COUNTEREXAMPLES TO A CONJECTURE OF WOODS

ODED REGEV, URI SHAPIRA, AND BARAK WEISS

Abstract. A conjecture of Woods from 1972 is disproved.

A lattice in \mathbb{R}^d is called well-rounded if its shortest nonzero vectors span \mathbb{R}^d , is called unimodular if its covolume is equal to one, and the covering radius of a lattice Λ is the least r such that $\mathbb{R}^d = \Lambda + B_r$, where B_r is the closed Euclidean ball of radius r. Let N_d denote the greatest value of the covering radius over all well-rounded unimodular lattices in \mathbb{R}^d . In [Woo72], A. C. Woods conjectured that $N_d = \sqrt{d}/2$, i.e., that the lattice \mathbb{Z}^d realizes the largest covering radius among well-rounded unimodular lattices. Moreover, Woods proved this statement for $d \leq 6$. In [McM05], McMullen proved that Woods's conjecture implies a celebrated conjecture of Minkowski. Spurred by this result, Woods's conjecture has been proved for $d \leq 9$ by Hans-Gill, Kathuria, Raka, and Sehmi (see [KR14] and references therein), thus yielding Minkowski's conjecture in those dimensions. In this note we prove:

Theorem. There is c > 0 such that $N_d > c \frac{d}{\sqrt{\log d}}$. For all $d \geq 30$, $N_d > \frac{\sqrt{d}}{2}$.

Proof. Our examples will all be of the form

$$\Lambda = \alpha_1 \Lambda_1 \oplus \alpha_2 \mathbb{Z}^m$$

for some choices of $\Lambda_1, \alpha_1, \alpha_2, m$. It will be more convenient to work with the quantity $C(\Lambda) = 4r(\Lambda)^2$, where $r(\Lambda)$ is the covering radius of Λ . Clearly $C(\alpha\Lambda) = \alpha^2 C(\Lambda)$, and the Pythagorean theorem shows that $C(\Lambda_1 \oplus \Lambda_2) = C(\Lambda_1) + C(\Lambda_2)$. Let $\lambda_1(L)$ denote the length of the shortest nonzero vector of L, and suppose Λ_1, Λ_2 are well-rounded. If the α_i satisfy $\lambda_1(\alpha_1\Lambda_1) = \lambda_1(\alpha_2\Lambda_2)$, then $\alpha_1\Lambda_1 \oplus \alpha_2\Lambda_2$ is well-rounded. Moreover, there is a unique choice of α_i for which it is also unimodular. Namely, if Λ_1 is well-rounded and unimodular of dimension n, and $\Lambda_2 = \mathbb{Z}^m$, in order for Λ to be well-rounded and unimodular we must take $\alpha_1 = \lambda^{-\frac{m}{n+m}}$ and $\alpha_2 = \lambda^{\frac{n}{n+m}}$, where $\lambda = \lambda_1(\Lambda_1)$. Thus

$$C(\Lambda) = C(\Lambda_1) \,\lambda^{-\frac{2m}{n+m}} + m \,\lambda^{\frac{2n}{n+m}}.$$

For each d > 3, let $m = \left\lfloor \frac{d}{\log d} \right\rfloor$, n = d - m. Let Λ_1 be any lattice in \mathbb{R}^n for which λ_1 is maximal, that is, Λ_1 is a lattice giving the densest lattice packing in dimension n. Although Λ_1 is only known in very few dimensions, it is a well-known result of Minkowski (see [GL87, Chapter 2] or [CS88, §1.1.5]) that there is $c_1 > 0$ such that for all n,

$$\lambda = \lambda_1(\Lambda_1) \ge c_1 \sqrt{n}$$
.

