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Abstract. Let K be a convex body in Rn, let L be a lattice with
unit covolume, and let η > 0. We say that K and L form an
η-smooth cover if each point x ∈ Rn is covered by (1 ± η)vol(K)
translates of K by L. We prove that for any positive σ and η,
asymptotically as n → ∞, for any K of volume n3+σ, one can
find a lattice L for which K, L form an η-smooth cover. Moreover,
this property is satisfied with high probability for a lattice chosen
randomly, according to the Haar-Siegel measure on the space of
lattices. Similar results hold for random construction A lattices,
albeit with a worse power law, provided that the ratio between
the covering and packing radii of Zn with respect to K is at most
polynomial in n. Our proofs rely on a recent breakthrough of Dhar
and Dvir on the discrete Kakeya problem.

1. Introduction

Let Convn denote the set of bounded convex subsets of Rn with
nonempty interior. For a lattice L ⊂ Rn, convex set K ∈ Convn, and a
point x ∈ Rn we denote

N(L,K, x)
def
= |L ∩ (K + x)| = |{y ∈ L : x ∈ y −K}| . (1)

The expectation of N(L,K, x) when x is drawn uniformly from a funda-
mental domain for L is vol(K)/covol(L); thus if we draw x uniformly in
a ball B(0, T ) with respect to some norm, the expectation of N(L,K, x)
approaches vol(K)/covol(L), in the limit as T → ∞. Furthermore, we

have that N(L,αK,x)
vol(αK)/covol(L)

tends to 1 as the dilation factor α grows, where

the convergence is uniform in x. It is therefore natural to ask, given

K ∈ Convn and a lattice L ⊂ Rn, whether the fraction N(L,K,x)
vol(K)/covol(L)

is

nearly constant on Rn. To that end we define the following quantity:
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Definition 1.1. The covering smoothness of a lattice L ⊂ Rn with
respect to a convex body K ∈ Convn is defined as

η(K, L)
def
= sup

x∈Rn

∣∣∣∣ N(L,K, x)

vol(K)/covol(L)
− 1

∣∣∣∣ .
Note that η(K, L) < 1 immediately implies that L+K = Rn. In this

case the pair (L,K) is said to be a covering. (The reverse statement
is not true — there may be points x that are covered an exception-
ally large number of times by translates of K.) As in the abstract, if
η(K, L) < η we say that the covering given by K and L is η-smooth.
Let µn denote the Haar-Siegel measure; that is, the unique proba-

bility measure on the space of lattices in Rn of unit covolume, which
is invariant under volume preserving linear transformations. Our main
result is that for every K ∈ Convn whose volume is polynomial in n,
and for most lattices in Rn, the covering smoothness is small.

Theorem 1.2. Let n > 25, and let K ∈ Convn. Let δ, ε ∈ (0, 1), and

assume vol(K) ≥ c1
(

1
εδ

)6.5
n3, where c1 = 266. Then, for L ∼ µn we

have

Pr (η(K, L) ≥ ε) < δ. (2)

In particular, for any positive ε, σ,

sup
K∈Convn,vol(K)≥n3+σ

Pr (η(K, L) ≥ ε) −→n→∞ 0.

We did not attempt to optimize the multiplicative constant c1 in this
result, or similar constants ci in the sequel.

Theorem 1.2 and the remaining statements below might find applica-
tions in computer science. Specifically, in lattice-based cryptography,
smoothing a lattice is a key idea used to hide secret information from an
adversary [MR07]. Typically, one considers smoothing by a Gaussian
distribution. However, for some applications it might be advantageous
to smooth using a convex body, since sampling from a convex body
like a cube can be more efficient. It should be noted that in many
cryptographic applications, closeness in L1 is sufficient, and such L1-
smoothness results (in fact, even L2-smoothness) are often much easier
to prove (see, e.g., [DADRT23]); yet there are many cases where close-
ness in L∞ (as in our results) leads to tighter results [BLRL+18].

It is instructive to compare Theorem 1.2 with our previous work
[ORW21] on lattice coverings. Recall that for a lattice L ⊂ Rn of
covolume one, the covering density Θ(K, L) is the minimal volume of
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a dilate αK such that (L, αK) is a covering. One of the results of
[ORW21] is that

sup
K∈Convn

inf
L of covolume 1

Θ(K, L) (3)

grows at most quadratically in n (prior to [ORW21] the best known
bound, due to Rogers [Rog58], was superpolynomial). In fact, it was
shown that for any δ > 0, any σ > 0, any large enough n and any
K ∈ Convn, if vol(K) ≥ n2+σ then the µn-probability that (L,K) is
a covering is at least 1 − δ. Fixing ε ∈ (0, 1), we deduce easily from
Theorem 1.2 the slightly weaker statement, in which 2 + σ is replaced
with 3 + σ. That is, when vol(K) > n2+σ, we know from [ORW21]
that a random L gives a covering, and from Theorem 1.2 we know that
when vol(K) > n3+σ a random L gives an ε-smooth covering. On the
other hand, [CFR59] shows that for K taken as the Euclidean ball and
any lattice L of covolume 1, η(K, L) ≥ 1 (and moreover, (L,K) is not
a covering) unless vol(K) = Ω(n).

While we intuitively expect covering to become smoother as we scale
up K, it turns out that in general α 7→ η(αK, L) is not monotonically
non-increasing. To see this, take L = Zn and K = [0, 1)n. Then
η(K,Zn) = 0 yet for small ε > 0, η((1+ ε)K,Zn) = (2/(1+ ε))n − 1. It
is therefore natural to further define the following quantity for a lattice
L ⊂ Rn and K ∈ Convn,

ΦK,L(ε)
def
= sup

{
vol(αK)

covol(L)
: α > 0 satisfies η(αK, L) > ε

}
.

In particular, for a lattice L ⊂ Rn of unit covolume, we have that
η(αK, L) ≤ ε for all dilates αK of volume exceeding ΦK,L(ε). We
prove the following theorem.

Theorem 1.3. Let n > 25, and let K ∈ Convn. Let δ, ε ∈ (0, 1), and
c2 = 2112. Then, for L ∼ µn we have

Pr

(
ΦK,L(ε) ≥ c2

(
1

ε2δ

)6.5

n3

)
< δ. (4)

1.1. Construction A lattices. In many applications in electrical en-
gineering and computer science, integer lattices known as construction
A lattices are of interest [CS88, Loe97]. For a prime p let Fp denote
the field with p elements. For r ∈ {1, . . . , n}, let Grn,r(Fp) denote
the collection of subspaces of dimension r in Fn

p , or equivalently, the
rank-r additive subgroups of Fn

p . We can identify Fp with the residues
{0, . . . , p − 1}, and thus identify Fn

p with the quotient Zn/pZn. We
have a natural reduction mod p homomorphism πp : Zn → Fn

p , which
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sends each coordinate of x ∈ Zn to its class modulo p. Any element
S ∈ Grn,r(Fp) gives rise to a sub-lattice π−1

p (S) ⊂ Zn, which contains

pZn as a subgroup of index pr, and with π−1
p (S)/pZn isomorphic as an

abelian group to S ∼=
∏r

1 Z/pZ. The ensemble of lattices obtained by
drawing S ∼ Uniform(Grn,r(Fp)) and setting L = 1

p
· π−1

p (S) is called

the random (p, r) construction A ensemble1 and such lattices are called
(p, r) construction A lattices.

Theorem 1.2 holds for any K ∈ Convn, with uniform constants.
However, if K is such that N(K,Zn, 0) is large (for example K =∏n−1

1 [ε−1, ε−1] × [−εn−1, εn−1] for ε small), it will not be smoothed
by applying construction A, unless p and r are large (depending on
K). Thus our results for construction A lattices depend on K. The de-
pendence arises via the ratio between the covering radius and packing
radius of K with respect to Zn. Namely, for a convex body K ∈ Convn
and a lattice L ⊂ Rn we denote by rcov,K(L) the infimum of α for which
(L, αK) is a covering, and by rpack,K(L) the supremum of α for which
(L, αK) is a packing, i.e., the translates {ℓ + αK : ℓ ∈ L} are disjoint.
We denote by

ρK(L)
def
=

rcov,K(L)

rpack,K(L)
(5)

the ratio between the covering and the packing radius. We show that
for K ∈ Convn for which both vol(K) and ρK(Zn) are polynomial in n,
for a typical construction A lattice with adequately tuned p, r, scaled
to have unit covolume, the covering smoothness is small.

Theorem 1.4. Let n > 25, and let K ∈ Convn and b > 0 satisfy

0 ≤ b ≤ n

2 log2 n
and ρK(Zn) < nb. (6)

Let δ, ε ∈ (0, 1), and assume vol(K) ≥ c3
(

1
εδ

)6
n3(1+2b), where c3 =

e · 233. Let p be a prime number satisfying

1024

(εδ)2
n1+2b ≤ p ≤ 2048

(εδ)2
n1+2b, (7)

1Some authors define the (p, r) random construction A ensemble slightly dif-

ferently, taking S′ = spanFp
(v1, . . . , vr) and v1, . . . , vr

i.i.d.∼ Uniform(Fn
p ) and

L = 1
p · π−1

p (S′). Since Pr(S′ /∈ Grn,r(Fp)) ≤ pr−n and, moreover, S′ is condi-

tionally uniform on Grn,r(Fp) under the event S′ ∈ Grn,r(Fp), we have that the
total variation distance between the distributions corresponding to the two defini-
tions is at most pr−n.
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and r = 3+
⌈

n
log p

(b log n+ log 3)
⌉
. Then, if L is drawn from the (p, r)

random construction A ensemble (so that covol(pr/nL) = 1), we have

Pr
(
η(K, pr/nL) ≥ ε

)
< δ .

An important special case is the Euclidean ball, namely K = Bn =
{x ∈ Rn : ∥x∥2 ≤ 1}. It is well known (and easy to see) that

rpack,Bn(Zn) =
1

2
and rcov,Bn(Zn) =

√
n

2
,

which gives

ρBn(Zn) = n1/2.

Thus, the following is an immediate consequence of Theorem 1.4.

Corollary 1.5. Let n > 25, and let δ, ε ∈ (0, 1), and for α > 0, assume

vol(αBn) ≥ c3

(
1

εδ

)6

n6,

where c3 = e · 233. Let p be a prime number satisfying

1024

(εδ)2
n2 ≤ p ≤ 2048

(εδ)2
n2,

and r = 3+
⌈

n
log p

(
1
2
log 9n

)⌉
. Then if L is drawn from the (p, r) random

construction A ensemble (so that covol(pr/nL) = 1), we have

Pr
(
η(αBn, p

r/nL) ≥ ε
)
< δ .

Similarly to the case where L is drawn at random according to the
distribution µn, we can also show that for L drawn from the (p, r) ran-
dom construction A ensemble, for K ∈ Convn with ρK(Zn) polynomial
in n, we have that with high probability ΦK,L(ε) is also polynomial in
n, provided that p and r are chosen adequately.

Theorem 1.6. Let n > 25, and let K ∈ Convn and b > 0 satisfy (6).
Let δ, ε ∈ (0, 1), and c4 = e · 257. Let p be a prime number satisfying

218

(ε2δ)2
n3+2b ≤ p ≤ 219

(ε2δ)2
n3+2b, (8)
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and r = 3+
⌈

n
log p

(b log n+ log 3)
⌉
. Then, if L is drawn from the (p, r)

random construction A ensemble, we have

Pr

(
ΦK,L(ε) > c4

(
1

ε2δ

)6

n9+6b

)
≤ δ. (9)

1.2. Non-lattice smooth coverings. If one relaxes the requirement
that L is a lattice, it is slightly more complicated to define smooth
covers, but much easier to construct them.

