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ABSTRACT. We define Ratner-Marklof-Strémbergsson measures (fol-
lowing [MS14]). These are probability measures supported on cut-
and-project sets in R? (d > 2) which are invariant and ergodic for
the action of the groups ASL4(R) or SL4(R). We classify the mea-
sures that can arise in terms of algebraic groups and homogeneous
dynamics. Using the classification, we prove analogues of results
of Siegel, Weil and Rogers about a Siegel summation formula and
identities and bounds involving higher moments. We deduce re-
sults about asymptotics, with error estimates, of point-counting
and patch-counting for typical cut-and-project sets.

1. INTRODUCTION

A cut-and-project set is a discrete subset of R? obtained by the fol-
lowing construction. Fix a direct sum decomposition R” = R @ R™,
where the two summands in this decomposition are denoted respec-
tively Vpnys, Vint, so that

R™ = Vihys @ Vint,
and the corresponding projections are
Tphys | R = Vohyss it © R — Vig.
Also fix a lattice £ ¢ R™ and a window W < Vi ; then the correspond-
ing cut-and-project set A = A(L, W) is given by
AL, W) E s (£ ATl (W) (1.1)

int

We sometimes allow £ to be a grid, i.e., the image of a lattice under
a translation in R™, and sometimes require A to be irreducible, a no-
tion we define in Cut-and-project sets are prototypical aperiodic
sets exhibiting long-term-order, and are sometimes referred to as model
sets or quasicrystals. Beginning with work of Meyer [Mey70] in connec-
tion to Pisot numbers, they have been intensively studied from various
points of view. See [BG13] and the references therein.
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Given a cut-and-project set, a natural operation is to take the clo-
sure (with respect to a natural topology) of its orbit under transla-
tions. This yields a dynamical system for the translation group and
has been studied by many authors under different names. In recent
years several investigators have become interested in the orbit-closures
under the group SL4(R) (respectively ASL4(R)), which is the group
of orientation- and volume-preserving linear (resp., affine) transforma-
tions of R, In particular, in the important paper [MS14], motivated by
problems in mathematical physics, Marklof and Strombergsson intro-
duced a class of natural probability measures on these orbit-closures.
The goal of this paper is to classify and analyze such measures, and
derive consequences for the statistics and large scale geometry of cut-
and-project sets.

1.1. Classification of Ratner-Marklof-Strombergsson measures.
We say that a cut-and-project set is irreducible if it arises from the
above construction, where the data satisfies the assumptions (D), (I)
and (Reg) given in §2.1] Informally speaking, (D) and (I) imply that
the set cannot be presented as a finite union of sets whose construc-
tion involves smaller groups in the cut-and-project construction, and
(Reg) is a regularity assumption on the window set . We denote by
% (RY) the space of closed subsets of R, equipped with the Chabauty-
Fell topology. This is a compact metric topology whose definition is
recalled in §2.2] and which is also referred to in the quasicrystals lit-
erature as the local rubber topology or the natural topology. Since the
groups ASLy(R) and SLg(R) act on R?, they also act on ¢ (R?). We
say that a Borel probability measure p on €' (R?) is a Ratner-Marklof-
Strombergsson measure, or RMS measure for short, if it is invariant
and ergodic under SL4(R) and gives full measure to the set of irre-
ducible cut-and-project sets. We call it affine if it is also invariant un-
der ASL4(R), and linear otherwise (i.e., if it is invariant under SLg4(R)
but not under ASL4(R)).

A construction of RMS measures was given in [MS14], as follows. Let
%, denote the space of grids of covolume one in R", equipped with the
Chabauty-Fell topology, or equivalently with the topology it inherits
from its identification with the homogeneous space ASL, (R)/ASL,(Z).
Similarly, let 2, denote the space of lattices of covolume one in R",
which is identified with the homogeneous space SL,(R)/SL,(Z). Fix
the data d,m, Vinys =~ R?, Vipy ~ R™, Tohys, Tint, as well as a set W <
Vint, and choose £ randomly according to a probability measure i on
%;,,. This data determines a cut-and-project set A, which is random
since £ is. The resulting probability measure g on cut-and-project
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sets can thus be written as the pushforward of i under the map £ —
A(W, L), and is easily seen to be invariant and ergodic under SL;(R)
or ASLy(R) if the same is true for . One natural choice for i is the
so-called Haar-Siegel measure, which is the unique Borel probability
measure invariant under the group ASL,(R). Another is the Haar-
Siegel measure on %, (i.e., the unique SL,(R)-invariant measure). It
is also possible to consider other measures on %, which are ASLy(R)-
or SLy(R)-invariant. As observed in [MS14], a fundamental result of
Ratner [Rat91] makes it possible to give a precise description of such
measures on %;,. They correspond to certain algebraic groups which
are subgroups of ASL,(R) and contain ASL4(R) (or SL4(R)).

Our first result is a classification of such measures. We refer to §2|and
for more precise statements, and for definitions of the terminology.

Theorem 1.1. Let yu be an RMS measure on € (RY). Then, up to
rescaling, there are fited m and W < R™ such that p is the pushforward
via the map

%, — CRY, L AL, W)

of a measure fi on %, where n = d+m, W satisfies (Reg), the measure
i1 18 supported on a closed orbit HL, < %, for a connected real algebraic
group H < ASL,(R) and Ly € %,. There is an integer k = d, a real
number field K and a K-algebraic group G, such that the Levi subgroup
of H arises via restriction of scalars from G and K, and one of the

following holds for G:

e G = SL; (as a K-group) and n = k - deg(K/Q).
e G = Spy;, (as a K-group), and d =2, n = 2k - deg(K/Q).

Furthermore, in the linear (resp. affine) case y is invariant under none
of (resp., all of ) the translations by nonzero elements of Vynys-

Here the group Sp,, is the group preserving the standard symplectic
form in 2k variables; we caution the reader that this group is sometimes
denoted by Sp,, in the literature. As we will see in Proposition [3.3] any
choice of K and G satisfying the description in Theorem gives rise
to an affine and a linear RMS measure. We note that the vertex sets
of the famous Ammann-Beenker and Penrose tililngs, which are well-
known to have representations as cut-and-project constructions, are
associated with the real quadratic fields K = Q(v/2) and K = Q(+/5),
resepctively, with d = 2 and G = SLy, see also §f]

Theorem is actually a combination of two separate results. The
first extends work of Marklof and Strombergsson [MS14]. They intro-
duced the pushforward i — p described above, where 1 is a homoge-
neous measure on %;,, and noted that the measures ji could be classified
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using Ratner’s work. Our contribution in this regard (see Theorem [3.1])
is to give a full list of the measures ;i which can arise. The second result,
contained in our Theorem [£.1] is that this construction is the only way
to obtain RMS measures according to our definition (which is given in
terms of Vs rather than #7,).

1.2. Formulae of Siegel-Weil and Rogers. In geometry of num-
bers, computations with the Haar-Siegel probability measure on %,
are greatly simplified by the Siegel summation formula [Sie45], accord-
ing to which for f e C.(R"),

f f(Lydm(L) = | f(x)dvol(z), where f(£)= . f(v).
Zn R veL~N{0}

(1.2)
Here m is the Haar-Siegel probability measure on Z,,, and vol is the
Lebesgue measure on R”. The analogous formula for RMS measures
was proved in [MS14]. Namelyﬂ suppose u is an RMS measure, and
for each A € supp u, and for f € C.(R?), set

Z f(v) pis linear
£ dif veAN{0}
f(A) Z f(v)  wis affine. (1:3)

veEA

We will refer to f as the Siegel-Veech transform of f. Then it is shown
in [MS14] [MS20], that for an explicitly computable constant ¢ > 0, for
any f € C.(R?) one has

f FN) () = ¢ | pta) dvola). (1.4)

A first step in the proof of is to show that f is integrable, i.e.,
belongs to L*(u). As a corollary of Theorem , and using reduction
theory for lattices in algebraic groups, we strengthen this and obtain the
precise integrability exponent of the Siegel-Veech transform, as follows:

Theorem 1.2. Let pv be an RMS measure, let G and K be as in The-
orem let r & rankg (G) denote the K-rank of G, and define

def |7 +1 18 linear

r+2 s affine.

LOur notations differ slightly from those of [MS14], but the result as stated here
can be easily shown to be equivalent to the one in [MS14].
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Then for any f € C.(R?) and any p < q, we have fe LP(u). Moreover,
if the window W contains a neighborhood of the origin in Vi, there are
f € C.(RY) for which f ¢ L% ().

The proof involves integrating some characters over a Siegel set for a
homogeneous subspace of Z,,. The special case for which K = Q, G =
SLj and the measure p is linear was carried out in [EMM98, Lemma
3.10]. Note that

k—1 if G=SL
rankg (G) = { P H G Sp:k. (1.6)

We will say that the RMS measure p is of higher rank when ¢, > 3; in
light of the above this happens unless d = 2, G = SL,, and p is linear.
It follows immediately from Theorem [1.2] that f € L'(u), and in the
higher-rank case, that f e L2(y).

The proof of given in [MS14] follows a strategy of Veech [Vee9§],
and relies on a difficult result of Shah [Sha96]. Following Weil [Wei82],
we will reprove the result with a more elementary argument. Combined
with Theorem the argument gives a strengthening of .

Given p € N, write @Y R? = R%, and for a compactly supported
function f on R%, define

Z f(vi,...,v,) pis linear

PF(AY) ) Vi vpeAN{0} L7
T Z f(vi,...,v,)  pis affine. (1.7)

Theorem 1.3. Let ji be an RMS measure, and suppose p < q, where
qu s as in (L.5). Then there is a countable collection {1, : ¢ € &}

of Borel measures on R such that &t 37, is locally finite, and for
every f € L'(7) we have

Jp]?duz fdr < 0.
Rdp

The measures 1. are H-cép-algebraic, for the group H appearing in

Theorem (see Definition[7.9).

This result is inspired by several results of Rogers for lattices, see
e.g. |[Rogh5l Thm. 4]. Loosely speaking, c&p-algebraic measures are
images of algebraically defined measures on R™ under a natural map
associated with the cut-and-project construction.

Theorems [1.2| and [1.3| will be deduced from their more general coun-
terparts Theorems [6.2] and [7.1] which deal with the homogenous sub-
space HLy < %, arising in Theorem [1.1}
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1.3. Rogers-type bound on the second moment. A fundamental
problem in geometry of numbers is to control the higher moments of
random variables associated with the Haar-Siegel measure on the space
Z,. In particular, regarding the second moment, the following impor-
tant estimate was proved in [Rog55| [Rogh6 [Sch60]: for the Haar-Siegel
measure m on 2, n > 3 there is a constant C' > 0 such that for any
function f e C.(R™) taking values in [0, 1] we have
fl)—1 [fdm

2
Jj%;b Zn

dm(z) < C | fdvol,
R

where f is as in (|1.2)). We will prove an analogous result for RMS

measures of higher rank.

Theorem 1.4. Let p be an RMS measure of higher rank. For p = 2
let T be the measure as in Theorem [1.5 In the notation of Theorem

assume that

G = SLy, or p is affine. (1.8)
Then there is C > 0 such that for any Borel function f : RY — [0, 1]
belonging to L'(7) we have

L(Rd) f) - L(Rd) f

The case in which fails, that is, p is linear and G = Sp,;,, and in
which in addition K = Q, is treated in [KY1§|, where a similar bound
is obtained. The symplectic case with K a proper field extension of Q
is more involved, and we hope to investigate it further in future work.

There have been several recent papers proving an estimate like (|1.9)
for homogeneous measures associated with various algebraic groups.
See [KS19] and references therein. The alert reader will have noted
that, even though the measure y is the pushforward of a measure sup-
ported on a homogeneous space HL;, we prove the bound for
functions defined on ¢’ (R?) rather than on HL;. Indeed, while we ex-
pect such a stronger result to be true, it requires a more careful analysis
than the one needed for our application.

2
du(z) < C | fdvol. (1.9)
Rd

1.4. The Schmidt theorem for cut-and-project sets, and patch-
counting. It is well-known that every irreducible cut-and-project set
A has a density

def .. #(AnB(0,T))  vol(IW)
D(A) = qll—rgo vol(B(0,T)) - covol(L)’ (1.10)

where A = A(L, W), vol(W) is the volume of W, and covol(L) is the

covolume of £ (for two proofs, which are valid for a larger class of nice
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sets in place of B(0,7), see [Moo02] and [MS14, §3|, and see refer-
ences therein). In particular, the limit exists and is positive. Following
Schmidt [Sch60], we would like to strengthen this result and allow
counting in even more general shapes, and with a bound on the rate of
convergence. We say that a collection of Borel subsets {Qr : T' € R, }
of R is an unbounded ordered family if

0<T1<T2 —— QT1CQT2;

For all T' > 0, vol(Qr) < o0;

VOI(QT) —>7T o0 O] and

For all large enough V' > 0 there is T such that vol(Q7) = V.

Theorem 1.5. Let o be an RMS measure of higher rank, such that
(1.8) holds. Then for every e > 0, for every unbounded ordered family
{Qr}, for u-a.e. cut-and-project set A,

#(Qr A A) = D(A) - vol(Qr) + O (vol(QT)%+€) . (1.11)

This result is a direct analogue of Schmidt’s result for lattices, and
its proof follows [Sch60]. In the special case Q1 = B(0,7T), we obtain
an estimate for the rate of convergence in (1.10f), valid for p-a.e.cut-
and-project set. For related work see [HKW14]. Note that for B(0,T),
and for lattices, Gotze [G6t98] has conjectured that an error estimate

0 (vol(B(o, T))%—%%) should hold.

Even for Qr = B(0,T), one cannot expect to hold for all cut-
and-project sets; in fact, a Baire category argument as in [HKW14l §9]
can be used to show that for any error function E(T') with E(T) =
o(T?) there are cut-and-project sets for which, along a subsequence
T, — @O,

|# (B(0,7,) nA) — D(A) - vol(B(0,T1,))| = E(T,,).

Thus, it is an interesting open problem to obtain error estimates like
for explicit cut-and-project sets. Note that for explicit cut-and-
project sets which can also be described via substitution tilings, such
as the vertex set of a Penrose tiling, there has been a lot of work in
this direction, see [Soll4] and references therein.

We now discuss patch counting, which is a refinement which makes
sense for cut-and-project sets but not for lattices. For any discrete set
A c RY, any point z € A and any R > 0, we refer to the set

Par(z) & B(0,R) n (A — =)
as the R-patch of A at x. Two points x1,z9 € A are said to be R-patch
equivalent if Py g(z1) = Par(z2). It is well-known that any cut-and-
project set A is of finite local complexity, which means that for any
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R >0,

#{Prr(z) : x € A} < 0.
Furthermore, it is known that whenever Py = Pa g(xo) for some zy € A
and some R > 0, the density or absolute frequency

. #{SL‘ eAn B(O, T) : 7)/\ R(SE) = 7)0}
D(A =1 :
(A, Po) = Jlim, vol(B(0,T))
exists; in fact, the set in the numerator of (1.12)) is itself a cut-and-

project set, see [BGI3, Cor.7.3]. Our analysis makes it possible to
obtain an analogue of Theorem [1.5 for counting patches, namely:

(1.12)

Theorem 1.6. Let p be an RMS measure of higher rank, for which
(1.8) holds. For any 6 > 0, set Oy e 5 where m = dim Ving- Sup-

m+26’
pose the window W < Vi, in the cut-and-project construction satisfies
dimp(0W) < m — 4, where dimpg denotes the upper box dimension (see
@. Then for every unbounded ordered family {Qr} in RY, for p-a.e.

A, for any patch Py = Py r(xo), and any 6 € (0,6,), we have

4z e Qr A A Pyp(z) = Po} = DA, Py) vol(27) + O <Vol (QT)H)
(1.13)

For additional results on effective error terms for patch-counting in
cut-and-project sets, see [HJKW19].

1.5. Acknowledgements. We are grateful to Mikhail Borovoi, Man-
fred Einsiedler, Dmitry Kleinbock, Henna Koivusalo, Jens Marklof,
Dave Morris, Michel Skenderi, and Andreas Strombergsson for useful
discussions. Specifically, Morris supplied most of the arguments of The-
orem [3.5], Borovoi supplied an argument used in Step 4 in the proof of
Lemma|3.2| and Einsiedler supplied arguments for Lemmas and [3.4]
We gratefully acknowledge support of BSF grant 2016256, ISF grants
2919/19, 1570/17, 1149/18 and 264/22, Swiss National Science Foun-
dation 168823 and European Research Council 754475, and the David
and Rosa Orzen Endowment Fund. We thank the anonymous referees
for a careful reading of the paper and for many helpful comments and
suggestions.

2. BAsics

2.1. Cut-and-project sets. In the literature, different authors im-
pose slightly different assumptions on the data in the cut-and-project
construction. For related discussions, see [BG13, [Mo097, [MS14]. Here
are the assumptions which will be relevant in this paper:

(D) mint(L) is dense in Viy.
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(I) mpnys|c is injective.
(Reg) The window W is Borel measurable, bounded, has non-empty
interior, and its boundary JdW has zero measure with respect
to Lebesgue measure on Vy.

We will say that the construction is irreducible if (D), (I) and (Reg)
hold.

In the literature, a more general cut-and-project scheme is discussed,
in which the groups Vypys ~ R, Vi, ~ R™ may be replaced with general
locally compact abelian groups. Note that if (D) fails, we can replace
Vine with 7 (£), which is a proper subgroup of Vi, while if (I) fails, we
can replace Vi with Viy/(L£ N ker mpnys). In both cases one can obtain
the same set using smaller groups. Note that when (D) fails, the group
mint(£) might be disconnected, and in that case, using (Reg) we see
that only finitely many of its connected components will intersect W,
and A(L, W) will have a description as a finite union of cut-and-projects
sets with an internal space of smaller dimension.

Regarding the regularity assumptions on W, note that if no regu-
larity assumptions are imposed, one can let A be an arbitrary subset

of Tpnys(L) by letting W be equal to mip (£ N ﬂ-];hlys(A))' Also, the
assumption that W is bounded (respectively, has nonempty interior)
implies that A is uniformly discrete (respectively, relatively dense).
Finally, note that it is not W that plays a role in , but rather
7 t(W). In particular, if convenient, one can replace the space Viy

int
with any space Vi, which is complementary to Vjnys, and with the

obvious notations, replace W with W’ %' 7l (ot (W)). Put otherwise,
it would have been more natural to think of W as being a subset of
the quotient space R™/Vjpys. We refrain from doing so to avoid conflict
with established conventions.

2.2. Chabauty-Fell topology. Let ¢ (R%) denote the collection of
all closed subsets of R?. Equip %' (R?) with the topology induced by
the following metric, which we will call the Chabauty-Fell metric: for
Yo, V) € € (RY), d(Yp,Y)) is the infimum of all € € (0,1) for which, for
both i =0, 1,

Y;n B (O, 5_1) is contained in the e-neighborhood of Y;_;,

and d(Yp, Y1) = 1 if there is no such . It is known that with this
metric, €' (RY) is a compact metric space. In this paper, closures of
collections in €' (R?) and continuity of maps with image in €'(R?) will
always refer to this topology, and all measures will be regular measures
on the Borel o-algebra induced by this topology. We note that in the
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quasicrystals literature this topology is often referred to as the local
rubber topology or the natural topology .