Recall that a lattice L_0 is called *critical* if the function $L \mapsto \lambda_1(L)$, considered as a function on the space of unimodular lattices, attains a local maximum at L_0 . Then clearly Λ_1 is critical, and a theorem of Voronoi (whose proof is not difficult; see, e.g., [GL87, Chapter 6]) implies that Λ_1 is well-rounded. Now let α_1, α_2 be the unique positive numbers for which $\Lambda = \alpha_1 \Lambda_1 \oplus \alpha_2 \mathbb{Z}^m$ is well-rounded and unimodular. Then

$$C(\Lambda) \ge m \lambda^{\frac{2n}{m+n}} \ge c_2 m n^{\frac{n}{d}} \ge c_3 \frac{d^2}{\log d}$$

for positive c_2, c_3 , and the first assertion follows.

Taking Λ_1 to be the laminated lattice Λ_{15} (see [CS88, Chapter 6]), we have $C(\Lambda_1) \geq 7 \cdot 2^{\frac{2}{5}}$, $\lambda = 2^{\frac{7}{10}}$, n = 15 and so

$$C(\Lambda) \ge 7 \cdot 2^{\frac{2}{5}} \left(2^{\frac{7}{10}}\right)^{-\frac{2m}{15+m}} + m \left(2^{\frac{7}{10}}\right)^{\frac{30}{15+m}},$$

which is greater than d=m+15 for all $m \geq 15$, as can be seen by evaluating the function at m=15 and showing that its derivative is positive for $m \geq 15$. Note that Λ_{15} is generated by its shortest nonzero vectors and is in particular well-rounded. See [CS88, Chapter 6] or [Bar58].

Remark. A similar construction using different choices of Λ_1 (instead of Λ_{15}) also works, giving slightly weaker results: the Leech lattice (for $d \geq 38$), the 'shorter Leech lattice' O_{23} (for $d \geq 36$), the 16-dimensional Barnes-Wall lattice (for $d \geq 33$), and the laminated lattice Λ_{23} will work (for $d \geq 31$). We are grateful to M. Dutour-Sikirić for suggesting the use of various lattices, and in particular the laminated lattice Λ_{15} for this problem. The covering radii of these and other lattices can be computed using his publicly available program [DS].

Acknowledgements: We are grateful to Mathieu Dutour-Sikirić and Curt McMullen for useful comments and suggestions. OR was supported by the Simons Collaboration on Algorithms and Geometry

¹Actually $C(\Lambda_{15}) = 7 \cdot 2^{\frac{2}{5}}$, as was shown in [DSSV09]; we only need the lower bound.

and by the National Science Foundation (NSF) under Grant No. CCF-1320188. US was supported by ISF grant 357/13. BW was supported by ERC starter grant DLGAPS 279893.

References

- [Bar58] E. S. Barnes, The construction of perfect and extreme forms. I, Acta Arith. 5 (1958), 57–79. MR0100568
- [CS88] J. H. Conway and N. J. A. Sloane, Sphere packing, lattices and groups, Grundlehren de mathemtische wissenschaften, vol. 290, Springer, 1988.
 - [DS] M. Dutour Sikirić, Polyhedral.
- [DSSV09] M. Dutour-Sikirić, A. Schürmann, and F. Vallentin, Complexity and algorithms for computing voronoi cells of lattices, Mathematics of Computation 78 (2009), 1713–1731.
 - [GL87] P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, Second, North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR893813
 - [KR14] L. Kathuria and M. Raka, On conjectures of Minkowski and Woods for n = 9, 2014. Preprint, available at http://arxiv.org/abs/1410.5743.
- [McM05] C. T. McMullen, Minkowski's conjecture, well-rounded lattices and topological dimension, J. Amer. Math. Soc. 18 (2005), no. 3, 711–734 (electronic). MR2138142 (2006a:11086)
- [Woo72] A. C. Woods, *Covering six-space with spheres*, Journal of Number Theory 4 (1972), 157–180.

COMPUTER SCIENCE DEPARTMENT, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY.

DEPT. OF MATHEMATICS, TECHNION, HAIFA, ISRAEL

DEPT. OF MATHEMATICS, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL