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Abstract. Let H be a stratum of translation surfaces with at least two sin-

gularities, let mH denote the Masur-Veech measure on H, and let Z0 be a

flow on (H,mH) obtained by integrating a Rel vector field. We prove that
Z0 is mixing of all orders, and in particular is ergodic. We also characterize

the ergodicity of flows defined by Rel vector fields, for more general spaces

(L,mL), where L ⊂ H is an orbit-closure for the action of G = SL2(R) (i.e.,
an affine invariant subvariety) and mL is the natural measure. These results

are conditional on a forthcoming measure classification result of Brown, Eskin,

Filip and Rodriguez-Hertz. We also prove that the entropy of Z0 with respect
to any of the measures mL is zero.

1. Introduction

Let H be a stratum of area-one translation surfaces and let G
def
= SL2(R). There

is a G-invariant finite measure mH on H known as the Masur-Veech measure, and
the dynamics of the G-action on (H,mH) have been intensively studied in recent
years and are intimately connected to many problems in geometry and ergodic
theory, see e.g. [MaTa, Zo]. Suppose that surfaces in H have k singularities, where
k ≥ 2. Then there is a k − 1-dimensional foliation of H, known as the real Rel
foliation. A precise definition of the foliation and some of its properties will be
given below in §2.2. Loosely speaking, two surfaces are in the same real Rel leaf
if one can be obtained from the other by a surgery in which singular points are
moved with respect to each other in the horizontal direction, without otherwise
changing the geometry of the surface. A natural question, which we address here,
is the ergodic properties of this foliation.

As we review in §2.2, by labeling the singularities and removing a set of leaves
of measure zero, we can think of the real Rel leaves as being the orbits of an action
of a group Z on H, where Z ∼= Rk−1, and the restriction of this action to any one-
dimensional subgroup of Z defines a flow. Our first main result is the following.

Theorem 1.1. Let H be a connected component of a stratum H(a1, . . . , ak) with
all ai > 0 (i.e., no marked points). Let mH be the Masur-Veech measure on H, let
Z ∼= Rk−1 be the corresponding action given by translation along the leaves of the
real Rel foliation, and let Z0 ⊂ Z be any one-dimensional connected subgroup of Z.
Then the Z0-flow on (H,mH) is mixing of all orders (and in particular, ergodic).

The definition of mixing of all orders is given in §3.3. For purposes of this
introduction it is enough to note that it implies ergodicity of any nontrivial element.
Note that when H has marked points, there will be subgroups Z0 which only move
the marked points on surfaces without otherwise changing the geometry, and the
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conclusion of Theorem 1.1 will not hold. This is the only obstruction to generalizing
our results to strata with marked points, see Theorem 8.1.

The proof of Theorem 1.1, as well as most of the other results of this paper,
relies crucially on measure-rigidity results of Eskin, Mirzakhani and Mohammadi
[EM, EMM], and further forthcoming work extending these results, which we will
describe in §5.

Theorem 1.1 improves on the results of several authors. In those results, ergod-
icity for the full Rel foliation was studied. The full Rel foliation (also referred to
as the ‘kernel foliation’, ‘isoperiodic foliation’, or ‘absolute period foliation’) will
also be defined in §2.2. Its leaves are of dimension 2(k − 1), that is, twice the di-
mension of the real Rel leaves. Loosely speaking, two surfaces are in the same leaf
for this foliation if one can be obtained from the other by moving the singularities
(without otherwise affecting the geometry of the surface). That is, we relax the
hypothesis that points can only be moved horizontally. The first ergodicity results
for the full Rel foliation were obtained by McMullen [McM], who proved ergodic-
ity in the two strata H(1, 1) and H(1, 1, 1, 1). Subsequently, Calsamiglia, Deroin
and Francaviglia [CDF] proved ergodicity in all principal strata, and Hamenstädt
[Ham] reproved their result by a simpler argument. Recently, Winsor [Wi1] proved
ergodicity for most of the additional strata, and in [Wi2], showed that there are
dense orbits for the Z0-flow, for any Z0 as in Theorem 1.1. Note that ergodicity for
a foliation is implied by ergodicity for any of its subfoliations, and that ergodicity
implies the existence of dense leaves, and thus Theorem 1.1 generalizes all of these
results. Also note that full Rel is a foliation which is not given by a group action,
and the notions of mixing and multiple mixing do not make sense in this case.

The papers [McM, CDF] go beyond ergodicity and obtain classifications of full
Rel closed leaves and leaf-closures in their respective settings. We suspect that
there is not a reasonable classification of real Rel leaf-closures, indeed it is already
known (see [HW]) that there are real Rel trajectories that leave every compact set
never to return.

The strata H support other interesting measures for which similar questions
could be asked. Namely, by work of Eskin, Mirzakhani and Mohammadi [EM,

EMM], for any q ∈ H, the orbit-closure L def
= Gq is the support of a unique smooth

G-invariant measure which we denote bymL. Let ZL be the subgroup of Z leaving L
invariant. Then ZL also preserves mL and for many choices of L, we have dimZL >
0. In these cases, for any closed connected Z1 ⊂ ZL, there is a complexification R1,
which gives a foliation of L whose leaves R1(q) have dimension 2 dimZ1 (see §2.2).
The leaves R1(q) have a natural translation structure, and this induces a natural
locally finite translation-invariant measure on each leaf. With this terminology we
can now state the main result of this paper:

Theorem 1.2. Let L be a G-orbit closure, and let mL, ZL,RL be as above, where
dimZL > 0. Let z0 be a nontrivial element of ZL and let Z0 = spanR(z0). Then
either

(1) The action of Z0 on (L,mL) is mixing of all orders (and in particular, z0
acts ergodically); or

(2) there is an intermediate closed connected subgroup Z1 so that Z0 ⊂ Z1 ⊂
ZL, and the complexification R1 of Z1 satisfies
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• for every q ∈ L, the leaf R1(q) is closed, and
• for mL-a.e. q, R1(q) is of finite volume with respect to its translation-
invariant measure, and Z0q = R1(q).

Thus, in order to establish ergodicity of real Rel subfoliations onG-orbit-closures,
it is enough to rule out Case (2). We will prove Proposition 7.1, which provides a
simple way to achieve this, using cylinder circumferences of surfaces in L. Theorems
1.1 and 8.1 are deduced from Theorem 1.2 using Proposition 7.1.

The following statement is an immediate consequence of Theorem 1.2.

Corollary 1.3. Let L be a G-orbit-closure, let mL, ZL be as above, and let Z1 ⊂ ZL
be one-dimensional. Suppose that the foliation induced by the complexification R1

has a dense leaf. Then the Z1-flow on (L,mL) is mixing of all orders (and in
particular, ergodic).

The density of certain leaves of the full Rel foliation in G-orbit-closures of rank
one was obtained by Ygouf in [Y]. Using these results we obtain ergodicity of one-
dimensional subgroups of the real Rel foliation in many cases. For instance, using
[Y, Thm. A & Prop. 5.1] we have:

Corollary 1.4. The real Rel foliation is mixing of all orders (and in particular,
ergodic) in any eigenform locus in H(1, 1) with a non-square discriminant.

Recall that in [Wi2] Winsor proved the existence of dense real Rel leaves, and
dense leaves for one-dimensional flows Z0, in all strata. Using these results in
conjunction with Corollary 1.3, one can obtain an alternative proof of Theorem 1.1
that avoids the use of Proposition 7.1.

We also consider the entropy of real-Rel flows, and show the following:

Theorem 1.5. Let L,mL, ZL, z0 be as in the statement of Theorem 1.2. Then the
entropy of the action of Relz0 on the measure space (L,mL) is zero.

Using the geodesic flow one easily shows that Relz0 is conjugate to Reltz0 for
any t > 0, and from this it follows that the entropy is either zero or infinite.
However, the Rel flow is not continuous, and we could not find a simple way to
rule out infinite entropy. Our proof gives a more general result — see Theorem
9.1. However, the argument fails for Z0-invariant measures for which the backward
time geodesic flow diverges almost surely, and thus we do not settle the question of
whether the topological entropy of real Rel flows is zero.

1.1. Outline. In §2 we give background material on translation surfaces, their
moduli spaces, and the Rel foliation. In §3 we use standard facts about joinings
to build a measure θ on the product of two strata (see (3.1)), depending on a real
Rel flow Z0, such that if θ is the product measure, then Z0 is ergodic. In §3.3
we discuss a technique of Mozes that makes it possible to upgrade ergodicity to
mixing of all orders. In §4 we show that θ is ergodic for the diagonal action of
the upper triangular group P ⊂ G on the product of two strata. In §5 we state a
far-reaching measure rigidity result of Brown, Eskin, Filip and Rodriguez-Hertz for
P -ergodic measures on products of two strata. In §6 we use this measure rigidity
result, as well as prior results for the action on one stratum due to Wright, in order
to characterize the situations in which θ is not a product measure, thus proving
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Theorem 1.2. Proposition 7.1 is proved in §7, and we check its conditions to deduce
Theorems 1.1 and 8.1 in §8. We prove Theorem 1.5 in §9.

1.2. Acknowledgements. We are very grateful to Alex Eskin for crucial contribu-
tions to this project. We also thank Simion Filip, Curt McMullen and Alex Wright
for useful discussions, and acknowledge the support of ISF grant 2919/19, BSF
grant 2016256, NSFC-ISF grant 3739/21, a Warnock chair, a Simons Fellowship,
and NSF grants DMS-1452762 and DMS-2055354.

2. Preliminaries about translation surfaces

2.1. Strata, period coordinates. In this section we collect standard facts about
translation surfaces, and fix our notation. For more details, we refer to reader to
[Zo, Wr1, BSW]. Below we briefly summarize the treatment in [BSW, §2].

Let S be a compact oriented surface of genus g, Σ = {ξ1, . . . , ξk} ⊂ S a finite set,
a1, . . . , ak non-negative integers with

∑
ai = 2g−2, and H = H(a1, . . . , ak) the cor-

responding stratum of unit-area translation surfaces. We let Hm = Hm(a1, . . . , ak)
denote the stratum of unit-area marked translation surfaces and π : Hm → H the
forgetful mapping. Our convention is that singular points are labeled, or equiv-
alently, H = Hm/Mod(S,Σ), where Mod(S,Σ) is the group of isotopy classes of
orientation-preserving homeomorphisms of S fixing Σ, up to an isotopy fixing Σ.

There is an R>0-action that dilates the atlas of a translation surface by c ∈ R>0.
For a stratum H and marked stratum Hm, we denote the collection of surfaces
of arbitrary area, obtained by applying such dilations, by H̄, H̄m. The marked
stratum H̄m is a linear manifold modeled on the vector space H1(S,Σ;R2). It has
a developing map dev : H̄m → H1(S,Σ;R2), sending an element of H̄m represented
by f : S → M , where M is a translation surface, to f∗(hol(M, ·)), where for
an oriented path γ in M which is either closed or has endpoints at singularities,

hol(M,γ) =

(∫
γ
dx∫

γ
dy

)
, and dx, dy are the 1-forms on M inherited from the plane.

Furthermore, there is an open cover {Uτ} of Hm, indexed by triangulations τ of
S with triangles whose vertices are in Σ, and maps dev|Uτ

: Uτ → H1(S,Σ;R2),
which are homeomorphisms onto their image, and such that the transition maps on
overlaps for this atlas are restrictions of linear automorphisms of H1(S,Σ;R2).

This atlas of charts {(Uτ ,dev|Uτ
)} is known as period coordinates. Since

each Uτ is identified via period coordinates with an open subset of the vector
space H1(S,Σ;R2), the tangent space at each Uτ is identified canonically with
H1(S,Σ;R2), and thus the tangent bundle of Hm is locally constant. A sub-bundle
of the tangent bundle is called locally constant or flat if it is constant in the charts
afforded by period coordinates. The Mod(S,Σ)-action on Hm is properly discontin-
uous, and hence H is an orbifold, and the map π : Hm → H is an orbifold covering
map.

The group G acts on translation surfaces in H by modifying planar charts, and
acts on H1(S,Σ;R2) via its action on R2, thus inducing a G-action on Hm. The G-
action commutes with the Mod(S,Σ)-action, and thus the map π is G-equivariant
for these actions. The G-action on Hm is free, since dev(gq) ̸= dev(q) for any
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nontrivial g ∈ G. We will use the following subgroups of G:

gt =

(
et 0
0 e−t

)
, us =

(
1 s
0 1

)
U = {us : s ∈ R}, P =

{(
a b
0 a−1

)
: a > 0, b ∈ R

}
.

2.2. Rel foliation and real Rel foliation. We define and list some important
properties of the Rel foliation, the real Rel foliation, and the corresponding action
on the space of surfaces without horizontal saddle connections. See [MW, BSW]
for more details. See also [Zo, McM], and references therein.

We have a canonical splitting R2 = R ⊕ R and we write R2 = Rx ⊕ Ry to
distinguish the two summands in this splitting. There is a corresponding splitting

(2.1) H1(S,Σ;R2) = H1(S,Σ;Rx)⊕H1(S,Σ;Ry).

We also have a canonical restriction map Res : H1(S,Σ;R2) → H1(S;R2) (given
by restricting a cochain to absolute periods). Since Res is topologically defined,
its kernel ker(Res) is Mod(S,Σ)-invariant. Moreover, from our convention that
singular points are marked, the Mod(S,Σ)-action on ker(Res) is trivial.

Let

(2.2) R
def
= ker(Res) and Z

def
= R ∩H1(S,Σ;Rx).

Since H1(S,Σ;Rx) and H
1(S,Σ;Ry) are naturally identified with each other via

their identification with H1(S,Σ;R), for each Z1 ⊂ Z we can define the space R1

spanned by the two copies of Z1 in H1(S,Σ;Rx) and H1(S,Σ;Ry) respectively.
The space R1 is the complexification of Z1. This terminology arises from view-
ing H1(S,Σ;R2) as H1(S,Σ;C), a vector space over C, viewing H1(S,Σ;Rx) and
H1(S,Σ;Ry) as the real and imaginary subspace of this complex vector space. With
this viewpoint, R1 is the C-span of Z1.

For any subspace Z1 ⊂ R, we can foliate the vector space H1(S,Σ;R2) by affine
subspaces parallel to Z1. Pulling back this foliation using the period coordinate
charts gives rise to a foliation of H̄m. Since monodromy acts trivially on R, this
foliation descends to a well-defined foliation on H̄. It is known (see e.g. [BSW,
Prop. 4.1]) that the area of a surface is constant on leaves of the Rel foliation,
and thus the Rel foliation and any of its subfoliations descend to a foliation of H.
The foliation corresponding to R (respectively, to Z) is known as the Rel foliation
(respectively, the real Rel foliation).

Because the Mod(S,Σ)-monodromy action fixes all points of R, the leaves of
the Rel foliation, and any of its sub-foliations, acquire a translation structure. In
particular, they are equipped with a natural measure.

For any v ∈ Z we have a constant vector field, well-defined on Hm and on H,
everywhere equal to v. Integrating this vector field we get a partially defined real
REL flow (corresponding to v) (t, q) 7→ Reltv(q); the flow may not be defined for
all time due to possible ‘collide of zeroes’. For every q ∈ H it is defined for t ∈ Iq,
where the domain of definition Iq = Iq(v) is an open subset of R which contains 0.

The sets Iq(v), are explicitly described in [BSW, Thm. 6.1]. Let Ĥ denote the set

of surfaces in H with no horizontal saddle connections. Then Iq = R for all q ∈ Ĥ.
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If q ∈ H, s ∈ R and τ ∈ Iq then

τ ∈ Iusq and Relτv(usq) = usRelτv(q).

Similarly, if q ∈ H, t ∈ R and τ ∈ Iq then

(2.3) τ ′
def
= etτ ∈ Igtq and Relτ ′v(gtq) = gtRelτv(q).

In particular, since P preserves Ĥ and P = {gtus : t, s ∈ R}, there is an action of

P ⋉ Z on Ĥ, given by (p, z).q = pRelz(q).

3. Preliminaries from ergodic theory

3.1. Ergodic decomposition. We will use the notation G ⟳ (X,µ) to indicate
that G is a locally compact second countable group, (X,B) is a standard Borel
space, and µ is a probability measure on B preserved by the G-action. We say that
G ⟳ (Y, ν) is a factor of (X,µ) if there is a measurable G-invariant conull subset
X0 ⊂ X, and a measurable map T : X0 → Y such that T ◦ g = g ◦ T for all g ∈ G,
and ν = T∗µ. In this situation we refer to T as the factor map. Given a factor
map, there is a (unique up to nullsets) measure disintegration µ =

∫
µy dν(y), for

a Borel mapping y 7→ µy from Y to the space of Borel probability measures on X,
such that µy(T

−1(y)) = 1 for ν-a.e. y. Equivalently we can write µ =
∫
x
µ′
x dµ(x),

where µ′
x
def
= µT (x). For a closed subgroup H ⊂ G, we say that µ is H-ergodic

if any invariant set is null or conull. We have the following well-known ergodic
decomposition theorem:

Proposition 3.1. Suppose G ⟳ (X,µ), and H is a closed subgroup of G. Then
there is a factor of H ⟳ (X,µ), called the space of ergodic components and denoted
by X//H, with the following properties:

(i) For ν-a.e. y ∈ X//H, µy is H-invariant and H-ergodic.
(ii) H acts trivially on X//H.
(iii) H ⟳ (X,µ) is ergodic if and only if X//H = {pt.}.
(iv) The properties (i)–(iii) uniquely determine the factor X//H up to measur-

able isomorphism.
(v) If H �G then G ⟳ (X//H, ν).

Proof. For (i) and (ii) see [Va, Thm. 4.4] (in the notation of [Va], these assertions
follow from the fact that β is a map on points and is H-invariant). Assertion (iii)
is immediate from definitions and (iv) follows from [Va, Lemma 4.4]. For (v), one
can argue using the uniqueness property (iv), and the fact that the image of an
H-invariant ergodic measures under any element g ∈ G is also H-invariant and
ergodic. □

Remark 3.2. An action is called prime if it has no factors (besides the action itself,
and the trivial action on a point). The construction above shows that if H �G, G′

is a subgroup of G so that G′ ⟳ (X,µ) is prime and H ⟳ (X,µ) is not isomorphic
to the trivial action, then H ⟳ (X,µ) is ergodic. This is not the approach we will
take for proving Theorem 1.1.
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3.2. Joinings. We recall some well-known facts about joinings, see [dlR] and ref-
erences therein. Let G ⟳ (Xi, µi) for i = 1, 2. A joining is a measure θ on X1×X2,
invariant under the diagonal action of G, such that πi∗θ = µi. A self-joining
is a joining in case X1 = X2. If (Xi, µi) → (Z, ν) is a joint factor then the
relatively independent joining over Z is the joining

∫
Z
(µ1)z × (µ2)z dν(z), where

µi =
∫
Z
(µi)z dν(z) is the disintegration of µi. In caseX1 = X2 = X, and Z = X//H

is the space of ergodic components of the action ofH on (X,µ) as in Proposition 3.1,
we obtain the relatively independent self-joining over X//H. This joining satisfies:

Proposition 3.3. The following are equivalent:

• H ⟳ (X,µ) is ergodic.
• The relatively independent self-joining over X//H is µ× µ.

We note two properties of this self-joining. We fix a topology on X which
generates the σ-algebra, and denote by suppµ the topological support of µ, i.e.,
the smallest closed set of full measure.

Proposition 3.4. Let θ be the measure on X×X which is the relatively independent
self-joining over X//H, for some H, and let T : X → X//H be the factor map. Then
the following hold:

• We have

(3.1) θ =

∫
X

µT (x) × µT (x) dµ(x).

• The set
{
x ∈ X : x /∈ suppµT (x)

}
is of µ-measure zero.

• If X = suppµ then supp θ contains the diagonal ∆X
def
= {(x, x) : x ∈ X}.

Proof. Formula (3.1) is immediate from the definition of the relatively independent
self-joining over X//H. Since each µ′

x = µT (x) is H-invariant and ergodic, and

µ′
x(T

−1(T (x))) = 1, the set {x ∈ X : x /∈ suppµ′
x} is a nullset. From this, and

from (3.1) we obtain the last assertion. □

3.3. Ergodicity, mixing, and mixing of all orders. For G ⟳ (X,µ), let L2
0(µ)

denote the Hilbert space of L2-functions on (X,µ) of integral zero, and let k ≥ 2.
The action is called k-mixing if for any f1, . . . , fk ∈ L2

0(µ) and for any k−1 sequences(
g
(i)
n

)
n∈N

∈ G, i = 1, . . . , k − 1, for which all of the sequences(
g(i)n

)
n∈N

(1 ≤ i ≤ k − 1) and
(
g(i)n (g(j)n )−1

)
n∈N

(1 ≤ i < j ≤ k − 1)

eventually leave every compact subset of G, we have∫
X

f1

(
g(1)n x

)
· · · fk−1

(
g(k−1)
n x

)
fk(x) dµ(x)

n→∞−→
k∏

i=1

∫
X

fi dµ.

We say that the action is mixing if it is 2-mixing, and mixing of all orders if it is
mixing of order k for any k ≥ 2. It is easy to check that mixing implies ergodicity
of any unbounded subgroup of G. We have the following:

Proposition 3.5. Let Z0
∼= R and let {gt} be a one-parameter group acting on Z0

by dilations, i.e., for all v ∈ Z0 and t ∈ R we have gtv = eλtv for some λ ̸= 0.
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Let F = {gt} ⋉ Z0 and let F ⟳ (X,µ) be a probability space. The following are
equivalent:

(a) the restricted flow Z0 ⟳ (X,µ) is ergodic;
(b) the restricted flow Z0 ⟳ (X,µ) is mixing of all orders;
(c) the restricted flow Z0 ⟳ (X,µ) is mixing;
(d) any nontrivial element of Z0 acts ergodically.

Remark 3.6. The group F appearing in Proposition 3.5 is isomorphic as a Lie
group to the subgroup P of upper triangular matrices in G, but in our application
we will use it for the group generated by a one-parameter real Rel flow Z0 and the
diagonal flow {gt}.

Proof. Clearly (b) =⇒ (c) =⇒ (d) =⇒ (a). We assume that the Z0-flow
is ergodic. To see that it is mixing, it is enough by [P, Chap. 2, Prop. 5.9] to
prove that it has countable Lebesgue spectrum, and for this, use [KT, Prop. 1.23
& Prop. 2.2]. The proof of mixing of all orders follows verbatim from an argument
of Mozes [Mo], for mixing actions of Lie groups which are ‘Ad-proper’. Since our
group F is not Ad-proper, we cannot cite [Mo] directly, so we sketch the proof.
For notational convenience we deduce 3-fold mixing from mixing (the proof that
‘k-fold mixing =⇒ k + 1-fold mixing’, for k ≥ 3, is identical but requires more
cumbersome notation).

We use additive notation in the group Z0, and denote the action of Z0 on X by
(z, x) 7→ z.x. Let (bn)n∈N and (cn)n∈N be sequences in Z0 such that each of the
sequences (bn)n∈N , (cn)n∈N , (bn + cn)n∈N eventually leaves every compact set, and

let f1, f2, f3 be in L2
0(µ). We need to prove that∫

X

f1(x)f2(bn.x)f3((bn + cn).x) dµ(x)
n→∞−→

∫
X

f1 dµ

∫
X

f2 dµ

∫
X

f3 dµ.

For each n, define a measure µn on X3 def
= X ×X ×X by∫

X3

f dµn
def
=

∫
X

f(x, bn.x, (bn + cn).x) dµ(x), ∀f ∈ Cc(X
3).

That is, µn is the pushforward of the diagonal measure on X3 by the triple
(0, bn, bn + cn). It is easy to see that 3-mixing is equivalent to the fact that the

weak-* limit of µn is the measure µ3 def
= µ×µ×µ. The group F 3 def

= F×F×F acts on
X3 by acting separately on each component, and as in [Mo], since Z0 is mixing, it
suffices to show that any measure ν on X3 which is a weak-* limit of a subsequence
of (µn)n∈N, is invariant under (0, u, v) ∈ R3 ⊂ F 3, for some (u, v) ∈ R2∖ (0, 0). We
claim that for any s ∈ R the measure µn is invariant under

hn(s)
def
= (gs, bn · gs · (−bn), (bn + cn) · gs · (−bn − cn)) ,

where the multiplication is in the group F 3. Indeed, since µ is {gs}-invariant,∫
X3

f dµn =

∫
X

f (gsx, bn.(gsx), (bn + cn).(gsx)) dµ(x),

and

hn(s) · (idF , bn, bn + cn) = (gs, bn · gs, (bn + cn) · gs).
That is, applying hn(s) changes one description of µn to another.
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We embed F as a multiplicative group of matrices in GL2(R) and let dF be the
metric on F induced by some norm on GL2(R). By a straightforward computation
we have

hn(s) =
(
gs, (1− eλs)bn · gs, (1− eλs)(bn + cn) · gs

)
,

and dF (idF , hn(sn)) is a continuous function of s which goes to 0 as s→ 0 and for
any fixed s > 0, increases to infinity as n → ∞. Therefore we can choose sn → 0
so that dF (idF , hn(sn)) = 1 for all large enough n. As in [Mo], ν is invariant
under some subsequential limit of hn(sn) which is of the form (0, u, v) for some
(u, v) ∈ R2 ∖ (0, 0). This establishes our sufficient condition. □

4. The relatively independent self-joining for a Rel flow

Recall that L̂ ⊂ L is the set of surfaces without horizontal saddle connections,
and this is a P -invariant set of full measure with respect to mL. We can combine
the product action of ZL×ZL on L̂× L̂ with the diagonal action of P to obtain an
action of the semi-direct product P ⋉ (ZL × ZL) on L̂ × L̂. Since L̂ ⊂ L is of full
measure, and the arguments of this section involve passing to sets of full measure,
in the remainder of this section we will ignore the distinction between L and L̂.

Proposition 4.1. Let Z ⊂ ZL be a closed connected subgroup. If θ is an invariant
probability measure for an action of the semidirect product P ⋉ (Z × Z) on L× L,
then any f ∈ L2(θ) which is {gt}-invariant is also Z × Z-invariant.

Proof. For any z ∈ Z×Z, gtzg−t →t→−∞ 0. So the claim follows from the Mautner
phenomenon, see e.g. [EW, Prop 11.18]. □

Proposition 4.2. Let (L,mL) be a G-orbit-closure with a fully supported P -
invariant ergodic measure, let Z ⊂ ZL be a connected closed subgroup, and let
θ on L × L be the relatively independent joining over L//Z. Then θ is P -invariant
and {gt}-ergodic (and hence P -ergodic). Also ∆L ⊂ supp θ.

As we will see in §5, under the conditions of the Proposition, mL is the so-called
‘flat measure’ on L.

Proof. Let π : L × L → L be the projection onto the first factor, and let ν = π∗θ.

For each x ∈ L, let Ωx
def
= π−1(x) = {x} × L be the fiber, and let θx be the fiber

measure appearing in the disintegration θ =
∫
L θx dν(x). Then Z acts on Ωx via

the second factor in Z × Z, and θx is Z-invariant and ergodic by the definition of
the ergodic decomposition.

It follows from Proposition 3.1(v) that θ is P -invariant. To prove ergodicity, let
f ∈ L2(L×L, θ) be a P -invariant function. By Proposition 4.1, f is Z×Z-invariant.
For each x ∈ L, let fx

def
= f |Ωx

. There is L0 ⊂ L such that mL(L0) = 1 and for
every x ∈ L0, fx belongs to L2(Ωx, θx) and is Z-invariant. Hence, by ergodicity,
there is f̄ : L0 → R such that for every x ∈ L0, f̄(x) is the θx-almost-sure value
of fx. Since f is P -invariant for the diagonal action of P , f̄ is P -invariant for the
action of P on L. By ergodicity of P ⟳ (L,mL), f̄ is ν-a.e. constant, and thus f
is θ-a.e. constant.

The last assertion follows from Proposition 3.4. □
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5. An upgraded magic wand theorem

The celebrated ‘magic wand’ Theorem of Eskin and Mirzakhani [EM], and en-
suing work of Eskin, Mirzakhani and Mohammadi [EMM], classified P - and G-
invariant probability measures and orbit-closures on strata of translation surfaces.
These results can be summarized as follows (see [EM, Defs. 1.1 & 1.2, Thms. 1.4
& 1.5]):

Theorem 5.1. Let H, Hm, H̄, H̄m be as in §2.1. Any P -invariant ergodic proba-
bility measure m has the following properties:

(i) It is G-invariant.
(ii) There is a complex-affine manifold N and a proper immersion φ : N → H̄

such that

L def
= suppm = H ∩ φ(N ).

(iii) There is an open G-invariant subset U ⊂ H̄ satisfying m(U) = 1, and for
any x ∈ U ∩ L there is an open set V containing x such that V is evenly

covered by V ⊂ Hm under the map π : H̄m → H̄, and ψ
def
= dev ◦ (π|V)−1 ◦φ

coincides on its domain with a C-linear map, with real coefficients.

(iv) The subspace W
def
= Im(ψ) is symplectic, and the measure m is obtained via

the cone construction from the Lebesgue measure on W .
(v) The complement L∖ U is a finite union of supports of measures satisfying

properties (i)–(iv), for which the manifolds N ′ appearing in (ii) satisfy
dimN ′ < dimN .

Any orbit-closure for the P -action is a set L as above.

We will refer to L as an orbit-closure and to m = mL as a flat measure on L.
Orbit-closures are referred to as affine invariant manifolds and also as invariant
subvarieties. The use of an evenly covered neighborhood in item (iii) is a standard
approach for defining period coordinates (see e.g. [MS]). We refer to [Wr1] for a
survey containing more information on orbit-closures.

In a forthcoming work of Brown, Eskin, Filip and Rodriguez-Hertz, the same
conclusion is obtained for the diagonal actions of P and G on a product of strata
H×H′. Namely, the following is shown:

Theorem 5.2. Let H,H′ be strata of translation surfaces, and let P and G act
on H×H′ via their diagonal embeddings in G×G. Then all of the conclusions of
Theorem 5.1 hold for this action (with H̄ × H̄′ replacing H̄).

6. Proof of main result

Using Theorem 5.2 and further work of Wright [Wr2], we can prove our main
result.

Proof of Theorem 1.2. Let Z0 = spanR(z0) be a one-dimensional connected real
Rel subgroup. Assume that (1) fails, so that the action of Z0 on (L,mL) is not
mixing of all orders. Then, by Proposition 3.5 it is not ergodic. Let θ be the
relatively independent self-joining over L//Z0. Applying Propositions 3.3 and 3.4
we have that θ ̸= mL × mL and ∆L ⊂ supp θ. Applying Proposition 4.2 and
Theorem 5.2, we have that there is a G-invariant open subset U of full θ-measure



ERGODIC THEORY OF REAL REL 11

such that U ∩ supp θ is the isomorphic image of an affine complex-linear manifold
whose dimension is strictly smaller than 2 dim H̄, and θ is obtained from Lebesgue
measure on this complex-linear manifold by the cone construction.

We claim that the set

U1
def
= {q ∈ H : (q, q) ∈ U}

is of full measure for (π1)∗θ, where π1 : L × L → L is the projection onto the first
factor. Indeed, the measure θ is invariant under Z0 × {Id}, and hence so is its
support. Since Z0 acts by homeomorphisms where defined, and using property (v)
in Theorems 5.1 and 5.2, we have that the set U is also Z0×{Id}-invariant. Thus for
any Z0-ergodic measure, it is either null or conull. Thus if q /∈ U1 and q is generic for
the measure µT (q) appearing in (3.1), then µT (q),q assigns measure zero to U , where
µT (q),q is the measure on supp θ defined by µT (q),q(A) = µT (q)({q′ : (q′, q) ∈ A}). If
this were to happen for a positive measure of q it would follow from (3.1) and the
fact that µT (q) × µT (q) =

∫
µT (q′),q′dµT (q) that U does not have full measure for θ.

For q ∈ U1, let Nq denote the connected component of U ∩ π−1
1 (q) ∩ supp θ

containing (q, q). Since the fibers π−1
1 (q) are also affine submanifolds of L × L,

we have that the Nq are affine submanifolds contained in π−1
1 (q) ∼= L, so we can

identify them with invariant submanifolds in L (which we continue to denote by
Nq). With this notation we have q ∈ Nq.

The mapping q 7→ T (Nq) is locally constant; that is, letting V ⊂ H̄ and V ⊂ H̄m

be open sets such that π|V : V → V is a homeomorphism and q ∈ V , the map
q 7→ dev ◦ π|−1

V (q) sends a neighborhood of q in Nq to an affine subspace Wq of
H1(S,Σ;R2), and the corresponding linear spaces Wq −Wq are the same for all
q ∈ V . Since mL ×mL is the unique P -invariant ergodic measure on L × L of full
support, we have dimNq < dimL for every q ∈ U1.

Let N̄q denote the set of surfaces (not necessarily of area one) which are obtained
by rescaling surfaces in Nq, and let

Nq
def
= Tq(N̄q)

(the tangent space to N̄q at q, thought of as a subset of the tangent space Tq(L̄)).
The assignment q 7→ Nq defines a proper flat sub-bundle of the tangent bundle
T (L̄). Flat sub-bundles of T (L̄) were classified in [Wr2]. According to [Wr2, Thm.
5.1], Nq ⊂ RL for each q, and Nq is a complex linear subspace which is locally
constant. Since RL is acted on trivially by monodromy, we in fact have that Nq is
independent of q, and we denote it by R. The leaves R(q) are contained in N̄q for
each q, and of the same dimension. That is, R(q) is the connected component of
N̄q containing q. Since Rel deformations do not affect the area of the surface, we
see that N̄q = Nq. In particular R(q) is closed for each q.

By Proposition 3.4, for a.e. q, Nq is the support of the ergodic component (mL)q,
and in particular

(mL)q(Nq) <∞, for a.e. q.

Since Z0 acts ergodically with respect to (mL)q, we have that almost surely Nq =
R(q). Since the measure (mL)q is affine in charts, it is a scalar multiple of the
translation-invariant measure onR(q), and thus the volume Vq ofR(q) (with respect
to its translation-invariant measure) is almost surely finite. It is clear that the
function q 7→ Vq is U -invariant, and by ergodicity, it is constant almost surely. □
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Remark 6.1. We note that the above argument works under much weaker conclu-
sions than those given in Theorem 5.2. Indeed, in the first step of the argument,
Theorem 5.2 was used simply to extract a G-invariant assignment q 7→ Nq, where
Nq is a subspace of Tq(L), which is proper if θ is not the product joining. A fun-
damental fact about such G-invariant assignments is that they are very restricted
– besides [Wr2], see [EFW] and [Fi]. In particular, [Fi] gives strong restrictions on
assignments that are only assumed to be defined almost everywhere and measurable.

7. A topological condition for Rel ergodicity

Let Z0 ⊂ Z be a subspace. We say that a translation surface x is Z0-stably
periodic if it can be presented as a finite union of horizontal cylinders and the
Z0-orbit of x is well defined. Recall that a horizontal separatrix is a horizontal
leaf whose closure contains at least one singularity, and it is a horizontal saddle
connection if its closure contains two singularities. Then the condition of being Z0-
stably periodic is equivalent to requiring that all horizontal separatrices starting at
singular points are on horizontal saddle connections, and Z0 preserves the holonomy
of every horizontal saddle connection on x. In case Z = Z0 is the full real Rel
group, we say that x is fully stably periodic. This is equivalent to saying that all
horizontal separatrices starting at singular points are on saddle connections, and all
horizontal saddle connections start and end at the same singularity. In particular,
for any cylinder C on a fully stably periodic surface, each boundary component of
C is made of saddle connections starting and ending at the same singular point ξ;
we say that the boundary component only sees singularity ξ. For more information
on the real Rel action on surfaces which are horizontally completely periodic, see
[HW, §6.1].

Proposition 7.1. Suppose x is a surface which is Z0-stably periodic, and v ∈ Z0

moves two singularities p and q with respect to each other. Suppose that x contains
two cylinders C1 and C2 that both only see singularity p on one boundary component
and only see singularity q on another boundary component. Finally suppose the
circumferences c1, c2 of these cylinders satisfy c1

c2
/∈ Q. Then Case (2) of Theorem

1.1 does not hold for x.

Proof. Since c1
c2

/∈ Q, the trajectory {Reltv(x) : t ∈ R} is not closed, let L denote
its closure. We claim that the tangent space to L is not contained in Z. Let σ1
denote a saddle connection from p to q in C1 and let σ2 denote a saddle connection
from q to p in C2. Let σ be the concatenation. Then σ represents an absolute
homology class because it goes from p back to p, and it is nontrivial because the
vertical component of its holonomy on x is nonzero. If we consider the restriction
of the rel-action to C1 ∪ C2 then it only affects the twist parameters, which is a
2-dimensional space. This space can be generated by the horizontal holonomy of σ1
and the horizontal holonomy of σ2. Since

c1
c2
/∈ Q, this restricted action does not give

a closed orbit. So the tangent space to L contains directions, which continuously
affect the holonomy of σ. Since σ is an absolute period, we see that the tangent
space to L is not contained in Z. □
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8. Checking the condition for strata

Let H = H(a1, . . . , ak) and for i, j ∈ {1, . . . , k}, let ξi, ξj be the corresponding
singular points of a surface in H. Let z ∈ R be a Rel cohomology class. We
say that z moves ξi, ξj with respect to each other if for some (equivalently, every)
α ∈ H1(S,Σ) represented by a path starting at ξi and ending at ξj , we have
z(α) ̸= 0. Below when we discuss a stratum H(a1, . . . , ak) we allow ai = 0, that is
we allow marked points. We call points with cone angle 2π (that is, with a = 0)
removable singularities, and otherwise we call them non-removable. The following
result, which clearly implies Theorem 1.1, allows strata with removable singularities.

Theorem 8.1. Let H be a connected component of a stratum H(a1, . . . , ak). Let
mH be the Masur-Veech measure on H, let Z be the corresponding real Rel foliation,
and let Z0 ⊂ Z be a one-dimensional connected subgroup of Z. Suppose that there
are 1 ≤ i < j ≤ k with corresponding singular points ξi, ξj, such that ai > 0, aj > 0
and such that some element of Z0 moves ξi, ξj with respect to each other. Then the
Z0-flow on (H,mH) is mixing of all orders (and in particular, ergodic).

Clearly, Theorem 8.1 follows from Theorem 1.2, Proposition 7.1, and the follow-
ing result.

Proposition 8.2. Let H ⊂ H(a1, . . . , ak) be a connected component of a stratum of
translation surfaces with at least two non-removable singular points. If p ̸= q is any
pair of non-removable singularities then there exists M ∈ H, which has cylinders
C1, C2 with circumferences c1, c2 so that

(1) M is fully stably periodic.
(2) c1

c2
/∈ Q.

(3) Both C1 and C2 only see singularity p on one boundary component and only
see singularity q on the other boundary component.

For the proof of Proposition 8.2 we will also need the following:

Proposition 8.3. Let H = H(a1, . . . , ak) be a stratum of translation surfaces with
at least two singular points (that is k ≥ 2). If p ̸= q is any pair of distinct sin-
gularities (possibly removable), then there exists M ∈ H, so that M is fully stably
periodic and there exists a cylinder on M that only sees singularity p on one bound-
ary component, and only sees singularity q on the other boundary component.

Propositions 8.2 and 8.3 will both be proved by induction, after some prepara-
tions.

Lemma 8.4 (The basic surgery – gluing in a torus). Let H = H(b1, . . . , bℓ) be
a stratum of translation surfaces, and let M ∈ H, with singularities labeled by
ξ1, . . . , ξℓ, so that the order of ξi is bi. Suppose M has a horizontal cylinder C, with
circumference c, where one boundary component is made of saddle connections that
begin and end at ξi, and the other is made of saddle connections that begin and end
at ξj, where bi ≥ 0 and bj ≥ 0 (so that ξi, ξj might be removable). Then for all
w > 0 there existsM ′ ∈ H(b1, . . . , bi+1, . . . , bj+1, . . . , bℓ), with singularities labeled
ξ′1, . . . , ξ

′
ℓ, which has two horizontal cylinders C ′

1, C
′
2, where C

′
1 has circumference

c+ w and C ′
2 has circumference w. The complements M ∖ C and M ′ ∖ (C1 ∪ C2)

are isometric, by an isometry mapping ξ′i to ξi for all i. The cylinders C1 and C2
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△ △c

Figure 1. The surfaceM has a cylinder of circumference c, and its
boundary components see only the singularities ξi and ξj (denoted
by ◦ and •). The edges not labeled by △ are connected to M ∖C.

c

w

/

/

△ △

□□

Figure 2. To obtainM ′ fromM , glue in a torus (rectangle on the
right). This transforms C into a cylinder C ′

1 of circumference c+w,
and adds a horizontal cylinder C ′

2 of circumference w. Edges not
labeled by△, □, / or the color green are attached toM ′∖(C ′

1∪C ′
2).

only see singularity ξ′i on one boundary component, and ξ′j on another. Moreover,
if M is fully stably periodic then so is M ′.

Proof. It will be easier to follow the proof while consulting Figures 1 (before) and
2 (after). Given a polygonal presentation for M , we give a polygonal presentation
for M ′. Let M be a polygon representation for M in which the cylinder C is
represented by a parallelogram P (in Figure 1, the large rectangle in the center
of the presentation), with two horizontal sides of length c, non-horizontal sides
identified to each other, and the singular points ξi, ξj on adjacent corners of P .
Thus the non-horizontal sides of P represent a saddle connection σ onM connecting
ξi to ξj . We consider the two non-horizontal sides of P as distinct and label them
by σ1, σ2. Let P ′ be a parallelogram with sides parallel to those of P , where the
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horizontal sides have length w and the nonhorizontal sides are longer than the ones
on P (in Figure 2, P ′ is to the right of P ).

Label the two horizontal sides of P ′ by h′1 and h′2, and identify them by a trans-
lation. Partition the non-horizontal sides of P ′ into two segments. The segments
σ′
1, σ

′
2 are parallel to each other and have the same length as σ1, σ2, and start at a

corner of P . The segments γ′1, γ
′
2 comprise the remainder of the non-horizontal sides

of P ′ (and in particular, have the same length). Identify γ′1 to γ′2 by a translation,
and identify σ′

1, σ
′
2 to σ1, σ2 by a translation so that each σ′

i is attached to the σj
with the opposite orientation. Let M ′ be the translation surface corresponding to
this presentation. It is clear that M ′ has the required properties.

□

Proof of Proposition 8.3. The proof is by induction on
∑
ai.

Base of induction: The base case is the stratum H(a1, 0
s), that is, one sin-

gular point (removable or non-removable) of order a1, and some number s ≥ 1 of
removable singular points. In this case we take a surface in H(a1) which is made
of one horizontal cylinder. We label the singular point by ξ1 and place additional
removable singular points ξ2, . . . , ξs+1 in the interior of the cylinder, at different
heights (so that the resulting surface has no horizontal saddle connections between
distinct singularities) and so that ξi and ξj are on opposite sides of a cylinder.

Inductive step: Suppose H′ = H(a1, . . . , ak) is our stratum, where at least
two of the singularities are non-removable. Let p′, q′ be labels of singular points
for surfaces in H′, corresponding to indices i ̸= j. To simplify notation assume
i = 1, j = 2. There are three cases to consider: ai = aj = 0, or one of ai, aj are
positive, or both are positive.

If ai = aj = 0 then by assumption k ≥ 4. We take a cylinder C on a fully
stably completely periodic surface M in H = H(a1, . . . , âi, . . . , âj , . . . , ak). The
notation âi means that the symbol should be ignored; that is on a stratum of the
same genus with k − 2 ≥ 2 singular points obtained by removing two removable
singular points. We place two singular points marked p′, q′ in the interior of C at
different heights. If ai > 0 and aj = 0 is zero we take a fully stably periodic surface
M in H(a1, . . . , ai − 1, . . . , âj , . . . , ak), find a cylinder C on M whose boundary
component is made of saddle connections starting and ending at ξi, place a marked
point labeled ξj in the interior of C. If ai and aj are both positive we use the
induction hypothesis to find a surface M ∈ H(a1, . . . , ai − 1, . . . , aj − 1, . . . , ak)
with a cylinder whose boundary components see ξi and ξj , and we perform the
surgery in Lemma 8.4 to this cylinder. □

Lemma 8.5 (Two surgeries involving genus two surfaces). Let H = H(b1, . . . , bk)
be a stratum of translation surfaces and let M ∈ H have a horizontal cylinder C,
with circumference c. Let p and q be singular points with order bi, bj respectively,
such that one boundary component of C only sees singularity p and the other only
sees singularity q. Then for any w1, w2 > 0 there exists M ′ ∈ H′ = H(b1, . . . , bi +
2, . . . , bj + 2, . . . , bk) which has three cylinders C1, C2, C3 with circumferences c +
w1+w2, w1 and w2 respectively. The complements M ∖C and M ′∖ (C1∪C2∪C3)
are isometric by an isometry preserving the labels of singular points, and C1, C2, C3

all have one boundary component that sees only p, and another that sees only q.
Thus, if M is fully stably periodic so is M ′. Moreover, if the bi are all even, so that
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c

w′

w

/

/

//

//

△ △

□□

∇ ∇

Figure 3. First option for M ′ in Lemma 8.5. Attaching the sub-
surface on the right increases the genus by 2. Unlabeled edges are
attached to M ′ ∖ (C1 ∪ C2 ∪ C3).

c

w′

w

/

/

//

//

△ △

∇ ∇

□□

Figure 4. Second option for M ′, with a different spin.

H′ has even and odd spin components, we can choose M ′ to be in either the even
or odd connected component.

Proof. Once again we encourage the reader to consult Figures 3 and 4.

In Lemma 8.4 we made a slit in M , running through P from top to bottom,
and glued in a torus with a slit. In this case we make an identical slit, this time
gluing in a genus two surface with a slit. This surface is presented in Figures 3 and
4 as made up of three rectangles. It is straightforward to check that M ′ ∈ H′ and
that it has cylinders satisfying the desired properties. It remains to check the final
assertion about the parity of the spin structure.
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αg+1

βg+1

βg+2

αg+2

α1

Figure 5. Modifying the symplectic basis. Gluings as in Figure 3.

Recall from [KZ, eqn. (4)] that where defined, the spin structure of a surface
M of genus g can be computed as follows. Let αi, βj (where 1 ≤ i, j ≤ g) be a
symplectic basis for H1(M), realized explicitly as smooth curves onM . This means
that all of these curves are disjoint, except for αi and βi which intersect once. For
each curve γ, let ind(γ) be the turning index, that is the total number of circles
made by the tangent vector to γ, as one goes around γ. The parity ofM is then the
parity of the integer

∑g
i=1(1 + ind(αi))(1 + ind(βi)). It is shown in [KZ] that this

number is well-defined (independent of the choice of the symplectic basis) when all
the singular points have even order.

Suppose M has genus g and is equipped with a symplectic basis. Since any
non-separating simple closed curve can be completed to a symplectic basis, we can
assume that α1 is the core curve of C, and the other curves in the basis do not
intersect the saddle connection from p to q passing through C. We construct a sym-
plectic basis for M ′ in both cases, by modifying α1, keeping α2, . . . , αg, β1, . . . , βg,
and adding new curves αg+1, αg+2, βg+1, βg+2. The modified curves are shown in
Figures 5, 6, and the reader can easily check that these new curves still form a
symplectic basis, and that these two choices add two numbers of different parities
to the spin structure. □

Note that in Proposition 8.2 we care about all connected components of strata.
We need to record some information about the classification of connected compo-
nents of strata, due to Kontsevich and Zorich. A translation surface is hyperelliptic
if it admits an involution which acts on absolute homology as −Id (see [FM] or
[KZ, §2.1] for more details). A connected component of a stratum is hyperelliptic
if all surfaces in the component are hyperelliptic.

Proposition 8.6 ([KZ], Theorems 1 & 5 and Corollary 5 of Appendix B). Let
H(a1, . . . , ak) be a stratum with ai > 0 for all i. The following holds:

• H has three connected components in the following cases:
– k = 1, a1 = 2g − 2, g ≥ 4.
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α1

αg+1

βg+1

βg+2

αg+2

Figure 6. Modifying the symplectic basis, second case. Gluings
as in Figure 4. Note the change in the rotation number of βg+2.

– k = 2, a1 = a2 = g− 1, g ≥ 5 is odd. One is hyperelliptic, and the two
non-hyperelliptic strata are distinguished by the spin invariant.

• H has two connected components in the following cases:
– All of the ai are even, g ≥ 4, and either k ≥ 3 or a1 > a2. The

components are distinguished by their spin.
– a1 = a2 and g is either 3 or is even. One of the components is hyper-

elliptic and the other is not. When g = 3 the hyperelliptic component
is even, and the other one is odd.

• H is connected in all other cases.

Proof of Proposition 8.2. The proof will be case-by-case. Here are the cases:

(i) H(1, 1).
(ii) All the ai are nonzero and H is connected.
(iii) All the ai are nonzero and H has two connected components distinguished

by spin.
(iv) All the ai are nonzero and H has two connected components distinguished

by hyperellipticity.
(v) All the ai are nonzero and H has three connected components.
(vi) Some of the ai are zero.

Case (i). There is just one connected component and the desired surface is
a Z-shaped surface, with three horizontal cylinders C1, C2, C3 of circumferences
c1, c1 + c3, c3, where C1, C3 are simple. We put all of the removable singular points
in the interior of C3, and choose choose c1, c3 so that c1/(c1 + c3) /∈ Q. It is clear
that with these choices the conditions are satisfied.

Case (ii). The stratum H is connected, and we have at least two singularities
of positive order. So with no loss of generality that they are labelled 1 and 2. The
result follows from Lemma 8.4, applied to a surface in H(a1 − 1, a2 − 1, a3, . . . , ak),
and taking w /∈ cQ, so that w/(c+ w) /∈ Q.
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Figure 7. A surface in Hhyp(2, 2).

Case (iii). We apply the surgery in Lemma 8.5, with w1/w2 /∈ Q. Namely if p
and q are labelled i, j, we let bi = ai − 2, bj = aj − 2 and bℓ = aℓ for ℓ ̸= i, j.

Case (iv). There are two connected components. One is hyperelliptic, one is
not. This means that a1 = a2 and either g = 3 (in which case a1 = a2 = 2) or
g ≥ 4 is even (in which case a1 = a2 = g− 1). In this case we give explicit surfaces,
one in each connected component. The first surface (the H(2, 2) case is shown in
Figure 7) is a ‘staircase’ surface made of gluing 2g rectangles to each other. The
rectangles are labelled (k,B) and (k, T ) for k = 1, . . . , g. The top (respectively,
bottom) of (k,B) is glued to the bottom (resp., top) of (k, T ) for k = 1, . . . , g, and
the left (resp., right) of (k, T ) is glued to the right (resp., left) of (k + 1, B) for
k = 1, . . . , g − 1. The horizontal sides of (1, B) are glued to each other, as are the
horizontal sides of (g, T ). This surface is hyperelliptic since it has a hyperelliptic
involution rotating each rectangle around its midpoint, and this involution swaps
the singularities (see [KZ, Remark 3]). The second surface is obtained as follows.
We first construct a hyperelliptic surface in H(a1 − 2, a2 − 2) as in the previous
paragraph. Then we perform the surgery described in Lemma 8.5. The resulting
surface has a horizontal cylinder intersecting three vertical cylinders, and thus, by
[Li, Lemma 2.1], is not hyperelliptic. See Figure 8 for an example inH(2, 2). In both
of these constructions there are no restrictions on the sidelengths of the rectangles,
and we can easily arrange that two of the circumferences are incommensurable.



20 JON CHAIKA AND BARAK WEISS

Figure 8. A surface in Hnonhyp(2, 2).

Case (v). In this case a1 = a2 = g − 1 for g ≥ 5 odd. Applying the argument
in Case (iii), we obtain the required surfaces in the odd and even connected com-
ponents. To obtain the required surface in the hyperelliptic component we use the
‘staircase surface’ describe in Case (iv).

Case (vi). Assume with no loss of generality that the removable singularities
are labelled k′+1, . . . , k for some k′ ≥ 2, and let H′ = H(a1, . . . , ak′). Note that the
singularities p and q have label in {1, . . . , k′}. Apply the preceding considerations
to obtain a surface in H′ with the required cylinders. By examining the proof in
all preceding case one sees that the number of horizontal cylinders on this surface
is at least three, that is there is at least one cylinder C3 which is distinct from
the cylinders C1, C2, and we modify M by adding k − k′ in general position in the
interior of C3, to obtain the desired surface.

□

9. Zero entropy

In this section we prove the following result:

Theorem 9.1. Let H be a stratum for which dimZ > 0, let z ∈ Z ∖ {0}, and let
µ be a probability measure on H such that Relz(q) is defined for µ-a.e. q. Assume
that µ is Relz-invariant and ergodic, and assume in addition that

(9.1) there is tn → ∞ so that (g−tn)∗µ converges to a probability measure

(in the weak-* topology). Then the entropy of Relz acting on (H, µ) is zero.
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For the proof of Theorem 9.1, we will need an estimate showing that points stay
close to each other for times up to L, provided their initial distance is polynomially
small (as a function of L). To make this precise we will use the sup-norm Finsler
metric on H, which was introduced by Avila, Gouëzel and Yoccoz [AGY] and whose
definition we now recall. For q0, q1 belonging to the same connected component of
a stratum H, we write

(9.2) dist(q0, q1) = inf
γ

∫ 1

0

∥γ′(t)∥γ(t)dt,

where γ : [0, 1] → Hm ranges over all C1 curves with γ(0) ∈ π−1(q0), γ(1) ∈
π−1(q1), and ∥ · ∥q is a pointwise norm on the tangent space to Hm at q, identified
via the developing map with H1(S,Σ;R2). Below, balls, diameters of sets, and
ε-neighborhoods of sets will be defined using this metric. We can now state our
estimate.

Proposition 9.2. Let H be a stratum of translation surfaces with at least two
singularities, let Z be its real Rel space, let z0 ∈ Z, and let T be the map of H
defined by applying Relz0 (where defined). Then for every compact subset K ⊂ H,
there is L0 > 0, such that if q ∈ H, L ∈ N, L > L0, satisfy

(9.3) q ∈ K and g−ℓq ∈ K, where ℓ
def
= 2 logL,

then the maps T, . . . , TL are all defined on B
(
q, 1

L5

)
, and we have

max
j=1,...,L

diam

(
T j

(
B

(
q,

1

L5

)))
→L→∞ 0.

We have made no attempt to optimize the power 5 in this statement.

Our proof of Proposition 9.2 will use some properties of the sup-norm metric.
They are proved in [AGY], see also [AG] and [CSW, §2]. Our notation will follow
the one used in [CSW].

Proposition 9.3. The following hold:

(a) For all q0, q1 and all t ∈ R, dist(gtq0, gtq1) ≤ e2|t|dist(q0, q1).
(b) The metric dist is proper; that is, for any fixed basepoint q0, the map q 7→

dist(q, q0) is proper. In particular, the ε-neighborhood of a compact set is
pre-compact, for any ε > 0.

(c) The map q 7→ ∥ · ∥q is continuous, and hence bounded on compact sets.
This means that for any compact K ⊂ Hm there is C > 0 such that for
any q0,q1 in K, the norms ∥ · ∥q0 , ∥ · ∥q1 are bi-Lipschitz equivalent with
constant C.

(d) The infimum in (9.2) is actually a minimum, that is attained by some curve
γ.

With these preparations, we can give the

Proof of Proposition 9.2. Write B
def
= B

(
q, 1

L5

)
, A

def
= g−ℓ(B) (note that A and B

both depend on L and q but we suppress this from the notation). Let K ′ be the
1-neighborhood of K, which is a pre-compact subset of H by Proposition 9.3(b).
Since diam(B) ≤ 2

L5 , Proposition 9.3(a) implies that

(9.4) diam(A) ≤ 2

L3
.



22 JON CHAIKA AND BARAK WEISS

It follows from (9.3) that A ∩K ̸= ∅ and therefore A ⊂ K ′. Since

(9.5) max
j=1,...,L

∥je−ℓz0∥ ≤ 1

L
∥z0∥ →L→∞ 0,

for all large enough L (depending on K ′) we have that Relje−ℓz0(q
′) is defined

for q′ ∈ K ′. Since q′1
def
= Relje−ℓz0 ◦ g−ℓ(q1) is defined for q1 ∈ B, we have from

(2.3) that T j(q1) = Reljz0(q1) = gℓ(q
′
1) is also defined. This proves that the maps

T, T 2, . . . , TL are all defined on B.

Furthermore, this computation shows that T j(B) = gℓ(Relje−ℓz0(A)), and so by
Proposition 9.3(a), it suffices to show that

L2 · diam
(
Relje−ℓz0(A)

)
→L→∞ 0.

Taking into account (9.4) and (9.5), it suffices to show that for any compact K ′

there are positive ε, C such that for any q0, q1 ∈ K ′ with dist(q0, q1) < ε, and any
z ∈ Z with ∥z∥ < ε, we have

(9.6) dist(Relz(q0, q1)) ≤ C dist(q0, q1).

Informally, this is a uniform local Lipschitz estimate for the family of maps defined
by small elements of Z.

To see (9.6), let ε1 be small enough so that for any q ∈ K ′, the ball B(q, 2ε1) is
contained in a neighborhood which is evenly covered by the map π : Hm → H, and
let C be a bound as in Proposition 9.3(c), corresponding to the compact set which
is the 2ε1-neighborhood of K ′. Let ε < ε1 so that for any z ∈ Z with ∥z∥ < ε
and any q ∈ H, dist(q,Relz(q)) < ε1. If dist(q0, q1) < ε then the path γ realizing
their distance (see Proposition 9.3(d)) is contained in a connected component V of
π−1 (B(q0, ε1)). Let

γ̄ : [0, 1] → H1(S,Σ;R2), γ̄(t)
def
= dev(γ(t))− dev(γ(0)),

let

γ1
def
= Relz ◦ γ,

and analogously define

γ̄1 : [0, 1] → H1(S,Σ;R2), γ̄1(t)
def
= dev(γ1(t))− dev(γ1(0)).

By choice of ε and ε1, the curve γ1 also has its image in V. Since Relz is expressed
by dev|V as a translation map, the curves γ̄, γ̄1 are identical maps. When computing
dist(Relz(q0),Relz(q1)) via (9.2), an upper bound is given by computing the path
integral along the curve γ1. We compare this path integral along γ1, with the path
integral along γ giving dist(q0, q1). In these two integrals, for any t, the tangent
vectors γ′(t), γ′1(t) are identical elements of H1(S,Σ;R2)) for all t, but the norms
are evaluated using different basepoints. Since these basepoints are all in the 2ε1-
neighborhood of K ′, by choice of C, we have ∥γ′1(t)∥γ1(t) ≤ C∥γ′(t)∥γ(t) for all t.
This implies (9.6). □

We now list a few additional results we will need. The first is the following weak
Besicovitch-type covering Lemma, for balls of equal size.

Proposition 9.4. For any compact K ⊂ H there are positive N, r0 so that for any

r ∈ (0, r0), for any G ⊂ K the collection C def
= {B(q, r) : q ∈ G} contains N finite
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subcollections F1, . . . ,FN satisfying G ⊂
⋃N

i=1

⋃
Fi, and each collection Fi consists

of disjoint balls.

Proof. The argument is standard, we sketch it for lack of a suitable reference.

We first claim that given a compact K and r ∈ (0, r0), there is N so that the
largest r-separated subset of any ball of radius 2r, has cardinality at most N .
Indeed, this property is true for Euclidean space by a simple volume argument, and
is invariant under biLipschitz maps. Thus the claim holds by Proposition 9.3(c).

We now inductively choose the Fi. Let F1 be a maximal collection of disjoint
balls of radius r with centers in G. For i ≥ 2, suppose F1, . . . ,Fi−1 have been

chosen, let Gi
def
= G ∖

⋃i−1
j=1

⋃
Fj , and let Fi be the maximal collection of disjoint

balls of radius r with centers in Gi. Clearly G ⊃ G1 ⊃ · · · ⊃ GN , and we need to
show that GN+1 = ∅. Since Fi is maximal, for any x ∈ Gi there is x′ which is the
center of one of the balls of Fi, so that d(x, x′) < 2r. If x ∈ GN+1 ̸= ∅, then the
ball B(x, 2r) contains x1, . . . , xN such that xi is the center of one of the balls of Fi.
For i′ > i, d(xi, xi′) ≥ r since xi′ ∈ Gi′ . This contradicts the property of N from
the preceding paragraph. □

We will need to know that volumes of balls do not decay exponentially:

Lemma 9.5. For any probability measure µ on H, for µ-a.e. q, we have

(9.7) lim
r→0+

− log(µ(B(q, r)))

r
= 0.

Proof. If we replace r in the denominator of (9.7) with log r, and replace lim with
lim sup, we get the definition of the upper pointwise dimension of µ at q. It is
known that the upper pointwise Hausdorff dimension of a measure is at most the
Hausdorff dimension of the ambient space. This implies the result. □

We also need some standard facts about entropy. In the following proposition,
X is a standard Borel space, T : X → X is a measurable map, Prob(X)T denotes
the T -invariant Borel probability measures on X, µ is a measure in Prob(X)T , P
is a measurable partition of X, and hµ(T,P) is the entropy of T with respect to
µ and P. Then the entropy of T with respect to µ is supP hµ(T,P), where the
supremum ranges over all finite P. For x ∈ X, Pn(x) is the atom of the finite
refinement

∨n
i=0 T

−iP containing x.

Proposition 9.6. We have the following:

(1) [Shannon-McMillan-Breiman Theorem.] If µ is ergodic then for µ-a.e. x
we have

lim
n→∞

− log(µ(Pn(x)))

n
= hµ(T,P).

(2) [Entropy and convex combinations.] If µ =
∫
Prob(X)T

ν dθ, for some prob-

ability measure θ on Prob(X)T , then

hµ(T,P) =

∫
Prob(X)T

hν(T,P) dθ.

(3) [Partitions with small boundary.] Let X be a locally compact, separable
metrizable space. Then hµ(T ) = supP∈Part0 hµ(T,P), where Part0 denotes
the finite partitions of X into sets Pi satisfy µ(∂Pi) = 0 for all i.
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For items (1) and (2) see e.g. [Gl, Thms. 14.35 & 15.12] or [ELW, Chaps. 2 &
3]. Item (3) is left as an exercise (see [ELW, Pf. of Thm. 2.2]).

Proof of Theorem 9.1. We assume that the entropy h = hµ(T ) satisfies h > 0, and
we will derive a contradiction. Using Proposition 9.6(3), we choose a partition
P = {Pi}ki=1 so that µ(∂Pi) = 0 for each i and hµ(T,P) > h

2 . Choose K compact

so that µ(K) > 3
4 and

(9.8) lim sup
t→∞

µ (gt(K)) >
3

4
.

A compact set with this property exists by the nondivergence assumption (9.1).
Let N and r0 be as in Proposition 9.4, for this choice of K. Using the Shannon-
McMillan-Breiman theorem, let L0 be large enough so that for all L > L0, the
set

W
def
=

{
q :

− log(µ(PL(q)))

L
≤ h

2

}
satisfies

(9.9) µ(W ) <
1

6N
.

Our goal will be choose some L > L0 for which we have a contradiction to (9.9).

Below we will simplify notation by writing B
(
q, 1

L5

)
as Bq,L or simply as B. Let

GL
def
=

{
q : µ (Bq,L ∩W ) >

µ(Bq,L)

2

}
.

We will show below that

(9.10) there are arbitrarily large L for which µ(K ∩GL) >
1

3
.

We first explain why (9.10) leads to a contradiction with (9.9). Let L > L0 be large
enough so that diam(B) ≤ 2

L5 < r0 and µ(K ∩GL) >
1
3 , and let

C def
= {Bq,L : q ∈ GL} .

By Proposition 9.4, there is a subcollection F ⊂ C, consisting of disjoint balls, so
that

µ
(
K ∩GL ∩

⋃
F
)
≥ 1

N
µ(K ∩GL) >

1

3N
.

Then we have

µ(W ) ≥ µ
(
W ∩

⋃
F
)
=
∑
B∈F

µ(W ∩B) >
∑
B∈F

µ(B)

2
≥ µ (

⋃
F)

2
≥ 1

6N
,

where the equality follows from the disjointness of F and the strict inequality follows
from the definitions of GL and C. This gives the desired contradiction to (9.9).

It remains to show (9.10). Choose ε > 0 so that

(9.11) 21 ε log(k) <
h

2
.

Given any L1 let L > L1 and let X0 = X0(L) ⊂ K such that µ(X0) ≥ 1
2 , and so

that for any q ∈ X0 we have (9.3). Such L and X0 exist by (9.8). Using Lemma
9.5 we can take L large enough so that

(9.12) µ (X1) >
99

100
, where X1

def
=
{
q : µ (Bq,L) > k−εL

}
,
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and by making L even larger we can assume that

(9.13) k−10εL <
1

2
.

Now choose r > 0 so that

(9.14) µ(V ) < ε, where V
def
=

{
y : dist

(
y,

k⋃
i=1

∂Pi

)
< r

}
.

This is possible because µ (
⋃

i ∂Pi) = 0.

We claim that

(9.15) µ(X2) >
2

5
, where X2

def
=
{
q ∈ X0 : |{0 ≤ i ≤ L : T iq ∈ V }| < 10εL

}
.

To see this, define

E
def
= {q : |{0 ≤ i ≤ L : T iq ∈ V }| ≥ 10εL},

and let 1V denote the indicator function of V . Using (9.14), and since µ is T -
invariant,

εL > Lµ(V ) =

L∑
i=1

∫
1V

(
T iq
)
dµ ≥ 10εLµ(E).

Dividing through by 10Lε we have µ(E) < 1
10 , giving (9.15).

Let

β
def
= k−20εL, and write P(L) def

=

L∨
i=1

T−i(P).

For each q we let P(L,B) be the elements of P(L) which intersect B = Bq,L, and

partition P(L,B) into two subcollections defined by

P(q,L)
big

def
=
{
P ∈ P(L,B) : µ(P ) ≥ βµ(B)

}
and P(q,L)

small
def
= P(L,B) ∖ P(q,L)

big .

We claim that if q ∈ X2 then

(9.16) µ
(
B ∩

⋃
P(q,L)
big

)
>
(
1− k−10εL

)
µ (B)

(9.13)
>

µ(B)

2
.

To see this, we note that for q satisfying the conclusion of Proposition 9.2, the

cardinality of P(L,B) is at most k|{0≤i≤L :T iq∈V }|. Indeed, for such q, whenever
T iq /∈ V , T i (B) is contained in one of the Pi (and for the other i we use the
obvious bound that T iq ∈ V , T i (B) could intersect all of the Pi). For q ∈ X2 we

also have that β−1/2 ≥ k|{0≤i≤L :T iq∈V }|, and this implies that

µ
(
B ∩

⋃
P(q,L)
small

)
< β−1/2βµ(B) = k−10εLµ(B),

and this proves (9.16).

If q ∈ X1 ∩X2 and q′ ∈ Bq,L ∩
⋃
P(q,L)
big then we have

µ(PL(q
′)) ≥ βµ(Bq,L) ≥ k−21εL,

and this implies via (9.11) that q′ ∈W. This and (9.16) shows that X1 ∩X2 ⊂ GL.
Thus

(9.17) µ(GL) ≥ µ(X1 ∩X2) ≥
2

5
− 1

100
>

1

3
,
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and we have shown (9.10). □

Proof of Theorem 1.5. Denote by T the map defined by Relz0 (where defined).
Since mL is G-invariant, it is rotation invariant, and thus mL-a.e. q has no hori-
zontal saddle connections. In particular for such q, Relz(q) is defined for all z ∈ Z.

Assume first that mL is ergodic. By G-invariance of mL we have (9.1), so the
hypotheses of Theorem 9.1 are satisfied for µ = mL. Now suppose mL is not
ergodic, and let µ =

∫
Prob(X)T

ν dθ be the ergodic decomposition of µ, where θ

is a probability measure on Prob(X)T such that θ-a.e. ν is ergodic for T . By
Proposition 9.6(2), it suffices to show that the entropy of ν is zero for θ-a.e. ν, and
thus we only need to show that assumption (9.1) holds for θ-a.e. ν. This follows
from the gt-invariance of mL. Indeed, by invariance and regularity of mL, for any
ε > 0 there exists a compact K, so that for all t, mL(gt(K)) = mL(K) > 1 − ε2.
Thus for every t,

θ({ν : g−t∗ν(K) ≥ 1− ε}) ≥ 1− ε.

Thus for any ε > 0 there is K so that the set of ν for which (g−ti)∗ν(K) ≥ 1 − ε
for a sequence ti → ∞, has θ-measure at least 1− ε. Since ε was arbitrary, we have
(9.1) for θ-a.e. ν. □
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