We note that there are many topologies on the set of closed sub-
sets €' (X) of a topological space X. The Chabauty-Fell metric was
introduced by Chabauty [Cha50] for X = R? as well as for X a lo-
cally compact second countable group, and by Fell [Fel62] for general
spaces X, particularly spaces arising in functional analysis. See also
[LS03], where the connection to the Hausdorff metric is elucidated via
stereographic projection. Many of the different topologies in the liter-
ature coincide on € (Rd). Two notable exceptions are the Hausdorff
topology, which is defined on the collection of nonempty closed subsets
of X, and the weak-* topology of Borel measures on R?, studied in
[Vee98| IMS19], satisfying a certain growth condition and restricted to
point processes. See [Bee93| for a comprehensive discussion of topolo-
gies on ¢ (X).

We will need the following fact, which is well-known to experts, but
for which we could not find a reference (see [MS19, §5.3] for a related
discussion):

Proposition 2.1. Suppose W is Borel measurable and bounded. Then
the map

U7, - ERY, VL)Y ALW) (2.1)

is a Borel map, and is continuous at any L for which my (L) oW = @.

Proof. We first prove the second assertion, that is, we assume that
Tint (L) N W = @ and suppose by contradiction that £; — £ in %,

but U(L;) + Adéf\lf(ﬁ). By passing to a subsequence and using the
definition of the Chabauty-Fell metric on 4 (R?), we can assume that
there is € > 0 such that for all j, one of the following holds:

(a) There is v € A, |[v] < 7! such that for all j, U(L;) does not
contain a point within distance ¢ of v.
(b) There is v; € ¥(L;) such that v; — v, where |jv| < ¢!, and
v A
In case (a), there is u € £ such that v = mppys(u) and iy (u) € W.
By assumption 7y (u) is in the interior of W. Since £; — L there
is u; € L; such that u; — u and for large enough j, mn(u;) € W
and hence v; = mppys(uj) € VU(L;). Clearly v; — v and we have a
contradiction.

In case (b), we let u; € L; such that v; = mppys(w;). Then the
images of v; under both projections 7pnys, Tiny are bounded sequences,
and hence the sequence (u;) is also bounded. Passing to a subsequence
and using that £; — £ we can assume u; — u for some u € L. Since
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Tint(u;) € W for each j, mne(u) € W and hence, by our assumption,
it (u) belongs to the interior of W, and in particular to W. This
implies that v = mypys(u) € A, a contradiction.

We now prove that ¥ is a Borel measurable map. For this it is enough
to show that U~'(B) is measurable in %, whenever B = B(A,¢) is
the e-ball with respect to the Chabauty-Fell metric centered at A =
V(L) e €(RY). Let

def {:c € L : Tpnys(z) € B (O, 5’1) , Tint () € W}

Fi =

and
BRYAAB(0,e +¢).

Then the definition of the Chabauty-Fell metric gives that £’ belongs to
U~1(B) if and only if for any u; € Fy, there is v} € £’ with m(u)) € W
and [|7phys(u1) — Tpnys(u))| < €, and additionally, for any v} € £’ with
T (1)) € W and |[mpnys(u))]| < €' there is v € Fy with ||mpnys(u))—v] <
€. Since lattices are countable, Fi, F, are finite, and W < Vj is Borel
measurable, this shows that W=!(B) is described by countably many
measurable conditions. 0

We use this to obtain a useful continuity property for measures.
Given a topological space X, we denote by Prob(X) the space of reg-
ular Borel probability measures. We equip Prob(X) with the weak-*
topology. Any Borel map f: X — Y induces a map f, : Prob(X) —
Prob(Y') defined by fop = po f~1.

Corollary 2.2. Let ¥ be as in (2.1). Then any € Prob(%;,) for
which

p({Le,: mn(L)n W #a}) =0. (2.2)
15 a continuity point for V.. In particular, this holds if i1 is invariant

under translations by elements of Viyy ~ R™ and oW has zero Lebesque
measure.

Proof. Suppose fi; — fi in Prob(%,), and let p;, 11 denote respectively
the pushforwards W, jfi;, W.fi. To establish continuity of ¥, we need
to show p; — p. Since fi; — ji, we have {gdiu; — §gdpn for any
g € Cu%,). By the Portmanteau theorem this also holds for any
g which is bounded, compactly supported, and for which the set of
discontinuity points has ji-measure zero. Let f be a continuous function
on € (R?) and let f = f o W. Then f is continuous at fi-a.e. point, by
Proposition [2.1, The Portmanteu theorem then ensures that

| gaw= | dam e | gan= | g
¢ (Rd) %, % ¢(Rd)
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That is, u; — p, as required.

For the last assertion, assuming that j is invariant under transla-
tions by elements of Vi, we need to show that is satisfied. Let-
ting 1ow, my,, denote respectively the indicator of dW and Lebesgue
measure on Viy, and letting B < Vi, be a measurable set of finite and
positive measure, we have by Fubini that

g({L e, : mm(L) N W # @})

- [m;@ j Low © Tiwe (£ + 2) dimyg, (2) | di(£).

It therefore suffices to show that for any L,

my,,, ({ € Vint : it (L + ) N OW # @}) = 0;

and indeed, this follows immediately from the countability of £ and
the assumption that my; (W) = 0. O

2.3. Ratner’s Theorems. Ratner’s measure classification and orbit-
closure theorems [Rat91] are fundamental results in homogeneous dy-
namics. We recall them here, in the special cases which will be im-
portant for us. A Borel probability measure v on %, (respectively,
) is called homogeneous if there is zg in %, (respectively, Z,,) and
a closed subgroup H of ASL,(R) (respectively, SL,(R)) such that the

H-action preserves v, the orbit Hzq is closed and equal to supp v, and

H,, dﬁf{h € H : hxyg = xp} is a lattice in H. When we want to stress

the role of H we will say that v is H-homogeneous.

Recall that ASL,(R) (respectively, ASL,(Z)) denotes the group of
affine transformations of R™ whose derivative has determinant one (re-
spectively, and which map the integer lattice Z" to itself), and that
%y, is identified with ASL, (R)/ASL,(Z), via the map which identifies
the coset represented by the affine map ¢ with the grid ¢(Z"). Simi-
larly, we have an identification of 2, with SL,(R)/SL,(Z). We view
the elements of ASL,(R) concretely as pairs (g,v), where g € SL,(R)
and x € R" determine the map x — gx + v. In what follows two sub-
groups of ASL,(R) play an important role, namely the groups SL4(RR)
and ASL4(R), which we will denote alternately by F', and embed con-
cretely in ASL,(R) in the upper left hand corner. That is, in the case
F = SL4(R), g € F is identified with

((Oi,d (I)g;”) ,on) (2.3)
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and in the case F' = ASL4(R), (g,v) € F is identified with

((Oi,d (I)gl:> ’ <Oan)) : (2.4)

Here Id,,, O ¢, O denote respectively an identity matrix of size m x m,
a zero matrix of size k x ¢, and the zero vector in R*. We will refer
to the embeddings of SL4(R) and ASL4(R) in ASL,(R), given by
and , as the top-left corner embeddings.

The following is a special case of Ratner’s result.

Theorem 2.3 (Ratner). Let 2 < d < n, and let F be equal to either
ASL4(R) or SL4(R) (with the top-left corner embedding in ASL,(R)).
Then any F-invariant ergodic measure v on %, is H-homogeneous,
where H is a closed connected subgroup of ASL, (R) containing F. FEv-

ery orbit-closure Fx is equal to supp v for some homogeneous measure
v. The same conclusion holds for %, and F = SL4(R).

The following additional results were obtained in [Sha91l [Tom00]:

Theorem 2.4 (Shah, Tomanov). Let v, H be as in Theorem and
let xg = goZ™ in %, or Z, such that suppv = Hxg. Then H is the
connected component of the identity in the group of real points of an
algebraic subgroup H of ASL,,, the solvable radical of H is equal to the
unipotent radical of H, and the group go_ngo, as well as its unipotent
radical, are defined over Q. Furthermore, H is the smallest group with
these properties, for which F < H.

We will need a result of Shah which relies on Ratner’s work (once
more this is a special case of a more general result).

Theorem 2.5 ([Sha96] ). Let F' be equal to either ASLy(R) or SLy(R)
as above, let {g;} be a one-parameter diagonalizable subgroup of SLy(R),
and let U = {g € F : limy_,o, g_1gg; — €} be the corresponding expand-
ing horospherical subgroup. Let 2 < U be a relatively compact open
subset of U and let my be the restriction of Haar measure to U, nor-
malized so that my(Q2) = 1. Then for every xg € %, letting v be the
homogeneous measure such that suppv = Fxy, we have

f (g¢1t) 402y dmy (u) —¢e0 V,
Q

where d,, is the Dirac measure at xy and the convergence is weak-*
convergence in Prob(%;,).
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2.4. Number fields, geometric embeddings, and restriction of
scalars. For more details on the material in this subsection we refer
the reader to [Wei82, [PR94l, Mor15, [EW].

Let K be a number field of degree D = deg(K/Q), and let O = Ok be

its ring of integers. Let o1,...,0,,0,41,0,11,--., 0,45, 0rss be the field
embeddings of K in C where r+2s = D, 0y,...,0, are real embeddings
and 0,1, ...,0,45 are complex (non-real) embeddings. An orderin K is

a subring of O which is of rank D as an additive group. The geometric
embedding or Minkowski embedding of an order A is the set

{(o1(),...,00(2),0041(),...,0015(T)) : x € A}.

It is a lattice in RY ~ R” x C®. Note that the geometric embedding
depends on a choice of ordering of the field embeddings, and on repre-
sentatives of each pair of complex conjugate embeddings. Thus, when
we speak of ‘the’ geometric embeddings we will consider this data as
fixed.

An algebraic group G defined over K (or K-algebraic group) is a
variety such that the multiplication and inversion maps G x G —
G, G — G are K-morphisms. A K-homomorphism of algebraic groups
is a group homomorphism which is a K-morphism of algebraic varieties.
We will work only with linear algebraic groups which means that they
are affine varieties, i.e., for some N, they are the subset of affine space
AY satisfying a system of polynomial equations in N variables. We will
omit the word ‘linear’ in the rest of the paper. A typical example of a
K-algebraic group is a Zariski closed matrix group, that is, a subgroup
of the matrix group SL,,(C) for some m described by polynomial equa-
tions in the matrix entries, with coefficients in K. If G; are K-algebraic
groups realized as subgroups of SL,,, (C) for i = 1,2, and ¢ : G; — Go
is a K-homomorphism, then there is a map ¢ : SL,,,(C) — SL,,,(C)
which is polynomial in the matrix entries, with coefficients in K, such
that ¢|g, = ¢. For any field L < C containing K, we will denote by
G, the collection of L-points of G. It is a subgroup of SL,,(L), if G is
realized as subgroup of SL,,(C).

We will do the same for rings L = Z or L = O. In this case the
group G depends on the concrete realization of G as a matrix group
but the commensurability class of G, is independent of choices (recall
that two subgroups I'y, I'y of some ambient group G are commensurable
if [I; : Ty nTy] < oo for i = 1,2). By a real algebraic group we will
mean a subgroup of finite index in Gg for some K-algebraic group G,
where K < R.

The restriction of scalars Resg /g is a functor from the category of
K-algebraic groups to Q-algebraic groups. Given an algebraic group
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G defined over K, there is an algebraic group H = Resg/g(G) de-
fined over @, such that Hg is naturally identified with Gg. For any
K-homomorphism of K-algebraic groups ¢ : Gy — Gy we have a Q-
homomorphism Resg/g(¢) : Resk/g(G1) — Resk/g(Gs). Given a ma-
trix representation of G there is a corresponding matrix representation
of Resk/g(G), defined as follows. We can realize K (as a ring) as a
subalgebra of the Q-algebra of D x D matrices with entries in Q, and
this leads to a corresponding identification of SL,,(K) with a subgroup
of SL,,p(Q). A different choice of basis will produce a group that
differs by a SL,,p(Q)-conjugate. Now suppose G < SL,,(C) is the
solution set of polynomial equations P, ..., P, in the matrix entries,
with coefficients in K. Let ]51, e P, be the matrix valued polynomials
where each K-coefficient is replaced by its Matp, p(Q) representative,
and each variable (previously a matrix coefficient of SL,,(C)) is an
Mat px p(C)-block of SL,,p(C). These polynomials together with the
(linear) polynomials that ensure that each D x D block is an element of
the Q-algebra K, have coeflicients in Q, and Resg g (G) is their solution
set.
The R-points of H = Resg/g(G) can be represented concretely as

G x - X GF x GI' x - x GI, (2.5)

where G7% is the algebraic group defined by applying the field em-
bedding o; to the polynomials in the matrix entries, with coefficients
in K, defining G. Here, for a C-algebraic group M, Mc¢ is a short-
hand notation for the C-points of M, thought of as an R-group via
the isomorphism C =~ R2. More explicitly, a polynomial equation
involving m? complex matrix entries z;; = a;; + ib;;, where i,j €
{1,...,m}, is replaced with the same polynomial in the matrix al-
gebra of 2 x 2 real matrices, with each appearance of z;; replaced by
Al < ai]: ' 2” > € Matyo(R), and with the 2m? additional equa-
ij i

tions (A#)) 1y = — (AW, (A@)}; = (A),y. Furthermore, denoting
by Q the algebraic closure of Q, there is a conjugation of SL,,p(Q) by
an element with coefficients in the Galois closure of K, so that H(Q)
is embedded in SL,,p(Q) in block form with 7 + s blocks, where each
block contains one of the factors in (12.5]).

Similarly, for a K-morphism ¢ : G; — Go, the restriction to the fac-
tor Gy’ in formula (2.5]), of the Q-morphism Resk o(¢) : Resgo(G1) —
Resk/g(Gz), is the map ¢; obtained from ¢ by applying the field em-
bedding o; to its coefficients. Thus, after writing both Resko(G1) and
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Resk/g(G2) in product form as in (2.5), we have

ResK/Q(@)(glv s 797“-&-5) = (501(91)7 BRI §0r+s(gr+s))' (26)

We now note a connection between restriction of scalars, geometric
embeddings of lattices, and the action on Z,,. Suppose that O = Ok,
A is an order in O, and let £ be the geometric embedding of A in RP.
For m e N set n = Dm and let

L'=c LD DL,
—_——

m copies

where we choose the dilation factor ¢ so that £’ € Z,,, and we choose
the ordering of the indices so that

LY A(01(2),...,0055(x)) 2 € A™}. (2.7)

Now suppose G is an algebraic K-group without K-characters, ¢ : G —
SL,, is a K-morphism, and H def Resk/g(G). Since ¢ is a K-morphism,
there is a finite-index subgroup of Gy whose image under ¢ is contained
in SL,,(O), and hence preserves O™. This implies that a finite index

subgroup of Hy preserves £'. Since Hy is a lattice in H def Hg (see
[Bor19l §13]), we find that HL' is a closed orbit in Z; which is the
support of an H-homogeneous measure.

3. CLASSIFICATION OF INVARIANT MEASURES

Recall from the introduction that an affine (respectively, linear) RMS
measure j is a probability measure on ¢ (R?) which gives full measure
to the collection of all irreducible cut-and-project sets, and is invariant
and ergodic under F', where

def { SL4(R) if p is linear (3.1)

= ASL4(R)  if p is affine

is the stabilizer group of p. In this section we will give some more back-
ground on RMS measures, and two assertions (Theorem and
which together imply Theorem [I.1} The careful reader will have no-
ticed that we gave here a seemingly weaker definition of an affine RMS
measure compared to the introduction, by requiring it to be ergodic
under ASL,(R) instead of SL4(R). However, these two definitions are
equivalent by the Howe-Moore ergodicity theorem (see [EWT1I]).
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3.1. RMS measures — background and basic strategy. In or-
der to motivate the definition of an RMS measure, we recall some
crucial observations of [MSI4]. Let F be as in (3.1). Let R =
Vonys @ Vints Tphys, Tint; £, W be the data involved in a cut-and-project
construction.

The observations of [MS14] consist of the following:

e From the fact that m,s intertwines the action of F' on R™ (via
the top-left corner embedding in ASL, (R)) and on R?, for the
map ¥ defined in ({2.1]), one obtains the equivariance property

Vog=goW (3.2)

for all g € F; in other words, gA(L, W) = A(gL, W).

e In particular, if we fix the data R" = Vpys @ Ving, W, then the
map ¥, : Prob(%,) — Prob(€(R%)) considered in Corollary[2.2]
maps F-invariant measures to F-invariant measures.

e Due to Ratner’s work described in §2.3] ergodic F-invariant
measures on %, can be described in detail, in terms of certain
real algebraic subgroups of ASL, (R).

e Theorem [2.5]and other results from homogeneous dynamics can
then be harnessed as a powerful tool for deriving information
about cut-and-project sets.

In order to analyze measures on %,,, a basic strategy is to work first
with the simpler space Z,,. Let
M ASL,(R), T ASL,(Z).

Recall that %, is identified with M /I" and under this identification, a
closed orbit HL is identified with Hgl' = gH,I", where g € M is such
that £ = gZ", and H, = g ' Hg. Also let

MY SL,(R) and I % SL,(Z).

We think of M concretely as the stabilizer of the origin in the action
of M on R"™. Recall also that 2, is identified with M /T. Let

m: M — M, w: %, — 2, (3.3)

denote respectively the natural quotient map, and the induced map on
the quotients (which is well-defined since m(I") = I'). The map 7 is a
Q-morphism, and the map m is realized concretely by mapping a grid
L to the underlying lattice £ — £ obtained by translating £ so that it
has a point at the origin. It satisfies an equivariance property

r(gL) = n(g)x(L) (where g€ M, L e %,). (3.4)

Every fiber of 7 is a torus and thus m is a proper map.
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We summarize the spaces and maps we use in the following diagram.

Y, = M/T
|
%, = M/T % (RY)

Extending the terminology in the introduction, a homogeneous measure
i@ on %, will be called affine if it is ASL4(R)-invariant, and linear if
it is SLg4(R)-invariant but not ASL;(R)-invariant. Here ASL4(R) and
SL4(R) are embedded in M via the top-left corner embeddings

and .

3.2. The homogeneous measures arising from the F-action on
%,. In this section we state a more precise version of Theorem [L.1]
Suppose kg is a subfield of C. We say that a kq-algebraic group H is kq-
almost simple if any normal kqo-subgroup H' satisfies dimH’ = dimH
or dimH’ = 0. In this case we will also say that a subgroup of finite
index of Hy, is kg-almost simple.

Theorem 3.1. Let i be an F-invariant ergodic measure on %, and
let H and Ly denote respectively the subgroup of M and the point
in %, involved in Theorem [2.3; i.e., i is H-invariant and supported

on the closed orbit HL,. Let gu € M such that L, = ¢1Z" and let

H, dﬁfgl_ngl. Assume also that Ly satisfies conditions (D) and (I).

Then H, Hy and L, are described as follows:
(i) In the linear case, H1 is semisimple and Q-almost simple. In

this case write H' H1 In the affine case, we can write H,
as a semidirect product H' x R™ where H' is semisimple and
Q-almost simple, and R™ denotes the full group of translations
of R™.

(ii) The group H' in (i) is the connected component of the identity
in the group of R-points of Resg/q(G), where K is a real number
field and G is a K-group which is K-isomorphic to either SLy
or Spyy, for some k = d. In the case G = SL; we have n =
k deg(K/Q), and there is a subspace V' of R™ of dimension k
containing Vpnys which is H'-invariant and such that the action
of H on V' gives the group SL(V'). The case G = Spy, only
arises when d = 2, and in that case n = 2k deg(K/Q), and
there is a subspace V' of R™ of dimension 2k equipped with a
symplectic form w' such that V is H'-invariant, the action of
H' on'V gives the symplectic group Sp(V,w'), and V' contains
Vonys as a symplectic subspace.
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The proof will involve a reduction to the space 2, of lattices. We
introduce some notation and give some preparatory statements.

As in §3.1] let M = ASL,(R), T’ = ASL,(Z), %, = M/T, so that
the closed orbit HL; is identified with Hg;I' = g H;['. By Theorem
I def H; n T is a lattice in H; and ji is the pushforward of the
unique H;-invariant probability measure on H;/T'y, under the map
hI'y, — gi1hI'. By Theorem [2.4] H, is the group of real points of a
Q-algebraic group. In particular there are at most countably many
possibilities for Hj.

Also let M = SL,(R), ' = SL,(Z), 2, = M/I as above, and let 7,
be the maps in . The orbit m(HgiI') = Hg ' =g H,Iis closed,
where H, = n(H,),g, = 7(¢1) and H = 7(H) contains 7(F') ~ SLy(R).

We say that property (irred) holds if there is no proper Q-rational
subspace of R" that is H,-invariant (for the linear action by matrix
multiplication). Note that by Theorem , H, is the smallest Q-
subgroup of M containing g, SL4(R) g;l, and thus (irred) is equivalent
to requiring that there is no proper QQ-rational subspace of R" that is
g, SLa(R)g, -invariant.

We now state an analogue of Theorem for the action on Z,,.

Lemma 3.2. Assume (irred) holds. Then H, is the connected compo-
nent of the identity of the group of real points of a Q-algebraic group,
satisfying the properties listed in statement (ii) of Theorem (for the
group H').

Lemma is the main result of this section, and its proof will be
given below in and §3.4]

Proof of Theorem [3.1) assuming Lemma[3.3. Let U be the unipotent
radical of Hy. Since H, is semisimple, U < ker 7, and since ker 7 n H;
is a unipotent normal subgroup, U = ker ™ n H;. This means that in
the affine map determined by h € H; on R™, w(h) is the linear part,
and U acts on R" by translations. This implies the equality

span{u(x) —z : x € R" u € U} = span{u(0) : u e U}, (3.5)

and we denote the subspace of R™ appearing in by V. Since H;
is the group of R-points of an algebraic group defined over Q, the same
holds for U. Since U is connected, it follows from [Bor91, Cor. 18.3]
that Ug is Zariski dense in U, and this implies that V; is a Q-subspace of
R™. Since H; normalizes U, Vj is Hy-invariant, and since H, = 7(H;)
is the group of linear parts of elements of Hy, H, also preserves Vj.
As we will see in Lemma [3.4] under the assumptions of Theorem [3.1]
condition (irred) holds. By (irred) we must have V4 = {0} or V[, = R".
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If Vo = {0} then U = {0}. If V; = R” then U contains translations in n
linearly independent directions and hence U ~ R™ is the entire group
of translations of R™. This gives the description of the translational
part of Hy, in assertion (i). Assertion (i) follows from Lemma[3.2 O

The next proposition shows that all the cases described in Theorem
do arise. Namely we have:

Proposition 3.3. For any k > d > 2 and any real number field K,
there are R-algebraic groups H and H' in M, and £, = ¢ Z™ € %,
where n = kdeg(K/Q) and g, € M, such that the following hold:
o H' is defined over Q, and is Q-isogenous to Resk o(G), where
G is K-isomorphic to SLy.
e H is either equal to H' (linear case) or to H' x R™ (affine case).
e The orbit HL, is closed and supports an H-homogeneous prob-
ability measure v. The pushforward V,v is an RMS measure.

The same statement is true with d = 2, n = 2k deg(K/Q), and with G
being K-isomorphic to Spyy, for some k = 2.

Proof. The proof amounts to reversing the steps in the preceding dis-

cussion. For concreteness, we give it for G = SL;. Let D% de g(K/Q),

n® Dk and G¥ SL, (R). The standard action ¢ of Gx on K* gives

rise to a Q-embedding Resg/g(¢) : Resk/g(G) — SL,. Let H, denote
the connected component of the identity in the group of R-points in

Resk/o(G). Similarly to (2.3) and (2.4), we refer to

o g O0dn—a

g (Ond,d Idnd) (3:6)
as the top-left corner embedding of SL4(R) in M. By the explicit de-
scription of restriction of scalars described in , there is g € M such

that H g, Hig" contains the top-left corner embedding of SLq(R) in
M, and up to scaling, g Z" is the geometric embedding of OF as in
(2.7), where O is the ring of integers in K. In particular, the orbit
Hg 7" is a closed orbit supporting an H-homogeneous measure in Z,,.
Recall that there is an embedding of M in M and of Z, in %,
(respectively as the stabilizer of the origin in the standard action on
R™, and as the set of lattices in the space of grids). We let H' denote
the image of H, under this embedding, and in the linear case we set
HY H and let H Ly be the image of Hg Z" under this embedding, and
let v be the H-homogeneous measure on HL;. Because the action of
SL4(R) is ergodic with respect to v, we can find g; so that for £ = ¢;Z"
we have SLg(R)Ly = HLy = HLp. It is not hard to check that with
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these choices, the desired conclusions hold. The proof in the affine case
is similar, taking H = H' x R™ and z‘l(ﬂng”). O

3.3. Preparations for the proof of Lemma Recall that £, =
w(Ly). A vector space V < R™ is called £;-rational if V n L, is a lattice
in V. In other words a subspace V is L;-rational if it is of the form
g 1VV for some rational subspace W < R", i.e., a subspace spanned by
vectors with rational entries.

Lemma 3.4. The following implications hold.

(a) (D) = Vpnys ts not contained in a proper Lq-rational subspace.

(b) (I) = Vi contains no nontrivial L-rational subspace.
(c¢) (I) and (D) = (irred).

Variants of statements (a) and (b) are given in [Ple03], but we give
a complete proof for the convenience of the reader.

Proof. We will prove all three statements by contradiction. Suppose
that (a) fails, so that there is a proper Lj-rational subspace W con-
taining Vppys. Let W+ be an £;-rational complement of W. Since W+
is £;-rational, £, is mapped to a lattice in W+ under the projection
R™ — W+, and hence the projection of £; to W+ is discrete. On the
other hand, R” — W+ factors through Vi, since Vonys © W, and by
(D) the image of £; is dense in Vi,. Thus, the projection of £y is
dense in W+, a contradiction.

Now suppose that (b) fails, and Vi, contains a nontrivial £;-rational
subspace W. Then Vi, which is the kernel of the map R" — Vs,
contains W n L,, which by assumption is nontrivial. This contradicts
).

Now suppose (D) and (I) hold but (irred) fails, so that there is a
proper H -invariant Q-rational subspace W. From (b) we know that
g 1VV is not contained in Viy. Hence some u € g 1I/V can be written as

U= Uy + U, Up € Vpnys \ {0}, w; € Vig.
Since SL4(R) = H = g H,g;", g/W is also SLq(R)-invariant. Since

SL4(R) acts trivially on Viy, for any g € SLy(R) we have
gu — U = g, — Up € Vihys.
We can find g € SLy4(R) such that gu, # u,, and hence g, W N Vinys is

nontrivial. Since SLq(R) acts irreducibly on Vpys, Vphys_C g,W. This
contradicts the conclusion of (a). U

Theorem 3.5 (Morris). Let n > d > 2, and let S be a connected real
algebraic group which is R-almost simple, and contains the image of
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SL4(R) under the top-left corner embedding (see (3.6)). Then there
are k > d,{ = d and g € SL,(R) such that gSg~! is the image of either
SLi(R) or Spy,(R) under the top-left corner embedding, and the latter
can only occur when d = 2.

In this statement, by the ‘top-left corner embedding of Sp,,(R)’, we
mean the image under (3.6)), that is, the elements of SLox(R) stabilizing
a non-degenerate alternating bilinear form on R?*. As is well-known,
such a form can be taken to be defined by

w(£z737]) = _w(gjafl) = 51']" w(fuf]) = w(glag:?) =0
for some basis 71, ..., Tk, U1, . - -, Y of R,

This result was proved by Dave Morris in 2014, in connection with
prior work of one of the authors and Solomon. Namely, the result
appeared in an initial ArXiV version [SW14] (in a slightly different
form) but eventually did not appear in the published version [SW16].

We will refer to the image of SLy(R) under the top-left corner em-
bedding in as the top-left copy of SLq(R). Clearly, with respect
to the decomposition

R* = RT@R", (3.7)
the top-left copy of SL4(R) acts via its standard action on the first
summand, and the second summand is the set of vectors fixed by the
action.

Let k be maximal, such that S contains a conjugate (over SL,(R))
of the top-left copy of SL(R). To make the ideas more transparent we
separate the proof into cases according to whether k& > 3 (the easier
case) or k = 2. The proofs in these cases are not independent — readers

interested in the case k = 2 are encouraged to first read the proof for
k= 3.

Proof in case k = 3. We recall the following result of Mostow [Mosb5|:
If Gy ¢ -+ < G, < SL,(R) are connected reductive real algebraic
groups, then there is z € SL,(R) such that z7'G;z is self-adjoint for
every i. That is, if ¢ € 27'G;x, then the transpose of g is also in
7 1Gx.

Replacing S by a conjugate, we may assume that S contains the
top-left embedding of SL;(R), which we denote by F. By Mostow’s
theorem, there is x € SL,(R), such that z7!Fx and z7'Sz are self-
adjoint. Let V' be the (n — k)-dimensional subspace of R™ which is
pointwise fixed by F. Since SO, (R) acts transitively on the set of
subspaces of any given dimension, there is some h € SO, (R), such that
zh(V) = V. After replacing x with xh, we may assume that z~'Fz
fixes pointwise the second summand in the splitting , and z ! Fx
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and x7'Sz are self-adjoint (because this property is not affected by
conjugation by an element of SO,,(R)). We conclude that z7!Fx = F.
Thus, we may assume that S is self-adjoint and contains F. We will
assume that S # F' and derive a contradiction to the maximality of k.
Since F' & S are connected, their Lie algebras f, s satisfy dim f < dim s.

For 1 <i,j < n, let e; ; be the elementary matrix with 1 in the (7, 5)
entry, and all other entries 0. Write

sLR) =F;0X, @ DX, QY@ DY, (3.8)

where

e 50,(R) and f are the Lie algebras of SL, (R) and F', respectively,

e ; is the subspace of sl,(R) fixed pointwise by Ad(F), where
Ad : SL,(R) — Aut(sl,(R)) is the adjoint representation,

e X, is the linear span of {e;; : k+1<j <n}, and

e Y, is the linear span of {e;; : k+1<i<n}.

Now we denote by A the group of diagonal matrices in F' with positive
entries. We write an element a € A as

a = diag(a1, as, ..., ax-1, (araz- - ap_1)~",1,..., 1), (3.9)

and denote by y; the characters a — a;, where ay o (ay---ap_1)t.
Since k > 3, the characters x;, x; ' are distinct, for i = 1,...,k, and
the subspaces X1, Xo,..., X} and Y, Ys, ..., Y, are the corresponding
weight spaces, that is,

o X; ={zesl,(R):Ad(a)(z) = xi(a)x for all a € A}, and
o Y, = {zesl,(R):Ad(a)(z) = Xj_l(a)x for all a € A}.

We will use repeatedly the fact that if [ is an Ad(A)-invariant subspace
of s1,,(R), and v € [ has a nontrivial projection onto some weight space,
then this projection is contained in [.

Since A < S, s is invariant under Ad(A). Since S is R-almost simple
and dim f < dim s, s cannot be contained in §@® 3, and hence s projects
nontrivially to some X; or Y;. In fact, since S is self-adjoint, it must
project nontrivially to both X; and Y;, for some 7. Since X; is a weight
space of Ad(A), we find that X; n s is nontrivial. Conjugating by an
element of I, x SO,,_;(R), we may assume that s contains the matrix
eik+1- Applying an appropriate element of Ad(SOg(R)) shows that
erk+1 € 5. Then, since S is self-adjoint, s also contains ey ;. There-
fore, s contains the Lie subalgebra generated by f, ey x+1, and ek,
which is the Lie subalgebra of F’, the top-left copy of SLj,1(R). Thus
S contains F’, contradicting the maximality of k, and completing the
proof in case k > 3. 0
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Proof in case k = 2. In this case we also have d = 2. Arguing as in the
case k > 3 we may assume that S properly contains F, the top-left
copy of SLy(R), and is self-adjoint. Let ¢ be the maximal number so

that S contains a copy of H ©p 1 x - - - x Iy, where each F, is isomorphic
to SLy(R) and there is an H-invariant direct sum decomposition R" =
Vi - @V, @V, where the spaces Vi, ..., V, are two dimensional, and
each F, acts linearly on V; and trivially on @,_, V. By assumption
¢ = 1, and there is a conjugation taking H into a top-left copy of
SL:(R), where t = 2¢ = 2. We replace H and S by their images under
this conjugacy (retaining the same names H and S). By Mostow’s
theorem we can assume that H and S are both self-adjoint.
Our first goal is to show that

S is also contained in the top-left copy of SL:(R). (3.10)
Indeed, in analogy with (3.8]), consider the decomposition
slL(R)=1l@;0m, wherem =X, @ @ X; @Y1 @ - DY,

and

[ is the Lie algebra of the top-left SL;(R),
3 is the Lie algebra of the centralizer of the top-left SL;(R),
X is the linear span of {¢;; :t +1<j<n}, and
Y; is the linear span of {e;; :t+1<i<n}.
With this notation, our claim is that s < [.
We note that

s does not contain a nonzero element in some X; or some Y;. (3.11)

Indeed, if v € (s N X;) ~ {0}, we could re-index to assume i = 1,
and conjugate by an element of I; x SO,,_;(R) and rescale to assume
v = e1441. Since s is self-adjoint, we also have e;y11 € 5. Since fi, ;411
and e;,.; generate a Lie algebra isomorphic to sl3(R), this gives a
contradiction to the choice of k£ and proves .

If s ¢ [, using that s is simple and the Lie algebras [, 3 commute,
we see that the projection of s onto m is nontrivial; indeed, if s = [D 3
then the kernel of the projection of s to 3 contains f and by simplicity
is equal to s.

Let A’ be the intersection of H with the diagonal subgroup and let
a’ be its Lie algebra. For each odd index i < ¢, the spaces X; @ Y; 1
and X;,1 @Y, are weight spaces for Ad(A’), and hence there is some
i such that s n (X; @ Yis1 U X;41 @Y;) contains a nonzero element u.
Re-indexing, conjugating and rescaling as in the proof of , we can

assume u = €y 441 + Zj>t+1 a;ejo2, where the a; are not all zero. By a
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further conjugation by an element of I; x SO,,_(R) that fixes ey .1, we
can also assume that a; = 0 for j > ¢ + 2, that is, we can write

U= €141+ aery12 + beryoo,  with (a,b) # (0,0).

Using brackets to denote the commutator [z, y] = xy—yz , we compute

def
w= [u, [u, e21]] = [€1441 + a€ir12 + berio2, —€2441 + a€rr11 + berioq]

=a(e11 +e22 —2€441041) — 2b€10,441
and
[UJ, U] = 3aey 41 — 3a2€t+1,2 — 3abegy a9,
so that
6aeir11 = [w,u] + 3au € s.

It follows from (3.11]) that @ = 0, and thus s contains ;—;w = €142.441-
Since s is self-adjoint it also contains e;4q 412, and since these two vec-
tors generate a copy of sly(R) which is contained in 3, and acts on R™ by
the standard two-dimensional representation, we have a contradiction

to the definition of £. This proves .

Since S properly contains F' we have ¢ > 1. We will now show that s
is the Lie algebra sp(2¢, R) of the top-left corner embedding of Sp,,(R).
We will begin with the case ¢ = 2 as it will make the argument more
transparent. That is, up to a conjugation in SL,(R), we want to show
that

s=bhDs13D514D 523D 524, (3.12)
where h =~ s1(2,R) @ s[(2,R) s is the Lie algebra of H, and

def def
513 = span(ey3 — e42) 514 = span(e;q + €39)

- N (3.13)
523 = span(ez3 +€41) 524 = span(ezq —€31).
To this end, let
. £
13 = span(ers, es2), I = span(en, €3.2), (3.14)

def def
[2,3 = Span(€2,3, 64,1), [2,4 = Span(€274, 63,1)
be the weight spaces for the action of Ad(A’), which are not in h. Let

;  def
ij = g 09
where the indices (i, j) range over {1,2} x {3,4}. Our goal is to show
that
for every i,j, s ; = si;. (3.15)

2

We first show that

for every 4,7, dim(s;;) = 1. (3.16)
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To this end, note that the ad-action of the off-diagonal elements of §
permutes the spaces [; ; transitively. For example,

[1,3 = [61,27 [2,3] ) [1,3 = [64,3, [1,4] )

and so on. Since e;9, €21, €34, €43 € 6, this ad-action also permutes the
intersections s; ;, and thus they all have the same dimension. If this
dimension is 0 then s = b, contradicting the fact that s is simple, and
if this dimension is 2, then s = s[(4, R), contradicting the definition of
k. We have shown (|3.16]).

We now claim that

s 3 is equal to either ;3 = span(e;3—es2) or span(e;z+es). (3.17)
To see this, let u = aey 3 + beyy € 81 5\ {0}. By (3.11)), a,b are both

. . .. def
nonzero. Since s is self-adjoint v'= aes; + bes 4 € 5 and hence v € s} ,.
Also we have

def
w = [6271, [63,4, U]] = [6271, —aeigq + b€3,2] = —Q€z4 — b€371 €S5.

Since w and v are both nonzero elements of s5,, by (3.16]) they are
scalar multiples of each other and thus there is ¢ # 0 so that w = cv.

This forces —a = ¢b and —b = ca and so ¢ = +1, proving (3.17)).

Using the ad-action as before we see that in order to obtain (3.15), it
suffices to show that after a conjugation, we have s ; = s;3. Suppose
that s 3 = span(e; 3 + e42). Then

5’1,4 = span([es 4, €13 + es2]) = span(er s — e32),

and we can apply a permutation matrix swapping the indices 3,4 to
obtain

5/173 = span(eLg — 6472) = 5173.
We have shown , completing the proof in case ¢ = 2.

Note that for the case ¢ = 2 we only applied one conjugation, namely
the conjugation swapping the indices 3,4. Thus, by induction on ¢, we
see that after a conjugation, we have the following. Fori e {1,...,/—1},
let SL{(R) be the copy of SL;(R) embedded in SL,(R) in a 4 x 4 block
corresponding to indices 2i —1,2i,2i+1,2i +2. Let H® = F;x [,
SL? (R) be the corresponding diagonal copies of SLy(R), and let 5
be the intersection of s with the Lie algebra of SLEf) (R). Then s is
the obvious embedding of sp(4,R) (namely, the embedding given for
i = 1 by (3.12) and (3.13))). The Lie algebras s} generate sp(2¢,R)
(namely, the Lie algebra of the top-left Spy,(R)). This implies that H
contains Spy,(R). Since Spy,(R) is a maximal subgroup of SLyy(R), we
must have that S = Sp,,(R). O
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3.4. Proof of Lemma Since 7 is proper, we have
Hg T =n(Hgl') =z (Fgl') = SLa(R)g L.

Since H, = g 9] 'Hg L by Theorem , H, is the connected component of
the 1dent1ty in the group of real pomts of a Q-algebraic group H. From
now on we replace F' with its image under 7, i.e., denote F' = SL4(R).
We also write

F’difgl_ngl, so that F'T = H,T.

We need to show that H admits the description given in the state-
ment. We divide the proof into steps.

Step 1: H is semisimple. Let U be the radical of H. By Theo-
rem ﬂ it is defined over Q and unipotent, U = Uy, is the unipotent
radical of H,;, and U is connected ([Bor91, 11.21]). Let VY be the
subspace of R" fixed by U. Since Ug < U is Zariski dense in U (see
[Bor91l Cor. 18.3]), we have

U={2eR":uz =z for all ue Ug}.

Thus VY is defined over Q.

Furthermore, since every unipotent subgroup can be put in an upper
triangular form, VY # {0}, and is a proper subspace of R™ unless U
is trivial. Since U is normal in H,, the space VY is H,-invariant, and
thus by assumption (irred), VU is not a proper subspace of R™. It
follows that U is trivial, and hence H; is semisimple. Therefore so is

H.

For a group M and normal subgroups My, ..., My, the product is the
subgroup

HMdef{ml cmyimy € My, i =1,... k}.

Note that | [ M; is also normal and does not depend on the ordering of
the M;. Let kg be one of the fields Q or R. Recall that an almost direct
product is the image of a direct product under a homomorphism with
finite kernel (that is, isogenous to a direct product). A semisimple
ko-group is an almost direct product of its kg-almost simple normal
subgroups, and such a decomposition is unique up to permuting the
ko-almost simple factors.

We write H in two ways: as an almost direct product of its R-almost
simple factors S;, and as an almost direct product of its Q-almost
simple factors T;, and let S; and T} denote respectively the connected
component of the identity in the group of R-points of S; and T';. Since
every T; can be further decomposed into R-almost simple factors, and
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since these decompositions are unique, the decomposition of H into the
S; refines the decomposition of H into the T;. In other words, there is
a partition of the S; into subsets such that each T is a product of the
S; in one subset of the partition. Then H, is the product of the S;. For
h e H,, we can write h = hy - - - hy, where h; € S;, and if h = A --- h} is
another such presentation, then for each i, hih; ' belongs to the finite
center of H;.

Step 2: I is contained in one of the S;, and H is Q-almost
simple. The second assertion follows from the first one. Indeed, by re-
indexing, let S7 and T denote respectively the connected component of
the identity in the real points of the R- and Q-simple factors containing
F’. Then Sy < T; and T} does not properly contain the real points of
any Q-subgroup containing S, and by the last assertion of Theorem
[2.4) we have that H, = T.

Turning to the first assertion, let Z(S) denote the center of S, for

each i let S! be the quotient group S/ (Z(S) Tl Sj>, and let F!
denote the image of the projection of F’ to S.. Let

H,“ 1_[ S;,  where T {i: F/ is nontrivial}.
€l
Note that ig € Z if and only if for any subset 7' < F’ which generates
a dense subgroup, there is f’ € F' which can be written as a product
of elements f; in S;, where f; is not central in Sj,. Clearly F' < H,,
and our goal is to show that H, is equal to one of the S;, or in other
words that #Z = 1. Also, for i € Z, F} is isogenous to SLy(R).

Recall that a representation of a group H on a vector space V is
1sotypic if V' is the direct sum of k£ € N isomorphic irreducible represen-
tations for H, where k is referred to as the multiplicity. We will also use
the term H -isotypic, if we want to make the dependence on H explicit.
A linear representation of a semisimple group has a unique presentation

as a direct sum of isotypic representations (up to permuting factors).

Let Vi o 9, (Vonys) and Vi, o g, (Vint). Then the decomposition

R"™ = Vi)« ® Vi, is the decomposition of R" into F'-isotypic represen-
tations, and the action of F on V}, . is irreducible. In particular, the
multiplicity of the representation on VJ}, . is equal to one.

Let Vi1 ®---@®V; be a decomposition of R™ into H,-isotypic repre-
sentations. Since F' < H,, each V; is F’-invariant, and decomposes
further into isotypic representations for F”. Since V) is an isotypical
component of F” of multiplicity one, Vp’hyS is contained in one of the

: / 3 / /!
V. By renumbering we can assume V), < V;. Since F” acts on Vi o
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irreducibly, the action of H, on V; is irreducible, and the H,-isotypic
component associated to V4 has multiplicity one. Since F” acts trivially

on Vii;, which is a complementary subspace to Vi) ., the action of F’
on each Vj is trivial for £ = 2, ..., that is,
t
F' < (ker (H,lv,). (3.18)
=2

The right-hand side of is a normal subgroup of H,, and thus
a product | [, 75 for some J < Z. By the assumption that F is
nontrivial for each ¢ € Z, we must have that J = Z, that is, the group
on the right-hand side of must coincide with H,. This means
that for ¢ > 2, the V; are trivial representations for H,, and hence of
S; for each i € 7.

Let F” denote the elements of F” whose eigenvalues on Vj;  are all
real, distinct from each other, and not equal to 1. Since these conditions
are invariant under conjugation and F” is simple, F’ generates a dense
subgroup of F’'. Write f’ as a product of elements f/, where f! € S;.
Then the elements f/ commute with each other and with f’. Thus
each f/ fixes the eigenspaces for f’ and hence each f! preserves the
eigenspace decomposition of the action of f' on R”. In particular, f/
preserves V) for each i € 7.

Re-indexing if necessary we can assume that 1 € Z, and suppose by
contradiction that there is i € Z ~ {1}. There is f’ € F’ such that,
when writing f” as a product of elements f/ € S, fi acts on VJ}, o with
infinite order (this property does not depend on the presentation of
f as a product of the fj). Then the action of fj on V) . preserves

an cigenspace V’, with & ' dimV’ < d = dim Vs Since the action

of S;, commutes with the action of f|, the space V' is preserved by
Siy, and hence by fi . The group generated by all such elements f;
is isogenous to Fj and hence to SLy(R). Thus, it has no nontrivial
representations on any d’-dimensional real vector space, for d' < d.
This implies that the action of S;, on V' has an infinite kernel, but
since S;, is simple, the action of S;; on V' must also be trivial.

So the space

hys

V" E span S1(V') < span S (Vi) < Vi

p

is acted on trivially by S;, for any i € Z \ {1}. In particular, V" is
H,-invariant. By the irreducibility of the H,-action on Vi, this means
that V1 = V", and therefore S, acts trivially on Vi. It follows that Fj,
acts trivially on V; for each iy € Z \ {1}. Since S;, acts trivially on V
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for all ig € Z and all £ > 2, we get that in any decomposition of ' € F”,
all the elements f/ for i > 2 act trivially on R™. That is, Z = {1}.

Step 3: Restriction of scalars, in explicit form. Since H is Q-
almost simple, it is obtained by restriction of scalars from an absolutely
almost simple Lie algebraic group defined over a number field K — see
[BT65, 6.21] for a proof. We will reprove this result in our setup,
obtaining more information about the embedding of H in SL, (R).

Using Step 2 and re-indexing, let S; = (S;)i be the connected com-

ponent of the identity in the R-almost simple group containing £, and

set G Si, G def S1. From Theorem , we only have two possibilities

for Gg, and in particular we have that G is actually C-almost simple.
Since H is defined over Q, the C-almost simple factors of H are defined
over a finite extension of Q; this is well-known (see e.g. [BT65, §2.15b)])
but we were unable to find a suitable reference, so we sketch the argu-
ment. The group H has a maximal torus which is defined over Q and
split over a finite extension L of Q by [Bor91, §8, §18]. For each root
a, the group GG, which is the centralizer of the connected component
of the identity in ker o, is defined over L (see [Bor91l, Proof of Thm.
18.7]). The groups G, generate H [Bor91, §14] and each C-almost
simple factor either contains G, or intersects it trivially. Thus, any
C-almost simple factor S can be described as the elements commuting
with all the G, not contained in S. In particular, the C-almost simple
factors are defined over L.

Replacing L if necessary with its Galois extension, suppose that L is
the smallest Galois extension of Q such that all C-simple factors of H
are defined over L. Let Gal(L/Q) denote the Galois group of L, which
we can think of explicitly as the group of field automorphisms of L. If
V < A" is an affine variety defined over L then for any o € Gal(L/Q)
there is a new affine variety, which we will denote by V7, obtained
by acting on the coefficients of the defining polynomial equations, and
o acts on the points of L™ by acting separately on each component.
The assignments V — V7 and ¢ : . — LL are compatible in the sense
that for x € L™, x € Vp, if and only if o(z) € V{. Moreover, if V
is defined over IL, then it is defined over Q if and only if V? = V
for every o € Gal(LL/Q); this follows from the more general fact (see
[Bor91l §AG12-§AG14]), that if " is a number field then V is defined
over I” if and only if for any o € Gal(Q/Q) such that o|r, = Id we have
V7 =V, where Q denotes the algebraic closure of Q.

Let D denote the number of C-almost simple factors of H, or equiv-
alently, the number of LL-almost simple factors of H. The action of
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Gal(L/Q) permutes these factors, and this permutation action is tran-
sitive since H is Q-almost simple. Thus, the subgroup

A e Gal(L/Q): G° = G}

is of index D in Gal(L/Q), and the C-almost simple factors are the
(distinct) images of G by elements o7y, ...,0p € Gal(L/Q), where the

o; are coset representatives of Gal(L/Q)/A.

Let
def

K={rel:VoeA, o(x)=uz}.
Complex conjugation z — z induces an automorphism of I belonging
to A, and since G is defined over R, we see that K < R. By the Galois
correspondence, deg(K/Q) = D and

A ={oeGal(L/Q): forall z e K, o(x) = x}.

We claim that G is defined over K, and G is not defined over any
proper subfield of K. Indeed, if o € Gal(Q/Q) satisfies o|x = Id, then
ol € A and hence G° = G. Furthermore, if G were defined over a
proper subfield K’ ¢ K, then its stability group A’ would be of index
D" < D and therefore the collection {G? : 0 € Gal(L/Q)} would have
cardinality D’.

We will show that H is isomorphic (as a Q-algebraic group) to
Resk/g(G). Moreover, we will show that the given inclusion H < SL,,
is, up to a conjugation over SL,(R n Q), the matrix presentation de-
scribed in . By Theorem G is, up to a conjugation in SL,(R),
either the top-left copy of SLg(R) or the top-left copy of Spy,(R) for
some k > 2 (and the latter can only arise when d = 2). In the remain-
der of the proof we will refer to these two cases as the SL; case and
the Sp,. case.

We know that G is conjugate over SL,(R) to the top-left copy of
SLi(R) (in the SLj case) or Spy.(R) (in the Sp,, case). Therefore
there is a G-invariant subspace V' < R™, of dimension %k (in the SLj
case) and 2k (in the Sp,, case) and a complementary subspace V such
that R = V @V}, the action of G on V is irreducible, and Vj is the
subspace of G-fixed vectors in R”. We claim that we can recover V/
explicitly as

V =span{gr —x: g€ G, x € R"}. (3.19)

Indeed, denote the RHS of (3.19) by W. We clearly have W < V| and
for the reverse inclusion, it is enough to show that W is G-invariant.
To see this, let gg, g € G and x € R". Then

90(g7 — x) = goggy *gor — gox = g’z — @,



32 RENE RUHR, YOTAM SMILANSKY, AND BARAK WEISS

where ¢ dof 9099, and 2’ def gox. This shows that the generators of W
are mapped to W by any g € G.

From (3.19) and since G is defined over K < R, we deduce that
V = Vg for a subspace V < A" defined over K. Clearly 1} is also
defined over K. Arguing as in , but using F’ in place of G and

hys iDL Place of V; we have V[, o = span{f'z —x: f' € F', x € R"},
and therefore Vi; < V.

We can think of Vg as a Q-linear subspace of Q", and can discuss
the action of Gal(Q/Q) as before. We have that (G;)g preserves the
decomposition Q" = V3 @ (Vg')g- We claim that

hys
hys

D

Q" = g—)lvd. (3.20)
To see this, let W denote the vector subspace of A™ spanned by [ J, V7.
Since it is Gal(Q/Q)-invariant, it is defined over Q. Since Vihys =
g;lvphys and Z" = g;lﬁl, Lemma/3.4fimplies that V. is not contained
in any proper rational subspace of R™. This implies that Wi = R"
and thus W = A”. The groups G; commute, and V7 is a G;-isotypic
component of multiplicity one. For each pair of distinct 7, j, each g € G;
defines an intertwining operator for the action of G;, and thus by
Schur’s lemma (see e.g. [Kna02, Cor. 4.9]), the action of G; on V%
factors through an abelian group. Since G; is simple, this means that
each G; acts trivially on V7% for j # 4. In particular, V7 n V% = {0}
for i # j, and we have shown .

It follows from that R" is the space of R-points of Resg/q(V).
Write D = r + 2s as in §2.4 Since dim V% = dimV% for every
© # j, we have that H, is realized explicitly in r + s blocks. For real
embeddings 0;,7 = 1,...,r we have that the dimension (over R) of
Vi is k (in the SLy case) and 2k (in the Sp,, case), and for o,,;, j =
1,...,s which are non-conjugate complex embeddings of K we have
that the dimension (over R) of Vg’ is 2k (in the SLj case) and 4k
(in the Spy, case). Putting this together we get that n = Dk (in the
SLy case) and n = 2Dk (in the Sp,, case), and the embedding of H, in
SL,(R) is the one given in , where ¢ : SL, — SL; is the identity
map (in the SLj case), and ¢ : Spy, — SLgj is the natural embedding
(in the Spy, case). In particular, we have proved that H = Resg g(G),
with the explicit form of restriction of scalars given in

Step 4: G as a K-group. It remains to identify the K-isomorphism
type of G. We proved in Step 3 that K < R, the decomposition
R™ = V@V into G-invariant subspaces is defined over K, and there is
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a conjugacy over SL,(K) sending G to the top-left corner embedding of
SLk(R) or of Spy,(R) (as defined after the statement of Theorem [3.5)).
We now show that as a K-group, G is K-isomorphic to either SL; or
SPay-

Consider first the SLg-case. Let G’ denote the conjugate of G con-
tained in SL(V). Since V is a K-subspace, we can take the conjugat-
ing element in SL,(K), that is, G’ = gGg~! for some g € SL,(K).
In particular, the groups G and G’ are K-isomorphic, and G' = Gg
is R-isomorphic to the top-left SL(R). Let G” = SL(V) considered
as a K-group. Then Gf is also R-isomorphic to SLg(R), and thus
G’ and G” have the same dimension (as algebraic varieties). Since

= gGgg™' = G”, there is a K-embedding G — G”, and since
these groups have the same dimension and are Zariski connected, G
and G” are K-isomorphic.

Now consider the Sp,,, case. Again let g € SL,,(K) be the conjugating
element sending G to G’ = gGg~! < SL(V). We have shown that
dim V' = 2k is even, and G} is R-isomorphic to Spy;(R), that is, there
is a nondegenerate alternating bilinear form w on Vg such that Gf is
the group of all R-linear transformations of V' preserving w. Note that
w is R-bilinear and takes values in R. We claim that there is a form «’
which is defined over K on V' (that is, takes values in K when evaluated
on elements of Vi), so that G} is contained in the group of R-linear
transformations of V' preserving w’. Once the claim is proved, we will
have that there is a K-embedding G < Sp(V,w’) (the group of linear
transformations of V' preserving w’) which will be an isomorphism by
dimension considerations as in the preceding case, thus proving that G
is K-isomorphic to Sp(V,w’) = Sp,.

To prove the claim, consider the collection /\Z(V*) of alternating
bilinear forms on V. This collection is a linear space, and the non-
degenerate forms form a Zariski open subset (since nondegeneracy is
equivalent to the non-vanishing of the determinant of the Gram ma-
trix of the form). Since G’ is a K-group, the subspace /\2(V*)G/ of
G/-invariant forms is a K-subspace, which is nonempty since its col-
lection of R-points contains w. Since K-points are Zariski dense in
K-subspaces, we find that there are nondegenerate symplectic K-forms
which are G’-invariant.

Finally, the proof of Theorem shows that in the symplectic case,
the space Vppys = R? is spanned by two vectors 7, ¢ satisfying w(Z, y) =
1; that is, Vpnys is a symplectic subspace for w. Write w as a linear
combination of forms w’ which are defined over K and G’-invariant.
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Since w(Z,y) # 0, there has to be some W' € (/\2(V*)G’/)]K for which
W'(Z, ) # 0. O

Remark 3.6. In the symplectic case, Step 4 also shows that there is a
symplectic form on the entire space R™ that is preserved by the entire
group H,. Indeed, the form W', which is symplectic and defined over
K, can be ‘pushed’ using the field embeddings o; to induce symplectic
forms on the spaces V7. We will not be using this fact and we leave
the details to the reader.

4. AN INTRINSIC DESCRIPTION OF THE MEASURES ARISING VIA W,

The following result shows that all RMS measures arise via the map
V... For a given constant ¢ > 0, we denote by p. : € (R?) — €' (R?) the
map induced by the dilation by ¢, that is, p.(F) = {cz : x € F}.

Theorem 4.1. Let F' be as in (3.1) and embedded in G via the top-
left corner embedding. For any ergodic F-invariant Borel probability
measure i1 on € (RY) which assigns full measure to irreducible cut-and-
project sets, there is an irreducible cut-and-project construction with
R™ = Vohys® Vint, Tphys, Tint, W and with ¥ as in , a constant ¢ > 0,
and an F-invariant ergodic homogeneous measure fi on %,, such that
1= pesVyli. For p-a.e. A we have

- ()’

where D(A) is the density of A as defined in (1.10)).

We will split the proof into the linear and affine case.

Proof of Theorem affine case. Suppose p is ASLy(R)-invariant and
F = ASL4(R), and let {g;} be a one-parameter diagonalizable subgroup
of SLy(R) < F. By the Mautner phenomenon (see [EWT11]), the ac-
tion of {g;} on (€ (R?), u) is ergodic. Thus, by the Birkhoff pointwise
ergodic theorem, there is a subset Xy < €' (R%) of full y-measure such
that for all A € Xy we have

1 T
RO

Since the function A — D(A) is measurable and invariant, we can
further assume that the value of D(A) is the same for each A € Xj.
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Let U, Q, my be as in Theorem [2.5. Then by Fubini’s theorem, and
since p is U-invariant, we have

| j(Xo) = mU1< 5 L s(u=Xo) dmy (u)

_ f [mUI(Q) L Ly, (ud) de(u)] du(A),

where 1x, is the indicator function of X,. Thus the inner integral
on the RHS is equal to one on a subset of full measure; i.e., there
is X; < €(RY) of full measure such that for every A € X; we have
ul € Xy for my-a.e. u € Q. This implies that for A € X; we have

1 T
T Jo L(gtu)*(SA dmy(u) dt =10 [ (4.2)

Let A € X; be an irreducible cut-and-project set, that is, A = U(L),
where £ is a grid and ¥ is defined using data d,m,n, Viuys, Vine, W
satisfying (D), (I), (Reg). We can simultancously rescale £, the
window W, and the metric on Vs by the same positive scalar, in

order to assume that £ € %,. Namely, set ¢; o covol(ﬁ)_%, so that

Ly def a1 L € %, satisfies

1
A= A(,C, W) = —A(El, 61W).

&

Now solving for ¢ = - in (L.10]) gives (4.1)).
Define a sequence of measures ny on %, by

o 1 (7
nr d:ffj J (geu) 0 dmy (u) dt.
0 Ja

That is, the measures ny are defined by the same averaging as in ,
but for the action on %, rather than on ¢ (R?). By (3.2), their push-
forward under ¥ are the measures appearing on the LHS of . By
Theorem [2.5| we have np —7_,4 [t for some homogeneous measure i on
%,. By assertion (i) of Theorem [3.1] f is invariant under translation
by any element of R", and in particular any element of Vi,;. Hence,

by Corollary 2.2 z is a continuity point of the map ¥,. By (4.2)),
V.nr — p and by continuity, u = W, [. O

For the case in which p is SL4(R)-invariant but not ASL,(R)-invariant,
we will need the following result:

Lemma 4.2. With the notation of Theorem [3.1], let
Hy < g H'g;”
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(so that H] = H 1in the linear case and H} is a Levi subgroup of H in
the affine case), and let v be a nonzero vector in L,. Then the orbit of
v under the linear action of H| is an open dense subset of R".

Proof. Write v = gyu for u € Z" ~ {0}. It suffices to show that the orbit
H'u is open and dense in R™. The linear action of H' on R™ factors
through the group H, so we may replace H' with H;.

The action of SLi(IR) on R* has the property that the orbit of every
nonzero vector is dense. The same is true for the action of Sp,,(R)
on R?* (since any vector can be completed to a symplectic basis), for
the action of SL;(C) on C*¥ ~ R?* and for the action of Sp,,(C) on
C? ~ R*. By Step 3 of the proof of Lemma [3.2, H, is the product
of groups G;, and we have a direct product R" = @[FV;, with the
following properties:

e For i = 1,...,r we have a real field embedding o;, and V; =
o(V)g; for i = r +1,...,r + s we have representatives o; of
pairs of complex embeddings, and V; = o(V)c¢.

e Fori=1,...,7r we have G; = 0;(G)gr and for i =r+1,...,s
we have G; = 0;,(G)c.

e In the SLj-case (resp., the Sp,, case), V; is isomorphic to R*
(resp., R%), with the standard action.

e The action of G; on V; is the obtained from the action of G;
on Vj by applying ;. In particular, for real embeddings it is
isomorphic to the standard action of SLi(R) or Sp,,(R), and
for complex embeddings it is isomorphic to the standard action

of SL,(C) or Spy,(C).

Thus, it is enough to show that for any u € Z™ \ {0}, and for any field
embedding o; of K, the projection u; of u to the factor corresponding
to o; 1s nonzero.

Suppose to the contrary that u; = 0 for some j, and let a € SL,(R)
be a diagonalizable matrix, such that a acts on the ¢-th factor of R"
corresponding to the field embedding o, as a scalar matrix Ay-1d, where
the A\, are positive real scalars satisfying

Aj>1, A <1lfori+#j and H)\gzl.
¢

That is, a belongs to the centralizer of H' in SL,(R), and a’u —;_,4 0.
This implies by Mahler’s compactness criterion that the sequence a‘Z"
is divergent (eventually escapes every compact subset of 2;,). In par-
ticular, the orbit of the identity coset SL,(Z) under the centralizer of
H' is not compact. From this, via the implication 3 = 2 in [EMS97,
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Lemma 5.1], we see that H' is contained in a proper Q-parabolic sub-
group of SL,,(R), and hence (see e.g. [Borl9, §11.14]) leaves invariant
a proper Q-subspace of R™. This is a contradiction to (irred). O

Proof of Theorem[{.1] linear case. We repeat the argument given for
the affine case. The only complication is in establishing ny — g implies
U.nr — V,.h, as in the last paragraph of the proof. In the proof for the
affine case, this was obtained from Corollary which shows that [
is a continuity point for the map V., using the fact that g is invariant
under translations by elements of Vi,. In the linear situation i no
longer has this continuity property.
To overcome this difficulty we argue as follows. We note that if

ap({Le?,  mn(L)ndW #a}) =0 (4.3)

then Corollary can still be applied to show that [ is a continuity
point for ¥,. Thus, we can assume from now on that (4.3)) fails. Since
supp it = H Ly, this implies that the Haar measure my of H satisfies

my ({h € H : mn(hLy) n W # &}) > 0. (4.4)
Since L, is countable, there must be some v € £ such that
my ({h € H : my(hv) € 0W}) > 0. (4.5)

By Lemma [£.2] there is a unique element v; € R™ which is fixed by H
(namely v; = ¢1(0)), and for any v # v, the orbit of v under the action
of H is an open dense subset of R™. In particular, if v # v; then the
map h — hv sends mpy to an absolutely continuous measure on R",
and for such v cannot hold by (Reg).

Thus, we must have v = v;. In this case hv = v and 7y (hv) € W
for all h € H. By examining the proof of Proposition [2.1] we see that
the map

H— €(RY),  hw U(hL)

is still continuous at any point outside a set of zero measure; namely, the
set of h for which there is v # vy such that 7, (hv) € 0W. Furthermore,
the measure i and the measures 7 are all supported on the orbit HL;.
Thus, we can apply the argument proving Corollary[2.2] to see that the
restriction of W, to measures supported on the orbit H L is continuous.
This is sufficient to conclude that V,nr — V. as T — o0. O

Remark 4.3. Theorem remains valid when one considers other
topologies (and potentially, Borel structures) on € (R?), as is done for
example in [Vee98, MS19]. Thus, in the terminology of [Vee9§|, the
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theorem is valid if fi is a Siegel measure giving full measure to cut-and-
project sets. The proof is essentially identical as Proposition |2.1| and
Corollary[2.9 are still valid in this setting.

5. SOME CONSEQUENCES OF THE CLASSIFICATION

With Theorem in hand it is easy to obtain explicit descriptions
of RMS measures in low dimensions. Recall that we refer to the unique
ASL,, (R)-invariant probability measure on %, and the unique SL,,(R)-
invariant probability measure on Z,, as the Haar-Siegel measures.

Corollary 5.1. With the notation above, suppose that dim Viuys >
dim Viy. Then the only affine RMS measure is the one for which [i is
the Haar-Siegel measure on %, and the only linear RMS measure is
the one for which p is the Haar-Siegel measure on Z,,.

This reproves a result stated without proof in [MS14, Prop. 2.1].

Proof. In our classification result, there is k € {d,...,n} and D =
deg(K/Q) such that n = Dk in the SLi-case and n = 2Dk in the
Spys-case. Since

k>d=dimVypys > dim Vi =n—d=n—k, (5.1)

we obtain k£ > (D — 1)k in the SLj-case and k > (2D — 1)k in the Spy-
case. This is only possible if D = 1 and we are in the SLj-case. That
is, the only possible case is H' = SL,(R), and this gives the required
result. 0

We extend Corollary [5.1] to the case of equality:

Corollary 5.2. With the above notation, suppose that i is not one
of the Haar-Siegel measures mentioned in Corollary and suppose
dim Vipys = dim Vi, Then either d = 2 and H' = Sp,(R), or d > 2
and there is a real quadratic field K such that H' is (the group of real
points of ) Resgq(SLq).

Proof. If the strict inequality in (5.1) becomes non-strict, it is also
possible that H' = Resg/g(SLq) and K is a real quadratic field, or
K=Q, d=2and H' = Sp,(R). O

As shown by Pleasants [Ple03], an example of a cut-and-project set
associated with a real quadratic field as in Corollary[5.2]is the vertex set
of an Ammann-Beenker tiling, where in this case the associated field
is K = Q(v/2). Similarly, as discussed in [MSI14, §2.2], the Penrose
tiling vertex set can be described as a finite union of cut-and-project
sets associated with the real quadratic field Q(+/5).

We record the following trivial but useful fact.
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Proposition 5.3. For any affine RMS measure u, one can assume the
window W contains the origin in its interior.

Proof. Let W be the window in the construction of the RMS measure
u. By (Reg), let 2y € Vi be a point in the interior of W. By assertion
(i) of Theorem the measure pi is invariant under translations by
the full group R™ of translations, and in particular by the translation
by z¢. So we can replace any L € %, by £ — xy without affecting the
measure ji. But clearly for zy € Vi, we have

A(ﬁ, W) = A(E — X, W — .fL'0>.

So the measure i can be obtained from z by using the window W — x,
which contains the origin in its interior. 0

Recall that we have an inclusion
L SL”(R) - ASL”(R)a L(.g) = (97071)7

i.e., t(SL,(R)) is the stabilizer of the origin in the affine action of
ASL,(R) on R". This induces an inclusion z : 2, — %, and these
maps form right inverses to the maps appearing in (3.3)):

mToL = IdSLn(R)7 Mol = Id%n

In the linear case, we can use these maps to understand the measures j
on %, appearing in Theorem [3.1|in terms of measures on Z,,. Namely
we have:

Proposition 5.4. Let F' = SLy(R), embedded in ASL,(R) via (2.3)),
and let i be a measure on %, projecting to a linear RMS measure on
€ RY); i.e., ji is F-invariant and ergodic, and not invariant under

ASL4(R). Let H, Ly be as in Theorem . Let Edzefﬂ(F). Then one
of the following holds:

(i) We have supppii < o(Z5) and Tlsuppn S a homeomorphism
which maps fi to an F-invariant ergodic measure on %,. In
this case H is contained in QCEL(SLH(R)), i.e., H=1om(H).

(ii) We have u(e(Z7)) = 0, and there are Dy, Dy € N such that
T|suppia 5 @ closed map of degree Dy, and for every L € supp i
there is a lattice L' € Z,,, depending only on w(L), such that L'
contains w(L) with index [L': w(L)] = Do, and such that L is
a translate of w(L) by an element of L'.

Proof. The set of lattices 1(2Z,) < %, is clearly F-invariant, so by
ergodicity is either null or conull for the measure ji. If it is conull then
1(Z,) is a closed subset of full measure, i.e., supp i < 7(Z,). Since
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¢ is a right inverse for = we have that 7|sppz is @ homeomorphism.
Furthermore, since we have a containment of orbits

HLy =suppjic i(Z,) =GZ" = GL;,

and the groups H, G are connected analytic submanifolds of G, we have
a containment of groups H < G. This proves (i).
Now suppose [ (2(%£,)) = 0, and let H, £; be as in the statement

of Theorem M, so that suppiu = HL,. Let T" défg_l(ﬂ(ﬁl)) be the
orbit of £; under translations. Since we are in the linear case, H is
transverse to the group of translations R™ which moves along the fibers
of 7, and since HL; does not accumulate on itself and T" is compact,

the intersection Q % T A HL, is a finite set. Then by (3.4, for any
L = hL € suppi we have

hQ =7 (x(L)) n HLy,
and thus the map |suppz has fibers of a constant cardinality D, def |2].
Now denote

I heH:hLy =L}, T¥{heH:hQ =0
By equivariance we have I'y < I'; and the index of the inclusion is D,
since I'y acts transitively on €2. The bijection

R"/x(Ly) = T", x modx(Ly) — z + Ly

endows T" with the structure of a real torus, whose identity element
corresponds to £1. In these coordinates I's acts by affine maps of T"
but I'y acts by toral automorphisms, since it preserves £;. Thus, € is
a finite invariant set for the action of an irreducible lattice in a group
acting Lq-irreducibly on R™, and thus by [GS04|] consists of torsion
points in T". That is, there is ¢ € N so that they belong to the image
of é - Ly in T™. By equivariance the same statement holds, with the

same ¢, for hLq in place of £;. Thus, the second assertion holds if we
letﬁ’:%'ﬁ, Dy = q". O

Example 5.5. [t is possible that in case (ii) we have suppi N i(%2;,) #

@. For example, take n = 3,d = 2, let f be the translation f(z) © o+
%63, where eg is the unit vector in the third axis. Let H be the conju-
gate of SL3(R) by f and let Ly = f(Z?). Then F < H and HL, is a
closed homogeneous orbit. Since L1 ¢ 1(X3), the corresponding homo-
geneous measure does not satisfy (i). But one can check that the lattice
spany (e, 2e,, %eg) is contained in HLy, that is, HL; N 1(23) # 2.
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6. INTEGRABILITY OF THE SIEGEL-VEECH TRANSFORM

In this section we prove Theorem [1.2] Let pu be an RMS mea-
sure and let i, Hy, £; = ¢1Z" be as in Theorem [3.1] Recall that
the function f defined in is defined on supppu. Also let 7 :
ASL,(R) — SL,(R), 7 : %, — Z,, H, = n(H;) be as in Let

Ty Hy A ASL,(Z), Ty & H, A SL,(Z) be the Z-points of Hy and H,,

and let X, % Hy /Ty, X, dﬁfﬁl/El. We will use the results of 5 to
lift f to a function on X, and show that it is dominated by the pull-
back of a function on X;. For the arithmetic homogeneous space X,
we will develop the analogue of the Siegel summation formula and its
properties. Specifically, we will describe a Siegel set & < H,, which is
an easily described subset projecting onto X, and estimate the rate of

decay of the Haar measure of the subset of & covering the ‘thin part’
of X,.

6.1. Reduction theory for some arithmetic homogeneous spaces.
We begin our discussion of Siegel sets. For more details on the termi-
nology and statements given below, see [Bor19, Chaps. 11-13].

Let H be a semisimple Q-algebraic group, let P be a minimal Q-
parabolic subgroup, and let H = Hg. Then P = Py has a decomposi-
tion P = M AN (almost direct product), where:

e A is the group of R-points of a maximal Q-split torus A of P;

e N is the unipotent radical of P;

e and M is the connected component of the identity in the group
of R-points of M, a maximal Q-anisotropic Q-subgroup of the
centralizer of A in P.

Furthermore, H = K P for a maximal compact subgroup K of H.

As in §2.4] we think of H as concretely embedded in SL,,(R) for
some ng € N, where we take this embedding to be defined over Q for
the standard Q-structure on SL,,(R). Let a and n denote respectively
the Lie algebras of A and N, let & < a* denote the Q-roots of H
and choose an order on ® for which n is generated by the positive
root-spaces.

Every element of H can be written in the form

h=kman (ke K,meM,aec A neN), (6.1)

and one can express the Haar volume element dh of H in these coordi-
nates in the form

dh = dk dm dn po(a)da, (6.2)

where dk,dm,dn,da denote respectively the volume elements corre-
sponding to the Haar measures on the (unimodular) groups K, M, N, A,
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and
po(a) = [det (Ad(a)[n)| = exp(2p(X)), (6.3)

1
where a = exp(X) and p is the character on a given by p = 5 Z Calt,

acdt

for @* the positive roots in ®, and ¢, = dimb,. We note that this
formula for Haar measure is well-defined despite the fact that the de-
composition (|6.1f) is not unique.

Let A < ®* be a basis of simple Q-roots. For fixed t € R, let

A {exp(X): X ea, Yy e A, x(X) <t} (6.4)
and for a compact neighborhood of the identity w = M N, let
thw d:ef KAtw

These sets are referred to as Siegel sets, and by a fundamental result, a
finite union of translates of Siegel sets contains a fundamental domain
for the action of an arithmetic group; that is, there is a finite subset
Fy < Hg and there are t,w such that &;,Fy projects onto H/I'y,
where I'y = Hgz; equivalently H = &, ,Fyl'y. The sets &, Fj do not
represent I'g-cosets uniquely, in fact the map &;,Fy — H/T'y is far
from being injective. Nevertheless the formulas and make
it possible to make explicit computations with the restriction of Haar
measure to &, Fp, and in particular to show that Siegel sets have finite
Haar measure.

An important observation is that the set | J,.,, awa™ is bounded,
because of the definition of M and N and because of the compactness
of w. This means that a Siegel set is contained in a set of the form
w' Ay, where w' is a bounded subset of H.

1

6.2. The integrability exponent of an auxiliary function on Z,.
We will specialize the discussion in to the specific choices of H/T'y
that arise in our application. Let H be as above, let &, be a Siegel
set and let Fy < Hg be a finite subset for which &, ,F)l'y = H.
Given functions ¢, @2 defined on H, we will write ¢ < ( if there is
a constant ¢ such that for all x € &, F, we have ¢;(z) < cpa(x). The
constant c is called the implicit constant. We will also write ¢ = 9 if
Y1 € @9 and @9 < 1. In general these relations on functions depend
on the choice of Siegel set (i.e., the choice of t) and the choice of the
finite set Fj, but in the case we will be interested in, when @1, o are
actually lifts of function defined on H /T g, this notion does not depend
on choices.

We now define an auxiliary function, and compute its integrability
exponent. Given a nonzero discrete subgroup £ < R™ (not necessarily
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of rank n), we denote by covol(L’) the volume of a fundamental domain
for £" in spang(L') (with respect to Lebesgue measure on spang(L’),
normalized using the standard inner product on R™). For g € SL,(R)
and L = gZ" € 4, define

a(g) = a(L) < max {covol(L): L' = L, L+ {0}} . (6.5)

Recall that X, = H,/I'; is embedded in %, as the closed orbit X, =
H,7", and so we can consider the restrictions of o and & to X, and to
Hl .

Proposition 6.1. In the two cases G = SLi, G = Spy,, let p <
ro ™ rankg (G) + 1 (see (1.6)). Then

el () L™ (n), (6.6)

where i is the H,-invariant probability measure on X, .

Proof. Let A\; = N(L), ¢ = 1,...,n be the successive minima of a
lattice £, and let iy = io(L) be the index for which A\, (£) < 1 <
Xig+1(L). Then it is easy to see using Minkowski’s second theorem (see
e.g. [Cas97, §VIII.2]) that (as functions on Z,,),

-1
(L) = (A1 Nig(e)(£))
As a consequence, for any C' < SL,(R) bounded, we have
VueC, aul)=a(L)

(with the implicit constant depending on C).

Let T denote the diagonal subgroup of SL,(R), let 7" = T{ and
let t be the Lie algebra of T. In what follows we will replace T by its
conjugate over SL, (Q), where the conjugate will be conveniently chosen
with respect to H; and its subgroups. The reader should note that the
statements to follow about 7" are not affected by such conjugations in
SL.(Q).

It is easy to check that for the lattice Z" and for a = exp(diag(Xy,..., X)) €
T, we have \;(aZ") = eXi® where i — j(i) is a permutation giving
Xj(l) < Xj(Q) < K Xj(n), and hence

(6.7)

aa) = a(aZ™) = exp <— Z XZ-> : (6.8)

X;<0
Furthermore, for an element f; € SL,(Q) we have that \;(afoZ") =
eXi | where implicit constants depend on fy, and thus a(a) = a(afy).
Recall the notation D = deg(K/Q) from Theorem [3.1 We first
prove the proposition under the assumption D = 1. That is, we have
K=Q, H, =SLg(R) and n = k in case G = SLy, and n = 2k, H, =
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Spok(R) in case G = Sp,,. Now consider a Siegel set for H = H,
and suppose A; is the corresponding subset of the maximal Q-split
torus of H,. Since T is a maximal Q-split torus of SL, (R), by [Bor91]
Thm. 15.14], applying a conjugation in SL,(Q) we can assume that
A < T and the order on the roots ® is consistent with the standard
order on the group of characters on t; that is, A; < Ty for some t’, as
can be observed by an elementary computation (see [Borl9, Ex. 11.15]
for a description of A in the symplectic case). In particular, for a =
exp(diag(X,)) € A; we have exp(X;) < exp(Xj4q1) forj=1,...,n—1
Then from , for a € Ay and fy € Fy, where Fy is a finite subset of
(H,)g, we have

G(afo) = max exp(—f;(X)), (6.9)
where
Bi(x) ¥ iXi X = diag(X,). (6.10)

i=1

Since a Siegel set &;,, is contained in a set of the form w'A;, where '
is a compact subset of H, this implies that

a(kmanfy) « | Jnax exp(—5;(X)).

<j<n—1

We will first show the following:

(i) For any j, and any X € a for which exp(X) € A;, we have
(2 — roffy) (X) < 1.

(ii) The number r( is the largest number for which the conclusion
of (i) remains valid.

For £ =1,...,n— 1 let x, denote the simple roots on t, that is,

Xe i t— R,y (diag (X1,..., X)) € X1 — X0 (6.11)

In order to show (i), since the y, are bounded above on Ay, it suffices to
show that if we write 2p = > ayx, and 3; = Zbgj))@, then Tobéj) < ay.
In order to show (ii) it suffices to check that there are some j,¢ for
which equality holds, i.e., robéj ) = ap. This can be checked using the
tables of [Bou02), pp. 265-270, Plates I & III] (note that the restrictions

of the ; to A are the fundamental weights in both cases). Namely, for
G = SL; we have

Wk—j) ifl<j

ag =Lk — 1), robff) = {j(k_g) ifl>j
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and we have the desired inequality, with equality when ¢ = j. If G =
Sp,y, we have

E(lc+1) if 0 < j

ay = {€(2kk(;+€1)+ 1) lf l <k - béj) _ j( ) lfj <l<k
2o =R Gy

and again the inequality holds, with equality when ¢ = j = k.

Now to see that a € L? (E)? since a Siegel set is contained in w’A;
with &’ bounded, and by , it suffices to prove that for fy e Fy we
have §, a*(afy)po(a)da < 0. Using the preceding discussion, if we let
a; denote the cone in a with A; = exp(a;) (where A; is as in (6.4))), and
use that da is the pushforward under the exponential map of dX, we
have

JA aP(afo)pola) da « J max exp (—pBi(X)) - exp (2p(X)) dX

[ (2 0t (1 2) ) o) ax

a7 To

% | e R0(x)] 5 ax < oc,

ag

where the integral is finite as the integrand is the exponential of a linear
functional which is strictly decreasing along the cone a;. The same
Computation and (ii) show that we have a corresponding lower bound
§4,0"(afo)po(a)da » §_ exp (1(X)) dX, where 7 is a linear functional
which is constant along a face of a;. We have shown for D = 1.

Now suppose D > 1. Our strategy will be to show that we can repeat
the computations used for the case D = 1, with the only difference be-
ing that in some of the formulas, the characters p and g; are multiplied

by a factor of D. Write G o Gg', let V be as in the statement of
Theorem a K-subspace of R"™. Let

def{k lfGESLk

P= 2k i G2 Spy, (6.12)

so that dim V' = t. Let A; denote a maximal K-split torus in G, and
let a; denote its Lie algebra. Then, with respect to a suitable basis of
Vk, we can write elements of a; as matrices diag(Xy,..., X;), where
> X; =0 when G =~ SL; and X;,;, = —X; when G = Sp,,.

Let BY Resk/g(A1), and let A denote a maximal Q-split torus in
H,. The dimension of A; is the number of independent one-parameter
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multiplicative K-subgroups (morphisms K* — A;), and, applying re-
striction of scalars, each such one-parameter group gives rise to a one-
parameter Q-subgroup Q* — B. This implies that B contains a Q-split
torus of dimension equal to dim A;. Since the Q-rank of H is the same
as the K-rank of G, see [BT65], 6.21 (i)], the dimensions of these groups
coincide. Since all maximal Q-split tori in H are conjugate over Hg,
we can assume that A < B, and by conjugating SL,,(R) by an element
of SL,(Q), we can also assume that A < T and the order on the roots
® is consistent with the order on the roots of t. We claim that after
these conjugations, the elements of A = Ay are of the form

diag g(j(l), R ,Xj(lz, e ,g(j(t), ce ,Xj(tz s (6.13)
D ‘:i(mes D ;'(mes
where diag(X7,...,X;) ranges over the elements of a; in the above-

chosen basis, and i — j(i) is a permutation guaranteeing exp (X)) «
s KL exXp (Xj(t)).

We first assume the validity of , and conclude the proof of the
case D > 1. We will use to compare characters on A; with char-
acters on A. First, comparing the character p appearing in for
the two groups H, , G;, we see that each real field embedding 0;,7 < r
contributes one dimension to the dimension of a root space, and each
pair o;,d;, © > r of conjugate non-real embedding contributes two di-
mensions. Alternatively: in GGy the root spaces are one dimensional
and defined over K, since (G; is K-split. The root spaces in H; are ob-
tained from the root spaces in G; by applying the restriction of scalars
operation to each one individually. This implies that the character p
for H, is obtained from the corresponding character for G; by a mul-
tiplication by D. Similarly, it is clear from that the characters
B; appearing in for H, are obtained from the same characters
B; for G, multiplied by D. Thus, the computations guaranteeing
for D = 1, imply the same property for general D.

It remains to prove (6.13). Recall that B = Resg/g(A1), which
we wish to describe explicitly using the discussion in . For i € K¢

we define aq (%) dof diag(y1, .. .,v:) € A1(K); that is, these are matrices
acting on V' which are diagonal with respect to a K-basis of V', and
the y; satisty y; + -+ vy, = 0 for G = S and y; = —yor_;,1 for
G = Sp,y,. Each y € K has a representative which is a matrix in
Matpxp(Q). If we take y € Q then the corresponding representative
matrix is the scalar matrix y - Idp. The elements of B can be con-
sidered as t x t matrices, whose entries are elements of Matp.p. In
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particular, for ¢ € Q', we get matrices as(3) € Mat,«,(Q), which are
simultaneously diagonalizable, with each y; appearing as an eigenvalue
D times. That is, up to permuting the coordinates, the matrices as(¥)
are as in (6.13), with X; € Q. The map a;(9) — as(%) is a polyno-
mially defined group homomorphism. Letting A, denote the Zariski
closure of {ay(y) : 7€ Q, a1(y) € A1}, we see that A, is a torus in B
whose group of real points (A)r satisfies the description (6.13)), and
with dim Ay = dim A; = dim A. Also, A, is Q-split since the maps
as(y) — y; are Q-characters. Thus, A, is a maximal Q-split torus of
H, and by the uniqueness of the maximal Q-split torus in the torus B
(see [Borl9, Prop. 10.6]), we must have A = A,. (See also the related
discussion in [PR94, Example, p. 54|, giving an explicit description of
a maximal Q-anisotropic torus in B as a product of norm-tori.) O

6.3. An upper bound for the Siegel transform. We will now state
and prove a result implying Theorem [I.2] For a function F' on R", a
measure i on %,, and L € %, in analogy with (|1.3) we denote

Sy 2wecqoy F(@) s linear
FL) = { Yo F(x)  fuis affine (6.14)

Theorem 6.2. Let i be the H-homogeneous measure on %, as in The-

orem and let ¢ = qz be as in (L.5)). Then for any F € C.(R™) and
any p < q we have F € LP(fi). Moreover, there are F € C.(R™) for

which F' ¢ L(fi).

We will prove Theorem separately in the linear and affine cases.
In the linear case, we will first show, using Proposition [5.4] that the
Siegel-Veech transform (|6.14]) can be bounded in terms of a Siegel trans-
form of a function on 2;,. The latter can be bounded in terms of the

function « considered in §6.2]

Proof of Theorem linear case. Suppose that i satisfies (i) of Propo-
sition [5.4 i.e., ii is supported on 7(%,). Then we can assume that
the cut-and-project scheme involves lattices in Z,, rather than grids.
Moreover, H = von(H), g, = g1, Hy = ¢ om(H;), and the function

Fisa Siegel-Veech transform of a Riemann integrable function on R",
for a homogeneous subspace of Z,. It is known that the function
a defined in describes the growth rate of the Siegel transforms
of functions on 2. Namely (see [EMMOI8, Lemma 3.1} or [KSWI1T7,
Lemma 5.1]), for any Riemann integrable function F' on R", for any
Le %, F(£) « a(L). Furthermore, if F is the indicator of a ball

around the origin then F/(£) » a(£). Thus, the conclusion of Theorem
[6.2] in this case follows from Proposition [6.1]



48 RENE RUHR, YOTAM SMILANSKY, AND BARAK WEISS

Now assume that case (ii) of Proposition holds. We cannot use
Proposition since ' is a function on %;,. To remedy this, we define
for each £ € HL, the lattice L' = L'(x(L)) appearing in assertion (ii)
of Proposition [5.4] and set

ExL)= Y Fl)

zeL!(m(£))~{0}

Then the bounds given in Proposition |5.4/imply that ﬁ(ﬁ) & E(ﬂ(ﬁ)),
with a reverse inequality F (r(L)) « F(L) for positive F. Since F is the
Siegel-Veech transform of a function on R™ with respect to a measure
on 4Z,, we can apply Proposition to conclude the proof in this case
as well. U

For the affine case, we will need the following additional interpreta-
tion of the function « defined in ([6.5)).

Proposition 6.3. Let L € 2, let T} = T" = 7~ '(£) = R"/L be the
quotient torus, equipped with its invariant measure element dL. Then
for any ball B < R™ and any p > 1 we have

J B LPdL = a(L)P (6.15)

where the implicit constants depend on the dimension n, on p, and on
the radius of B.

Proof. Let Ay, ..., \, be the Minkowski successive minima of £. Using
Korkine-Zolotarev reduction, let vy,...,v, be a basis for £ satisfying

|vg]| = Ai (where implicit constants are allowed to depend on the dimen-

. def ) = ..
sion n), and let u; = . For a vector § of positive numbers si,..., s,

Jvil*
define <
P§01§f { iU |G| < —i}-
Zau |a;| )

Setting o = (|vi], ..., |vnl), we have that Py, = {>bw; : |b;] < 1} is
a fundamental parallelepiped for £, and we can identify T™ with this
parallelpiped via the bijection

Py —»T" z— £xd§f§+ x,
which sends the Lebesgue measure on Py, to the Haar measure dvol on
T".
Now set

PrdéfPF Where 7?: (Ta s ,T)-

We can translate B so that it is centered at the origin without affecting
the integral in (6.15]), and since there is a lower bound on the angles
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between the v;, there are ry = R = ry such that P,, € B < P,,. Thus,
we can replace B with Pr. Furthermore, the lower bound on the angles
between the u; implies

dvol(x) = dxy - - - dx,, where x = E%Uz

Writing each vector y € R™ in the form y = ), ¢;u;, and reducing
each ¢; modulo |v;] - Z, it is easy to verify that for x € Py, we have:

Jvi| =R

o if &<z < for some i, then Pgr n £, = &; and

o if |z;] < Zor|z] > ””il# for all 4, then |PrnLy| =[], 1<z (i)

[zl

Since R .
(6.7)
= = a(é)7
1_<[R o] Ai(lll ML)
we obtain
f B L dL = J Py L. dvol(z)
Tn Py,

catr vl ({re st <))

=a(er- [ lol- [] R= a0y J] ML) € acy.

|vi| <R |vill>R Ai(L)<1
U

Proof of Theorem affine case. By decomposing Finto its positive
and negative parts, we see that it suffices to prove F' € LP(u) when F
is the indicator of a ball in R™. By Theorem we have that in the
affine case, the translation group R" is contained in Hy, which implies
that we can decompose the measure ji as

Ll LJ 2) dvol(z) du(L), Yo e L'(Xy, ).

Now the statement follows from Propositions [6.1] and [6.3] The case of
equality p = ¢, follows similarly, taking for F' the indicator of a ball in
R™. ]

Proof of Theorem[1.2 Let f € C.(R?) and let f be as in . Let u be
an RMS measure on ¢ (R?) associated with a cut-and-project scheme
involving grids in %,,, a decomposition R" = Vs @ Ving, and a window
W < Viy. Let 1y be the indicator function of W and let i be an
H-homogeneous measure, supported on the orbit HL; < %, such that
= V. (where we have replaced p by its image under a rescaling map
to simplify notation).
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Define
F:R* >R, F(z) = 1w (mine(2)) - f(Tpnys (), (6.16)

and define F' via . Then it is clear from the definition of ¥ and
that f(¥(L)) = F(L) provided £ satisfies (I), and, in the linear
case, provided all nonzero vectors of £ project to nonzero vectors in
Vinys; the last assumption is equivalent to requiring that

LENY(L e HL L A Vi & {01}

The condition that £ satisfies (I) is valid for fi-a.e. £ by definition of
an RMS measure. We claim further that in the linear case i(N) = 0.
Indeed, since p is induced by the Haar measure of H, otherwise we

would have some fixed v € £;~{0} such that HNv= =4 {he H: hve Viy}
has positive Haar measure. Recall that for analytic varieties Vi, Vs,
with V; connected, if V; n V, has positive measure with respect to
the smooth measure on V;, then V; < V,. Since HV" is an analytic
subvariety in H, if it has positive measure with respect to the Haar
measure on H, it must coincide with H. This contradlcts Lemma
This contradiction shows that ji-almost surely we have f oW = [ Smce
i = W, i, the first assertion that f e LP(u) for p < g, now follows from
the first assertion of Theorem [6.21

For the second assertion, let f be a nonnegative continuous function
whose support contains a ball around the origin. Since we have assumed
that W contains a ball around the origin in Vj,, the support of the
function F' also contains a ball around the origin in R", so f is bounded
below by the Siegel-Veech transform of the indicator of a ball in R”,
and we have that such functions do not belong to L% (f). O

7. INTEGRAL FORMULAS FOR THE SIEGEL-VEECH TRANSFORM

In this section we will prove Theorem [I.3] We begin with its special
case p = 1, i.e., with a derivation of . This will illustrate the
method of Weil [Wei82] which we will use. Note that was first
proved by Marklof and Strombergsson in [MS14] following an argument
of Veech [Vee9§|. Their argument does not rely on an integrability
bound such as our Theorem (1.2 and instead, uses the result of Shah
[Sha96], Theorem [2.5|

7.1. A derivation of a ‘Siegel summation formula’. Given f €

C.(RY), define F via (6.16)), and define F (L) via (6.14). We can bound

F pointwise from above by a compactly supported continuous function
on R”, and hence, by Theorem Fe L'(f). Therefore f — (i Fdp
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is a positive linear functional on C,(RY). By the Riesz representa-
tion Atheorem, there is some Radon Borel measure v on R¢ such that
§x, Fdit = §g4 f dv. From the equivariance relation (3.2), v is invari-
ant under ASL;(R) in the affine case and under SL4(R) in the linear
case. Lebesgue measure is the unique (up to scaling) ASLy(R)-invariant
Radon Borel measure on R?, and for SL4(R), the only additional in-
variant measure is dp, the Dirac mass at the origin. Thus, there are
constants ¢y, co such that

_ { cyvol i is affine (7.1)

c1vol + c90g it is linear.

As we have seen in the proof of Theorem [1.2, we have that F= fo v
holds pi-a.e. Since p = W, i, this implies that

J Fdu = f Fdp=| fav
€ (R9) X1 R4

In combination with (7.1)), this establishes (1.4]) in the affine case, and

gives
j fdu=ci | fdvol+ caf(0), Vfe C.(RY (7.2)
%(R4) R4

in the linear case. It remains to show that ¢y = 0.

Let B, = B(0,7) be the ball in R? centered at the origin, let f €
C.(R?) satisfy 1p, < f < 1p,, and let f, = f (£). Thus, as r — 0, the
functions f, have smaller and smaller support around the origin. By
and discreteness of A we have that f.(A) —,_0 0 for any A. The
fEnctions fr vanish ogtside the ball By,, and for » < 1, the functions
fr are dominated by f;. Therefore

0 = lim ﬁ du lim lcl frdvol 4 ¢5 - 1] = 9.
=0 Jema) =0 Rd

O

7.2. A formula following Siegel-Weil-Rogers. In this section we

state and prove a generalization of Theorem [I.3] Let the notation be

as in [3.0]} so that & is an H-homogeneous measure on %,. Let p € N
and let R =R"@---®R". For f € C.(R™) and L € %, define
—_—

p copies

Z f(vi,...,vp) [ is linear

Z f(vi,...,v,) [ is affine.
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Let J < ASL(np,R) be a real algebraic group and let 6 be a locally
finite Borel measure on R"”. We say that 6 is J-algebraic if J preserves
0 and has an orbit of full #-measure (in this case 6 can be described
in terms of the Haar measure of J, see [Rag72] statement and proof of
Lemma 1.4]).

Theorem 7.1. Let p € N and assume that p < qz where q; is as in
(1.5). Then there is a countable collection {7, : e € €} of H-algebraic

Borel measures on R™ such that 7% > T, is locally finite and for every
f e LY7) we have

f rfdp= | fdr. (7.4)
2 Rrp

As we will see in the proof, in the affine (resp. linear) case, the
indexing set € is naturally identified with the set of I'y,-orbits in the
set of p-tuples of (nonzero) vectors in Z".

We will need a by-now standard result of Weil, which is a general-
ization of the Siegel summation formula and is proved via an argument
similar to the one used in §7.1] Let G; < G be unimodular locally
compact groups, let I'; © G be a lattice in Gy and let mg,r, denote
the unique Go-invariant Borel probability measure on Gg/T's. Since
G1, Go are unimodular, there is a unique (up to scaling) locally finite
G-invariant measure on Go/G4, which we denote by me,/c, (see e.g.

[Rag72, Chap. I}). Define I'y T, A Gy, and for any v € I'y, denote
its coset yI'; € I'y/I'y by [y]. With this notation, Weil showed the
following;:

Proposition 7.2 ([Weid6]). Assume thatT'; is a lattice in Gy. Then we
can rescale ma, ), so that the following holds. For any F' € L'(G2/G1, mayc,),
define
= def
F(glh)= >, Flg). (7.5)
[v]eT2/Th

Then F € LY(G2/Ty, mayr,) and

f Fdme,r, = J Fdme,e,-
G2/T'2 G2/G1

Proof of Theorem [7.1. Consider the map which sends f € C.(R™) to

Spf dp. This is well-defined by Theorem , and defines a positive lin-
ear functional on C.(R"). Thus, by the Riesz representation theorem,
there is a locally finite measure 7 on R™ such that

Vf e CL(R™), f pfd/]:f fdr. (7.6)

n RrP



CLASSIFICATION AND STATISTICS OF CUT-AND-PROJECT SETS 53

Our goal will be to present 7 as a countable linear combination of H-
algebraic measures. Note that since C.(R™) is a dense linear subspace
of L(7), for any locally finite measure 7, it suffices to prove for
functions in C.(R").

Let H, g1, £ = ¢1Z", Hy = g;'Hgy, Ty, = H, n ASL,,(Z) be as in
, so that I'y, is a lattice in Hy and fi is an H-homogeneous measure
supported on HL; =~ Hy/T'y,. In the affine (respectively linear) case,
let Z™ denote the countable collection of ordered p-tuples of vectors in
Z"™ (respectively, in Z" ~. {0}). Let € denote the collection of Iy, -orbits
in Z™. For each ¢ € €, define the restriction of the sum to the
orbits HL, © %, and to the orbit ¢, by

pfe(hﬁl) o Z f (hgliUl, I hgﬂp) ) (7-7)

(x17...,l‘p)€€

so that on HL; we have
rf=>"f (7.8)
ec€
If f is a non-negative function then ? f e < pf everywhere on H/L;, and
in particular Pf, € L'(fi). Thus, the assignment sending f € C.(R"?)
to

| ran [ f.dn (7.9)

is a positive linear functional and hence, via the Riesz representation
theorem, defines the locally finite Borel measure 7, on R"". By ,
Dece Te = 7. It remains to show that each 7, is H-algebraic.

For each ¢ € €, choose a representative p-tuple ¥, = (z1,...,2,) € ¢
and let

G17ed§f{helehxi =x;,i=1,...,p}

We will apply Proposition[7.2)with Gy = Hy, 'y = T'y;, G1 = Gy, 't =
I's n Gy, and with F(h1G) diff(glhlj}). Comparing ((7.5) and (7.7)

~

we see that these choices imply that F'(hiI's) = pfe(hﬁl), for h =
glhlgl_l € H. We will see below that I'; is a lattice in G;. Assuming
this, we apply Proposition [7.2] to obtain

fdr, :J pﬁdﬁzj Fdmayr,
P, G2 /T

Rnp
- f F(g1hnd.) dmey s, (nGh).
G2/G1

This shows that 7, is the pushforward of mg,,q, under the map

G2/G1 - R G — g7,
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In particular, since H = g1 H,g; ', 7. is H-algebraic.

It remains to show that I'; is a lattice in G;. To see this, note that
(G5 is a real algebraic group defined over Q, and (G is the stabilizer in
(5 of a finite collection of vectors in Z". Thus, (G; is also defined over
Q. By the theorem of Borel and Harish-Chandra (see [Bor19, §13]), if
(1 has no nontrivial characters then I'y = Gy n ASL,(Z) is a lattice
in GG;. Moreover, a real algebraic group generated by unipotents has
no characters. Thus, to conclude the proof of the claim, it suffices to
show that G is generated by unipotents. We verify this by dividing
into the various cases arising in Theorem [3.1}

We first reduce to the case that G, is a subgroup of SL,(R). In
the linear case we simply identify G5 with its isomorphic image m(G3),
where 7 : ASL, (R) — SL,(R) is the projection in (3.3), and thus we
can assume GG; < SL,(R). In the affine case, since the property of being
generated by unipotents is invariant under conjugations in ASL,(R),
we may conjugate by a translation to assume that one of the vectors
in #, is the zero vector, so that Gy < SL,(R). Thus, in both cases we
may assume that Gy = H, is the group of real points of Resg/g(G),
and G is the stabilizer in G9 of the finite collection 24, ..., z,, where
these are vectors in the standard representation on R”.

Suppose first that G = SL;. Then, in the notation of , we
have that Gy = Gg' x -+ x Gg'™*, where for i = 1,...,i (respectively,
for i = r+1,...,7r + s) we have that Gy is isomorphic to SLj(R)
(respectively to SLi(C) as a real algebraic group). Furthermore, as in
§2.4] there is a decomposition

R*=Vi® @ Vis,

where V; >~ R* (resp., V; = R?*) for i = 1,...,r (resp., for i = r +
1,...,7 + s), and such that the action of G5 on R" is the product
of the standard action of each G§' on V;. Let P, : R® — V; be the
projection with respect to this direct sum decomposition. Then the
stabilizer in Gg of x1,...,x, is the direct product of the stabilizer, in
Gy, of Pi(x1),...,Pi(x,). So it suffices to show that each of these
stabilizers is generated by unipotents. In other words, we are reduced
to the well-known fact that for SLy(R) acting on R* in the standard
action, and for SL;(C) acting on R* ~ CF in the standard action, the
stabilizer of a finite collection of vectors is generated by unipotents.
Now suppose that G = Sp,;,, and let F = R or F = C. Then by a
similar argument, we are reduced to the statement that for the standard
action of Sp,y(IF) on F2* the stabilizer of a finite collection of vectors
is generated by unipotents. This can be shown as follows. Let w be
the symplectic form preserved by Spsy, let V' = span(zy, ..., z,) < F?*,
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and let

QY {g € Spy(F) : Yo e V, gv = v}.
We need to show that @) is generated by unipotents. We can write V' =
Vo @ V1, where Vy = ker (w|y) is Lagrangian, and V; is symplectic. Let
2¢ = dim V;, where ¢ < k. Since any element of () fixes V; pointwise, it
leaves V- invariant, and it also fixes pointwise the subspace Vy < Vit
Thus, @ is isomorphic to

{g€Sp(Vih) : Yo e Vo, gu = v} = Sp(V) = Spy,, (F),
where m % k — ¢. This means we can reduce the problem to the case

in which V; = {0}, ie., w(z;,z;) = 0 for all i,j. We can apply a
symplectic version of the Gram-Schmidt orthogonalization procedure

to assume that x1,y1,...,%p, Yp, Tpt1, Yps1, - - - » Tm, Ym 1S @ symplectic
basis and Vj = span(zy,...,x,). Let
def def
‘/2 = Span(xp+1a Yp+1y -+« y T,y ym) and ‘/3 = % @ VYQ

Then V5 is symplectic and the subgroup of () leaving V5 invariant is
isomorphic to Spy,, o,(F), hence generated by unipotents. Also, for
1 =1,...,p, by considering the identity

w(gyi, x;) = wlgyi, g;) = wlyi, x;) (G =1,...,p)
one sees that any g € () must map the y; to vectors in y; + V3. This
implies that @) is generated by symplectic matrices leaving V5 invariant,
and transvections mapping y; to elements of y; + V3. In particular, )
is generated by unipotents. O

Definition 7.3. Given a real algebraic group J < ASL,(R), we will
say that a locally finite measure 7 on R is J-c&p-algebraic if there
is a J-algebraic measure T on R™ such that for every f € C.(RP) we

have
fdr = f Fdr,
Rdp RnP
where F: R™ — R is defined by

dﬁf f (thys(zl)a o >7rphys(xp)) VZ, Wint(ﬂfi) € W
Flzy,... ) = { 0 otherwise .

(7.10)
We will say 7 is c&p algebraic if it is J-cép algebraic for some J.

It is easy to check that for p = 1, the measure 7 in Definition
is the pushforward under 7y of the restriction of 7 to m_{(W). For
general p, define projections

def
Pohys : R™ — de’ pﬂphyS(xlv ey Tp) = (thyS(x1)7 e aﬁphyS(xp)) )
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and
def
pﬂ'int : Rnp — Rmp’ pﬂ'int<I1, . ,l'p) = (Wint(.’ﬁl), e 77Tint(xp)) .

Then the measures 7, 7 satisfy

int

T = Ppohys, (T|s), where SYrr—l W x ... xW|. (7.11)

p copies

Proof of Theorem[1.3. By Theorem , after a rescaling of R?, there
is a homogeneous measure i on %, such that u = W,j. Suppose h € H
satisfies that Tponys|ne, 1S injective, and in the linear case, assume also
that hLy n Viye < {0}. Since p is an RMS measure, and in the linear
case, arguing as in the proof of Theorem using Lemma [4.2] we see

that this holds for a.e. h € H. For such h, letting A, € W(hL;), we can
rewrite the function ?f defined in (1.7]) more succinctly in the form

"fA) = Y. F(hay,... hay),
(@1,.,zp)ELY
where F'is as in ([7.10)). Thus, Theorem is reduced to Theorem
1l O

Remark 7.4. The assignment ¢ — T, implicit in the proof of Theorem
18 not injective, nor is it finite-to-one. To see this, take p =1 and
consider the RMS measure corresponding to the Haar-Siegel measure
on Z,. Then Hy = SL,(R), I'y, = SL,(Z), and there are countably
many g, -orbits on Z", where two integer vectors belong to the same
orbit if and only if the greatest common divisor of their coefficients is
the same. On the other hand, as the proof of formula shows, there
are two cép-algebraic measures, namely Lebesque measure on R and
the Dirac measure at 0. The Dirac measure is associated with the orbit
of 0 € Z", and all the other orbits of nonzero vectors in Z" give rise to
multiples of Lebesque measure on RY.

Nevertheless, we will continue using the symbol & for both the col-
lection of I'y, -orbits in Z"", and for the indexing set for the countable
collection of measure arising in Theorem [1.5.  This should cause at
most mild confusion.

8. THE ROGERS INEQUALITY ON MOMENTS

In this section we will prove Theorem [1.4 We will need more in-
formation about the measures 7, appearing in Theorem [1.3] in case
p = 2. We begin our discussion with some properties that are valid for
all p < d. Some of the results of will be given in a greater level of
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generality than required for our counting results. They are likely to be
of use in understanding higher moments for RMS measures.

8.1. Normalizing the measures. For any k, denote the normalized
Lebesgue measure on R by vol® . Some of the c&p-algebraic mea-
sures 7 on R?% which arise in Theorem are the globally supported
Lebesgue measures on R% i.e., multiples of vol(@P) Indeed, such a
measure arises if in Definition we take T equal to a multiple of
Lebesgue measure on R™. These measures give a main term in the
counting problem we will consider in We write 7 oc 7 if 71, 5 are
proportional, recall the measures {7} defined in the proofs of Theorems

and [7.1], and set
@main 4f {e e¢:T, ocvol(dp)} . T Z Te-

ec@main

We define constants ¢, by the condition
Tmain = Cpup vol(@)

The next result identifies the normalizing constants c,, ,. Recall from
Theorem that an RMS measure p is of the form g = pe.jt where
it is a homogeneous measure on %, ¢ is the constant of , and u-
a.e. A is of the form A = A(L, W) for a grid £ with covol(£) = ¢". We
denote this almost-sure value of covol(L) by covol(u). Recall also that
the function A — D(A) defined in is measurable and invariant,
and hence is a.e. constant, and denote its almost-sure value by D(u).

Proposition 8.1. For any RMS measure ji = pe V. fi satisfying (1.8))
(i.e., G = SLy or u is affine), we have

vol ™ (W)

cu1 = D(p) = “covol(p) (8.1)

and for p € N satisfying p < q, and p < d we have
Cu7p - CZ’l. (8.2)

Note that the normalizing constant c,; discussed here is the same

as the constant denoted by ¢; in (7.2) and by ¢ in (1.4)).
With the identification R =~ M, ,(R) in mind, we say that a sub-

space V < R is an annihilator subspace if it is the common annihilator
of a collection of vectors in RP?; that is, there is a collection Ann — R?
such that

V = Z(Ann)
def {(vl,...,vp) e R? : Vi, v GRZ&V(al,...,ap) € Ann, Zaivi = O}.
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Note that the meaning of Z(Ann) depends on the choice of the ambient
space R’ containing the vectors v;; when confusion may arise we will
specify the ambient space explicitly.
Suppose £ € N and (vy, ...,v,) is a p-tuple in R. In the linear case,
let
Ann(vy, ..., v,) aef (a1,...,a,) € RV : Zaivi = 0},

and in the affine case, let

Ann(vy, ... ,vp)dif{(al, ca, ) ERPTL: Zai(vi —v,) = 0}.

Let

L(vy, ... ,vp)difZ(Ann(vl, Cey ),

an annihilator subspace in R, say that vy, ...,v, are independent if
Ann(vy,...,v,) = {0}, and let

rank(vy, ..., v,) o {

Note that in the linear case, this is the usual relation between the
rank of a matrix and the dimension of its kernel. The dimension of
L(vy,...,v,) is equal to Crank(vy, ..., vp).

We recall some notation from and from Step 3 of the proof of
Lemma [3.2] Let K be a real number field of degree D = r + 2s, with
o1,...,0, being distinct real embeddings, and o,,1,...,0, denoting
representatives of conjugate pairs of non-real embeddings. Let G be
isomorphic to either SLi(IR) or to Spy,(R), and let H = Resg/g(G).
Let V be a K-vector space of dimension ¢, where t is as in , and
denote V; = V7, that is, V; @ R if j = 1,...,r and V; = C" =~ R if

p —dim Ann(vy, ..., v,) (0 is linear
p—1—dim Ann(vy,...,v,)  is affine.

J=r+1,...,s These vector spaces are chosen so that V is equipped
with the standard action of G, and taking into account the isomorphism
R™ = (Resgg(V)), = V1@ ® V. (8.3)

Let 7% : R™ — V; be the corresponding projections. In the notation
[2.5), let 7 : Hg — Gy, so that the action of Hg factors through the
action of each Gg’ on V;. We can assume without loss of generality
(see §2.1) that Vo @ -+ @ Viys © Vige and Tphys = Tphys © 77"

Lemma 8.2. Suppose p is an RMS measure of higher rank, and let
G be the group appearing in Theorem . Let p < qu, let 7, =
(21,...,2p) € ¢, where e € € is as defined before (7.7)), and let v; et o (x;),

1=1,...,p. Assume that

d if G =8SL,
rank(vi, ..., v,) < {1 if G = Spyy.
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Let 7% T. be the algebraic measure on R™ as in (7.9) and let T be
a cép-algebraic measure obtained from T as in Definition |[7.3. Then
T is (up to proportionality) the Lebesque measure on some annihilator
subspace of R%. This subspace is equal to R if and only if vy, ..., v,
are independent.

Proof. Let 7 be as in Definition . As in the proof of Theorem |7.1]), we
have that H(xy,...,x,) is a dense subset of full measure in supp 7. We
will split the proof according to the various cases arising in Theorem

B.1

Case 1: 1 is linear, G = SLj, . In this case, our proof will also show
that supp 7 is a sum of annihilator subspaces, one in each Vj; in fact,
we first establish this statement.

The action of H on R" factors into a product of actions of each G;{
on V;. That is, H acts on vf def 7% (x;), i = 1,...,p via its mapping to
Gy, i.e., via the standard action of SLi(R) or SLi(C) on R* or C*. It
follows from and that p < g, = k. Therefore for each j, the
rank R; of {vf i =1,... ,p} is less than k. For the standard action,
Gy is transitive on linearly independent R;-tuples. From this, by

choosing a linearly independent subset B; < {v{, e ,vg of cardinality
R; and expressing any v] ¢ B; as a linear combination of elements of
B;, one sees that if (uq,...,u,), (w1, ..., w,) are two p-tuples in V;
there is h € Gy such that h(wy, ..., wy) = (u1,...,u,) (8.4)
«— Ann(wy, ..., w,) = Ann(uy, ..., up). '
This implies that Gg’ (v], .. ., vJ) is open and dense in L(v?, ..., vJ), and
hence H(x1,...,x,) is open and dense in L]** & (—D;:i L(v],...,v)).

We have shown that supp7 = L]™ and that 7 is a multiple of the
Lebesgue measure on L]™°.
Since mpnys = Mphys © T4, we have

P phys (L7£+s) = PTohys (L(vy, ... avp)) .
To simplify notation, write H* def G = SLi(R), and v; of v} € V;. Let
Ann; & Ann (v1,...,0p) .

We have
Prtonys(L(v1, . .., vp)) = Z(Anny), (8.5)

seen as an annihilator subspace of R%. Indeed, the inclusion c follows
from linearity of mnys. For the opposite inclusion, recall that we have
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an inclusion Vjuys <= Vi, and this induces an inclusion ¢ : R%» s R™.
We clearly have

L (Z (Anny)) < L(vy, ..., vp),
which implies the inclusion > in (8.5)).

Replacing z; with elements of z; +V}ys does not change the condition
(z1,...,7,) €S, where S is as in (7.11)). This shows that

SUPP T = PTphys (L17°) = Ppnys (L(v1, ..., vp))

is an annihilator subspace, and 7 is a multiple of Lebesgue measure on
this subspace. Moreover, the subspace is proper if and only if Ann; #
{0}, or equivalently, vy, ..., v, are dependent.

Case 2: p s linear, G = Spy,, d = 2. The action of H splits as a
Cartesian product of actions of the groups Gy’ on the spaces Vj, for
j=1,...,7r+s. As in Case 1, we will pay attention to the action

on the first summand Vi, where H acts via H' % GZ' = Spyi(R).
We denote by w the symplectic form on V; preserved by H'. Let

LdifH(xl, ...,&p) = supp 7, where 7 is the unique (up to scaling) H-

invariant measure with support L, and let L! ©r A Vi =n (L) =

H' (vy,...,v,), where v,-difwc’l(xi), i=1,...,p.
Let F' ~ SI,(R) be as in (3.1). Then F < H', and hence 7 is

F-invariant. Write
def
L ; V;nt M ‘/1 = VpJ}_lysv
and abusing notation slightly, let mnys, mine denote the restrictions of

these mappings to Vi, so they are the projections associated with the

V.

int

direct sum decomposition V; = Vi@V, Define RY rank(vy, ..., v,),
and define R as the maximal rank of {mpnys(hv1), ..., Tpnys(hvp)}, as h
ranges over elements of H'. Thus, 0 < R’ < R < 1.

If R" = 0 this means that mpnys(hv;) = 0 for all h € H and all 1,
and then 7 is the Dirac measure at 0, and there is nothing to prove.
Now suppose R = R = 1. Since R = 1, there is some v; such that
Tphys(Vi) # 0, and there are coefficients a;, j # i so that v; = a;v;.
This implies that for all h, mpnys(hv;) = a;Tpnys(hv;), that is,

supp T < Prppys (L) < L' déf{(ul, o) ERP VG £ 0wy = aju).

Moreover, since F' acts transitively on nonzero vectors in Vipys, and 7 is
F-invariant, we actually have equality and 7 is a multiple of Lebesgue
measure on the annihilator subspace L', and L' is a proper subspace of
R?, unless p = 1.

Case 3: 1 1s affine. The affine case can be reduced to the linear
case. Note that the definition of the annihilator Ann(vy,...,v,) in the
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affine case is such that it does not change under the diagonal action
of the group of translations, and that the group of translations in H

is the full group R", so that x;,...,x, can be moved so that z, = 0.
Moreover, by Proposition [5.3, we can assume that 0 € W. We leave
the details to the diligent reader. 0

Let
grest @ gmain 4 Z Te. (8.6)

ecc@rest

The preceding discussion gives a description of the measures 7, with
ec erest_

Corollary 8.3. Under the conditions of Lemma any measure
Te, € € ' 45 Lebesque measure on a proper subspace of RP.

Proof of Proposition[8.1. Let B, denote the Euclidean ball of radius r
around the origin in R?, let 15 be its indicator function, and let 15
be the function obtained from the summation formula (1.3, so that

D(A) = tim &)
r—o vol @ (B,)

Applying (1.4) we get that for any r > 0,

TB\ Cu,1 J
——dpy=—— | 1p dvol =c,;. 8.7
L(Rd) vol(B,) : vol@(B,) Jpa ™7 ol (8.7)
Suppose A = A(L, W). We claim that for r > 1,
15 (A) < vol)(B,)a(L), (8.8)

where A = AL, W) and £ = (L), and where the implicit constant
depends on d, n and W. Indeed, we can replace W with a larger convex
set containing it, so that 1z (A) is bounded from above by # (K n L),

where K% B, x W. It is known (see [GL&T, Chap. 2 §9.4] or [Wid12|
Prop. 2.9]) that for any dimension n, for any bounded convex set K’
and any lattice £ < R", if K’ n L' is not contained in a proper affine
subspace of R", then

, Vol(K”)

“covol(L')

For any £ we let zy be a translation vector such that £ 4+ xo = L, set

# (K'nL)<n

+ n.

VEspan(L (K +10)), (= dimV, LELAV, K'CVA(K+),
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and apply this estimate in V =~ R’ with £ < n. For r > 1 we have
volD(K") « r® and covol(L') » A\ (L) - -- A(£). Thus
d

_ / / ] r (d)
#HEKnL)=#(K nL) <« g')q(ﬁ)-“)\e(ﬁ) + ¢ < vol'’(B,)a(L),
establishing and proving the claim. Therefore, using Proposition
and the dominated convergence theorem, we are justified in taking
a limit » — oo inside the integral (8.7), finding that c,; = D(u).
Combining this with (1.10)) gives ee [MS14, Proof of Thm. 1.5]
for a different proof of (8.1)).

Now to prove . let @), and Q) denote the unit cube of sidelength
rin R? and R% respectively, let 1¢, and 1o» be the indicator functions,

and define ? fQ\g via (|1.7). Then we have

Pgp(A) = # X (@ A);

that is, the number of p-tuples of elements of A in the p-fold Cartesian
product (?. This implies that for p-a.e. A,

PTon(A A A\
i P = (i LGS = pay=a. 69

By ['heorem we have:
main res
Rdp g po Rdp g Rdp g i

P1p
Q
= 1 pdT.
J Td rdp Z »fRdP Qr ¢

cc@rest

Repeating the argument establishing (8.8]), we find
P
"o (8) « (vol (@) (L),

and thus the integrable function o dominates the integral in the second
line of (8.10), independently of . Moreover, since they differ by a
constant, a® also dominates the series in the second line of .
Using , the first integral gives CZ 1, and thus it remains to show
that

(8.10)

1
lim —f 1grdr, =0, for every ee €™, (8.11)
Rdp

From (1.8) and Corollary 8.3 we have that 7, is (up to proportionality)
equal to Lebesgue measure on a subspace V' < R%, and we have
V' # R since ¢ € €. This implies (8.11]). O
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Remark 8.4. One can also work in R™ rather than R, and de-
fine analogous normalization constants Cpp, by the formula Tman =
&up Vol Then one can show that G, = 1 for all p < q,. We will not
need the values of these constants and leave the proofs to the interested
reader.

8.2. More details for p = 2. We will need to describe the measure
Trest 1IN the case p = 2.

Proposition 8.5. Let p be an RMS measure so that holds. Let

= 2, and let €' 1. be as in . Then there is a partition
Erest = @1t |y @It and constants {a, : e € E¥} {b, : e € EY {e,
¢ € €Y such that the following hold.

(1) For all f € C.(R*), we have

[ dTest = Z Ce f x, b.) dvol(d 2 Ce f AT, T) dvol@ (x).
R2d cegrest ceErest
(8.12)
(2) ¢ >0 for all e € € and Y _grest Cc < 0.

(3) |ae| <1 for all e € " and |b,| < 1 for all e € E}**,

Proof. Lemmais applicable in view of ; indeed, when G = SLy,
we have p = 2 < d, and when G = Sp,;, and p is affine, we have
rank(vy,v5) < 1. Therefore, for each ¢ € €™ there is an annihilator
subspace V; & R% such that 7, is proportional to Lebesgue measure
on V,. Repeating the argument of we can see that 7, is not the
Dirac mass at the origin. In other words V, has positive dimension.
Since p = 2, this means we can find «, 3, not both zero, such that
Vi = Z(a, ). We can rescale so that max(|al,|5]) = max(a, ) = 1
and we define

def def
Qzliest é {Q c @rest . ﬁ — 1}7 ngest ; ereSt N @IieSt.

Then if we set b, = —a for ¢ € € and a, = — for ¢ € €™, then the
bounds in (3) hold and we have

V. = {(ff,bel') T E Rd} for e e Qzliest
" {(aew,z) : x e RY for ¢ € €t

We now define ¢, by the formula

dvol(z)  for e e ot
Vf e C.(R™ dr, = | G lpa fact ) !
] € ClRY), R2d Jdr { e $ga f (2, D) dvol D (z)  for ¢ e €,

Then clearly (8.12) holds, and ¢, > 0 for all ¢ € ™",
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It remains to show > ¢, < o0. Let 1p be the indicator of a ball in
R?¢ centered at the origin. Then there is a positive number A\ which
bounds from below all the numbers

{JRC; 15(az, x) dvol® () : |a| < 1} U {JRd 15(z, bz) dvol® (z) : |b] < 1}.

Since Tese 18 a locally finite measure, we have SRQd 1 drest < 0. But

(8-12)) implies that A} _grest e < SRQd 1p dTyest- Therefore Y _grese Ce <
0. O

Proof of Theorem[I.4). Given f :R? — [0,1] as in Theorem [1.4] define
PR = [0.1] by p(z,y) = f(2)f(y).
2
Clearly (SRd f dvol(d)> = (g @ dvol®®  and it follows easily from (T.3)
and ((1.7) that
2B(A) = fF(A)% (8.13)

Using (8.13), Theorem with p = 2, (1.4), and (8.2) we have that

R R 2
f () - j Fu| du(n)
%(R4) %(R9)

2 2
- Pae- [ | i du] ~ [ edr- [cf fdvol“”]
%(R) Z(R) R2d Re
2
ZCM’QJ © dvol®d J O dTyest — Ci,l lf f del(d)] = J © dTyest -
R2d R2d Rd R2d

It remains to show that

de O dTrest < N f dvol @, (8.14)

where the implicit constant is allowed to depend on p. And indeed, by
Proposition 8.5, we have

J deTrest
R2d
Z CQJ f(aex) f(z)dvol(x Z Ce f(bex) dvol(z)
eeerest ee@rest
f<1
Z cef f(z) dvol(x Z Ce x) dvol(x)
ee@rest ee@rebt

- ( > ce> f f dvol®

ecc@rest
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O

9. FROM BOUNDS ON CORRELATIONS TO A.E. EFFECTIVE
COUNTING

In this section we present two results which we will use for counting.
The first is due to Schmidt [Sch60] but we recast it in a slightly more
general form (see also [KS19, Thm. 2.9]). To simplify notation, for

measurable S © R, we will write Vg < vol™(S).
Theorem 9.1. Let n € N and let p be a probability measure on € (R™).
Let k € [1,2), let ® = {B, : o € R, } be an unbounded ordered family

of Borel subsets of R™, and let ¢ : R, — R,. Suppose the following
hypotheses are satisfied:

(a) The measure p is supported on discrete sets, and for each f €
LY(R",vol), a Siegel-Veech transform as in (1.3)) satisfies that

fe L3(u). Furthermore, there are positive a,b such that for any
function f:R™ — [0,1], f € L*(R",vol), we have

deu = af f dvol (9.1)
and

Van () | ]f— [7an

(b) The function v is non-decreasing, and satisfies SSO ﬁ dxr < o0.

2
duéb(

f dvol) N (9.2)

R

Then for p-a.e. A, for every S € ®
#(SAA) =aVs+O0 (ng log(Vs) 9 (log VS)%> as Vs — 0. (9.3)

Note that we allow defining f as in either one of the linear or affine
cases of (1.3]), as long as the conditions in (a) are satisfied. For def-

initeness we will use the affine case, namely f = Dven f(0), so that
15(A) = |S ~ Al for any subset S © R™ with indicator function 1g. In
the lincar case we may have 1g(A) = |S A Al — 1 or 1g(A) = |S A A
(depending on whether or not S contains 0), and the reader will have
no difficulty adjusting the proof in this case.

Proof of Theorem assuming Theorem[9.1. Taking k = 1 and ¢(t) =
t1*¢, (9.3) becomes

(S AN =aVs+0 (Vj (logVs)H*)  as Vs — .



66 RENE RUHR, YOTAM SMILANSKY, AND BARAK WEISS

which implies (1.11]). The hypotheses of Theorem 9.1/ hold in the higher
rank case by ((1.4) and Theorem . O

Before giving the proof of Theorem we will state the following
more general result.

Theorem 9.2. Let d,m,n € N with n = d + m, let p be a probability
measure on € (R"™), let X € [0,1), k € [1,2), let ¥ : Ry — Ry, let
O = {B,: aeR,} be an unbounded ordered family of Borel subsets of
R?, and let {W, : a € R} be a collection of subsets of R™. Suppose
that (a) and (b) of Theorem[9.1] are satisfied, and in addition:

(¢) For any N € N there is a such that vol® (B,) = N.

(d) Each W, can be partitioned as a disjoint union W, = | |1, Cu(£),

d) A def (m) .
where Lo, = (Vol( (Ba)> , and where wy, = vol'"™ (Cy(¢)) is the

same for £ =1,..., L, and is of order = (VOl(d)<Ba))

Denote % {Bo x W, : e Ry} and for S € @, denote Vy e vol™ ().
Then for p-a.e. A, for every S € ®

K(1-=X
SUZA) 4

#(SNA)=aVs+O (Vs log(Vs) ¢ (log Vs)§> , as Vg — o0.
(9.4)
Note that for x = 1 and () = t1+, becomes

4 (SnA)=aVs+0 (vﬁ log Vs ). (9.5)

Theorems [9.1] and [9.2] both follow from ideas developed by Schmidt
in [Sch60]. We begin with Theorem[9.1] for which we need the following
Lemmas.

By the definition of an unbounded ordered family, we can assume
that for each V' > 0 there is Q € ® such that vol(2) = V. For each

N € N, let Sy € ® with vol(Sy) = N and let py < 1g, denote its
indicator function. Given two integers N; < Ns, let

def
N1PNy = PNy — PNy~

Since the Sy are nested, we have y, pn, = Lgy sy, -

Lemma 9.3 (cf. [Sch60], Lemma 2). Let T € N and let Kp be the set
of all pairs of integers Ny, Ny satisfying 0 < N; < Ny < 2T, Ny = u2t,
Ny = (u+ 1)2%, for integers u and t = 0. Then there exists ¢ > 0 such
that
> Var,(wpm,) < e(T +1)2°7 (9.6)
(N1,N2)eKr
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Proof. Indeed, (9.2)) yields Var,(n,pn,) < b(Na — Nq)®. Each value of
Ny — Ny = 2t for 0 <t < T occurs 277 times, hence

D (Vo= Ny)F = 2T (T 4 128
(N1,N2)eKr o<t<T

0

Lemma 9.4 (cf. [Sch60], Lemma 3). For all T € N there exists a
subset Bady < supp p of measure

p(Badr) < eyp(T'log2 — 1)1 (9.7)
such that
(Pn(A) —aN)? < T(T + 1)2"74(T'log 2 — 1) (9.8)
for every N < 2T and all A € supp p ~ Bad.
Proof. Let Badr be the set of A € suppu for which it is not true that

> (mpm() —alNa = M) < (T+1)27%(T log2-1). (9.9)
(Nl,NQ)EKT
Then the bound (9.7)) follows from Lemma by Markov’s inequal-
ity. Assume N < 27 and A € supppu ~ Bady. The interval [0, N)
can be expressed as a union of intervals of the type [N, Ns), where

—

(N1,No) € Iy < Kr and |Zy| < T. Therefore, py(A) — aN =
> (v, PNy (A) — a(Ny — Ny)), where the sum is over (N1, Ny) € Zy. Ap-
plying the Cauchy-Schwarz inequality to the square of this sum together

with the bound from we obtain . O

Proof of Theorem[9.1] Let Badr be the sets from Lemma Since
¥~1 is integrable and monotone, we find by Borel-Cantelli and (9.7)
that for p-a.e. A there is Tj such that for any T" > Ty, A ¢ Badr.

Assume now N = N, = 27» and let T be the unique integer for which

271 < N < 27, By Lemma(9.4]

(PN (A)—aN)* < T(T+1)2""(T log2—1) = O (N*(log N)*v(log N)) .
(9.10)

Given arbitrary S € ®, let N be such that N < Vg < N + 1, and let

SN,SN+1 e & with SN c S c SN+1 and VOI(SN) = N, VOI(SN+1> =

N + 1. Then

#(SynA)—a(N+1)<#(SnA)—aVs <#(Sys10A)—aN.

(9.11)

From (0.10), the LHS of (9.11) is O (N% log N 9 (log N)%) and the
RHS is O <(N +1)2 log (N + 1)¢(log N + 1)%>, and these quantities
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are of the same order O (VS% log(Vs) v (log VS)%>. A similar upper
bound for aVs — # (S n A) is proved analogously. O

We turn to the proof of Theorem Note that the collection @ is
not ordered; nevertheless one can apply similar arguments to each /¢
separately, before applying Borel-Cantelli. We turn to the details.

Proof of Theorem[9.2. Given N, using assumption (c), for each N there
is @ = a(N) so that vol (B,) = N. It follows that vol™(B, x
W,) = NLyw, = N. We let pf\, be the characteristic function of
B, x Cy(€), which is of volume Nw, = N'™*. We will take y,p},
to be the characteristic function of (Ba(Nl)\Ba(NQ)) x Canvy(€). Note
that the dependence of the function p§V2 on N is suppressed from the
notation.

The argument proving Lemma therefore yields , with  re-

placed by &’ Ef/i(l —\), ie.,
NS Varu(wsh,) < La(T + 1)2°7. (9.12)

¢ (Nl,NQ)GKT

—_—

For S = Bavy x Wany, N < 27, by the definition of y, pf, (A) and
the Cauchy- Schwarz 1nequality, we have

(# (S A) —aVs)? <Z# ((By x Ca(0)) A A) — avol™ (B, x (Ja(ﬁ))>

(A) — ana>)

|

/|\
e
=)

2

Z Z <N/1PTZ\/2(A) —a(Ny — N1)wa)

¢ (N17N2)€ZN
— 2
<T L, Z Z <N1:0§V2 (A) —a(N2 — Nl)wa> :
(N1 NQ)GKT

As in the proof of Lemma [9.4 we denote by Bads the points A not
satisfying the bound

Z 2 (EPTNQ(A) —a(Nz — Nl)wa)2 < Lo(T+1)25"4(T log 2—-1).

(N1 N2 EKT

Then applying (9.12)) we get u(Badr) < (T log2 — 1)1, so that by
Borel-Cantelli, a.e. A belongs to at most finitely many sets Bady. Also
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for A ¢ Badr, we have
[# (S A A) —aVs]? < L2T(T + 1)2° T4 (T log 2 — 1),
which replaces , and we proceed as before. O

10. COUNTING PATCHES A LA SCHMIDT

In this section we prove Theorem [1.6] We recall some notation and
terminology from the introduction and the statement of the theorem.
For a cut-and-project set A =« R? z € R and R > 0, Pyr(z) =
B(0,R) n (A — z) is called the R-patch of A at z, and

#{JT eANn B(O, T) . PA’R(x) = 7)0}
T—»oo vol(B(0,T))
is called the frequency of Py. Suppose A arises from a cut-and-project
construction with associated dimensions n = d + m and window W <
R™ ., and is chosen according to an RMS measure p of higher rank. The

upper box dimension of the window in the cut-and-project construction
is

D(A, Py) =

e log N (W,
dimp (W) % lim sup log N(W, r)
r—0 —logr

where N(W,r) is the minimal number of balls of radius r needed to
cover W. Set

: (10.1)

YR g— 10.2
T m+20 (102)
where § = m — dimg(@W) > 0. Our goal is to show that for any
A € (Ao, 1), any unbounded ordered family {B,, : @ € R}, for u-a.e. A,

for any patch Py = Pa r(xo),
# {x € Ba N A . ’PA,R(I‘) = 73()}

=D(A, Py) vol(B,) + O <V01( )%) as vol(B,) — w0,

where the implicit constant depends on ¢, W, A, Py. Note that ([10.3)
implies (|1.13]).

The strategy we will use is similar to that of [HKW14l Proof of Cor.
4.1].

Proof of Theorem[1.6 For every K € N and ¢ € Z™ define the box

6ol +1 by U +1
Qr(l) = [K K )X"'X[F K )

It is well-known (see e.g. [Mat95, Chap. 5]) that in ([10.1]), we are free
to replace N(W,r) with the minimal number of cubes Qg (¢) needed
to cover W, where K = [ J We consider cut-and-project sets of the

form A = A(VV, L), with £ € %;,. Here W < R™ is fixed and satisfies

(10.3)
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dimg (W) < m, and A is chosen at random, according to a homogeneous
measure i on %;,. Let A be an R-patch equivalence class in A, that is

A= {l’ eA: PA,R<1’) = 7)0}

for some R > 0 and some Py = Py g(zo). By a well-known observation
(see [BG13, Cor. 7.3]), A is itself a cut-and-project set, and in fact
arises from the same lattice via a smaller window, i.e., there is W ¢ W
such that

A = AWha,L).
In particular, for irreducible cut-and-project sets (which is a property
satisfied by f-a.e. £), we have
VO](WA)
vol(W)
In addition, it is shown in [KW21) §2] that W is the intersection of
finitely many translations of W and its complement. Since

6WA e F-{—&W,

D(A,Py) = D(A) = D(A). (10.4)

for some finite ' < R™, we deduce that the upper box dimension of
0Wa is bounded from above by that of dW.
Let A € (A, 1), and let n > 0 be small enough so that

1 - 1
max< —;>\0+77,1—M> <;)\' (10.5)

m 2
Such 7 exists in light of (10.2). Given «, we let K, € N so that
vol(B,)* = K™. Define

ADE ) Qu0), AQY ] Qr.(0),

Qr, () cWa Qi (O)"Wa#T

and let £ € supp i satisfy (D) and (I). Since AL = Wy < AP, the
associated cut-and-project sets
ADEN(AD L) (i=1,2)
satisfy that for all «,
# (AS) NB,) <# (AnB,) <# (A(Z) N B,)

«

and

~
=
IN

D(A) <D (AD).
Moreover, by ,
D (A(Q)) - D (A(l)) —

« «

(vol (A,(f)) — vol (AS))) . (10.6)
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Using the triangle inequality we have

[# (A N B,) — D(A)vol(B,)| < max ‘# (A( N B,) — D(A) vol(B,)

<£n£11}2<‘# (A( N B,) — (Ag )Vol )|+ (D (A 2) D (AS))) vol(B,).
(10.7)
We bound separately the two summands on the RHS of . For the

first summand we use the case (9.5)) of Theorem , with W, = AD
and C,(¢) = Qg (¢). Note that assumption (d) is satisfied by our
choice of K, with implicit constants depending on Py. We obtain, for

firace. £, that AY = A(AY, £) satisfies
‘# (Ag) N Ba) - D (Ag)) vol (Ba>| < (VOI(BQ)% (log(VOI(Ba)))g+€> ’

where ¢, as well as the constants appearing in the following inequali-
ties, depends only on ® = {Ba X AS)} and on L.
For the second summand, recall that dimg(dWa) < m — 0. This

implies that the number of ¢ € Z" with Qg ({) N IWA # & is <
Km=9*1_ Therefore

vol (Ag) ~ AS)) = 2 vol (Qx, (£)) « KM= | -m = [0,
QKo (O)NOWA#D

This implies via (10.6)) that

(D (A?) — D (AD)) vol(By) :% (vol (A2) = vol (AD))

«vol(By) K75 « vol(B,)!=""w ™.

Plugging these two estimates into ((10.7)), and using ([{10.5]) and the fact
3
that (log(vol(B,)))2"° < vol(B,)" for large enough vol(B,), we have
that for i -a.e. £
% (A ~ B,) — D(A) vol(B,)| « vol(B,) 7,
with implicit constants depending on 7, £ and €. This shows ([10.3)
and completes the proof. O
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