdp, define

pfp pΛq
def
“

$

’

’

&

’

’

%

ÿ

v1,...,vpPΛrt0u

fpv1, . . . , vpq µ is linear

ÿ

v1,...,vpPΛ

fpv1, . . . , vpq µ is affine.
(1.7)

Theorem 1.3. Let µ be an RMS measure, and suppose p ă qµ where
qµ is as in (1.5). Then there is a countable collection tτe : e P Eu

of Borel measures on Rdp such that τ
def
“

ř

τe is locally finite, and for
every f P L1pτq we have

ż

pfp dµ “

ż

Rdp
f dτ ă 8.

The measures τe are H-c&p-algebraic, for the group H appearing in
Theorem 3.1 (see Definition 7.3).

This result is inspired by several results of Rogers for lattices, see
e.g. [Rog55, Thm. 4]. Loosely speaking, c&p-algebraic measures are
images of algebraically defined measures on Rnp under a natural map
associated with the cut-and-project construction.

Theorems 1.2 and 1.3 will be deduced from their more general coun-
terparts Theorems 6.2 and 7.1, which deal with the homogenous sub-
space HL1 Ă Yn arising in Theorem 1.1.
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1.3. Rogers-type bound on the second moment. A fundamental
problem in geometry of numbers is to control the higher moments of
random variables associated with the Haar-Siegel measure on the space
Xn. In particular, regarding the second moment, the following impor-
tant estimate was proved in [Rog55, Rog56, Sch60]: for the Haar-Siegel
measure m on Xn, n ě 3 there is a constant C ą 0 such that for any
function f P CcpRnq taking values in r0, 1s we have

ż

Xn

ˇ

ˇ

ˇ

ˇ

f̂pxq ´

ż

Xn

f̂ dm

ˇ

ˇ

ˇ

ˇ

2

dmpxq ď C

ż

Rn
f dvol,

where f̂ is as in (1.2). We will prove an analogous result for RMS
measures of higher rank.

Theorem 1.4. Let µ be an RMS measure of higher rank. For p “ 2
let τ be the measure as in Theorem 1.3. In the notation of Theorem
1.1, assume that

G “ SLk, or µ is affine. (1.8)

Then there is C ą 0 such that for any Borel function f : Rd Ñ r0, 1s
belonging to L1pτq we have

ż

C pRdq

ˇ

ˇ

ˇ

ˇ

f̂pxq ´

ż

C pRdq
f̂ dµ

ˇ

ˇ

ˇ

ˇ

2

dµpxq ď C

ż

Rd
f dvol. (1.9)

The case in which (1.8) fails, that is, µ is linear and G “ Sp2k, and in
which in addition K “ Q, is treated in [KY18], where a similar bound
is obtained. The symplectic case with K a proper field extension of Q
is more involved, and we hope to investigate it further in future work.

There have been several recent papers proving an estimate like (1.9)
for homogeneous measures associated with various algebraic groups.
See [KS19] and references therein. The alert reader will have noted
that, even though the measure µ is the pushforward of a measure sup-
ported on a homogeneous space HL1, we prove the bound (1.9) for
functions defined on C pRdq rather than on HL1. Indeed, while we ex-
pect such a stronger result to be true, it requires a more careful analysis
than the one needed for our application.

1.4. The Schmidt theorem for cut-and-project sets, and patch-
counting. It is well-known that every irreducible cut-and-project set
Λ has a density

DpΛq
def
“ lim

TÑ8

# pΛXBp0, T qq

volpBp0, T qq
“

volpW q

covolpLq
, (1.10)

where Λ “ ΛpL,W q, volpW q is the volume of W , and covolpLq is the
covolume of L (for two proofs, which are valid for a larger class of nice
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sets in place of Bp0, T q, see [Moo02] and [MS14, §3], and see refer-
ences therein). In particular, the limit exists and is positive. Following
Schmidt [Sch60], we would like to strengthen this result and allow
counting in even more general shapes, and with a bound on the rate of
convergence. We say that a collection of Borel subsets tΩT : T P R`u
of Rd is an unbounded ordered family if

‚ 0 ď T1 ď T2 ùñ ΩT1 Ă ΩT2 ;
‚ For all T ą 0, volpΩT q ă 8;
‚ volpΩT q ÑTÑ8 8; and
‚ For all large enough V ą 0 there is T such that volpΩT q “ V .

Theorem 1.5. Let µ be an RMS measure of higher rank, such that
(1.8) holds. Then for every ε ą 0, for every unbounded ordered family
tΩT u, for µ-a.e. cut-and-project set Λ,

# pΩT X Λq “ DpΛq ¨ volpΩT q `O
´

volpΩT q
1
2
`ε
¯

. (1.11)

This result is a direct analogue of Schmidt’s result for lattices, and
its proof follows [Sch60]. In the special case ΩT “ Bp0, T q, we obtain
an estimate for the rate of convergence in (1.10), valid for µ-a.e. cut-
and-project set. For related work see [HKW14]. Note that for Bp0, T q,
and for lattices, Götze [Göt98] has conjectured that an error estimate

O
´

volpBp0, T qq
1
2
´ 1

2d
`ε
¯

should hold.

Even for ΩT “ Bp0, T q, one cannot expect (1.11) to hold for all cut-
and-project sets; in fact, a Baire category argument as in [HKW14, §9]
can be used to show that for any error function EpT q with EpT q “
opT dq there are cut-and-project sets for which, along a subsequence
Tn Ñ 8,

|# pBp0, Tnq X Λq ´DpΛq ¨ volpBp0, Tnqq| ě EpTnq.

Thus, it is an interesting open problem to obtain error estimates like
(1.11) for explicit cut-and-project sets. Note that for explicit cut-and-
project sets which can also be described via substitution tilings, such
as the vertex set of a Penrose tiling, there has been a lot of work in
this direction, see [Sol14] and references therein.

We now discuss patch counting, which is a refinement which makes
sense for cut-and-project sets but not for lattices. For any discrete set
Λ Ă Rd, any point x P Λ and any R ą 0, we refer to the set

PΛ,Rpxq
def
“ Bp0, Rq X pΛ´ xq

as the R-patch of Λ at x. Two points x1, x2 P Λ are said to be R-patch
equivalent if PΛ,Rpx1q “ PΛ,Rpx2q. It is well-known that any cut-and-
project set Λ is of finite local complexity, which means that for any
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R ą 0,
#tPΛ,Rpxq : x P Λu ă 8.

Furthermore, it is known that whenever P0 “ PΛ,Rpx0q for some x0 P Λ
and some R ą 0, the density or absolute frequency

DpΛ,P0q “ lim
TÑ8

#tx P ΛXBp0, T q : PΛ,Rpxq “ P0u

volpBp0, T qq
(1.12)

exists; in fact, the set in the numerator of (1.12) is itself a cut-and-
project set, see [BG13, Cor. 7.3]. Our analysis makes it possible to
obtain an analogue of Theorem 1.5 for counting patches, namely:

Theorem 1.6. Let µ be an RMS measure of higher rank, for which

(1.8) holds. For any δ ą 0, set θ0
def
“ δ

m`2δ
, where m “ dimVint. Sup-

pose the window W Ă Vint in the cut-and-project construction satisfies
dimBpBW q ď m´ δ, where dimB denotes the upper box dimension (see
§10). Then for every unbounded ordered family tΩT u in Rd, for µ-a.e.
Λ, for any patch P0 “ PΛ,Rpx0q, and any θ P p0, θ0q, we have

#tx P ΩT X Λ : PΛ,Rpxq “ P0u “ DpΛ,P0q volpΩT q `O
´

vol pΩT q
1´θ

¯

.

(1.13)

For additional results on effective error terms for patch-counting in
cut-and-project sets, see [HJKW19].

1.5. Acknowledgements. We are grateful to Mikhail Borovoi, Man-
fred Einsiedler, Dmitry Kleinbock, Henna Koivusalo, Jens Marklof,
Dave Morris, Michel Skenderi, and Andreas Strömbergsson for useful
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orem 3.5, Borovoi supplied an argument used in Step 4 in the proof of
Lemma 3.2, and Einsiedler supplied arguments for Lemmas 3.2 and 3.4.
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2919/19, 1570/17, 1149/18 and 264/22, Swiss National Science Foun-
dation 168823 and European Research Council 754475, and the David
and Rosa Orzen Endowment Fund. We thank the anonymous referees
for a careful reading of the paper and for many helpful comments and
suggestions.

2. Basics

2.1. Cut-and-project sets. In the literature, different authors im-
pose slightly different assumptions on the data in the cut-and-project
construction. For related discussions, see [BG13, Moo97, MS14]. Here
are the assumptions which will be relevant in this paper:

(D) πintpLq is dense in Vint.
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(I) πphys|L is injective.
(Reg) The window W is Borel measurable, bounded, has non-empty

interior, and its boundary BW has zero measure with respect
to Lebesgue measure on Vint.

We will say that the construction is irreducible if (D), (I) and (Reg)
hold.

In the literature, a more general cut-and-project scheme is discussed,
in which the groups Vphys » Rd, Vint » Rm may be replaced with general
locally compact abelian groups. Note that if (D) fails, we can replace

Vint with πintpLq, which is a proper subgroup of Vint, while if (I) fails, we
can replace Vint with Vint{pLX kerπphysq. In both cases one can obtain
the same set using smaller groups. Note that when (D) fails, the group

πintpLq might be disconnected, and in that case, using (Reg) we see
that only finitely many of its connected components will intersect W ,
and ΛpL,W q will have a description as a finite union of cut-and-projects
sets with an internal space of smaller dimension.

Regarding the regularity assumptions on W , note that if no regu-
larity assumptions are imposed, one can let Λ be an arbitrary subset
of πphyspLq by letting W be equal to πint

`

LX π´1
physpΛq

˘

. Also, the
assumption that W is bounded (respectively, has nonempty interior)
implies that Λ is uniformly discrete (respectively, relatively dense).

Finally, note that it is not W that plays a role in (1.1), but rather
π´1

int pW q. In particular, if convenient, one can replace the space Vint

with any space V 1int which is complementary to Vphys, and with the

obvious notations, replace W with W 1 def
“ π1intpπ

´1
int pW qq. Put otherwise,

it would have been more natural to think of W as being a subset of
the quotient space Rn{Vphys. We refrain from doing so to avoid conflict
with established conventions.

2.2. Chabauty-Fell topology. Let C pRdq denote the collection of
all closed subsets of Rd. Equip C pRdq with the topology induced by
the following metric, which we will call the Chabauty-Fell metric: for
Y0, Y1 P C pRdq, dpY0, Y1q is the infimum of all ε P p0, 1q for which, for
both i “ 0, 1,

Yi XB
`

0, ε´1
˘

is contained in the ε-neighborhood of Y1´i,

and dpY0, Y1q “ 1 if there is no such ε. It is known that with this
metric, C pRdq is a compact metric space. In this paper, closures of
collections in C pRdq and continuity of maps with image in C pRdq will
always refer to this topology, and all measures will be regular measures
on the Borel σ-algebra induced by this topology. We note that in the
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quasicrystals literature this topology is often referred to as the local
rubber topology or the natural topology .

We note that there are many topologies on the set of closed sub-
sets C pXq of a topological space X. The Chabauty-Fell metric was
introduced by Chabauty [Cha50] for X “ Rd as well as for X a lo-
cally compact second countable group, and by Fell [Fel62] for general
spaces X, particularly spaces arising in functional analysis. See also
[LS03], where the connection to the Hausdorff metric is elucidated via
stereographic projection. Many of the different topologies in the liter-
ature coincide on C

`

Rd
˘

. Two notable exceptions are the Hausdorff
topology, which is defined on the collection of nonempty closed subsets
of X, and the weak-* topology of Borel measures on Rd, studied in
[Vee98, MS19], satisfying a certain growth condition and restricted to
point processes. See [Bee93] for a comprehensive discussion of topolo-
gies on C pXq.

We will need the following fact, which is well-known to experts, but
for which we could not find a reference (see [MS19, §5.3] for a related
discussion):

Proposition 2.1. Suppose W is Borel measurable and bounded. Then
the map

Ψ : Yn Ñ C pRd
q, ΨpLq def

“ ΛpL,W q (2.1)

is a Borel map, and is continuous at any L for which πintpLqXBW “ ∅.

Proof. We first prove the second assertion, that is, we assume that
πintpLq X BW “ ∅ and suppose by contradiction that Lj Ñ L in Yn

but ΨpLjq Ñ Λ
def
“ ΨpLq. By passing to a subsequence and using the

definition of the Chabauty-Fell metric on C pRdq, we can assume that
there is ε ą 0 such that for all j, one of the following holds:

(a) There is v P Λ, }v} ď ε´1 such that for all j, ΨpLjq does not
contain a point within distance ε of v.

(b) There is vj P ΨpLjq such that vj Ñ v, where }v} ď ε´1, and
v R Λ.

In case (a), there is u P L such that v “ πphyspuq and πintpuq P W .
By assumption πintpuq is in the interior of W . Since Lj Ñ L there
is uj P Lj such that uj Ñ u and for large enough j, πintpujq P W
and hence vj “ πphyspujq P ΨpLjq. Clearly vj Ñ v and we have a
contradiction.

In case (b), we let uj P Lj such that vj “ πphyspujq. Then the
images of vj under both projections πphys, πint are bounded sequences,
and hence the sequence pujq is also bounded. Passing to a subsequence
and using that Lj Ñ L we can assume uj Ñ u for some u P L. Since
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πintpujq P W for each j, πintpuq P W and hence, by our assumption,
πintpuq belongs to the interior of W , and in particular to W . This
implies that v “ πphyspuq P Λ, a contradiction.

We now prove that Ψ is a Borel measurable map. For this it is enough
to show that Ψ´1pBq is measurable in Yn, whenever B “ BpΛ, εq is
the ε-ball with respect to the Chabauty-Fell metric centered at Λ “

ΨpLq P C pRdq. Let

F1
def
“

 

x P L : πphyspxq P B
`

0, ε´1
˘

, πintpxq P W
(

and

F2
def
“ ΛXB

`

0, ε´1
` ε

˘

.

Then the definition of the Chabauty-Fell metric gives that L1 belongs to
Ψ´1pBq if and only if for any u1 P F1, there is u11 P L1 with πintpu

1
1q P W

and }πphyspu1q ´ πphyspu
1
1q} ă ε, and additionally, for any u11 P L1 with

πintpu
1
1q P W and }πphyspu

1
1q} ă ε´1 there is v P F2 with }πphyspu

1
1q´v} ă

ε. Since lattices are countable, F1, F2 are finite, and W Ă Vint is Borel
measurable, this shows that Ψ´1pBq is described by countably many
measurable conditions. �

We use this to obtain a useful continuity property for measures.
Given a topological space X, we denote by ProbpXq the space of reg-
ular Borel probability measures. We equip ProbpXq with the weak-*
topology. Any Borel map f : X Ñ Y induces a map f˚ : ProbpXq Ñ
ProbpY q defined by f˚µ “ µ ˝ f´1.

Corollary 2.2. Let Ψ be as in (2.1). Then any µ̄ P ProbpYnq for
which

µ̄ ptL P Yn : πintpLq X BW ‰ ∅uq “ 0. (2.2)

is a continuity point for Ψ˚. In particular, this holds if µ̄ is invariant
under translations by elements of Vint » Rm and BW has zero Lebesgue
measure.

Proof. Suppose µ̄j Ñ µ̄ in ProbpYnq, and let µj, µ denote respectively
the pushforwards Ψ˚µ̄j, Ψ˚µ̄. To establish continuity of Ψ˚ we need
to show µj Ñ µ. Since µ̄j Ñ µ̄, we have

ş

g dµ̄j Ñ
ş

g dµ̄ for any
g P CcpYnq. By the Portmanteau theorem this also holds for any
g which is bounded, compactly supported, and for which the set of
discontinuity points has µ̄-measure zero. Let f be a continuous function
on C pRdq and let f̄ “ f ˝ Ψ. Then f̄ is continuous at µ̄-a.e. point, by
Proposition 2.1. The Portmanteu theorem then ensures that

ż

C pRdq
fdµj “

ż

Yn

f̄dµ̄j Ñ

ż

Yn

f̄dµ̄ “

ż

C pRdq
fdµ.
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That is, µj Ñ µ, as required.
For the last assertion, assuming that µ̄ is invariant under transla-

tions by elements of Vint, we need to show that (2.2) is satisfied. Let-
ting 1BW , mVint

denote respectively the indicator of BW and Lebesgue
measure on Vint, and letting B Ă Vint be a measurable set of finite and
positive measure, we have by Fubini that

µ̄ ptL P Yn : πintpLq X BW ‰ ∅uq

“

ż
„

1

mVint
pBq

ż

B

1BW ˝ πintpL` xq dmVint
pxq



dµ̄pLq.

It therefore suffices to show that for any L,

mVint
ptx P Vint : πintpL` xq X BW ‰ ∅uq “ 0;

and indeed, this follows immediately from the countability of L and
the assumption that mVint

pBW q “ 0. �

2.3. Ratner’s Theorems. Ratner’s measure classification and orbit-
closure theorems [Rat91] are fundamental results in homogeneous dy-
namics. We recall them here, in the special cases which will be im-
portant for us. A Borel probability measure ν on Yn (respectively,
Xn) is called homogeneous if there is x0 in Yn (respectively, Xn) and
a closed subgroup H of ASLnpRq (respectively, SLnpRq) such that the
H-action preserves ν, the orbit Hx0 is closed and equal to supp ν, and

Hx0

def
“ th P H : hx0 “ x0u is a lattice in H. When we want to stress

the role of H we will say that ν is H-homogeneous.
Recall that ASLnpRq (respectively, ASLnpZq) denotes the group of

affine transformations of Rn whose derivative has determinant one (re-
spectively, and which map the integer lattice Zn to itself), and that
Yn is identified with ASLnpRq{ASLnpZq, via the map which identifies
the coset represented by the affine map ϕ with the grid ϕpZnq. Simi-
larly, we have an identification of Xn with SLnpRq{ SLnpZq. We view
the elements of ASLnpRq concretely as pairs pg, vq, where g P SLnpRq
and x P Rn determine the map x ÞÑ gx ` v. In what follows two sub-
groups of ASLnpRq play an important role, namely the groups SLdpRq
and ASLdpRq, which we will denote alternately by F , and embed con-
cretely in ASLnpRq in the upper left hand corner. That is, in the case
F “ SLdpRq, g P F is identified with

ˆˆ

g 0d,m
0m,d Idm

˙

,0n

˙

(2.3)



CLASSIFICATION AND STATISTICS OF CUT-AND-PROJECT SETS 13

and in the case F “ ASLdpRq, pg, vq P F is identified with

ˆˆ

g 0d,m
0m,d Idm

˙

,

ˆ

v
0m

˙˙

. (2.4)

Here Idm, 0k,`, 0k denote respectively an identity matrix of size mˆm,
a zero matrix of size k ˆ `, and the zero vector in Rk. We will refer
to the embeddings of SLdpRq and ASLdpRq in ASLnpRq, given by (2.3)
and (2.4), as the top-left corner embeddings.

The following is a special case of Ratner’s result.

Theorem 2.3 (Ratner). Let 2 ď d ď n, and let F be equal to either
ASLdpRq or SLdpRq (with the top-left corner embedding in ASLnpRq).
Then any F -invariant ergodic measure ν on Yn is H-homogeneous,
where H is a closed connected subgroup of ASLnpRq containing F . Ev-
ery orbit-closure Fx is equal to supp ν for some homogeneous measure
ν. The same conclusion holds for Xn and F “ SLdpRq.

The following additional results were obtained in [Sha91, Tom00]:

Theorem 2.4 (Shah, Tomanov). Let ν,H be as in Theorem 2.3, and
let x0 “ g0Zn in Yn or Xn such that supp ν “ Hx0. Then H is the
connected component of the identity in the group of real points of an
algebraic subgroup H of ASLn, the solvable radical of H is equal to the
unipotent radical of H, and the group g´1

0 Hg0, as well as its unipotent
radical, are defined over Q. Furthermore, H is the smallest group with
these properties, for which F Ă H.

We will need a result of Shah which relies on Ratner’s work (once
more this is a special case of a more general result).

Theorem 2.5 ([Sha96] ). Let F be equal to either ASLdpRq or SLdpRq
as above, let tgtu be a one-parameter diagonalizable subgroup of SLdpRq,
and let U “ tg P F : limtÑ8 g´tggt Ñ eu be the corresponding expand-
ing horospherical subgroup. Let Ω Ă U be a relatively compact open
subset of U and let mU be the restriction of Haar measure to U , nor-
malized so that mUpΩq “ 1. Then for every x0 P Yn, letting ν be the
homogeneous measure such that supp ν “ Fx0, we have

ż

Ω

pgtuq˚δx0 dmUpuq ÑtÑ8 ν,

where δx0 is the Dirac measure at x0 and the convergence is weak-*
convergence in ProbpYnq.
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2.4. Number fields, geometric embeddings, and restriction of
scalars. For more details on the material in this subsection we refer
the reader to [Wei82, PR94, Mor15, EW].

Let K be a number field of degree D “ degpK{Qq, and let O “ OK be
its ring of integers. Let σ1, . . . , σr, σr`1, σr`1, . . . , σr`s, σr`s be the field
embeddings of K in C where r`2s “ D, σ1, . . . , σr are real embeddings
and σr`1, . . . , σr`s are complex (non-real) embeddings. An order in K is
a subring of O which is of rank D as an additive group. The geometric
embedding or Minkowski embedding of an order ∆ is the set

tpσ1pxq, . . . , σrpxq, σr`1pxq, . . . , σr`spxqq : x P ∆u .

It is a lattice in RD » Rr ˆ Cs. Note that the geometric embedding
depends on a choice of ordering of the field embeddings, and on repre-
sentatives of each pair of complex conjugate embeddings. Thus, when
we speak of ‘the’ geometric embeddings we will consider this data as
fixed.

An algebraic group G defined over K (or K-algebraic group) is a
variety such that the multiplication and inversion maps G ˆ G Ñ

G, G Ñ G are K-morphisms. A K-homomorphism of algebraic groups
is a group homomorphism which is a K-morphism of algebraic varieties.
We will work only with linear algebraic groups which means that they
are affine varieties, i.e., for some N , they are the subset of affine space
AN satisfying a system of polynomial equations in N variables. We will
omit the word ‘linear’ in the rest of the paper. A typical example of a
K-algebraic group is a Zariski closed matrix group, that is, a subgroup
of the matrix group SLmpCq for some m described by polynomial equa-
tions in the matrix entries, with coefficients in K. If Gi are K-algebraic
groups realized as subgroups of SLmipCq for i “ 1, 2, and ϕ : G1 Ñ G2

is a K-homomorphism, then there is a map ϕ̂ : SLm1pCq Ñ SLm2pCq
which is polynomial in the matrix entries, with coefficients in K, such
that ϕ̂|G1 “ ϕ. For any field L Ă C containing K, we will denote by
GL the collection of L-points of G. It is a subgroup of SLmpLq, if G is
realized as subgroup of SLmpCq.

We will do the same for rings L “ Z or L “ O. In this case the
group GL depends on the concrete realization of G as a matrix group
but the commensurability class of GL is independent of choices (recall
that two subgroups Γ1,Γ2 of some ambient group G are commensurable
if rΓi : Γ1 X Γ2s ă 8 for i “ 1, 2). By a real algebraic group we will
mean a subgroup of finite index in GR for some K-algebraic group G,
where K Ă R.

The restriction of scalars ResK{Q is a functor from the category of
K-algebraic groups to Q-algebraic groups. Given an algebraic group
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G defined over K, there is an algebraic group H “ ResK{QpGq de-
fined over Q, such that HQ is naturally identified with GK. For any
K-homomorphism of K-algebraic groups ϕ : G1 Ñ G2 we have a Q-
homomorphism ResK{Qpϕq : ResK{QpG1q Ñ ResK{QpG2q. Given a ma-
trix representation of G there is a corresponding matrix representation
of ResK{QpGq, defined as follows. We can realize K (as a ring) as a
subalgebra of the Q-algebra of D ˆD matrices with entries in Q, and
this leads to a corresponding identification of SLmpKq with a subgroup
of SLmDpQq. A different choice of basis will produce a group that
differs by a SLmDpQq-conjugate. Now suppose G Ă SLmpCq is the
solution set of polynomial equations P1, . . . , P` in the matrix entries,
with coefficients in K. Let P̂1, . . . , P̂` be the matrix valued polynomials
where each K-coefficient is replaced by its MatDˆDpQq representative,
and each variable (previously a matrix coefficient of SLmpCq) is an
MatDˆDpCq-block of SLmDpCq. These polynomials together with the
(linear) polynomials that ensure that each DˆD block is an element of
the Q-algebra K, have coefficients in Q, and ResK{QpGq is their solution
set.

The R-points of H “ ResK{QpGq can be represented concretely as

Gσ1
R ˆ ¨ ¨ ¨ ˆGσr

R ˆG
σr`1

C ˆ ¨ ¨ ¨ ˆG
σr`s
C , (2.5)

where Gσj is the algebraic group defined by applying the field em-
bedding σj to the polynomials in the matrix entries, with coefficients
in K, defining G. Here, for a C-algebraic group M, MC is a short-
hand notation for the C-points of M, thought of as an R-group via
the isomorphism C – R2. More explicitly, a polynomial equation
involving m2 complex matrix entries zij “ aij ` ibij, where i, j P
t1, . . . ,mu, is replaced with the same polynomial in the matrix al-
gebra of 2 ˆ 2 real matrices, with each appearance of zij replaced by

Apijq
def
“

ˆ

aij bij
´bij aij

˙

P Mat2ˆ2pRq, and with the 2m2 additional equa-

tions pApijqq12 “ ´pA
pijqq21, pA

pijqq11 “ pA
pijqq22. Furthermore, denoting

by Q̄ the algebraic closure of Q, there is a conjugation of SLmDpQ̄q by
an element with coefficients in the Galois closure of K, so that HpQ̄q
is embedded in SLmDpQ̄q in block form with r ` s blocks, where each
block contains one of the factors in (2.5).

Similarly, for a K-morphism ϕ : G1 Ñ G2, the restriction to the fac-
tor G

σj
R in formula (2.5), of the Q-morphism ResK{Qpϕq : ResK{QpG1q Ñ

ResK{QpG2q, is the map ϕj obtained from ϕ by applying the field em-
bedding σj to its coefficients. Thus, after writing both ResK{QpG1q and
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ResK{QpG2q in product form as in (2.5), we have

ResK{Qpϕqpg1, . . . , gr`sq “ pϕ1pg1q, . . . , ϕr`spgr`sqq. (2.6)

We now note a connection between restriction of scalars, geometric
embeddings of lattices, and the action on Xn. Suppose that O “ OK,
∆ is an order in O, and let L be the geometric embedding of ∆ in RD.
For m P N set n “ Dm and let

L1 “ c ¨ L‘ ¨ ¨ ¨ ‘ L
looooomooooon

m copies

,

where we choose the dilation factor c so that L1 P Xn, and we choose
the ordering of the indices so that

L1 def
“ c tpσ1pxq, . . . , σr`spxqq : x P ∆m

u . (2.7)

Now suppose G is an algebraic K-group without K-characters, ϕ : G Ñ

SLm is a K-morphism, and H
def
“ ResK{QpGq. Since ϕ is a K-morphism,

there is a finite-index subgroup of GO whose image under ϕ is contained
in SLmpOq, and hence preserves Om. This implies that a finite index

subgroup of HZ preserves L1. Since HZ is a lattice in H
def
“ HR (see

[Bor19, §13]), we find that HL1 is a closed orbit in Xn which is the
support of an H-homogeneous measure.

3. Classification of invariant measures

Recall from the introduction that an affine (respectively, linear) RMS
measure µ is a probability measure on C pRdq which gives full measure
to the collection of all irreducible cut-and-project sets, and is invariant
and ergodic under F , where

F
def
“

"

SLdpRq if µ is linear
ASLdpRq if µ is affine

(3.1)

is the stabilizer group of µ. In this section we will give some more back-
ground on RMS measures, and two assertions (Theorem 3.1 and 4.1)
which together imply Theorem 1.1. The careful reader will have no-
ticed that we gave here a seemingly weaker definition of an affine RMS
measure compared to the introduction, by requiring it to be ergodic
under ASLdpRq instead of SLdpRq. However, these two definitions are
equivalent by the Howe-Moore ergodicity theorem (see [EW11]).
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3.1. RMS measures — background and basic strategy. In or-
der to motivate the definition of an RMS measure, we recall some
crucial observations of [MS14]. Let F be as in (3.1). Let Rn “

Vphys ‘ Vint, πphys, πint,L,W be the data involved in a cut-and-project
construction.

The observations of [MS14] consist of the following:

‚ From the fact that πphys intertwines the action of F on Rn (via
the top-left corner embedding in ASLnpRq) and on Rd, for the
map Ψ defined in (2.1), one obtains the equivariance property

Ψ ˝ g “ g ˝Ψ (3.2)

for all g P F ; in other words, gΛpL,W q “ ΛpgL,W q.
‚ In particular, if we fix the data Rn “ Vphys ‘ Vint, W , then the

map Ψ˚ : ProbpYnq Ñ ProbpC pRdqq considered in Corollary 2.2
maps F -invariant measures to F -invariant measures.

‚ Due to Ratner’s work described in §2.3, ergodic F -invariant
measures on Yn can be described in detail, in terms of certain
real algebraic subgroups of ASLnpRq.

‚ Theorem 2.5 and other results from homogeneous dynamics can
then be harnessed as a powerful tool for deriving information
about cut-and-project sets.

In order to analyze measures on Yn, a basic strategy is to work first
with the simpler space Xn. Let

M
def
“ ASLnpRq, Γ

def
“ ASLnpZq.

Recall that Yn is identified with M{Γ and under this identification, a
closed orbit HL is identified with HgΓ “ gH1Γ, where g P M is such
that L “ gZn, and H1 “ g´1Hg. Also let

M
def
“ SLnpRq and Γ

def
“ SLnpZq.

We think of M concretely as the stabilizer of the origin in the action
of M on Rn. Recall also that Xn is identified with M{Γ. Let

π : M ÑM, π : Yn Ñ Xn (3.3)

denote respectively the natural quotient map, and the induced map on
the quotients (which is well-defined since πpΓq “ Γ). The map π is a
Q-morphism, and the map π is realized concretely by mapping a grid
L to the underlying lattice L´ L obtained by translating L so that it
has a point at the origin. It satisfies an equivariance property

πpgLq “ πpgqπpLq (where g PM, L P Yn). (3.4)

Every fiber of π is a torus and thus π is a proper map.
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We summarize the spaces and maps we use in the following diagram.

Yn “M{Γ

Xn “M{Γ C pRdq

Ψπ

Extending the terminology in the introduction, a homogeneous measure
µ̄ on Yn will be called affine if it is ASLdpRq-invariant, and linear if
it is SLdpRq-invariant but not ASLdpRq-invariant. Here ASLdpRq and
SLdpRq are embedded in M via the top-left corner embeddings (2.4)
and (2.3).

3.2. The homogeneous measures arising from the F -action on
Yn. In this section we state a more precise version of Theorem 1.1.
Suppose k0 is a subfield of C. We say that a k0-algebraic group H is k0-
almost simple if any normal k0-subgroup H1 satisfies dim H1 “ dim H
or dim H1 “ 0. In this case we will also say that a subgroup of finite
index of Hk0 is k0-almost simple.

Theorem 3.1. Let µ̄ be an F -invariant ergodic measure on Yn, and
let H and L1 denote respectively the subgroup of M and the point
in Yn involved in Theorem 2.3; i.e., µ̄ is H-invariant and supported
on the closed orbit HL1. Let g1 P M such that L1 “ g1Zn and let

H1
def
“ g´1

1 Hg1. Assume also that L1 satisfies conditions (D) and (I).
Then H, H1 and L1 are described as follows:

(i) In the linear case, H1 is semisimple and Q-almost simple. In

this case write H 1 def
“ H1. In the affine case, we can write H1

as a semidirect product H 1 ˙ Rn where H 1 is semisimple and
Q-almost simple, and Rn denotes the full group of translations
of Rn.

(ii) The group H 1 in (i) is the connected component of the identity
in the group of R-points of ResK{QpGq, where K is a real number
field and G is a K-group which is K-isomorphic to either SLk
or Sp2k, for some k ě d. In the case G “ SLk we have n “
k degpK{Qq, and there is a subspace V of Rn of dimension k
containing Vphys which is H 1-invariant and such that the action
of H 1 on V gives the group SLpV q. The case G “ Sp2k only
arises when d “ 2, and in that case n “ 2k degpK{Qq, and
there is a subspace V of Rn of dimension 2k equipped with a
symplectic form ω1 such that V is H 1-invariant, the action of
H 1 on V gives the symplectic group SppV, ω1q, and V contains
Vphys as a symplectic subspace.
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The proof will involve a reduction to the space Xn of lattices. We
introduce some notation and give some preparatory statements.

As in §3.1, let M “ ASLnpRq, Γ “ ASLnpZq, Yn “ M{Γ, so that
the closed orbit HL1 is identified with Hg1Γ “ g1H1Γ. By Theorem

2.3, ΓH1

def
“ H1 X Γ is a lattice in H1 and µ̄ is the pushforward of the

unique H1-invariant probability measure on H1{ΓH1 under the map
hΓH1 ÞÑ g1hΓ. By Theorem 2.4, H1 is the group of real points of a
Q-algebraic group. In particular there are at most countably many
possibilities for H1.

Also let M “ SLnpRq, Γ “ SLnpZq, Xn “M{Γ as above, and let π, π
be the maps in (3.3). The orbit πpHg1Γq “ Hg

1
Γ “ g

1
H1Γ is closed,

where H1 “ πpH1q, g1
“ πpg1q and H “ πpHq contains πpF q » SLdpRq.

We say that property (irred) holds if there is no proper Q-rational
subspace of Rn that is H1-invariant (for the linear action by matrix
multiplication). Note that by Theorem 2.4, H1 is the smallest Q-
subgroup of M containing g

1
SLdpRqg´1

1
, and thus (irred) is equivalent

to requiring that there is no proper Q-rational subspace of Rn that is
g

1
SLdpRqg´1

1
-invariant.

We now state an analogue of Theorem 3.1 for the action on Xn.

Lemma 3.2. Assume pirredq holds. Then H1 is the connected compo-
nent of the identity of the group of real points of a Q-algebraic group,
satisfying the properties listed in statement (ii) of Theorem 3.1 (for the
group H 1).

Lemma 3.2 is the main result of this section, and its proof will be
given below in §3.3 and §3.4.

Proof of Theorem 3.1 assuming Lemma 3.2. Let U be the unipotent
radical of H1. Since H1 is semisimple, U Ă kerπ, and since ker π XH1

is a unipotent normal subgroup, U “ kerπ XH1. This means that in
the affine map determined by h P H1 on Rn, πphq is the linear part,
and U acts on Rn by translations. This implies the equality

spantupxq ´ x : x P Rn, u P Uu “ spantup0q : u P Uu, (3.5)

and we denote the subspace of Rn appearing in (3.5) by V0. Since H1

is the group of R-points of an algebraic group defined over Q, the same
holds for U . Since U is connected, it follows from [Bor91, Cor. 18.3]
that UQ is Zariski dense in U , and this implies that V0 is a Q-subspace of
Rn. Since H1 normalizes U , V0 is H1-invariant, and since H1 “ πpH1q

is the group of linear parts of elements of H1, H1 also preserves V0.
As we will see in Lemma 3.4, under the assumptions of Theorem 3.1,
condition (irred) holds. By (irred) we must have V0 “ t0u or V0 “ Rn.
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If V0 “ t0u then U “ t0u. If V0 “ Rn then U contains translations in n
linearly independent directions and hence U » Rn is the entire group
of translations of Rn. This gives the description of the translational
part of H1, in assertion (i). Assertion (ii) follows from Lemma 3.2. �

The next proposition shows that all the cases described in Theorem
3.1 do arise. Namely we have:

Proposition 3.3. For any k ě d ě 2 and any real number field K,
there are R-algebraic groups H and H 1 in M , and L1 “ g1Zn P Yn,
where n “ k degpK{Qq and g1 PM , such that the following hold:

‚ H 1 is defined over Q, and is Q-isogenous to ResK{QpGq, where
G is K-isomorphic to SLk.

‚ H is either equal to H 1 (linear case) or to H 1˙Rn (affine case).
‚ The orbit HL1 is closed and supports an H-homogeneous prob-

ability measure ν. The pushforward Ψ˚ν is an RMS measure.

The same statement is true with d “ 2, n “ 2k degpK{Qq, and with G
being K-isomorphic to Sp2k for some k ě 2.

Proof. The proof amounts to reversing the steps in the preceding dis-

cussion. For concreteness, we give it for G “ SLk. Let D
def
“ degpK{Qq,

n
def
“ Dk and G

def
“ SLnpRq. The standard action ϕ of GK on Kk gives

rise to a Q-embedding ResK{Qpϕq : ResK{QpGq Ñ SLn. Let H1 denote
the connected component of the identity in the group of R-points in
ResK{QpGq. Similarly to (2.3) and (2.4), we refer to

g ÞÑ

ˆ

g 0d,n´d
0n´d,d Idn´d

˙

(3.6)

as the top-left corner embedding of SLdpRq in M . By the explicit de-
scription of restriction of scalars described in §2.4, there is g

1
PM such

that H
def
“ g

1
H1g

´1
1

contains the top-left corner embedding of SLdpRq in

M , and up to scaling, g
1
Zn is the geometric embedding of Ok as in

(2.7), where O is the ring of integers in K. In particular, the orbit
Hg

1
Zn is a closed orbit supporting an H-homogeneous measure in Xn.

Recall that there is an embedding of M in M and of Xn in Yn

(respectively as the stabilizer of the origin in the standard action on
Rn, and as the set of lattices in the space of grids). We let H 1 denote
the image of H1 under this embedding, and in the linear case we set

H
def
“ H 1 and let HL0 be the image of Hg

1
Zn under this embedding, and

let ν be the H-homogeneous measure on HL1. Because the action of
SLdpRq is ergodic with respect to ν, we can find g1 so that for L1 “ g1Zn
we have SLdpRqL1 “ HL1 “ HL0. It is not hard to check that with
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these choices, the desired conclusions hold. The proof in the affine case
is similar, taking H “ H 1 ˙ Rn and π´1pHg

1
Znq. �

3.3. Preparations for the proof of Lemma 3.2. Recall that L1 “

πpL1q. A vector space V Ă Rn is called L1-rational if V XL1 is a lattice
in V . In other words a subspace V is L1-rational if it is of the form
g

1
W for some rational subspace W Ă Rn, i.e., a subspace spanned by

vectors with rational entries.

Lemma 3.4. The following implications hold.

(a) pDq ñ Vphys is not contained in a proper L1-rational subspace.
(b) pIq ñ Vint contains no nontrivial L1-rational subspace.
(c) pIq and pDq ñ pirredq.

Variants of statements (a) and (b) are given in [Ple03], but we give
a complete proof for the convenience of the reader.

Proof. We will prove all three statements by contradiction. Suppose
that (a) fails, so that there is a proper L1-rational subspace W con-
taining Vphys. Let WK be an L1-rational complement of W . Since WK

is L1-rational, L1 is mapped to a lattice in WK under the projection
Rn Ñ WK, and hence the projection of L1 to WK is discrete. On the
other hand, Rn Ñ WK factors through Vint since Vphys Ă W , and by
(D) the image of L1 is dense in Vint. Thus, the projection of L1 is
dense in WK, a contradiction.

Now suppose that (b) fails, and Vint contains a nontrivial L1-rational
subspace W . Then Vint, which is the kernel of the map Rn Ñ Vphys,
contains W X L1, which by assumption is nontrivial. This contradicts
(I).

Now suppose (D) and (I) hold but (irred) fails, so that there is a
proper H1-invariant Q-rational subspace W . From (b) we know that
g

1
W is not contained in Vint. Hence some u P g

1
W can be written as

u “ up ` ui, up P Vphys r t0u, ui P Vint.

Since SLdpRq Ă H “ g
1
H1g

´1
1

, g
1
W is also SLdpRq-invariant. Since

SLdpRq acts trivially on Vint, for any g P SLdpRq we have

gu´ u “ gup ´ up P Vphys.

We can find g P SLdpRq such that gup ‰ up, and hence g
1
W X Vphys is

nontrivial. Since SLdpRq acts irreducibly on Vphys, Vphys Ă g
1
W . This

contradicts the conclusion of (a). �

Theorem 3.5 (Morris). Let n ě d ě 2, and let S be a connected real
algebraic group which is R-almost simple, and contains the image of
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SLdpRq under the top-left corner embedding (see (3.6)). Then there
are k ě d, ` ě d and g P SLnpRq such that gSg´1 is the image of either
SLkpRq or Sp2`pRq under the top-left corner embedding, and the latter
can only occur when d “ 2.

In this statement, by the ‘top-left corner embedding of Sp2kpRq’, we
mean the image under (3.6), that is, the elements of SL2kpRq stabilizing
a non-degenerate alternating bilinear form on R2k. As is well-known,
such a form can be taken to be defined by

ωp~xi, ~yjq “ ´ωp~yj, ~xiq “ δij, ωp~xi, ~xjq “ ωp~yi, ~yjq “ 0

for some basis ~x1, . . . , ~xk, ~y1, . . . , ~yk of R2k.
This result was proved by Dave Morris in 2014, in connection with

prior work of one of the authors and Solomon. Namely, the result
appeared in an initial ArXiV version [SW14] (in a slightly different
form) but eventually did not appear in the published version [SW16].

We will refer to the image of SLdpRq under the top-left corner em-
bedding in (3.6) as the top-left copy of SLdpRq. Clearly, with respect
to the decomposition

Rn
“ Rd

‘ Rn´d, (3.7)

the top-left copy of SLdpRq acts via its standard action on the first
summand, and the second summand is the set of vectors fixed by the
action.

Let k be maximal, such that S contains a conjugate (over SLnpRq)
of the top-left copy of SLkpRq. To make the ideas more transparent we
separate the proof into cases according to whether k ě 3 (the easier
case) or k “ 2. The proofs in these cases are not independent – readers
interested in the case k “ 2 are encouraged to first read the proof for
k ě 3.

Proof in case k ě 3. We recall the following result of Mostow [Mos55]:
If G1 Ă ¨ ¨ ¨ Ă Gr Ă SLnpRq are connected reductive real algebraic
groups, then there is x P SLnpRq such that x´1Gix is self-adjoint for
every i. That is, if g P x´1Gix, then the transpose of g is also in
x´1Gix.

Replacing S by a conjugate, we may assume that S contains the
top-left embedding of SLkpRq, which we denote by F . By Mostow’s
theorem, there is x P SLnpRq, such that x´1Fx and x´1Sx are self-
adjoint. Let V be the pn ´ kq-dimensional subspace of Rn which is
pointwise fixed by F . Since SOnpRq acts transitively on the set of
subspaces of any given dimension, there is some h P SOnpRq, such that
xhpV q “ V . After replacing x with xh, we may assume that x´1Fx
fixes pointwise the second summand in the splitting (3.7), and x´1Fx
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and x´1Sx are self-adjoint (because this property is not affected by
conjugation by an element of SOnpRq). We conclude that x´1Fx “ F .
Thus, we may assume that S is self-adjoint and contains F . We will
assume that S ‰ F and derive a contradiction to the maximality of k.
Since F Ł S are connected, their Lie algebras f, s satisfy dim f ă dim s.

For 1 ď i, j ď n, let ei,j be the elementary matrix with 1 in the pi, jq
entry, and all other entries 0. Write

slnpRq “ f‘ z‘X1 ‘ ¨ ¨ ¨ ‘Xk ‘ Y1 ‘ ¨ ¨ ¨ ‘ Yk, (3.8)

where

‚ slnpRq and f are the Lie algebras of SLnpRq and F , respectively,
‚ z is the subspace of slnpRq fixed pointwise by AdpF q, where

Ad : SLnpRq Ñ AutpslnpRqq is the adjoint representation,
‚ Xi is the linear span of t ei,j : k ` 1 ď j ď n u, and
‚ Yj is the linear span of t ei,j : k ` 1 ď i ď n u.

Now we denote by A the group of diagonal matrices in F with positive
entries. We write an element a P A as

a “ diag
`

a1, a2, . . . , ak´1, pa1a2 ¨ ¨ ¨ ak´1q
´1, 1, . . . , 1

˘

, (3.9)

and denote by χi the characters a ÞÑ ai, where ak
def
“ pa1 ¨ ¨ ¨ ak´1q

´1.
Since k ě 3, the characters χi, χ

´1
i are distinct, for i “ 1, . . . , k, and

the subspaces X1, X2, . . . , Xk and Y1, Y2, . . . , Yk are the corresponding
weight spaces, that is,

‚ Xi “ tx P slnpRq : Adpaqpxq “ χipaqx for all a P Au, and
‚ Yj “ tx P slnpRq : Adpaqpxq “ χ´1

j paqx for all a P Au.

We will use repeatedly the fact that if l is an AdpAq-invariant subspace
of slnpRq, and v P l has a nontrivial projection onto some weight space,
then this projection is contained in l.

Since A Ă S, s is invariant under AdpAq. Since S is R-almost simple
and dim f ă dim s, s cannot be contained in f‘ z, and hence s projects
nontrivially to some Xi or Yj. In fact, since S is self-adjoint, it must
project nontrivially to both Xi and Yi, for some i. Since Xi is a weight
space of AdpAq, we find that Xi X s is nontrivial. Conjugating by an
element of Ik ˆ SOn´kpRq, we may assume that s contains the matrix
ei,k`1. Applying an appropriate element of AdpSOkpRqq shows that
ek,k`1 P s. Then, since S is self-adjoint, s also contains ek`1,k. There-
fore, s contains the Lie subalgebra generated by f, ek,k`1, and ek`1,k,
which is the Lie subalgebra of F 1, the top-left copy of SLk`1pRq. Thus
S contains F 1, contradicting the maximality of k, and completing the
proof in case k ě 3. �
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Proof in case k “ 2. In this case we also have d “ 2. Arguing as in the
case k ě 3 we may assume that S properly contains F , the top-left
copy of SL2pRq, and is self-adjoint. Let ` be the maximal number so

that S contains a copy of H
def
“ F1ˆ¨ ¨ ¨ˆF`, where each Fr is isomorphic

to SL2pRq and there is an H-invariant direct sum decomposition Rn “

V1‘¨ ¨ ¨‘V`‘V0, where the spaces V1, . . . , V` are two dimensional, and
each Fr acts linearly on Vr and trivially on

À

s‰r Vs. By assumption
` ě 1, and there is a conjugation taking H into a top-left copy of
SLtpRq, where t “ 2` ě 2. We replace H and S by their images under
this conjugacy (retaining the same names H and S). By Mostow’s
theorem we can assume that H and S are both self-adjoint.

Our first goal is to show that

S is also contained in the top-left copy of SLtpRq. (3.10)

Indeed, in analogy with (3.8), consider the decomposition

slnpRq “ l‘ z‘m, where m “ X1 ‘ ¨ ¨ ¨ ‘Xt ‘ Y1 ‘ ¨ ¨ ¨ ‘ Yt,

and

‚ l is the Lie algebra of the top-left SLtpRq,
‚ z is the Lie algebra of the centralizer of the top-left SLtpRq,
‚ Xi is the linear span of t ei,j : t` 1 ď j ď n u, and
‚ Yj is the linear span of t ei,j : t` 1 ď i ď n u.

With this notation, our claim (3.10) is that s Ă l.
We note that

s does not contain a nonzero element in some Xi or some Yi. (3.11)

Indeed, if v P ps X Xiq r t0u, we could re-index to assume i “ 1,
and conjugate by an element of It ˆ SOn´tpRq and rescale to assume
v “ e1,t`1. Since s is self-adjoint, we also have et`1,1 P s. Since f1, et`1,1

and e1,t`1 generate a Lie algebra isomorphic to sl3pRq, this gives a
contradiction to the choice of k and proves (3.11).

If s Ć l, using that s is simple and the Lie algebras l, z commute,
we see that the projection of s onto m is nontrivial; indeed, if s Ă l‘ z
then the kernel of the projection of s to z contains f and by simplicity
is equal to s.

Let A1 be the intersection of H with the diagonal subgroup and let
a1 be its Lie algebra. For each odd index i ă t, the spaces Xi ‘ Yi`1

and Xi`1 ‘ Yi are weight spaces for AdpA1q, and hence there is some
i such that s X pXi ‘ Yi`1 YXi`1 ‘ Yiq contains a nonzero element u.
Re-indexing, conjugating and rescaling as in the proof of (3.11), we can
assume u “ e1,t`1 `

ř

jět`1 ajej,2, where the aj are not all zero. By a
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further conjugation by an element of ItˆSOn´tpRq that fixes e1,t`1, we
can also assume that aj “ 0 for j ą t` 2, that is, we can write

u “ e1,t`1 ` aet`1,2 ` bet`2,2, with pa, bq ‰ p0, 0q.

Using brackets to denote the commutator rx, ys “ xy´yx , we compute

w
def
“ ru, ru, e2,1ss “ re1,t`1 ` aet`1,2 ` bet`2,2,´e2,t`1 ` aet`1,1 ` bet`2,1s

“ ape1,1 ` e2,2 ´ 2et`1,t`1q ´ 2bet`2,t`1

and
rw, us “ 3ae1,t`1 ´ 3a2et`1,2 ´ 3abet`2,2,

so that
6aet`1,1 “ rw, us ` 3au P s.

It follows from (3.11) that a “ 0, and thus s contains ´1
2b
w “ et`2,t`1.

Since s is self-adjoint it also contains et`1,t`2, and since these two vec-
tors generate a copy of sl2pRq which is contained in z, and acts on Rn by
the standard two-dimensional representation, we have a contradiction
to the definition of `. This proves (3.10).

Since S properly contains F we have ` ą 1. We will now show that s
is the Lie algebra spp2`,Rq of the top-left corner embedding of Sp2`pRq.
We will begin with the case ` “ 2 as it will make the argument more
transparent. That is, up to a conjugation in SLnpRq, we want to show
that

s “ h‘ s1,3 ‘ s1,4 ‘ s2,3 ‘ s2,4, (3.12)

where h – slp2,Rq ‘ slp2,Rq Ă s is the Lie algebra of H, and

s1,3
def
“ spanpe1,3 ´ e4,2q s1,4

def
“ spanpe1,4 ` e3,2q

s2,3
def
“ spanpe2,3 ` e4,1q s2,4

def
“ spanpe2,4 ´ e3,1q.

(3.13)

To this end, let

l1,3
def
“ spanpe1,3, e4,2q, l1,4

def
“ spanpe1,4, e3,2q,

l2,3
def
“ spanpe2,3, e4,1q, l2,4

def
“ spanpe2,4, e3,1q

(3.14)

be the weight spaces for the action of AdpA1q, which are not in h. Let

s1i,j
def
“ li,j X s,

where the indices pi, jq range over t1, 2u ˆ t3, 4u. Our goal is to show
that

for every i, j, s1i,j “ si,j. (3.15)

We first show that

for every i, j, dimps1i,jq “ 1. (3.16)
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To this end, note that the ad-action of the off-diagonal elements of h
permutes the spaces li,j transitively. For example,

l1,3 “ re1,2, l2,3s , l1,3 “ re4,3, l1,4s ,

and so on. Since e1,2, e2,1, e3,4, e4,3 P s, this ad-action also permutes the
intersections s1i,j, and thus they all have the same dimension. If this
dimension is 0 then s “ h, contradicting the fact that s is simple, and
if this dimension is 2, then s “ slp4,Rq, contradicting the definition of
k. We have shown (3.16).

We now claim that

s11,3 is equal to either s1,3 “ spanpe1,3´e4,2q or spanpe1,3`e4,2q. (3.17)

To see this, let u “ ae1,3 ` be4,2 P s11,3 r t0u. By (3.11), a, b are both

nonzero. Since s is self-adjoint v
def
“ ae3,1 ` be2,4 P s and hence v P s12,4.

Also we have

w
def
“ re2,1, re3,4, uss “ re2,1,´ae1,4 ` be3,2s “ ´ae2,4 ´ be3,1 P s.

Since w and v are both nonzero elements of s12,4, by (3.16) they are
scalar multiples of each other and thus there is c ‰ 0 so that w “ cv.
This forces ´a “ cb and ´b “ ca and so c “ ˘1, proving (3.17).

Using the ad-action as before we see that in order to obtain (3.15), it
suffices to show that after a conjugation, we have s11,3 “ s1,3. Suppose
that s11,3 “ spanpe1,3 ` e4,2q. Then

s11,4 “ spanpre3,4, e1,3 ` e4,2sq “ spanpe1,4 ´ e3,2q,

and we can apply a permutation matrix swapping the indices 3,4 to
obtain

s11,3 “ spanpe1,3 ´ e4,2q “ s1,3.

We have shown (3.15), completing the proof in case ` “ 2.
Note that for the case ` “ 2 we only applied one conjugation, namely

the conjugation swapping the indices 3,4. Thus, by induction on `, we
see that after a conjugation, we have the following. For i P t1, . . . , `´1u,

let SL
piq
4 pRq be the copy of SL4pRq embedded in SLnpRq in a 4ˆ4 block

corresponding to indices 2i´1, 2i, 2i`1, 2i`2. Let Hpiq “ FiˆFi`1 Ă

SL
piq
4 pRq be the corresponding diagonal copies of SL2pRq, and let spiq

be the intersection of s with the Lie algebra of SL
piq
4 pRq. Then spiq is

the obvious embedding of spp4,Rq (namely, the embedding given for
i “ 1 by (3.12) and (3.13)). The Lie algebras spiq generate spp2`,Rq
(namely, the Lie algebra of the top-left Sp2`pRq). This implies that H
contains Sp2`pRq. Since Sp2`pRq is a maximal subgroup of SL2`pRq, we
must have that S “ Sp2`pRq. �
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3.4. Proof of Lemma 3.2. Since π is proper, we have

Hg
1
Γ “ πpHg1Γq “ π

`

Fg1Γ
˘

“ SLdpRqg1
Γ.

SinceH1 “ g´1
1
Hg

1
, by Theorem 2.4, H1 is the connected component of

the identity in the group of real points of a Q-algebraic group H. From
now on we replace F with its image under π, i.e., denote F “ SLdpRq.
We also write

F 1
def
“ g´1

1
Fg

1
, so that F 1Γ “ H1Γ.

We need to show that H admits the description given in the state-
ment. We divide the proof into steps.

Step 1: H is semisimple. Let U be the radical of H. By Theo-
rem 2.4, it is defined over Q and unipotent, U “ U˝

R is the unipotent
radical of H1, and U is connected ([Bor91, 11.21]). Let V U be the
subspace of Rn fixed by U . Since UQ Ă U is Zariski dense in U (see
[Bor91, Cor. 18.3]), we have

V U
“ tz P Rn : uz “ z for all u P UQu.

Thus V U is defined over Q.
Furthermore, since every unipotent subgroup can be put in an upper

triangular form, V U ‰ t0u, and is a proper subspace of Rn unless U
is trivial. Since U is normal in H1, the space V U is H1-invariant, and
thus by assumption (irred), V U is not a proper subspace of Rn. It
follows that U is trivial, and hence H1 is semisimple. Therefore so is
H.

For a group M and normal subgroups M1, . . . ,Mk, the product is the
subgroup

ź

Mi
def
“ tm1 ¨ ¨ ¨mk : mi PMi, i “ 1, . . . , ku.

Note that
ś

Mi is also normal and does not depend on the ordering of
the Mi. Let k0 be one of the fields Q or R. Recall that an almost direct
product is the image of a direct product under a homomorphism with
finite kernel (that is, isogenous to a direct product). A semisimple
k0-group is an almost direct product of its k0-almost simple normal
subgroups, and such a decomposition is unique up to permuting the
k0-almost simple factors.

We write H in two ways: as an almost direct product of its R-almost
simple factors Si, and as an almost direct product of its Q-almost
simple factors Tj, and let Si and Tj denote respectively the connected
component of the identity in the group of R-points of Si and Tj. Since
every Tj can be further decomposed into R-almost simple factors, and
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since these decompositions are unique, the decomposition of H into the
Si refines the decomposition of H into the Tj. In other words, there is
a partition of the Si into subsets such that each Tj is a product of the
Si in one subset of the partition. Then H1 is the product of the Si. For
h P H1, we can write h “ h1 ¨ ¨ ¨ht, where hi P Si, and if h “ h11 ¨ ¨ ¨h

1
t is

another such presentation, then for each i, h1ih
´1
i belongs to the finite

center of H1.

Step 2: F 1 is contained in one of the Si, and H is Q-almost
simple. The second assertion follows from the first one. Indeed, by re-
indexing, let S1 and T1 denote respectively the connected component of
the identity in the real points of the R- and Q-simple factors containing
F 1. Then S1 Ă T1 and T1 does not properly contain the real points of
any Q-subgroup containing S1, and by the last assertion of Theorem
2.4 we have that H1 “ T1.

Turning to the first assertion, let ZpSq denote the center of S, for

each i let S 1i be the quotient group S{
´

ZpSq ¨
ś

j‰i Sj

¯

, and let F 1i
denote the image of the projection of F 1 to S 1i. Let

H2
def
“

ź

iPI
Si, where I def

“ ti : F 1i is nontrivialu.

Note that i0 P I if and only if for any subset F 1 Ă F 1 which generates
a dense subgroup, there is f 1 P F 1 which can be written as a product
of elements f 1i in Si, where f 1i0 is not central in Si0 . Clearly F 1 Ă H2,
and our goal is to show that H2 is equal to one of the Si, or in other
words that # I “ 1. Also, for i P I, F 1i is isogenous to SLdpRq.

Recall that a representation of a group H on a vector space V is
isotypic if V is the direct sum of k P N isomorphic irreducible represen-
tations for H, where k is referred to as the multiplicity. We will also use
the term H-isotypic, if we want to make the dependence on H explicit.
A linear representation of a semisimple group has a unique presentation
as a direct sum of isotypic representations (up to permuting factors).

Let V 1phys
def
“ g´1

1
pVphysq and V 1int

def
“ g´1

1
pVintq. Then the decomposition

Rn “ V 1phys‘V
1

int, is the decomposition of Rn into F 1-isotypic represen-
tations, and the action of F 1 on V 1phys is irreducible. In particular, the
multiplicity of the representation on V 1phys is equal to one.

Let V1 ‘ ¨ ¨ ¨ ‘ Vt be a decomposition of Rn into H2-isotypic repre-
sentations. Since F 1 Ă H2, each V` is F 1-invariant, and decomposes
further into isotypic representations for F 1. Since V 1phys is an isotypical
component of F 1 of multiplicity one, V 1phys is contained in one of the
V`. By renumbering we can assume V 1phys Ă V1. Since F 1 acts on V 1phys
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irreducibly, the action of H2 on V1 is irreducible, and the H2-isotypic
component associated to V1 has multiplicity one. Since F 1 acts trivially
on V 1int, which is a complementary subspace to V 1phys, the action of F 1

on each V` is trivial for ` “ 2, . . . , t, that is,

F 1 Ă
t
č

`“2

ker pH2|V`q . (3.18)

The right-hand side of (3.18) is a normal subgroup of H2, and thus
a product

ś

iPJ Si for some J Ă I. By the assumption that F 1i is
nontrivial for each i P I, we must have that J “ I, that is, the group
on the right-hand side of (3.18) must coincide with H2. This means
that for ` ě 2, the V` are trivial representations for H2, and hence of
Si for each i P I.

Let F 1 denote the elements of F 1 whose eigenvalues on V 1phys are all
real, distinct from each other, and not equal to 1. Since these conditions
are invariant under conjugation and F 1 is simple, F 1 generates a dense
subgroup of F 1. Write f 1 as a product of elements f 1i , where f 1i P Si.
Then the elements f 1i commute with each other and with f 1. Thus
each f 1i fixes the eigenspaces for f 1 and hence each f 1i preserves the
eigenspace decomposition of the action of f 1 on Rn. In particular, f 1i
preserves V 1phys for each i P I.

Re-indexing if necessary we can assume that 1 P I, and suppose by
contradiction that there is i0 P I r t1u. There is f 1 P F 1 such that,
when writing f 1 as a product of elements f 1i P Si, f

1
1 acts on V 1phys with

infinite order (this property does not depend on the presentation of
f as a product of the f 1i). Then the action of f 11 on V 1phys preserves

an eigenspace V 1, with d1
def
“ dimV 1 ă d “ dimV 1phys. Since the action

of Si0 commutes with the action of f 11, the space V 1 is preserved by
Si0 , and hence by f 1i0 . The group generated by all such elements f 1i0
is isogenous to F 1i0 and hence to SLdpRq. Thus, it has no nontrivial
representations on any d1-dimensional real vector space, for d1 ă d.
This implies that the action of Si0 on V 1 has an infinite kernel, but
since Si0 is simple, the action of Si0 on V 1 must also be trivial.

So the space

V 2
def
“ spanS1pV

1
q Ă spanS1pV

1
physq Ă V1

is acted on trivially by Si0 for any i0 P I r t1u. In particular, V 2 is
H2-invariant. By the irreducibility of the H2-action on V1, this means
that V1 “ V 2, and therefore Si0 acts trivially on V1. It follows that F 1i0
acts trivially on V1 for each i0 P I r t1u. Since Si0 acts trivially on V`
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for all i0 P I and all ` ě 2, we get that in any decomposition of f 1 P F 1,
all the elements f 1i for i ě 2 act trivially on Rn. That is, I “ t1u.

Step 3: Restriction of scalars, in explicit form. Since H is Q-
almost simple, it is obtained by restriction of scalars from an absolutely
almost simple Lie algebraic group defined over a number field K – see
[BT65, 6.21] for a proof. We will reprove this result in our setup,
obtaining more information about the embedding of H in SLnpRq.

Using Step 2 and re-indexing, let S1 “ pS1q
˝
R be the connected com-

ponent of the identity in the R-almost simple group containing F 1, and

set G
def
“ S1, G

def
“ S1. From Theorem 3.5, we only have two possibilities

for GR, and in particular we have that G is actually C-almost simple.
Since H is defined over Q, the C-almost simple factors of H are defined
over a finite extension of Q; this is well-known (see e.g. [BT65, §2.15b])
but we were unable to find a suitable reference, so we sketch the argu-
ment. The group H has a maximal torus which is defined over Q and
split over a finite extension L of Q by [Bor91, §8, §18]. For each root
α, the group Gα, which is the centralizer of the connected component
of the identity in kerα, is defined over L (see [Bor91, Proof of Thm.
18.7]). The groups Gα generate H [Bor91, §14] and each C-almost
simple factor either contains Gα, or intersects it trivially. Thus, any
C-almost simple factor S can be described as the elements commuting
with all the Gα not contained in S. In particular, the C-almost simple
factors are defined over L.

Replacing L if necessary with its Galois extension, suppose that L is
the smallest Galois extension of Q such that all C-simple factors of H
are defined over L. Let GalpL{Qq denote the Galois group of L, which
we can think of explicitly as the group of field automorphisms of L. If
V Ă An is an affine variety defined over L then for any σ P GalpL{Qq
there is a new affine variety, which we will denote by Vσ, obtained
by acting on the coefficients of the defining polynomial equations, and
σ acts on the points of Ln by acting separately on each component.
The assignments V ÞÑ Vσ and σ : L Ñ L are compatible in the sense
that for x P Ln, x P VL if and only if σpxq P Vσ

L. Moreover, if V
is defined over L, then it is defined over Q if and only if Vσ “ V
for every σ P GalpL{Qq; this follows from the more general fact (see
[Bor91, §AG12-§AG14]), that if L1 is a number field then V is defined
over L1 if and only if for any σ P GalpQ̄{Qq such that σ|L1 “ Id we have
Vσ “ V, where Q̄ denotes the algebraic closure of Q.

Let D denote the number of C-almost simple factors of H, or equiv-
alently, the number of L-almost simple factors of H. The action of
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GalpL{Qq permutes these factors, and this permutation action is tran-
sitive since H is Q-almost simple. Thus, the subgroup

∆
def
“ tσ P GalpL{Qq : Gσ

“ Gu

is of index D in GalpL{Qq, and the C-almost simple factors are the
(distinct) images of G by elements σ1, . . . , σD P GalpL{Qq, where the
σi are coset representatives of GalpL{Qq{∆.

Let

K def
“ tx P L : @σ P ∆, σpxq “ xu.

Complex conjugation z ÞÑ z̄ induces an automorphism of L belonging
to ∆, and since G is defined over R, we see that K Ă R. By the Galois
correspondence, degpK{Qq “ D and

∆ “ tσ P GalpL{Qq : for all x P K, σpxq “ xu.

We claim that G is defined over K, and G is not defined over any
proper subfield of K. Indeed, if σ P GalpQ̄{Qq satisfies σ|K “ Id, then
σ|L P ∆ and hence Gσ “ G. Furthermore, if G were defined over a
proper subfield K1 Ł K, then its stability group ∆1 would be of index
D1 ă D and therefore the collection tGσ : σ P GalpL{Qqu would have
cardinality D1.

We will show that H is isomorphic (as a Q-algebraic group) to
ResK{QpGq. Moreover, we will show that the given inclusion H ãÑ SLn
is, up to a conjugation over SLnpR X Q̄q, the matrix presentation de-
scribed in §2.4. By Theorem 3.5 G is, up to a conjugation in SLnpRq,
either the top-left copy of SLkpRq or the top-left copy of Sp2kpRq for
some k ě 2 (and the latter can only arise when d “ 2). In the remain-
der of the proof we will refer to these two cases as the SLk case and
the Sp2k case.

We know that G is conjugate over SLnpRq to the top-left copy of
SLkpRq (in the SLk case) or Sp2kpRq (in the Sp2k case). Therefore
there is a G-invariant subspace V Ă Rn, of dimension k (in the SLk
case) and 2k (in the Sp2k case) and a complementary subspace V0 such
that Rn “ V ‘ V0, the action of G on V is irreducible, and V0 is the
subspace of G-fixed vectors in Rn. We claim that we can recover V
explicitly as

V “ span tgx´ x : g P G, x P Rn
u . (3.19)

Indeed, denote the RHS of (3.19) by W . We clearly have W Ă V , and
for the reverse inclusion, it is enough to show that W is G-invariant.
To see this, let g0, g P G and x P Rn. Then

g0pgx´ xq “ g0gg
´1
0 g0x´ g0x “ g1x1 ´ x1,
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where g1
def
“ g0gg

´1
0 and x1

def
“ g0x. This shows that the generators of W

are mapped to W by any g0 P G.
From (3.19) and since G is defined over K Ă R, we deduce that

V “ VR for a subspace V Ă An defined over K. Clearly V0 is also
defined over K. Arguing as in (3.19), but using F 1 in place of G and
V 1phys in place of V, we have V 1phys “ spantf 1x ´ x : f 1 P F 1, x P Rnu,
and therefore V 1phys Ă V .

We can think of VQ̄ as a Q̄-linear subspace of Q̄n, and can discuss
the action of GalpQ̄{Qq as before. We have that pGiqQ̄ preserves the
decomposition Q̄n “ Vσi

Q̄ ‘ pV
σi
0 qQ̄. We claim that

Q̄n
“

D
à

i“1

Vσi
Q̄ . (3.20)

To see this, let W denote the vector subspace of An spanned by
Ť

i V
σi .

Since it is GalpQ̄{Qq-invariant, it is defined over Q. Since V 1phys “

g´1
1
Vphys and Zn “ g´1

1
L1, Lemma 3.4 implies that V 1phys is not contained

in any proper rational subspace of Rn. This implies that WR “ Rn

and thus W “ An. The groups Gi commute, and Vσi is a Gi-isotypic
component of multiplicity one. For each pair of distinct i, j, each g P Gi

defines an intertwining operator for the action of Gj, and thus by
Schur’s lemma (see e.g. [Kna02, Cor. 4.9]), the action of Gi on Vσj

factors through an abelian group. Since Gi is simple, this means that
each Gi acts trivially on Vσj for j ‰ i. In particular, Vσi XVσj “ t0u
for i ‰ j, and we have shown (3.20).

It follows from (3.20) that Rn is the space of R-points of ResK{QpVq.
Write D “ r ` 2s as in §2.4. Since dim Vσi “ dim Vσj for every
i ‰ j, we have that H1 is realized explicitly in r ` s blocks. For real
embeddings σi, i “ 1, . . . , r we have that the dimension (over R) of
Vσi

R is k (in the SLk case) and 2k (in the Sp2k case), and for σr`j, j “
1, . . . , s which are non-conjugate complex embeddings of K we have
that the dimension (over R) of V

σr`j
R is 2k (in the SLk case) and 4k

(in the Sp2k case). Putting this together we get that n “ Dk (in the
SLk case) and n “ 2Dk (in the Sp2k case), and the embedding of H1 in
SLnpRq is the one given in (2.6), where ϕ : SLk Ñ SLk is the identity
map (in the SLk case), and ϕ : Sp2k Ñ SL2k is the natural embedding
(in the Sp2k case). In particular, we have proved that H “ ResK{QpGq,
with the explicit form of restriction of scalars given in §2.4.

Step 4: G as a K-group. It remains to identify the K-isomorphism
type of G. We proved in Step 3 that K Ă R, the decomposition
Rn “ V ‘V0 into G-invariant subspaces is defined over K, and there is
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a conjugacy over SLnpKq sending G to the top-left corner embedding of
SLkpRq or of Sp2kpRq (as defined after the statement of Theorem 3.5).
We now show that as a K-group, G is K-isomorphic to either SLk or
Sp2k.

Consider first the SLk-case. Let G1 denote the conjugate of G con-
tained in SLpVq. Since V is a K-subspace, we can take the conjugat-
ing element in SLnpKq, that is, G1 “ gGg´1 for some g P SLnpKq.
In particular, the groups G and G1 are K-isomorphic, and G1 “ G1

R
is R-isomorphic to the top-left SLkpRq. Let G2 “ SLpV q considered
as a K-group. Then G2

R is also R-isomorphic to SLkpRq, and thus
G1 and G2 have the same dimension (as algebraic varieties). Since
G1

K “ gGKg
´1 Ă G2, there is a K-embedding G ãÑ G2, and since

these groups have the same dimension and are Zariski connected, G
and G2 are K-isomorphic.

Now consider the Sp2k case. Again let g P SLnpKq be the conjugating
element sending G to G1 “ gGg´1 Ă SLpV q. We have shown that
dimV “ 2k is even, and G1R is R-isomorphic to Sp2kpRq, that is, there
is a nondegenerate alternating bilinear form ω on VR such that G1R is
the group of all R-linear transformations of V preserving ω. Note that
ω is R-bilinear and takes values in R. We claim that there is a form ω1

which is defined over K on V (that is, takes values in K when evaluated
on elements of VK), so that G1R is contained in the group of R-linear
transformations of V preserving ω1. Once the claim is proved, we will
have that there is a K-embedding G ãÑ SppV, ω1q (the group of linear
transformations of V preserving ω1) which will be an isomorphism by
dimension considerations as in the preceding case, thus proving that G
is K-isomorphic to SppV, ω1q – Sp2k.

To prove the claim, consider the collection
Ź2
pV ˚q of alternating

bilinear forms on V . This collection is a linear space, and the non-
degenerate forms form a Zariski open subset (since nondegeneracy is
equivalent to the non-vanishing of the determinant of the Gram ma-
trix of the form). Since G1 is a K-group, the subspace

Ź2
pV ˚qG

1

of
G1-invariant forms is a K-subspace, which is nonempty since its col-
lection of R-points contains ω. Since K-points are Zariski dense in
K-subspaces, we find that there are nondegenerate symplectic K-forms
which are G1-invariant.

Finally, the proof of Theorem 3.5 shows that in the symplectic case,
the space Vphys – R2 is spanned by two vectors ~x, ~y satisfying ωp~x, ~yq “
1; that is, Vphys is a symplectic subspace for ω. Write ω as a linear
combination of forms ω1 which are defined over K and G1-invariant.



34 RENÉ RÜHR, YOTAM SMILANSKY, AND BARAK WEISS

Since ωp~x, ~yq ‰ 0, there has to be some ω1 P
`
Ź2
pV ˚qG

1
˘

K for which
ω1p~x, ~yq ‰ 0. �

Remark 3.6. In the symplectic case, Step 4 also shows that there is a
symplectic form on the entire space Rn that is preserved by the entire
group H1. Indeed, the form ω1, which is symplectic and defined over
K, can be ‘pushed’ using the field embeddings σi to induce symplectic
forms on the spaces Vσi. We will not be using this fact and we leave
the details to the reader.

4. An intrinsic description of the measures arising via Ψ˚

The following result shows that all RMS measures arise via the map
Ψ˚. For a given constant c ą 0, we denote by ρc : C pRdq Ñ C pRdq the
map induced by the dilation by c, that is, ρcpF q “ tcx : x P F u.

Theorem 4.1. Let F be as in (3.1) and embedded in G via the top-
left corner embedding. For any ergodic F -invariant Borel probability
measure µ on C pRdq which assigns full measure to irreducible cut-and-
project sets, there is an irreducible cut-and-project construction with
Rn “ Vphys‘Vint, πphys, πint,W and with Ψ as in (2.1), a constant c ą 0,
and an F -invariant ergodic homogeneous measure µ̄ on Yn, such that
µ “ ρc˚Ψ˚µ̄. For µ-a.e. Λ we have

c “

ˆ

volpW q

DpΛq

˙
1
n

, (4.1)

where DpΛq is the density of Λ as defined in (1.10).

We will split the proof into the linear and affine case.

Proof of Theorem 4.1, affine case. Suppose µ is ASLdpRq-invariant and
F “ ASLdpRq, and let tgtu be a one-parameter diagonalizable subgroup
of SLdpRq Ă F . By the Mautner phenomenon (see [EW11]), the ac-
tion of tgtu on

`

C pRdq, µ
˘

is ergodic. Thus, by the Birkhoff pointwise

ergodic theorem, there is a subset X0 Ă C pRdq of full µ-measure such
that for all Λ P X0 we have

1

T

ż T

0

pgtq˚δΛ dtÑTÑ8 µ.

Since the function Λ ÞÑ DpΛq is measurable and invariant, we can
further assume that the value of DpΛq is the same for each Λ P X0.
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Let U,Ω,mU be as in Theorem 2.5. Then by Fubini’s theorem, and
since µ is U -invariant, we have

1 “ µpX0q “
1

mUpΩq

ż

Ω

µpu´1X0q dmUpuq

“

ż
„

1

mUpΩq

ż

Ω

1X0puΛq dmUpuq



dµpΛq,

where 1X0 is the indicator function of X0. Thus the inner integral
on the RHS is equal to one on a subset of full measure; i.e., there
is X1 Ă C pRdq of full measure such that for every Λ P X1 we have
uΛ P X0 for mU -a.e. u P Ω. This implies that for Λ P X1 we have

1

T

ż T

0

ż

Ω

pgtuq˚δΛ dmUpuq dtÑTÑ8 µ. (4.2)

Let Λ P X1 be an irreducible cut-and-project set, that is, Λ “ ΨpLq,
where L is a grid and Ψ is defined using data d,m, n, Vphys, Vint,W
satisfying (D), (I), (Reg). We can simultaneously rescale L, the
window W , and the metric on Vphys by the same positive scalar, in

order to assume that L P Yn. Namely, set c1
def
“ covolpLq´ 1

n , so that

L1
def
“ c1L P Yn satisfies

Λ “ ΛpL,W q “ 1

c1

ΛpL1, c1W q.

Now solving for c “ 1
c1

in (1.10) gives (4.1).
Define a sequence of measures ηT on Yn by

ηT
def
“

1

T

ż T

0

ż

Ω

pgtuq˚δL dmUpuq dt.

That is, the measures ηT are defined by the same averaging as in (4.2),
but for the action on Yn rather than on C pRdq. By (3.2), their push-
forward under Ψ are the measures appearing on the LHS of (4.2). By
Theorem 2.5 we have ηT ÑTÑ8 µ̄ for some homogeneous measure µ̄ on
Yn. By assertion (i) of Theorem 3.1, µ̄ is invariant under translation
by any element of Rn, and in particular any element of Vint. Hence,
by Corollary 2.2, µ̄ is a continuity point of the map Ψ˚. By (4.2),
Ψ˚ηT Ñ µ and by continuity, µ “ Ψ˚µ̄. �

For the case in which µ is SLdpRq-invariant but not ASLdpRq-invariant,
we will need the following result:

Lemma 4.2. With the notation of Theorem 3.1, let

H 1
1

def
“ g1H

1g´1
1
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(so that H 1
1 “ H in the linear case and H 1

1 is a Levi subgroup of H in
the affine case), and let v be a nonzero vector in L1. Then the orbit of
v under the linear action of H 1

1 is an open dense subset of Rn.

Proof. Write v “ g1u for u P Znrt0u. It suffices to show that the orbit
H 1u is open and dense in Rn. The linear action of H 1 on Rn factors
through the group H1 so we may replace H 1 with H1.

The action of SLkpRq on Rk has the property that the orbit of every
nonzero vector is dense. The same is true for the action of Sp2kpRq
on R2k (since any vector can be completed to a symplectic basis), for
the action of SLkpCq on Ck » R2k, and for the action of Sp2kpCq on
C2k » R4k. By Step 3 of the proof of Lemma 3.2, H1 is the product
of groups Gi, and we have a direct product Rn “ ‘

r`s
i“1Vi, with the

following properties:

‚ For i “ 1, . . . , r we have a real field embedding σi, and Vi “
σpVqR; for i “ r ` 1, . . . , r ` s we have representatives σi of
pairs of complex embeddings, and Vi “ σpVqC.

‚ For i “ 1, . . . , r we have Gi “ σipGqR and for i “ r ` 1, . . . , s
we have Gi “ σipGqC.

‚ In the SLk-case (resp., the Sp2k case), V1 is isomorphic to Rk

(resp., R2k), with the standard action.
‚ The action of Gi on Vi is the obtained from the action of G1

on V1 by applying σi. In particular, for real embeddings it is
isomorphic to the standard action of SLkpRq or Sp2kpRq, and
for complex embeddings it is isomorphic to the standard action
of SLkpCq or Sp2kpCq.

Thus, it is enough to show that for any u P Zn r t0u, and for any field
embedding σj of K, the projection uj of u to the factor corresponding
to σj is nonzero.

Suppose to the contrary that uj “ 0 for some j, and let a P SLnpRq
be a diagonalizable matrix, such that a acts on the `-th factor of Rn

corresponding to the field embedding σ` as a scalar matrix λ` ¨Id, where
the λ` are positive real scalars satisfying

λj ą 1, λi ă 1 for i ‰ j, and
ź

`

λ` “ 1.

That is, a belongs to the centralizer of H 1 in SLnpRq, and aiuÑiÑ8 0.
This implies by Mahler’s compactness criterion that the sequence aiZn
is divergent (eventually escapes every compact subset of Xn). In par-
ticular, the orbit of the identity coset SLnpZq under the centralizer of
H 1 is not compact. From this, via the implication 3 ùñ 2 in [EMS97,
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Lemma 5.1], we see that H 1 is contained in a proper Q-parabolic sub-
group of SLnpRq, and hence (see e.g. [Bor19, §11.14]) leaves invariant
a proper Q-subspace of Rn. This is a contradiction to (irred). �

Proof of Theorem 4.1, linear case. We repeat the argument given for
the affine case. The only complication is in establishing ηT Ñ µ̄ implies
Ψ˚ηT Ñ Ψ˚µ̄, as in the last paragraph of the proof. In the proof for the
affine case, this was obtained from Corollary 2.2, which shows that µ̄
is a continuity point for the map Ψ˚, using the fact that µ̄ is invariant
under translations by elements of Vint. In the linear situation µ̄ no
longer has this continuity property.

To overcome this difficulty we argue as follows. We note that if

µ̄ ptL P Yn : πintpLq X BW ‰ ∅uq “ 0 (4.3)

then Corollary 2.2 can still be applied to show that µ̄ is a continuity
point for Ψ˚. Thus, we can assume from now on that (4.3) fails. Since
supp µ̄ “ HL1, this implies that the Haar measure mH of H satisfies

mH pth P H : πintphL1q X BW ‰ ∅uq ą 0. (4.4)

Since L1 is countable, there must be some v P L1 such that

mH pth P H : πintphvq P BW uq ą 0. (4.5)

By Lemma 4.2, there is a unique element v1 P Rn which is fixed by H
(namely v1 “ g1p0q), and for any v ‰ v1, the orbit of v under the action
of H is an open dense subset of Rn. In particular, if v ‰ v1 then the
map h ÞÑ hv sends mH to an absolutely continuous measure on Rn,
and for such v (4.5) cannot hold by (Reg).

Thus, we must have v “ v1. In this case hv “ v and πintphvq P BW
for all h P H. By examining the proof of Proposition 2.1, we see that
the map

H Ñ C pRd
q, h ÞÑ ΨphL1q

is still continuous at any point outside a set of zero measure; namely, the
set of h for which there is v ‰ v1 such that πintphvq P BW . Furthermore,
the measure µ̄ and the measures ηT are all supported on the orbit HL1.
Thus, we can apply the argument proving Corollary 2.2, to see that the
restriction of Ψ˚ to measures supported on the orbit HL1 is continuous.
This is sufficient to conclude that Ψ˚ηT Ñ Ψ˚µ̄ as T Ñ 8. �

Remark 4.3. Theorem 4.1 remains valid when one considers other
topologies (and potentially, Borel structures) on C pRdq, as is done for
example in [Vee98, MS19]. Thus, in the terminology of [Vee98], the
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theorem is valid if µ̄ is a Siegel measure giving full measure to cut-and-
project sets. The proof is essentially identical as Proposition 2.1 and
Corollary 2.2 are still valid in this setting.

5. Some consequences of the classification

With Theorem 3.1 in hand it is easy to obtain explicit descriptions
of RMS measures in low dimensions. Recall that we refer to the unique
ASLnpRq-invariant probability measure on Yn and the unique SLnpRq-
invariant probability measure on Xn as the Haar-Siegel measures.

Corollary 5.1. With the notation above, suppose that dimVphys ą

dimVint. Then the only affine RMS measure is the one for which µ̄ is
the Haar-Siegel measure on Yn, and the only linear RMS measure is
the one for which µ̄ is the Haar-Siegel measure on Xn.

This reproves a result stated without proof in [MS14, Prop. 2.1].

Proof. In our classification result, there is k P td, . . . , nu and D “

degpK{Qq such that n “ Dk in the SLk-case and n “ 2Dk in the
Sp2k-case. Since

k ě d “ dimVphys ą dimVint “ n´ d ě n´ k, (5.1)

we obtain k ą pD´1qk in the SLk-case and k ą p2D´1qk in the Sp2k-
case. This is only possible if D “ 1 and we are in the SLk-case. That
is, the only possible case is H 1 “ SLnpRq, and this gives the required
result. �

We extend Corollary 5.1 to the case of equality:

Corollary 5.2. With the above notation, suppose that µ is not one
of the Haar-Siegel measures mentioned in Corollary 5.1, and suppose
dimVphys “ dimVint. Then either d “ 2 and H 1 “ Sp4pRq, or d ě 2
and there is a real quadratic field K such that H 1 is (the group of real
points of) ResK{QpSLdq.

Proof. If the strict inequality in (5.1) becomes non-strict, it is also
possible that H 1 “ ResK{QpSLdq and K is a real quadratic field, or
K “ Q, d “ 2 and H 1 “ Sp4pRq. �

As shown by Pleasants [Ple03], an example of a cut-and-project set
associated with a real quadratic field as in Corollary 5.2 is the vertex set
of an Ammann-Beenker tiling, where in this case the associated field
is K “ Qp

?
2q. Similarly, as discussed in [MS14, §2.2], the Penrose

tiling vertex set can be described as a finite union of cut-and-project
sets associated with the real quadratic field Qp

?
5q.

We record the following trivial but useful fact.
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Proposition 5.3. For any affine RMS measure µ, one can assume the
window W contains the origin in its interior.

Proof. Let W be the window in the construction of the RMS measure
µ. By (Reg), let x0 P Vint be a point in the interior of W . By assertion
(i) of Theorem 3.1, the measure µ̄ is invariant under translations by
the full group Rn of translations, and in particular by the translation
by x0. So we can replace any L P Yn by L ´ x0 without affecting the
measure µ̄. But clearly for x0 P Vint we have

ΛpL,W q “ ΛpL´ x0,W ´ x0q.

So the measure µ can be obtained from µ̄ by using the window W ´x0,
which contains the origin in its interior. �

Recall that we have an inclusion

ι : SLnpRq Ñ ASLnpRq, ιpgq “ pg,0nq,

i.e., ιpSLnpRqq is the stabilizer of the origin in the affine action of
ASLnpRq on Rn. This induces an inclusion ῑ : Xn Ñ Yn, and these
maps form right inverses to the maps appearing in (3.3):

π ˝ ι “ IdSLnpRq, π ˝ ῑ “ IdXn .

In the linear case, we can use these maps to understand the measures µ̄
on Yn appearing in Theorem 3.1 in terms of measures on Xn. Namely
we have:

Proposition 5.4. Let F “ SLdpRq, embedded in ASLnpRq via (2.3),
and let µ̄ be a measure on Yn projecting to a linear RMS measure on
C pRdq; i.e., µ̄ is F -invariant and ergodic, and not invariant under

ASLdpRq. Let H, L1 be as in Theorem 3.1. Let F
def
“ πpF q. Then one

of the following holds:

(i) We have supp µ̄ Ă ῑpXnq and π|supp µ̄ is a homeomorphism
which maps µ̄ to an F -invariant ergodic measure on Xn. In

this case H is contained in G
def
“ ιpSLnpRqq, i.e., H “ ι ˝ πpHq.

(ii) We have µ̄pῑpXnqq “ 0, and there are D1, D2 P N such that
π|suppµ̄ is a closed map of degree D1, and for every L P supp µ̄
there is a lattice L1 P Xn, depending only on πpLq, such that L1
contains πpLq with index rL1 : πpLqs “ D2, and such that L is
a translate of πpLq by an element of L1.

Proof. The set of lattices ῑpXnq Ă Yn is clearly F -invariant, so by
ergodicity is either null or conull for the measure µ̄. If it is conull then
ῑpXnq is a closed subset of full measure, i.e., supp µ̄ Ă ῑpXnq. Since
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ῑ is a right inverse for π we have that π|supp µ̄ is a homeomorphism.
Furthermore, since we have a containment of orbits

HL1 “ supp µ̄ Ă ῑpXnq “ GZn “ GL1,

and the groups H,G are connected analytic submanifolds of G, we have
a containment of groups H Ă G. This proves (i).

Now suppose µ̄ pῑpXnqq “ 0, and let H, L1 be as in the statement

of Theorem 3.1, so that supp µ̄ “ HL1. Let Tn def
“ π´1pπpL1qq be the

orbit of L1 under translations. Since we are in the linear case, H is
transverse to the group of translations Rn which moves along the fibers
of π, and since HL1 does not accumulate on itself and Tn is compact,

the intersection Ω
def
“ Tn X HL1 is a finite set. Then by (3.4), for any

L “ hL1 P suppµ̄ we have

hΩ “ π´1
pπpLqq XHL1,

and thus the map π|supp µ̄ has fibers of a constant cardinality D1
def
“ |Ω|.

Now denote

Γ1
def
“ th P H : hL1 “ L1u, Γ2

def
“ th P H : hΩ “ Ωu.

By equivariance we have Γ1 Ă Γ2 and the index of the inclusion is D1

since Γ2 acts transitively on Ω. The bijection

Rn
{πpL1q Ñ Tn, x mod πpL1q ÞÑ x` L1

endows Tn with the structure of a real torus, whose identity element
corresponds to L1. In these coordinates Γ2 acts by affine maps of Tn
but Γ1 acts by toral automorphisms, since it preserves L1. Thus, Ω is
a finite invariant set for the action of an irreducible lattice in a group
acting L1-irreducibly on Rn, and thus by [GS04] consists of torsion
points in Tn. That is, there is q P N so that they belong to the image
of 1

q
¨ L1 in Tn. By equivariance the same statement holds, with the

same q, for hL1 in place of L1. Thus, the second assertion holds if we
let L1 “ 1

q
¨ L, D2 “ qn. �

Example 5.5. It is possible that in case (ii) we have suppµ̄X ῑpXnq ‰

∅. For example, take n “ 3, d “ 2, let f be the translation fpxq
def
“ x`

1
2
e3, where e3 is the unit vector in the third axis. Let H be the conju-

gate of SL3pRq by f and let L1 “ fpZ3q. Then F Ă H and HL1 is a
closed homogeneous orbit. Since L1 R ῑpX3q, the corresponding homo-
geneous measure does not satisfy (i). But one can check that the lattice
spanZpe1, 2e2,

1
2
e3q is contained in HL1, that is, HL1 X ῑpX3q ‰ ∅.
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6. Integrability of the Siegel-Veech transform

In this section we prove Theorem 1.2. Let µ be an RMS mea-
sure and let µ̄, H1, L1 “ g1Zn be as in Theorem 3.1. Recall that
the function f̂ defined in (1.3) is defined on suppµ. Also let π :
ASLnpRq Ñ SLnpRq, π : Yn Ñ Xn, H1 “ πpH1q be as in §3.2. Let

Γ1
def
“ H1XASLnpZq, Γ1

def
“ H1X SLnpZq be the Z-points of H1 and H1,

and let X1
def
“ H1{Γ1, X1

def
“ H1{Γ1. We will use the results of §3.2 to

lift f̂ to a function on X1, and show that it is dominated by the pull-
back of a function on X1. For the arithmetic homogeneous space X1

we will develop the analogue of the Siegel summation formula and its
properties. Specifically, we will describe a Siegel set S Ă H1, which is
an easily described subset projecting onto X1, and estimate the rate of
decay of the Haar measure of the subset of S covering the ‘thin part’
of X1.

6.1. Reduction theory for some arithmetic homogeneous spaces.
We begin our discussion of Siegel sets. For more details on the termi-
nology and statements given below, see [Bor19, Chaps. 11-13].

Let H be a semisimple Q-algebraic group, let P be a minimal Q-
parabolic subgroup, and let H “ HR. Then P “ PR has a decomposi-
tion P “MAN (almost direct product), where:

‚ A is the group of R-points of a maximal Q-split torus A of P;
‚ N is the unipotent radical of P ;
‚ and M is the connected component of the identity in the group

of R-points of M, a maximal Q-anisotropic Q-subgroup of the
centralizer of A in P.

Furthermore, H “ KP for a maximal compact subgroup K of H.
As in §2.4, we think of H as concretely embedded in SLn0pRq for

some n0 P N, where we take this embedding to be defined over Q for
the standard Q-structure on SLn0pRq. Let a and n denote respectively
the Lie algebras of A and N , let Φ Ă a˚ denote the Q-roots of H
and choose an order on Φ for which n is generated by the positive
root-spaces.

Every element of H can be written in the form

h “ kman pk P K, m PM, a P A, n P Nq, (6.1)

and one can express the Haar volume element dh of H in these coordi-
nates in the form

dh “ dk dmdn ρ0paqda, (6.2)

where dk, dm, dn, da denote respectively the volume elements corre-
sponding to the Haar measures on the (unimodular) groups K,M,N,A,
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and
ρ0paq “ |det pAdpaq|nq| “ expp2ρpXqq, (6.3)

where a “ exppXq and ρ is the character on a given by ρ “
1

2

ÿ

αPΦ`

cαα,

for Φ` the positive roots in Φ, and cα “ dim hα. We note that this
formula for Haar measure is well-defined despite the fact that the de-
composition (6.1) is not unique.

Let ∆ Ă Φ` be a basis of simple Q-roots. For fixed t P R, let

At
def
“ texppXq : X P a, @χ P ∆, χpXq ď tu (6.4)

and for a compact neighborhood of the identity ω ĂMN , let

St,ω
def
“ KAtω.

These sets are referred to as Siegel sets, and by a fundamental result, a
finite union of translates of Siegel sets contains a fundamental domain
for the action of an arithmetic group; that is, there is a finite subset
F0 Ă HQ and there are t, ω such that St,ωF0 projects onto H{ΓH ,
where ΓH “ HZ; equivalently H “ St,ωF0ΓH . The sets St,ωF0 do not
represent ΓH-cosets uniquely, in fact the map St,ωF0 Ñ H{ΓH is far
from being injective. Nevertheless the formulas (6.1) and (6.3) make
it possible to make explicit computations with the restriction of Haar
measure to St,ωF0, and in particular to show that Siegel sets have finite
Haar measure.

An important observation is that the set
Ť

aPAt
aωa´1 is bounded,

because of the definition of M and N and because of the compactness
of ω. This means that a Siegel set is contained in a set of the form
ω1At, where ω1 is a bounded subset of H.

6.2. The integrability exponent of an auxiliary function on Xn.
We will specialize the discussion in §6.1 to the specific choices of H{ΓH
that arise in our application. Let H be as above, let St,ω be a Siegel
set and let F0 Ă HQ be a finite subset for which St,ωF0ΓH “ H.
Given functions ϕ1, ϕ2 defined on H, we will write ϕ1 ! ϕ2 if there is
a constant c such that for all x P St,ωF0 we have ϕ1pxq ď cϕ2pxq. The
constant c is called the implicit constant. We will also write ϕ1 — ϕ2 if
ϕ1 ! ϕ2 and ϕ2 ! ϕ1. In general these relations on functions depend
on the choice of Siegel set (i.e., the choice of t) and the choice of the
finite set F0, but in the case we will be interested in, when ϕ1, ϕ2 are
actually lifts of function defined on H{ΓH , this notion does not depend
on choices.

We now define an auxiliary function, and compute its integrability
exponent. Given a nonzero discrete subgroup L1 Ă Rn (not necessarily
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of rank n), we denote by covolpL1q the volume of a fundamental domain
for L1 in spanRpL1q (with respect to Lebesgue measure on spanRpL1q,
normalized using the standard inner product on Rn). For g P SLnpRq
and L “ gZn P Xn, define

α̂pgq “ αpLq def
“ max

 

covolpL1q´1 : L1 Ă L, L1 ‰ t0u
(

. (6.5)

Recall that X1 “ H1{Γ1 is embedded in Xn as the closed orbit X1 “

H1Zn, and so we can consider the restrictions of α and α̂ to X1 and to
H1.

Proposition 6.1. In the two cases G – SLk, G – Sp2k, let p ă

r0
def
“ rankKpGq ` 1 (see (1.6)). Then

α P Lp
`

µ
˘

r Lr0
`

µ
˘

, (6.6)

where µ is the H1-invariant probability measure on X1.

Proof. Let λi “ λipLq, i “ 1, . . . , n be the successive minima of a
lattice L, and let i0 “ i0pLq be the index for which λi0pLq ď 1 ă
λi0`1pLq. Then it is easy to see using Minkowski’s second theorem (see
e.g. [Cas97, §VIII.2]) that (as functions on Xn),

αpLq —
`

λ1 ¨ ¨ ¨λi0pLqpLq
˘´1

. (6.7)

As a consequence, for any C Ă SLnpRq bounded, we have

@u P C, αpuLq — αpLq
(with the implicit constant depending on C).

Let T denote the diagonal subgroup of SLnpRq, let T “ T˝
R and

let t be the Lie algebra of T . In what follows we will replace T by its
conjugate over SLnpQq, where the conjugate will be conveniently chosen
with respect to H1 and its subgroups. The reader should note that the
statements to follow about T are not affected by such conjugations in
SLnpQq.

It is easy to check that for the lattice Zn and for a “ exppdiagpX1, . . . , Xnqq P

T , we have λipaZnq “ eXjpiq where i ÞÑ jpiq is a permutation giving
Xjp1q ď Xjp2q ď ¨ ¨ ¨ ď Xjpnq, and hence

α̂paq “ αpaZnq — exp

˜

´
ÿ

Xiă0

Xi

¸

. (6.8)

Furthermore, for an element f0 P SLnpQq we have that λipaf0Znq —
eXjpiq , where implicit constants depend on f0, and thus α̂paq — α̂paf0q.

Recall the notation D “ degpK{Qq from Theorem 3.1. We first
prove the proposition under the assumption D “ 1. That is, we have
K “ Q, H1 “ SLkpRq and n “ k in case G – SLk, and n “ 2k, H1 “
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Sp2kpRq in case G – Sp2k. Now consider a Siegel set for H “ H1,
and suppose At is the corresponding subset of the maximal Q-split
torus of H1. Since T is a maximal Q-split torus of SLnpRq, by [Bor91,
Thm. 15.14], applying a conjugation in SLnpQq we can assume that
A Ă T and the order on the roots Φ is consistent with the standard
order on the group of characters on t; that is, At Ă Tt1 for some t1, as
can be observed by an elementary computation (see [Bor19, Ex. 11.15]
for a description of A in the symplectic case). In particular, for a “
exppdiagpXjqq P At we have exppXjq ! exppXj`1q for j “ 1, . . . , n´ 1.
Then from (6.8), for a P At and f0 P F0, where F0 is a finite subset of
pH1qQ, we have

α̂paf0q — max
1ďjďn´1

exp p´βjpXqq , (6.9)

where

βjpXq
def
“

j
ÿ

i“1

Xi, X “ diagpX`q. (6.10)

Since a Siegel set St,ω is contained in a set of the form ω1At, where ω1

is a compact subset of H, this implies that

α̂pkmanf0q ! max
1ďjďn´1

expp´βjpXqq.

We will first show the following:

(i) For any j, and any X P a for which exppXq P At, we have
p2ρ´ r0βjq pXq ! 1.

(ii) The number r0 is the largest number for which the conclusion
of (i) remains valid.

For ` “ 1, . . . , n´ 1 let χ` denote the simple roots on t, that is,

χ` : tÑ R, χ` pdiag pX1, . . . , Xnqq
def
“ X``1 ´X`. (6.11)

In order to show (i), since the χ` are bounded above on At, it suffices to

show that if we write 2ρ “
ř

a`χ` and βj “
ř

b
pjq
` χ`, then r0b

pjq
` ď a`.

In order to show (ii) it suffices to check that there are some j, ` for

which equality holds, i.e., r0b
pjq
` “ a`. This can be checked using the

tables of [Bou02, pp. 265-270, Plates I & III] (note that the restrictions
of the βj to A are the fundamental weights in both cases). Namely, for
G “ SLk we have

a` “ `pk ´ `q, r0 b
pjq
` “

"

`pk ´ jq if ` ă j
jpk ´ `q if ` ě j
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and we have the desired inequality, with equality when ` “ j. If G “

Sp2k we have

a` “

"

`p2k ´ `` 1q if ` ă k
kpk`1q

2
if ` “ k

r0 b
pjq
` “

$

&

%

`pk ` 1q if ` ă j
jpk ` 1q if j ď ` ă k
jpk`1q

2
if ` “ k

and again the inequality holds, with equality when ` “ j “ k.
Now to see that α P Lp

`

µ
˘

, since a Siegel set is contained in ω1At
with ω1 bounded, and by (6.2), it suffices to prove that for f0 P F0 we
have

ş

At
α̂ppaf0qρ0paqda ă 8. Using the preceding discussion, if we let

at denote the cone in a with At “ exppatq (where At is as in (6.4)), and
use that da is the pushforward under the exponential map of dX, we
have

ż

At

α̂ppaf0qρ0paq da !

ż

at

max
j

exp p´pβjpXqq ¨ exp p2ρpXqq dX

“

ż

at

max
j

exp

„ˆ

p

r0

p2ρ´ r0βjq `

ˆ

1´
p

r0

˙

2ρ

˙

pXq



dX

piq
!

ż

at

exp r2ρpXqs
1´ p

r0 dX ă 8,

where the integral is finite as the integrand is the exponential of a linear
functional which is strictly decreasing along the cone at. The same
computation and (ii) show that we have a corresponding lower bound
ş

At
α̂r0paf0qρ0paqda "

ş

at
exp pτpXqq dX, where τ is a linear functional

which is constant along a face of at. We have shown (6.6) for D “ 1.

Now suppose D ą 1. Our strategy will be to show that we can repeat
the computations used for the case D “ 1, with the only difference be-
ing that in some of the formulas, the characters ρ and βj are multiplied

by a factor of D. Write G1
def
“ Gσ1

R , let V be as in the statement of
Theorem 3.1, a K-subspace of Rn. Let

t
def
“

"

k if G – SLk
2k if G – Sp2k,

(6.12)

so that dimV “ t. Let A1 denote a maximal K-split torus in G, and
let a1 denote its Lie algebra. Then, with respect to a suitable basis of
VK, we can write elements of a1 as matrices diagpX1, . . . , Xtq, where
ř

Xi “ 0 when G – SLk and Xi`k “ ´Xi when G – Sp2k.

Let B
def
“ ResK{QpA1q, and let A denote a maximal Q-split torus in

H1. The dimension of A1 is the number of independent one-parameter
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multiplicative K-subgroups (morphisms Kˆ Ñ A1), and, applying re-
striction of scalars, each such one-parameter group gives rise to a one-
parameter Q-subgroup Qˆ Ñ B. This implies that B contains a Q-split
torus of dimension equal to dim A1. Since the Q-rank of H is the same
as the K-rank of G, see [BT65, 6.21 (i)], the dimensions of these groups
coincide. Since all maximal Q-split tori in H are conjugate over HQ,
we can assume that A Ă B, and by conjugating SLnpRq by an element
of SLnpQq, we can also assume that A Ă T and the order on the roots
Φ is consistent with the order on the roots of t. We claim that after
these conjugations, the elements of A “ A˝

R are of the form

diag

¨

˝Xjp1q, . . . , Xjp1q
loooooooomoooooooon

D times

, . . . , Xjptq, . . . , Xjptq
looooooomooooooon

D times

˛

‚, (6.13)

where diagpX1, . . . , Xtq ranges over the elements of a1 in the above-
chosen basis, and i ÞÑ jpiq is a permutation guaranteeing exp

`

Xjp1q

˘

!

¨ ¨ ¨ ! exp
`

Xjptq

˘

.
We first assume the validity of (6.13), and conclude the proof of the

case D ą 1. We will use (6.13) to compare characters on A1 with char-
acters on A. First, comparing the character ρ appearing in (6.3) for
the two groups H1 , G1, we see that each real field embedding σi, i ď r
contributes one dimension to the dimension of a root space, and each
pair σi, σ̄i, i ą r of conjugate non-real embedding contributes two di-
mensions. Alternatively: in G1 the root spaces are one dimensional
and defined over K, since G1 is K-split. The root spaces in H1 are ob-
tained from the root spaces in G1 by applying the restriction of scalars
operation to each one individually. This implies that the character ρ
for H1 is obtained from the corresponding character for G1 by a mul-
tiplication by D. Similarly, it is clear from (6.13) that the characters
βj appearing in (6.10) for H1 are obtained from the same characters
βj for G1, multiplied by D. Thus, the computations guaranteeing (6.6)
for D “ 1, imply the same property for general D.

It remains to prove (6.13). Recall that B “ ResK{QpA1q, which
we wish to describe explicitly using the discussion in §2.4. For ~y P Kt

we define a1p~yq
def
“ diagpy1, . . . , ytq P A1pKq; that is, these are matrices

acting on V which are diagonal with respect to a K-basis of V , and
the yi satisfy y1 ` ¨ ¨ ¨ ` yt “ 0 for G – SLk and yi “ ´y2k´i`1 for
G – Sp2k. Each y P K has a representative which is a matrix in
MatDˆDpQq. If we take y P Q then the corresponding representative
matrix is the scalar matrix y ¨ IdD. The elements of B can be con-
sidered as t ˆ t matrices, whose entries are elements of MatDˆD. In
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particular, for ~y P Qt, we get matrices a2p~yq P MatnˆnpQq, which are
simultaneously diagonalizable, with each yi appearing as an eigenvalue
D times. That is, up to permuting the coordinates, the matrices a2p~yq
are as in (6.13), with Xi P Q. The map a1p~yq ÞÑ a2p~yq is a polyno-
mially defined group homomorphism. Letting A2 denote the Zariski
closure of ta2p~yq : ~y P Qt, a1p~yq P A1u, we see that A2 is a torus in B
whose group of real points pA2qR satisfies the description (6.13), and
with dim A2 “ dim A1 “ dim A. Also, A2 is Q-split since the maps
a2p~yq ÞÑ yi are Q-characters. Thus, A2 is a maximal Q-split torus of
H, and by the uniqueness of the maximal Q-split torus in the torus B
(see [Bor19, Prop. 10.6]), we must have A “ A2. (See also the related
discussion in [PR94, Example, p. 54], giving an explicit description of
a maximal Q-anisotropic torus in B as a product of norm-tori.) �

6.3. An upper bound for the Siegel transform. We will now state
and prove a result implying Theorem 1.2. For a function F on Rn, a
measure µ̄ on Yn, and L P Yn, in analogy with (1.3) we denote

pF pLq “
"ř

xPLrt0u F pxq µ̄ is linear
ř

xPL F pxq µ̄ is affine
(6.14)

Theorem 6.2. Let µ̄ be the H-homogeneous measure on Yn as in The-
orem 3.1, and let q “ qµ̄ be as in (1.5). Then for any F P CcpRnq and

any p ă q we have pF P Lppµ̄q. Moreover, there are F P CcpRnq for

which pF R Lqpµ̄q.

We will prove Theorem 6.2 separately in the linear and affine cases.
In the linear case, we will first show, using Proposition 5.4, that the
Siegel-Veech transform (6.14) can be bounded in terms of a Siegel trans-
form of a function on Xn. The latter can be bounded in terms of the
function α considered in §6.2.

Proof of Theorem 6.2, linear case. Suppose that µ̄ satisfies (i) of Propo-
sition 5.4, i.e., µ̄ is supported on ιpXnq. Then we can assume that
the cut-and-project scheme involves lattices in Xn, rather than grids.
Moreover, H “ ι ˝ πpHq, g

1
“ g1, H1 “ ι ˝ πpH1q, and the function

pF is a Siegel-Veech transform of a Riemann integrable function on Rn,
for a homogeneous subspace of Xn. It is known that the function
α defined in (6.5) describes the growth rate of the Siegel transforms
of functions on Xn. Namely (see [EMM98, Lemma 3.1] or [KSW17,
Lemma 5.1]), for any Riemann integrable function F on Rn, for any

L P Xn, pF pLq ! αpLq. Furthermore, if F is the indicator of a ball

around the origin then pF pLq " αpLq. Thus, the conclusion of Theorem
6.2 in this case follows from Proposition 6.1.
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Now assume that case (ii) of Proposition 5.4 holds. We cannot use

Proposition 6.1 since pF is a function on Yn. To remedy this, we define
for each L P HL1 the lattice L1 “ L1pπpLqq appearing in assertion (ii)
of Proposition 5.4, and set

pF pπpLqq def
“

ÿ

xPL1pπpLqqrt0u

F pxq.

Then the bounds given in Proposition 5.4 imply that pF pLq ! pF pπpLqq,
with a reverse inequality pF pπpLqq ! pF pLq for positive F . Since pF is the
Siegel-Veech transform of a function on Rn with respect to a measure
on Xn, we can apply Proposition 6.1 to conclude the proof in this case
as well. �

For the affine case, we will need the following additional interpreta-
tion of the function α defined in (6.5).

Proposition 6.3. Let L P Xn, let TnL “ Tn “ π´1pLq – Rn{L be the
quotient torus, equipped with its invariant measure element dL. Then
for any ball B Ă Rn and any p ą 1 we have

ż

Tn
|B X L|p dL — αpLqp´1, (6.15)

where the implicit constants depend on the dimension n, on p, and on
the radius of B.

Proof. Let λ1, . . . , λn be the Minkowski successive minima of L. Using
Korkine-Zolotarev reduction, let v1, . . . , vn be a basis for L satisfying
}vi} — λi (where implicit constants are allowed to depend on the dimen-

sion n), and let ui
def
“

vi
}vi}

. For a vector ~s of positive numbers s1, . . . , sn
define

P~s
def
“

!

ÿ

aiui : |ai| ď
si
2

)

.

Setting ~v0 “ p}v1}, . . . , }vn}q, we have that P~v0 “
 
ř

bivi : |bi| ď
1
2

(

is
a fundamental parallelepiped for L, and we can identify Tn with this
parallelpiped via the bijection

P~v0 Ñ Tn, x ÞÑ Lx
def
“ L` x,

which sends the Lebesgue measure on P~v0 to the Haar measure dvol on
Tn.

Now set

Pr
def
“ P~r where ~r “ pr, . . . , rq.

We can translate B so that it is centered at the origin without affecting
the integral in (6.15), and since there is a lower bound on the angles
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between the vi, there are r1 — R — r2 such that Pr1 Ă B Ă Pr2 . Thus,
we can replace B with PR. Furthermore, the lower bound on the angles
between the ui implies

dvolpxq — dx1 ¨ ¨ ¨ dxn, where x “
ÿ

xiui.

Writing each vector y P Rn in the form y “
ř

i ciui, and reducing
each ci modulo }vi} ¨ Z, it is easy to verify that for x P P~v0 we have:

‚ if R
2
ă |xi| ă

}vi}´R
2

for some i, then PR X Lx “ ∅; and

‚ if |xi| ď
R
2

or |xi| ě
}vi}´R

2
for all i, then |PRXLx| —

ś

}vi}ăR

´

R
}vi}

¯

.

Since
ź

}vi}ăR

R

}vi}
—

ź

λipLqă1

1

λipLq
(6.7)
— αpLq,

we obtain
ż

Tn
|B X L|p dL —

ż

P~v0

|PR X Lx|p dvolpxq

— αpLqp ¨ vol

ˆ"

x P P~v0 : |xi| ď
R

2

*˙

— αpLqp ¨
ź

}vi}ďR

}vi} ¨
ź

}vi}ąR

R — αpLqp ¨
ź

λipLqă1

λipLq
(6.7)
— αpLqp´1.

�

Proof of Theorem 6.2, affine case. By decomposing F into its positive

and negative parts, we see that it suffices to prove pF P Lppµq when F
is the indicator of a ball in Rn. By Theorem 3.1 we have that in the
affine case, the translation group Rn is contained in H1, which implies
that we can decompose the measure µ̄ as

ż

X1

ϕpLq dµ̄pLq “
ż

X1

ż

TnL

ϕpLxq dvolpxq dµpLq, @ϕ P L1
pX1, µ̄q.

Now the statement follows from Propositions 6.1 and 6.3. The case of
equality p “ qµ follows similarly, taking for F the indicator of a ball in
Rn. �

Proof of Theorem 1.2. Let f P CcpRdq and let f̂ be as in (1.3). Let µ be
an RMS measure on C pRdq associated with a cut-and-project scheme
involving grids in Yn, a decomposition Rn “ Vphys‘Vint, and a window
W Ă Vint. Let 1W be the indicator function of W and let µ̄ be an
H-homogeneous measure, supported on the orbit HL1 Ă Yn such that
µ “ Ψ˚µ̄ (where we have replaced µ by its image under a rescaling map
to simplify notation).
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Define

F : Rn
Ñ R, F pxq “ 1W pπintpxqq ¨ fpπphyspxqq, (6.16)

and define pF via (6.14). Then it is clear from the definition of Ψ and

(1.3) that f̂pΨpLqq “ pF pLq provided L satisfies (I), and, in the linear
case, provided all nonzero vectors of L project to nonzero vectors in
Vphys; the last assumption is equivalent to requiring that

L R N def
“ tL1 P HL1 : L1 X Vint Ć t0uu.

The condition that L satisfies (I) is valid for µ̄-a.e. L by definition of
an RMS measure. We claim further that in the linear case µ̄pN q “ 0.
Indeed, since µ̄ is induced by the Haar measure of H, otherwise we

would have some fixed v P L1rt0u such thatHN ,v def
“ th P H : hv P Vintu

has positive Haar measure. Recall that for analytic varieties V1,V2,
with V1 connected, if V1 X V2 has positive measure with respect to
the smooth measure on V1, then V1 Ă V2. Since HN ,v is an analytic
subvariety in H, if it has positive measure with respect to the Haar
measure on H, it must coincide with H. This contradicts Lemma 4.2.

This contradiction shows that µ̄-almost surely we have pf ˝Ψ “ pF . Since
µ “ Ψ˚µ̄, the first assertion that f̂ P Lppµq for p ă qµ now follows from
the first assertion of Theorem 6.2.

For the second assertion, let f be a nonnegative continuous function
whose support contains a ball around the origin. Since we have assumed
that W contains a ball around the origin in Vint, the support of the
function F also contains a ball around the origin in Rn, so f̂ is bounded
below by the Siegel-Veech transform of the indicator of a ball in Rn,
and we have that such functions do not belong to Lqµpµ̄q. �

7. Integral formulas for the Siegel-Veech transform

In this section we will prove Theorem 1.3. We begin with its special
case p “ 1, i.e., with a derivation of (1.4). This will illustrate the
method of Weil [Wei82] which we will use. Note that (1.4) was first
proved by Marklof and Strömbergsson in [MS14] following an argument
of Veech [Vee98]. Their argument does not rely on an integrability
bound such as our Theorem 1.2, and instead, uses the result of Shah
[Sha96], Theorem 2.5.

7.1. A derivation of a ‘Siegel summation formula’. Given f P

CcpRdq, define F via (6.16), and define pF pLq via (6.14). We can bound
F pointwise from above by a compactly supported continuous function

on Rn, and hence, by Theorem 6.2, pF P L1pµ̄q. Therefore f ÞÑ
ş

X1

pF dµ̄
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is a positive linear functional on CcpRdq. By the Riesz representa-
tion theorem, there is some Radon Borel measure ν on Rd such that
ş

X1

pF dµ̄ “
ş

Rd f dν. From the equivariance relation (3.2), ν is invari-

ant under ASLdpRq in the affine case and under SLdpRq in the linear
case. Lebesgue measure is the unique (up to scaling) ASLdpRq-invariant
Radon Borel measure on Rd, and for SLdpRq, the only additional in-
variant measure is δ0, the Dirac mass at the origin. Thus, there are
constants c1, c2 such that

ν “

"

c1vol µ̄ is affine
c1vol` c2δ0 µ̄ is linear.

(7.1)

As we have seen in the proof of Theorem 1.2, we have that pF “ pf ˝Ψ
holds µ̄-a.e. Since µ “ Ψ˚µ̄, this implies that

ż

C pRdq

pf dµ “

ż

X1

pF dµ̄ “

ż

Rd
f dν.

In combination with (7.1), this establishes (1.4) in the affine case, and
gives

ż

C pRdq
f̂ dµ “ c1

ż

Rd
f dvol` c2fp0q, @f P CcpRd

q (7.2)

in the linear case. It remains to show that c2 “ 0.
Let Br “ Bp0, rq be the ball in Rd centered at the origin, let f P

CcpRdq satisfy 1B1 ď f ď 1B2 , and let fr “ f
`

x
r

˘

. Thus, as r Ñ 0, the
functions fr have smaller and smaller support around the origin. By

(1.3) and discreteness of Λ we have that pfrpΛq ÑrÑ0 0 for any Λ. The
functions fr vanish outside the ball B2r, and for r ď 1, the functions
pfr are dominated by pf1. Therefore

0 “ lim
rÑ0

ż

C pRdq

pfr dµ
(7.2)
“ lim

rÑ0

„

c1

ż

Rd
fr dvol` c2 ¨ 1



“ c2.

�

7.2. A formula following Siegel-Weil-Rogers. In this section we
state and prove a generalization of Theorem 1.3. Let the notation be
as in 3.1, so that µ̄ is an H-homogeneous measure on Yn. Let p P N
and let Rnp “ Rn

‘ ¨ ¨ ¨ ‘ Rn
looooooomooooooon

p copies

. For f P CcpRnpq and L P Yn, define

pfp pLq def
“

$

’

’

&

’

’

%

ÿ

v1,...,vpPLrt0u

fpv1, . . . , vpq µ̄ is linear

ÿ

v1,...,vpPL
fpv1, . . . , vpq µ̄ is affine.

(7.3)
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Let J Ă ASLpnp,Rq be a real algebraic group and let θ be a locally
finite Borel measure on Rnp. We say that θ is J-algebraic if J preserves
θ and has an orbit of full θ-measure (in this case θ can be described
in terms of the Haar measure of J , see [Rag72, statement and proof of
Lemma 1.4]).

Theorem 7.1. Let p P N and assume that p ă qµ̄ where qµ̄ is as in
(1.5). Then there is a countable collection tτ̄e : e P Eu of H-algebraic

Borel measures on Rnp such that τ̄
def
“

ř

τ̄e is locally finite and for every
f P L1pτ̄q we have

ż

Yn

pfp dµ̄ “

ż

Rnp
f dτ̄ . (7.4)

As we will see in the proof, in the affine (resp. linear) case, the
indexing set E is naturally identified with the set of ΓH1-orbits in the
set of p-tuples of (nonzero) vectors in Zn.

We will need a by-now standard result of Weil, which is a general-
ization of the Siegel summation formula and is proved via an argument
similar to the one used in §7.1. Let G1 Ă G2 be unimodular locally
compact groups, let Γ2 Ă G2 be a lattice in G2 and let mG2{Γ2 denote
the unique G2-invariant Borel probability measure on G2{Γ2. Since
G1, G2 are unimodular, there is a unique (up to scaling) locally finite
G2-invariant measure on G2{G1, which we denote by mG2{G1 (see e.g.

[Rag72, Chap. I]). Define Γ1
def
“ Γ2 X G1, and for any γ P Γ2, denote

its coset γΓ1 P Γ2{Γ1 by rγs. With this notation, Weil showed the
following:

Proposition 7.2 ([Wei46]). Assume that Γ1 is a lattice in G1. Then we
can rescale mG2{G1 so that the following holds. For any F P L1pG2{G1,mG2{G1q,
define

rF pgΓ2q
def
“

ÿ

rγsPΓ2{Γ1

F pgγq. (7.5)

Then rF P L1pG2{Γ2,mG2{Γ2q and
ż

G2{Γ2

rF dmG2{Γ2 “

ż

G2{G1

F dmG2{G1 .

Proof of Theorem 7.1. Consider the map which sends f P CcpRnpq to
ş

pfp dµ̄. This is well-defined by Theorem 6.2, and defines a positive lin-
ear functional on CcpRnpq. Thus, by the Riesz representation theorem,
there is a locally finite measure τ̄ on Rnp such that

@f P CcpRnp
q,

ż

Yn

pfp dµ̄ “

ż

Rnp
f dτ̄ . (7.6)
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Our goal will be to present τ̄ as a countable linear combination of H-
algebraic measures. Note that since CcpRnpq is a dense linear subspace
of L1pτ̄q, for any locally finite measure τ̄ , it suffices to prove (7.4) for
functions in CcpRnpq.

Let H, g1, L1 “ g1Zn, H1 “ g´1
1 Hg1, ΓH1 “ H1 X ASLnpZq be as in

§3.2, so that ΓH1 is a lattice in H1 and µ̄ is an H-homogeneous measure
supported on HL1 – H1{ΓH1 . In the affine (respectively linear) case,
let Znp denote the countable collection of ordered p-tuples of vectors in
Zn (respectively, in Znrt0u). Let E denote the collection of ΓH1-orbits
in Znp. For each e P E, define the restriction of the sum (7.3) to the
orbits HL1 Ă Yn and to the orbit e, by

pfp ephL1q
def
“

ÿ

px1,...,xpqPe

f phg1x1, . . . , hg1xpq , (7.7)

so that on HL1 we have
pfp “

ÿ

ePE

pfp e. (7.8)

If f is a non-negative function then pfp e ď
pfp everywhere on HL1, and

in particular pfp e P L
1pµ̄q. Thus, the assignment sending f P CcpRnpq

to
ż

f dτ̄e
def
“

ż

pfp e dµ̄ (7.9)

is a positive linear functional and hence, via the Riesz representation
theorem, defines the locally finite Borel measure τ̄e on Rnp. By (7.8),
ř

ePE τ̄e “ τ̄ . It remains to show that each τ̄e is H-algebraic.
For each e P E, choose a representative p-tuple ~xe “ px1, . . . , xpq P e

and let

G1,e
def
“ th P H1 : hxi “ xi, i “ 1, . . . , pu.

We will apply Proposition 7.2 withG2 “ H1, Γ2 “ ΓH1 , G1 “ G1,e, Γ1 “

Γ2 X G1, and with F ph1G1q
def
“ fpg1h1~xeq. Comparing (7.5) and (7.7)

we see that these choices imply that rF ph1Γ2q “
pfp ephL1q, for h “

g1h1g
´1
1 P H. We will see below that Γ1 is a lattice in G1. Assuming

this, we apply Proposition 7.2 to obtain
ż

Rnp
f dτ̄e “

ż

Yn

pfp e dµ̄ “

ż

G2{Γ2

rF dmG2{Γ2

“

ż

G2{G1

fpg1h1~xeq dmG2{G1ph1G1q.

This shows that τ̄e is the pushforward of mG2{G1 under the map

G2{G1 Ñ Rnp, h1G1 ÞÑ g1h1~xe.
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In particular, since H “ g1H1g
´1
1 , τ̄e is H-algebraic.

It remains to show that Γ1 is a lattice in G1. To see this, note that
G2 is a real algebraic group defined over Q, and G1 is the stabilizer in
G2 of a finite collection of vectors in Zn. Thus, G1 is also defined over
Q. By the theorem of Borel and Harish-Chandra (see [Bor19, §13]), if
G1 has no nontrivial characters then Γ1 “ G1 X ASLnpZq is a lattice
in G1. Moreover, a real algebraic group generated by unipotents has
no characters. Thus, to conclude the proof of the claim, it suffices to
show that G1 is generated by unipotents. We verify this by dividing
into the various cases arising in Theorem 3.1.

We first reduce to the case that G1 is a subgroup of SLnpRq. In
the linear case we simply identify G2 with its isomorphic image πpG2q,
where π : ASLnpRq Ñ SLnpRq is the projection in (3.3), and thus we
can assume G1 Ă SLnpRq. In the affine case, since the property of being
generated by unipotents is invariant under conjugations in ASLnpRq,
we may conjugate by a translation to assume that one of the vectors
in ~xe is the zero vector, so that G1 Ă SLnpRq. Thus, in both cases we
may assume that G2 “ H1 is the group of real points of ResK{QpGq,
and G1 is the stabilizer in G2 of the finite collection x1, . . . , xp, where
these are vectors in the standard representation on Rn.

Suppose first that G “ SLk. Then, in the notation of (2.5), we
have that G2 “ Gσ1

R ˆ ¨ ¨ ¨ ˆG
σr`s
R , where for i “ 1, . . . , i (respectively,

for i “ r ` 1, . . . , r ` s) we have that Gσi
R is isomorphic to SLkpRq

(respectively to SLkpCq as a real algebraic group). Furthermore, as in
§2.4, there is a decomposition

Rn
“ V1 ‘ ¨ ¨ ¨ ‘ Vr`s,

where Vi – Rk (resp., Vi – R2k) for i “ 1, . . . , r (resp., for i “ r `
1, . . . , r ` s), and such that the action of G2 on Rn is the product
of the standard action of each Gσi

R on Vi. Let Pi : Rn Ñ Vi be the
projection with respect to this direct sum decomposition. Then the
stabilizer in G2 of x1, . . . , xp is the direct product of the stabilizer, in
Gσi

R , of Pipx1q, . . . , Pipxpq. So it suffices to show that each of these
stabilizers is generated by unipotents. In other words, we are reduced
to the well-known fact that for SLkpRq acting on Rk in the standard
action, and for SLkpCq acting on R2k » Ck in the standard action, the
stabilizer of a finite collection of vectors is generated by unipotents.

Now suppose that G “ Sp2k, and let F “ R or F “ C. Then by a
similar argument, we are reduced to the statement that for the standard
action of Sp2kpFq on F2k, the stabilizer of a finite collection of vectors
is generated by unipotents. This can be shown as follows. Let ω be
the symplectic form preserved by Sp2k, let V “ spanpx1, . . . , xpq Ă F2k,
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and let
Q

def
“ tg P Sp2kpFq : @v P V, gv “ vu.

We need to show that Q is generated by unipotents. We can write V “
V0 ‘ V1, where V0 “ ker pω|V q is Lagrangian, and V1 is symplectic. Let
2` “ dimV1, where ` ď k. Since any element of Q fixes V1 pointwise, it
leaves V K1 invariant, and it also fixes pointwise the subspace V0 Ă V K1 .
Thus, Q is isomorphic to

tg P SppV K1 q : @v P V0, gv “ vu Ă SppV K1 q – Sp2mpFq,

where m
def
“ k ´ `. This means we can reduce the problem to the case

in which V1 “ t0u, i.e., ωpxi, xjq “ 0 for all i, j. We can apply a
symplectic version of the Gram-Schmidt orthogonalization procedure
to assume that x1, y1, . . . , xp, yp, xp`1, yp`1, . . . , xm, ym is a symplectic
basis and V0 “ spanpx1, . . . , xpq. Let

V2
def
“ spanpxp`1, yp`1, . . . , xm, ymq and V3

def
“ V0 ‘ V2.

Then V2 is symplectic and the subgroup of Q leaving V2 invariant is
isomorphic to Sp2m´2ppFq, hence generated by unipotents. Also, for
i “ 1, . . . , p, by considering the identity

ωpgyi, xjq “ ωpgyi, gxjq “ ωpyi, xjq pj “ 1, . . . , pq

one sees that any g P Q must map the yi to vectors in yi ` V3. This
implies that Q is generated by symplectic matrices leaving V2 invariant,
and transvections mapping yi to elements of yi ` V3. In particular, Q
is generated by unipotents. �

Definition 7.3. Given a real algebraic group J Ă ASLnpRq, we will
say that a locally finite measure τ on Rdp is J-c&p-algebraic if there
is a J-algebraic measure τ̄ on Rnp such that for every f P CcpRdpq we
have

ż

Rdp
f dτ “

ż

Rnp
F dτ̄ ,

where F : Rnp Ñ R is defined by

F px1, . . . , xpq
def
“

"

f pπphyspx1q, . . . , πphyspxpqq @i, πintpxiq P W
0 otherwise .

(7.10)
We will say τ is c&p algebraic if it is J-c&p algebraic for some J .

It is easy to check that for p “ 1, the measure τ in Definition 7.3
is the pushforward under πphys of the restriction of τ̄ to π´1

int pW q. For
general p, define projections

pπphys : Rnp
Ñ Rdp, pπphyspx1, . . . , xpq

def
“ pπphyspx1q, . . . , πphyspxpqq ,
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and
pπint : Rnp

Ñ Rmp, pπintpx1, . . . , xpq
def
“ pπintpx1q, . . . , πintpxpqq .

Then the measures τ, τ̄ satisfy

τ “ pπphys˚ pτ̄ |Sq , where S def
“

pπ´1
int

¨

˝W ˆ ¨ ¨ ¨ ˆW
looooooomooooooon

p copies

˛

‚. (7.11)

Proof of Theorem 1.3. By Theorem 4.1, after a rescaling of Rd, there
is a homogeneous measure µ̄ on Yn such that µ “ Ψ˚µ̄. Suppose h P H
satisfies that πphys|hL1 is injective, and in the linear case, assume also
that hL1 X Vint Ă t0u. Since µ is an RMS measure, and in the linear
case, arguing as in the proof of Theorem 1.2 using Lemma 4.2, we see

that this holds for a.e. h P H. For such h, letting Λh
def
“ ΨphL1q, we can

rewrite the function pfp defined in (1.7) more succinctly in the form

pfp pΛhq “
ÿ

px1,...,xpqPLp1

F phx1, . . . , hxpq,

where F is as in (7.10). Thus, Theorem 1.3 is reduced to Theorem
7.1. �

Remark 7.4. The assignment e ÞÑ τ̄e implicit in the proof of Theorem
1.3 is not injective, nor is it finite-to-one. To see this, take p “ 1 and
consider the RMS measure corresponding to the Haar-Siegel measure
on Xn. Then H1 “ SLnpRq, ΓH1 “ SLnpZq, and there are countably
many ΓH1-orbits on Zn, where two integer vectors belong to the same
orbit if and only if the greatest common divisor of their coefficients is
the same. On the other hand, as the proof of formula (1.4) shows, there
are two c&p-algebraic measures, namely Lebesgue measure on Rd and
the Dirac measure at 0. The Dirac measure is associated with the orbit
of 0 P Zn, and all the other orbits of nonzero vectors in Zn give rise to
multiples of Lebesgue measure on Rd.

Nevertheless, we will continue using the symbol E for both the col-
lection of ΓH1-orbits in Znp, and for the indexing set for the countable
collection of measure arising in Theorem 1.3. This should cause at
most mild confusion.

8. The Rogers inequality on moments

In this section we will prove Theorem 1.4. We will need more in-
formation about the measures τe appearing in Theorem 1.3, in case
p “ 2. We begin our discussion with some properties that are valid for
all p ď d. Some of the results of §8.1 will be given in a greater level of
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generality than required for our counting results. They are likely to be
of use in understanding higher moments for RMS measures.

8.1. Normalizing the measures. For any k, denote the normalized
Lebesgue measure on Rk by volpkq. Some of the c&p-algebraic mea-
sures τ on Rdp which arise in Theorem 1.3 are the globally supported
Lebesgue measures on Rdp, i.e., multiples of volpdpq. Indeed, such a
measure arises if in Definition 7.3 we take τ̄ equal to a multiple of
Lebesgue measure on Rnp. These measures give a main term in the
counting problem we will consider in §10. We write τ19 τ2 if τ1, τ2 are
proportional, recall the measures tτeu defined in the proofs of Theorems
1.3 and 7.1, and set

Emain def
“

!

e P E : τe9 volpdpq
)

, τmain
def
“

ÿ

ePEmain

τe.

We define constants cµ,p by the condition

τmain “ cµ,p volpdpq.

The next result identifies the normalizing constants cµ,p. Recall from
Theorem 4.1 that an RMS measure µ is of the form µ “ ρc˚µ̄ where
µ̄ is a homogeneous measure on Yn, c is the constant of (4.1), and µ-
a.e. Λ is of the form Λ “ ΛpL,W q for a grid L with covolpLq “ cn. We
denote this almost-sure value of covolpLq by covolpµq. Recall also that
the function Λ ÞÑ DpΛq defined in (1.10) is measurable and invariant,
and hence is a.e. constant, and denote its almost-sure value by Dpµq.

Proposition 8.1. For any RMS measure µ “ ρc˚Ψ˚µ̄ satisfying (1.8)
(i.e., G “ SLk or µ is affine), we have

cµ,1 “ Dpµq “
volpmqpW q

covolpµq
, (8.1)

and for p P N satisfying p ă qµ and p ď d we have

cµ,p “ cpµ,1. (8.2)

Note that the normalizing constant cµ,1 discussed here is the same
as the constant denoted by c1 in (7.2) and by c in (1.4).

With the identification R`p – M`,ppRq in mind, we say that a sub-
space V Ă R`p is an annihilator subspace if it is the common annihilator
of a collection of vectors in Rp; that is, there is a collection Ann Ă Rp

such that

V “ ZpAnnq

def
“

!

pv1, . . . , vpq P R`p : @i, vi P R` & @pa1, . . . , apq P Ann,
ÿ

aivi “ 0
)

.
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Note that the meaning of ZpAnnq depends on the choice of the ambient
space R` containing the vectors vi; when confusion may arise we will
specify the ambient space explicitly.

Suppose ` P N and pv1, . . . , vpq is a p-tuple in R`p. In the linear case,
let

Annpv1, . . . , vpq
def
“ tpa1, . . . , apq P Rp :

ÿ

aivi “ 0u,

and in the affine case, let

Annpv1, . . . , vpq
def
“ tpa1, . . . , ap´1q P Rp´1 :

ÿ

aipvi ´ vpq “ 0u.

Let

Lpv1, . . . , vpq
def
“ ZpAnnpv1, . . . , vpqq,

an annihilator subspace in R`p, say that v1, . . . , vp are independent if
Annpv1, . . . , vpq “ t0u, and let

rankpv1, . . . , vpq
def
“

"

p´ dim Annpv1, . . . , vpq µ is linear
p´ 1´ dim Annpv1, . . . , vpq µ is affine.

Note that in the linear case, this is the usual relation between the
rank of a matrix and the dimension of its kernel. The dimension of
Lpv1, . . . , vpq is equal to ` rankpv1, . . . , vpq.

We recall some notation from §2.4 and from Step 3 of the proof of
Lemma 3.2. Let K be a real number field of degree D “ r ` 2s, with
σ1, . . . , σr being distinct real embeddings, and σr`1, . . . , σs denoting
representatives of conjugate pairs of non-real embeddings. Let G be
isomorphic to either SLkpRq or to Sp2kpRq, and let H “ ResK{QpGq.
Let V be a K-vector space of dimension t, where t is as in (6.12), and
denote Vj “ V

σj
R , that is, Vj – Rt if j “ 1, . . . , r and Vj – Ct – R2t if

j “ r` 1, . . . , s. These vector spaces are chosen so that V is equipped
with the standard action of G, and taking into account the isomorphism

Rn
–
`

ResK{QpVq
˘

R “ V1 ‘ ¨ ¨ ¨ ‘ Vr`s. (8.3)

Let πσj : Rn Ñ Vj be the corresponding projections. In the notation
(2.5), let πj : HR Ñ G

σj
R , so that the action of HR factors through the

action of each G
σj
R on Vj. We can assume without loss of generality

(see §2.1) that V2 ‘ ¨ ¨ ¨ ‘ Vr`s Ă Vint and πphys “ πphys ˝ π
σ1 .

Lemma 8.2. Suppose µ is an RMS measure of higher rank, and let
G be the group appearing in Theorem 1.1. Let p ă qµ, let ~xe “

px1, . . . , xpq P e, where e P E is as defined before (7.7), and let vi
def
“ πσ1pxiq,

i “ 1, . . . , p. Assume that

rankpv1, . . . , vpq ď

"

d if G “ SLk
1 if G “ Sp2k.
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Let τ̄
def
“ τ̄e be the algebraic measure on Rnp as in (7.9) and let τ be

a c&p-algebraic measure obtained from τ̄ as in Definition 7.3. Then
τ is (up to proportionality) the Lebesgue measure on some annihilator
subspace of Rdp. This subspace is equal to Rdp if and only if v1, . . . , vp
are independent.

Proof. Let τ̄ be as in Definition 7.3. As in the proof of Theorem 7.1), we
have that Hpx1, . . . , xpq is a dense subset of full measure in supp τ̄ . We
will split the proof according to the various cases arising in Theorem
3.1.

Case 1: µ is linear, G “ SLk . In this case, our proof will also show
that supp τ̄ is a sum of annihilator subspaces, one in each Vj; in fact,
we first establish this statement.

The action of H on Rn factors into a product of actions of each G
σj
R

on Vj. That is, H acts on vji
def
“ πσjpxiq, i “ 1, . . . , p via its mapping to

G
σj
R , i.e., via the standard action of SLkpRq or SLkpCq on Rk or Ck. It

follows from (1.5) and (1.6) that p ă qµ “ k. Therefore for each j, the

rank Rj of
 

vji : i “ 1, . . . , p
(

is less than k. For the standard action,

G
σj
R is transitive on linearly independent Rj-tuples. From this, by

choosing a linearly independent subset Bj Ă tv
j
1, . . . , v

j
pu of cardinality

Rj and expressing any vji R Bj as a linear combination of elements of
Bj, one sees that if pu1, . . . , upq, pw1, . . . , wpq are two p-tuples in Vj

there is h P G
σj
R such that hpw1, . . . , wpq “ pu1, . . . , upq

ðñ Annpw1, . . . , wpq “ Annpu1, . . . , upq.
(8.4)

This implies that G
σj
R pv

j
1, . . . , v

j
pq is open and dense in Lpvj1, . . . , v

j
pq, and

hence Hpx1, . . . , xpq is open and dense in Lr`s1
def
“

Àr`s
j“1 Lpv

j
1, . . . , v

j
pq.

We have shown that supp τ̄ “ Lr`s1 and that τ̄ is a multiple of the
Lebesgue measure on Lr`s1 .

Since πphys “ πphys ˝ π
σ1 , we have

pπphys

`

Lr`s1

˘

“
pπphys pLpv1, . . . , vpqq .

To simplify notation, write H1 def
“ Gσ1

R – SLkpRq, and vi
def
“ v1

i P V1. Let

Ann1
def
“ Ann pv1, . . . , vpq .

We have
pπphyspLpv1, . . . , vpqq “ ZpAnn1q, (8.5)

seen as an annihilator subspace of Rdp. Indeed, the inclusion Ă follows
from linearity of πphys. For the opposite inclusion, recall that we have
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an inclusion Vphys ãÑ V1, and this induces an inclusion ι : Rdp ãÑ Rnp.
We clearly have

ι pZ pAnn1qq Ă Lpv1, . . . , vpq,

which implies the inclusion Ą in (8.5).
Replacing xi with elements of xi`Vphys does not change the condition

px1, . . . , xpq P S, where S is as in (7.11). This shows that

supp τ “ pπphys

`

Lr`s1

˘

“
pπphys pLpv1, . . . , vpqq

is an annihilator subspace, and τ is a multiple of Lebesgue measure on
this subspace. Moreover, the subspace is proper if and only if Ann1 ‰

t0u, or equivalently, v1, . . . , vp are dependent.

Case 2: µ is linear, G “ Sp2k, d “ 2. The action of H splits as a
Cartesian product of actions of the groups G

σj
R on the spaces Vj, for

j “ 1, . . . , r ` s. As in Case 1, we will pay attention to the action

on the first summand V1, where H acts via H1 def
“ Gσ1

R – Sp2kpRq.
We denote by ω the symplectic form on V1 preserved by H1. Let

L
def
“ Hpx1, . . . , xpq “ supp τ̄ , where τ̄ is the unique (up to scaling) H-

invariant measure with support L, and let L1 def
“ L X V1 “ πσ1pLq “

H1 pv1, . . . , vpq, where vi
def
“ πσ1pxiq, i “ 1, . . . , p.

Let F – SL2pRq be as in (3.1). Then F Ă H1, and hence τ is
F -invariant. Write

V 1
int

def
“ Vint X V1 “ V Kphys,

and abusing notation slightly, let πphys, πint denote the restrictions of
these mappings to V1, so they are the projections associated with the

direct sum decomposition V1 “ Vphys‘V
1

int. Define R
def
“ rankpv1, . . . , vpq,

and define R1 as the maximal rank of tπphysphv1q, . . . , πphysphvpqu, as h
ranges over elements of H1. Thus, 0 ď R1 ď R ď 1.

If R1 “ 0 this means that πphysphviq “ 0 for all h P H and all i,
and then τ is the Dirac measure at 0, and there is nothing to prove.
Now suppose R1 “ R “ 1. Since R “ 1, there is some vi such that
πphyspviq ‰ 0, and there are coefficients aj, j ‰ i so that vj “ ajvi.
This implies that for all h, πphysphvjq “ ajπphysphviq, that is,

supp τ Ă pπphyspLq Ă L1
def
“ tpu1, . . . , upq P R2p : @j ‰ i, uj “ ajuiu.

Moreover, since F acts transitively on nonzero vectors in Vphys, and τ is
F -invariant, we actually have equality and τ is a multiple of Lebesgue
measure on the annihilator subspace L1, and L1 is a proper subspace of
R2p, unless p “ 1.

Case 3: µ is affine. The affine case can be reduced to the linear
case. Note that the definition of the annihilator Annpv1, . . . , vpq in the
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affine case is such that it does not change under the diagonal action
of the group of translations, and that the group of translations in H
is the full group Rn, so that x1, . . . , xp can be moved so that xp “ 0.
Moreover, by Proposition 5.3, we can assume that 0 P W . We leave
the details to the diligent reader. �

Let

Erest def
“ Er Emain, τrest

def
“

ÿ

ePErest

τe. (8.6)

The preceding discussion gives a description of the measures τe with
e P Erest.

Corollary 8.3. Under the conditions of Lemma 8.2, any measure
τe, e P E

rest, is Lebesgue measure on a proper subspace of Rdp.

Proof of Proposition 8.1. Let Br denote the Euclidean ball of radius r
around the origin in Rd, let 1Br be its indicator function, and let y1Br
be the function obtained from the summation formula (1.3), so that

DpΛq “ lim
rÑ8

y1BrpΛq

volpdqpBrq
.

Applying (1.4) we get that for any r ą 0,

ż

C pRdq

y1Br

volpdqpBrq
dµ “

cµ,1

volpdqpBrq

ż

Rd
1Br dvol “ cµ,1. (8.7)

Suppose Λ “ ΛpL,W q. We claim that for r ě 1,

y1BrpΛq ! volpdqpBrqαpLq, (8.8)

where Λ “ ΛpL,W q and L “ πpLq, and where the implicit constant
depends on d, n and W . Indeed, we can replace W with a larger convex
set containing it, so that y1BrpΛq is bounded from above by # pK XLq,
where K

def
“ Br ˆW . It is known (see [GL87, Chap. 2 §9.4] or [Wid12,

Prop. 2.9]) that for any dimension n, for any bounded convex set K 1

and any lattice L1 Ă Rn, if K 1 X L1 is not contained in a proper affine
subspace of Rn, then

# pK 1
X L1q ď n!

volpK 1q

covolpL1q
` n.

For any L we let x0 be a translation vector such that L` x0 “ L, set

V
def
“ spanpLXpK`x0qq, `

def
“ dimV, L1 def

“ LXV, K 1 def
“ V XpK`x0q,
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and apply this estimate in V – R` with ` ď n. For r ě 1 we have
volp`qpK 1q ! rd and covolpL1q " λ1pLq ¨ ¨ ¨λ`pLq. Thus

# pK X Lq “ # pK 1
X L1q ! `!

rd

λ1pLq ¨ ¨ ¨λ`pLq
` ` ! volpdqpBrqαpLq,

establishing (8.8) and proving the claim. Therefore, using Proposition
6.1 and the dominated convergence theorem, we are justified in taking
a limit r Ñ 8 inside the integral (8.7), finding that cµ,1 “ Dpµq.
Combining this with (1.10) gives (8.1). See [MS14, Proof of Thm. 1.5]
for a different proof of (8.1).

Now to prove (8.2), let Qr and Qp
r denote the unit cube of sidelength

r in Rd and Rdp respectively, let 1Qr and 1Qpr be the indicator functions,

and define p
y1Qpr via (1.7). Then we have

p
y1Qpr pΛq “ #

p
ą

pQr X Λq ;

that is, the number of p-tuples of elements of Λ in the p-fold Cartesian
product Qp

r. This implies that for µ-a.e. Λ,

lim
rÑ8

p
y1Qpr pΛq

rdp
“

ˆ

lim
rÑ8

# pQr X Λq

volpdqpQrq

˙p

“ DpΛqp “ cpµ,1. (8.9)

By Theorem 1.3 we have:

cµ,p “
1

rdp

ż

Rdp
1Qpr dτmain “

1

rdp

„
ż

Rdp
1Qpr dτ ´

ż

Rdp
1Qpr dτrest



“

ż p
y1Qpr pΛq

rdp
dµ´

1

rdp

ÿ

ePErest

ż

Rdp
1Qpr dτe.

(8.10)

Repeating the argument establishing (8.8), we find

p
y1QrpΛq !

´

volpdqpQrq

¯p

αpLqp,

and thus the integrable function αp dominates the integral in the second
line of (8.10), independently of r. Moreover, since they differ by a
constant, αp also dominates the series in the second line of (8.10).
Using (8.9), the first integral gives cpµ,1, and thus it remains to show
that

lim
rÑ8

1

rdp

ż

Rdp
1Qpr dτe “ 0, for every e P Erest. (8.11)

From (1.8) and Corollary 8.3 we have that τe is (up to proportionality)
equal to Lebesgue measure on a subspace V 1 Ă Rdp, and we have
V 1 ‰ Rdp since e P Erest. This implies (8.11). �
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Remark 8.4. One can also work in Rnp rather than Rdp, and de-
fine analogous normalization constants c̄µ̄,p by the formula τ̄main “

c̄µ̄,p volpnpq. Then one can show that c̄µ̄,p “ 1 for all p ă qµ. We will not
need the values of these constants and leave the proofs to the interested
reader.

8.2. More details for p “ 2. We will need to describe the measure
τrest in the case p “ 2.

Proposition 8.5. Let µ be an RMS measure so that (1.8) holds. Let
p “ 2, and let Erest, τrest be as in (8.6). Then there is a partition
Erest “ Erest

1 \ Erest
2 , and constants tae : e P Erest

2 u, tbe : e P Erest
1 u, tce :

e P Erestu, such that the following hold.

(1) For all f P CcpR2dq, we have
ż

R2d

f dτrest “
ÿ

ePErest
1

ce

ż

Rd
fpx, bexq dvolpdqpxq `

ÿ

ePErest
2

ce

ż

Rd
fpaex, xq dvolpdqpxq.

(8.12)
(2) ce ą 0 for all e P Erest and

ř

ePErest ce ă 8.
(3) |ae| ď 1 for all e P Erest

2 and |be| ď 1 for all e P Erest
1 .

Proof. Lemma 8.2 is applicable in view of (1.8); indeed, when G “ SLk,
we have p “ 2 ď d, and when G “ Sp2k and µ is affine, we have
rankpv1, v2q ď 1. Therefore, for each e P Erest, there is an annihilator
subspace Ve Ł Rdp such that τe is proportional to Lebesgue measure
on Ve. Repeating the argument of §7.1 we can see that τe is not the
Dirac mass at the origin. In other words Ve has positive dimension.
Since p “ 2, this means we can find α, β, not both zero, such that
Ve “ Zpα, βq. We can rescale so that maxp|α|, |β|q “ maxpα, βq “ 1
and we define

Erest
1

def
“ te P Erest : β “ 1u, Erest

2
def
“ Erest r Erest

1 .

Then if we set be “ ´α for e P Erest
1 and ae “ ´β for e P Erest

2 , then the
bounds in (3) hold and we have

Ve “

"

tpx, bexq : x P Rdu for e P Erest
1

tpaex, xq : x P Rdu for e P Erest
2 .

We now define ce by the formula

@f P CcpR2d
q,

ż

R2d

f dτe “

"

ce
ş

Rd fpaex, xq dvolpdqpxq for e P Erest
1

ce
ş

Rd fpx, bexq dvolpdqpxq for e P Erest
2 .

Then clearly (8.12) holds, and ce ą 0 for all e P Erest.
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It remains to show
ř

ce ă 8. Let 1B be the indicator of a ball in
R2d centered at the origin. Then there is a positive number λ which
bounds from below all the numbers
"
ż

Rd
1Bpax, xq dvolpdqpxq : |a| ď 1

*

ď

"
ż

Rd
1Bpx, bxq dvolpdqpxq : |b| ď 1

*

.

Since τrest is a locally finite measure, we have
ş

R2d 1B dτrest ă 8. But
(8.12) implies that λ

ř

ePErest ce ď
ş

R2d 1B dτrest. Therefore
ř

ePErest ce ă
8. �

Proof of Theorem 1.4. Given f : Rd Ñ r0, 1s as in Theorem 1.4, define

ϕ : R2d
Ñ r0, 1s by ϕpx, yq

def
“ fpxqfpyq.

Clearly
´

ş

Rd f dvolpdq
¯2

“
ş

R2d ϕdvolp2dq, and it follows easily from (1.3)

and (1.7) that
2
pϕpΛq “ f̂pΛq2. (8.13)

Using (8.13), Theorem 1.3 with p “ 2, (1.4), and (8.2) we have that
ż

C pRdq

ˇ

ˇ

ˇ

ˇ

f̂pΛq ´

ż

C pRdq
f̂ dµ

ˇ

ˇ

ˇ

ˇ

2

dµpΛq

“

ż

C pRdq
f̂ 2 dµ´

„
ż

C pRdq
f̂pΛq dµ

2

“

ż

R2d

ϕdτ ´

„

cµ,1

ż

Rd
f dvolpdq

2

“cµ,2

ż

R2d

ϕdvolp2dq `

ż

R2d

ϕdτrest ´ c
2
µ,1

„
ż

Rd
f dvolpdq

2

“

ż

R2d

ϕdτrest.

It remains to show that
ż

R2d

ϕdτrest !

ż

Rd
f dvolpdq, (8.14)

where the implicit constant is allowed to depend on µ. And indeed, by
Proposition 8.5, we have

ż

R2d

ϕdτrest

(8.12)
“

ÿ

ePErest
1

ce

ż

Rd
fpaexqfpxq dvolpxq `

ÿ

ePErest
2

ce

ż

Rd
fpxqfpbexq dvolpxq

fď1
ď

ÿ

ePErest
1

ce

ż

Rd
fpxq dvolpxq `

ÿ

ePErest
2

ce

ż

Rd
fpxq dvolpxq

“

˜

ÿ

ePErest

ce

¸

ż

Rd
f dvolpdq.
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�

9. From bounds on correlations to a.e. effective
counting

In this section we present two results which we will use for counting.
The first is due to Schmidt [Sch60] but we recast it in a slightly more
general form (see also [KS19, Thm. 2.9]). To simplify notation, for

measurable S Ă Rn, we will write VS
def
“ volpnqpSq.

Theorem 9.1. Let n P N and let µ be a probability measure on C pRnq.
Let κ P r1, 2q, let Φ “ tBα : α P R`u be an unbounded ordered family
of Borel subsets of Rn, and let ψ : R` Ñ R`. Suppose the following
hypotheses are satisfied:

(a) The measure µ is supported on discrete sets, and for each f P
L1pRn, volq, a Siegel-Veech transform as in (1.3) satisfies that
pf P L2pµq. Furthermore, there are positive a, b such that for any
function f : Rn Ñ r0, 1s, f P L1pRn, volq, we have

ż

pf dµ “ a

ż

Rn
f dvol (9.1)

and

Varµp pfq
def
“

ż

ˇ

ˇ

ˇ

ˇ

pf ´

ż

pf dµ

ˇ

ˇ

ˇ

ˇ

2

dµ ď b

ˆ
ż

Rn
f dvol

˙κ

. (9.2)

(b) The function ψ is non-decreasing, and satisfies
ş8

0
1

ψpxq
dx ă 8.

Then for µ-a.e. Λ, for every S P Φ

# pS X Λq “ aVS `O
´

V
κ
2
S logpVSqψplog VSq

1
2

¯

as VS Ñ 8. (9.3)

Note that we allow defining pf as in either one of the linear or affine
cases of (1.3), as long as the conditions in (a) are satisfied. For def-

initeness we will use the affine case, namely pf “
ř

vPΛ fpvq, so that
x1SpΛq “ |S X Λ| for any subset S Ă Rn with indicator function 1S. In

the linear case we may have x1SpΛq “ |S X Λ| ´ 1 or x1SpΛq “ |S X Λ|
(depending on whether or not S contains 0), and the reader will have
no difficulty adjusting the proof in this case.

Proof of Theorem 1.5 assuming Theorem 9.1. Taking κ “ 1 and ψptq “
t1`ε, (9.3) becomes

# pS X Λq “ aVS `O
´

V
1
2
S plog VSq

3
2
`ε
¯

as VS Ñ 8,



66 RENÉ RÜHR, YOTAM SMILANSKY, AND BARAK WEISS

which implies (1.11). The hypotheses of Theorem 9.1 hold in the higher
rank case by (1.4) and Theorem 1.4. �

Before giving the proof of Theorem 9.1 we will state the following
more general result.

Theorem 9.2. Let d,m, n P N with n “ d `m, let µ be a probability
measure on C pRnq, let λ P r0, 1q, κ P r1, 2q, let ψ : R` Ñ R`, let
Φ “ tBα : α P R`u be an unbounded ordered family of Borel subsets of
Rd, and let tWα : α P R`u be a collection of subsets of Rm. Suppose
that (a) and (b) of Theorem 9.1 are satisfied, and in addition:

(c) For any N P N there is α such that volpdqpBαq “ N .

(d) Each Wα can be partitioned as a disjoint union Wα “
ŮLα
`“1Cαp`q,

where Lα —
´

volpdq pBαq

¯λ

, and where wα
def
“ volpmqpCαp`qq is the

same for ` “ 1, . . . , Lα, and is of order —
´

volpdqpBαq

¯´λ

.

Denote Φ̄
def
“ tBαˆWα : α P R`u and for S P Φ̄, denote VS

def
“ volpnqpSq.

Then for µ-a.e. Λ, for every S P Φ̄

# pS X Λq “ aVS `O

ˆ

V
κp1´λq

2
`λ

S logpVSqψplog VSq
1
2

˙

, as VS Ñ 8.

(9.4)

Note that for κ “ 1 and ψptq “ t1`ε, (9.4) becomes

# pS X Λq “ aVS `O
´

V
1`λ

2
S log VS

3
2
`ε
¯

. (9.5)

Theorems 9.1 and 9.2 both follow from ideas developed by Schmidt
in [Sch60]. We begin with Theorem 9.1, for which we need the following
Lemmas.

By the definition of an unbounded ordered family, we can assume
that for each V ą 0 there is Ω P Φ such that volpΩq “ V . For each

N P N, let SN P Φ with volpSNq “ N and let ρN
def
“ 1SN denote its

indicator function. Given two integers N1 ă N2, let

N1ρN2

def
“ ρN2 ´ ρN1 .

Since the SN are nested, we have N1ρN2 “ 1SN2
rSN1

.

Lemma 9.3 (cf. [Sch60], Lemma 2). Let T P N and let KT be the set
of all pairs of integers N1, N2 satisfying 0 ď N1 ă N2 ď 2T , N1 “ u2t,
N2 “ pu` 1q2t, for integers u and t ě 0. Then there exists c ą 0 such
that

ÿ

pN1,N2qPKT

Varµp{N1ρN2q ď cpT ` 1q2κT . (9.6)
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Proof. Indeed, (9.2) yields Varµp{N1ρN2q ď bpN2 ´ N1q
κ. Each value of

N2 ´N1 “ 2t for 0 ď t ď T occurs 2T´t times, hence
ÿ

pN1,N2qPKT

pN2 ´N1q
κ
“

ÿ

0ďtďT

2T`pκ´1qt
ď pT ` 1q2κT .

�

Lemma 9.4 (cf. [Sch60], Lemma 3). For all T P N there exists a
subset BadT Ă suppµ of measure

µpBadT q ď cψpT log 2´ 1q´1 (9.7)

such that

pxρNpΛq ´ aNq
2
ď T pT ` 1q2κTψpT log 2´ 1q (9.8)

for every N ď 2T and all Λ P suppµr BadT .

Proof. Let BadT be the set of Λ P suppµ for which it is not true that
ÿ

pN1,N2qPKT

p{N1ρN2pΛq ´ apN2 ´N1qq
2
ď pT`1q2κTψpT log 2´1q. (9.9)

Then the bound (9.7) follows from Lemma 9.3 by Markov’s inequal-
ity. Assume N ď 2T and Λ P suppµ r BadT . The interval r0, Nq
can be expressed as a union of intervals of the type rN1, N2q, where

pN1, N2q P IN Ă KT and |IN | ď T . Therefore, {ρNpΛq ´ aN “
ř

p{N1ρN2pΛq ´ apN2 ´N1qq, where the sum is over pN1, N2q P IN . Ap-
plying the Cauchy-Schwarz inequality to the square of this sum together
with the bound from (9.9) we obtain (9.8). �

Proof of Theorem 9.1. Let BadT be the sets from Lemma 9.4. Since
ψ´1 is integrable and monotone, we find by Borel-Cantelli and (9.7)
that for µ-a.e. Λ there is TΛ such that for any T ě TΛ, Λ R BadT .
Assume now N ě NΛ “ 2TΛ and let T be the unique integer for which
2T´1 ď N ă 2T . By Lemma 9.4,

pxρNpΛq´aNq
2
ď T pT`1q2κTψpT log 2´1q “ O

`

Nκ
plogNq2ψplogNq

˘

.
(9.10)

Given arbitrary S P Φ, let N be such that N ď VS ă N ` 1, and let
SN , SN`1 P Φ with SN Ă S Ă SN`1 and volpSNq “ N, volpSN`1q “

N ` 1. Then

# pSN X Λq ´ apN ` 1q ď # pS X Λq ´ aVS ď # pSN`1 X Λq ´ aN.
(9.11)

From (9.10), the LHS of (9.11) is O
´

N
κ
2 logN ψplogNq

1
2

¯

and the

RHS is O
´

pN ` 1q
κ
2 log pN ` 1qψplogN ` 1q

1
2

¯

, and these quantities
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are of the same order O
´

V
κ
2
S logpVSqψplog VSq

1
2

¯

. A similar upper

bound for aVS ´# pS X Λq is proved analogously. �

We turn to the proof of Theorem 9.2. Note that the collection Φ̄ is
not ordered; nevertheless one can apply similar arguments to each `
separately, before applying Borel-Cantelli. We turn to the details.

Proof of Theorem 9.2. GivenN , using assumption (c), for eachN there

is α “ αpNq so that volpdq pBαq “ N . It follows that volpnqpBα ˆ

Wαq “ NLαwα — N . We let ρ`N be the characteristic function of
Bα ˆ Cαp`q, which is of volume Nwα — N1´λ. We will take N1ρ

`
N2

to be the characteristic function of
`

BαpN1qzBαpN2q

˘

ˆ CαpNqp`q. Note

that the dependence of the function N1ρ
`
N2

on N is suppressed from the
notation.

The argument proving Lemma 9.3 therefore yields (9.6), with κ re-

placed by κ1
def
“ κp1´ λq, i.e.,
ÿ

`

ÿ

pN1,N2qPKT

Varµp
{

N1ρ
`
N2
q ď cLαpT ` 1q2κ

1T . (9.12)

For S “ BαpNq ˆWαpNq, N ď 2T , by the definition of {N1ρ
`
N2
pΛq and

the Cauchy-Schwarz inequality, we have

p# pS X Λq ´ aVSq
2
“

˜

ÿ

`

# ppBα ˆ Cαp`qq X Λq ´ avolpnqpBα ˆ Cαp`qq

¸2

“

˜

ÿ

`

´

xρ`NpΛq ´ aNwα

¯

¸2

“

¨

˝

ÿ

`

ÿ

pN1,N2qPIN

´

{

N1ρ
`
N2
pΛq ´ apN2 ´N1qwα

¯

˛

‚

2

ďT Lα
ÿ

`

ÿ

pN1,N2qPKT

´

{

N1ρ
`
N2
pΛq ´ apN2 ´N1qwα

¯2

.

As in the proof of Lemma 9.4, we denote by BadT the points Λ not
satisfying the bound
ÿ

`

ÿ

pN1,N2qPKT

´

{

N1ρ
`
N2
pΛq ´ apN2 ´N1qwα

¯2

ď LαpT`1q2κ
1TψpT log 2´1q.

Then applying (9.12) we get µpBadT q ď c1ψpT log 2´ 1q´1, so that by
Borel-Cantelli, a.e. Λ belongs to at most finitely many sets BadT . Also
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for Λ R BadT , we have

|# pS X Λq ´ aVS|
2
ď L2

αT pT ` 1q2κ
1TψpT log 2´ 1q,

which replaces (9.8), and we proceed as before. �

10. Counting patches à la Schmidt

In this section we prove Theorem 1.6. We recall some notation and
terminology from the introduction and the statement of the theorem.
For a cut-and-project set Λ Ă Rd, x P Rd and R ą 0, PΛ,Rpxq “
Bp0, Rq X pΛ´ xq is called the R-patch of Λ at x, and

DpΛ,P0q “ lim
TÑ8

#tx P ΛXBp0, T q : PΛ,Rpxq “ P0u

volpBp0, T qq

is called the frequency of P0. Suppose Λ arises from a cut-and-project
construction with associated dimensions n “ d`m and window W Ă

Rm, and is chosen according to an RMS measure µ of higher rank. The
upper box dimension of the window in the cut-and-project construction
is

dimBpW q
def
“ lim sup

rÑ0

logNpW, rq

´ log r
, (10.1)

where NpW, rq is the minimal number of balls of radius r needed to
cover W . Set

λ0
def
“

m

m` 2δ
(10.2)

where δ “ m ´ dimBpBW q ą 0. Our goal is to show that for any
λ P pλ0, 1q, any unbounded ordered family tBα : α P Ru, for µ-a.e. Λ,
for any patch P0 “ PΛ,Rpx0q,

# tx P Bα X Λ : PΛ,Rpxq “ P0u

“DpΛ,P0q volpBαq `O
´

volpBαq
1`λ

2

¯

as volpBαq Ñ 8,
(10.3)

where the implicit constant depends on ε,W,Λ,P0. Note that (10.3)
implies (1.13).

The strategy we will use is similar to that of [HKW14, Proof of Cor.
4.1].

Proof of Theorem 1.6. For every K P N and ` P Zm define the box

QKp`q “

„

`1

K
,
`1 ` 1

K

˙

ˆ ¨ ¨ ¨ ˆ

„

`m
K
,
`m ` 1

K

˙

.

It is well-known (see e.g. [Mat95, Chap. 5]) that in (10.1), we are free
to replace NpW, rq with the minimal number of cubes QKp`q needed
to cover W , where K “

X

1
r

\

. We consider cut-and-project sets of the
form Λ “ ΛpW,Lq, with L P Yn. Here W Ă Rm is fixed and satisfies
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dimBpW q ă m, and Λ is chosen at random, according to a homogeneous
measure µ̄ on Yn. Let ∆ be an R-patch equivalence class in Λ, that is

∆ “ tx P Λ : PΛ,Rpxq “ P0u

for some R ą 0 and some P0 “ PΛ,Rpx0q. By a well-known observation
(see [BG13, Cor. 7.3]), ∆ is itself a cut-and-project set, and in fact
arises from the same lattice via a smaller window, i.e., there is W∆ Ă W
such that

∆ “ ΛpW∆,Lq.
In particular, for irreducible cut-and-project sets (which is a property
satisfied by µ̄-a.e. L), we have

DpΛ,P0q “ Dp∆q “
volpW∆q

volpW q
DpΛq. (10.4)

In addition, it is shown in [KW21, §2] that W∆ is the intersection of
finitely many translations of W and its complement. Since

BW∆ Ă F ` BW,

for some finite F Ă Rm, we deduce that the upper box dimension of
BW∆ is bounded from above by that of BW .

Let λ P pλ0, 1q, and let η ą 0 be small enough so that

max

ˆ

1` λ0

2
` η, 1´

λ0pδ ´ ηq

m

˙

ă
1` λ

2
. (10.5)

Such η exists in light of (10.2). Given α, we let Kα P N so that
volpBαq

λ0 — Km
α . Define

Ap1qα
def
“

ď

QKα p`qĂW∆

QKαp`q, Ap2qα
def
“

ď

QKα p`qXW∆‰H

QKαp`q,

and let L P supp µ̄ satisfy (D) and (I). Since A
p1q
α Ă W∆ Ă A

p2q
α , the

associated cut-and-project sets

Λpiqα
def
“ Λ

`

Apiqα ,L
˘

pi “ 1, 2q

satisfy that for all α,

#
`

Λp1qα XBα

˘

ď # p∆XBαq ď #
`

Λp2qα XBα

˘

and

D
`

Λp1qα
˘

ď D p∆q ď D
`

Λp2qα
˘

.

Moreover, by (10.4),

D
`

Λp2qα
˘

´D
`

Λp1qα
˘

“
DpΛq

volpW q

`

vol
`

Ap2qα
˘

´ vol
`

Ap1qα
˘˘

. (10.6)
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Using the triangle inequality we have
ˇ

ˇ# p∆XBαq ´Dp∆q volpBαq
ˇ

ˇ ď max
i“1,2

ˇ

ˇ#
`

Λpiqα XBα

˘

´Dp∆q volpBαq
ˇ

ˇ

ďmax
i“1,2

ˇ

ˇ#
`

Λpiqα XBα

˘

´D
`

Λpiqα
˘

vol pBαq
ˇ

ˇ`
`

D
`

Λp2qα
˘

´D
`

Λp1qα
˘˘

volpBαq.

(10.7)
We bound separately the two summands on the RHS of (10.7). For the

first summand we use the case (9.5) of Theorem 9.2, with Wα “ A
piq
α

and Cαp`q “ QKαp`q. Note that assumption (d) is satisfied by our
choice of Kα, with implicit constants depending on P0. We obtain, for

µ̄-a.e. L, that Λ
piq
α “ ΛpA

piq
α ,Lq satisfies

ˇ

ˇ#
`

Λpiqα XBα

˘

´D
`

Λpiqα
˘

vol pBαq
ˇ

ˇ ď c1

´

volpBαq
1`λ0

2 plogpvolpBαqqq
3
2
`ε
¯

,

where c1, as well as the constants appearing in the following inequali-

ties, depends only on Φ̄ “
!

Bα ˆ A
piq
α

)

and on L.

For the second summand, recall that dimBpBW∆q ď m ´ δ. This
implies that the number of ` P Zn with QKαp`q X BW∆ ‰ H is !
Km´δ`η
α . Therefore

vol
`

Ap2qα r Ap1qα
˘

“
ÿ

QKα p`qXBW∆‰∅

vol pQKαp`qq ! Km´δ`η
α K´m

α “ K´δ`η
α .

This implies via (10.6) that

`

D
`

Λp2qα
˘

´D
`

Λp1qα
˘˘

volpBαq “
DpΛq volpBαq

volpW q

`

vol
`

Ap2qα
˘

´ vol
`

Ap1qα
˘˘

!volpBαqK
´δ`η
α ! volpBαq

1´
λ0pδ´ηq

m .

Plugging these two estimates into (10.7), and using (10.5) and the fact

that plogpvolpBαqqq
3
2
`ε
ď volpBαq

η for large enough volpBαq, we have
that for µ̄ -a.e. L

ˇ

ˇ# p∆XBαq ´Dp∆q volpBαq
ˇ

ˇ ! volpBαq
1`λ

2 ,

with implicit constants depending on η, L and ε. This shows (10.3)
and completes the proof. �
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Sci. Publ. Math., (27):55–150, 1965.

[Cas97] J. W. S. Cassels. An introduction to the geometry of numbers. Classics
in Mathematics. Springer-Verlag, Berlin, 1997. Corrected reprint of the
1971 edition.

[Cha50] Claude Chabauty. Limite d’ensembles et géométrie des nombres. Bull.
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Birkhäuser/Springer, Basel, 1982.

[Wid12] Martin Widmer. Lipschitz class, narrow class, and counting lattice
points. Proc. Amer. Math. Soc., 140(2):677–689, 2012.

Weizmann Institute rene.ruhr@weizmann.ac.il

Rutgers University yotam.smilansky@rutgers.edu

Tel Aviv University barakw@tauex.tau.ac.il

https://arxiv.org/abs/1406.3807v1

	1. Introduction
	1.1. Classification of Ratner-Marklof-Strömbergsson measures
	1.2. Formulae of Siegel-Weil and Rogers
	1.3. Rogers-type bound on the second moment
	1.4. The Schmidt theorem for cut-and-project sets, and patch-counting
	1.5. Acknowledgements

	2. Basics
	2.1. Cut-and-project sets
	2.2. Chabauty-Fell topology
	2.3. Ratner's Theorems
	2.4. Number fields, geometric embeddings, and restriction of scalars

	3. Classification of invariant measures
	3.1. RMS measures — background and basic strategy
	3.2. The homogeneous measures arising from the F-action on Yn
	3.3. Preparations for the proof of Lemma 3.2
	3.4. Proof of Lemma 3.2

	4. An intrinsic description of the measures arising via *
	5. Some consequences of the classification
	6. Integrability of the Siegel-Veech transform
	6.1. Reduction theory for some arithmetic homogeneous spaces
	6.2. The integrability exponent of an auxiliary function on Xn
	6.3. An upper bound for the Siegel transform

	7. Integral formulas for the Siegel-Veech transform
	7.1. A derivation of a `Siegel summation formula'
	7.2. A formula following Siegel-Weil-Rogers 

	8. The Rogers inequality on moments
	8.1. Normalizing the measures
	8.2. More details for p=2

	9. From bounds on correlations to a.e. effective counting
	10. Counting patches à la Schmidt
	References