Let L ⊂ Rn be a discrete set (not necessarily a lattice). We continue
to use the notation N(L,K, x) defined in (1). Let B(0, T ) denote the
ball of radius T around the origin with respect to the Euclidean norm,
and define the asymptotic upper density of L by

D(L)
def
= lim sup

T→∞

|B(0, T ) ∩ L|
vol(B(0, T ))

. (10)

If the limit in (10) exists we will say that L has an asymptotic den-
sity. Note that lattices have an asymptotic density given by D(L) =
covol(L)−1. Now for K ∈ Convn, and L as above, we set

η(K, L)
def
= sup

x∈Rn

∣∣∣∣ N(L,K, x)

vol(K)D(L)
− 1

∣∣∣∣ .
With this notation we have:

Theorem 1.7. For any 0 < ε < 1, n ≥ 20, and any K ∈ Convn there
is a discrete set L ⊂ Rn which has an asymptotic density, satisfying

vol(K)D(L) ≤ 14

ε2

(
n log n+ n log

1280

ε
+ 2

)
and η(K, L) < ε.

(11)

We remark that the set L constructed in the proof of Theorem 1.7 is
periodic, i.e., consists of finitely many translates of a lattice in Rn. We
also remark that Theorem 1.7 can be derived by modifying the proof of
Erdős and Rogers [ER62], who proved a closely related statement. For
completeness, we include a proof in Section 3.5 that follows the proof
structure of our main theorem.

1.3. Acknowledgements. The authors are grateful to Bo’az Klartag
for suggesting the question of seeking smooth lattice coverings, to
Manik Dhar and Ze’ev Dvir for sharing an early draft of their result,
and to Chris Peikert for useful comments. The first author is sup-
ported by ISF 1641/21, the second author is supported by a Simons
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2. Techniques and Notation

The main results of this paper follow from the somewhat technical
Theorem 3.4. This result is derived in turn from a new result of Dhar
and Dvir (Theorem 2.2), which is a crucial input to this paper. In this
section we introduce notations, give a brief overview of our approach,
and state Theorem 2.2.

For a lattice L ⊂ Rn let TL
def
= Rn/L be the quotient torus, let mL

be the Haar probability measure on TL, and let πL : Rn → TL be
the quotient map. Let v1, . . . , vn be the generators of L given by the
columns of g so that the parallellepiped

PL =
{∑

aivi : ∀i, 0 ≤ ai < 1
}

is a fundamental domain for Rn/L. Define the discrete ‘net’

P(disc)
L

def
=

{∑
aivi ∈ PL : ai ∈

{
0,

1

p
, . . . , 1− 1

p

}}
(12)

and set
L

p
def
=

1

p
· L.

Then the elements of P(disc)
L are coset representatives for the inclusion

L ⊂ L
p
, and there is an isomorphism (as abelian groups) P(disc)

L
∼= Fn

p .

Next, we introduce a well-studied technique for randomly choosing
lattices. Given L = gZn, where g is an invertible n × n matrix, and
given S ∈ Grn,r(Fp), we define the super-lattice L(S) ⊃ L as

L(S)
def
=

1

p
· gπ−1

p (S). (13)

Notice that the scaled-up version pr/n · L(S) of L(S) is of the same
covolume as L. The assignment

L 7→
{
pr/nL(S) : S ∈ Grn,r(Fp)

}
(14)

is a special case of the so-called Hecke correspondence. Note that the
individual lattice L(S) also depends on the initial choice of g for which
L = gZn, but the collection on the right-hand side of (14) does not.
Also note that Construction A lattices are a special case of this con-
struction (up to scaling), starting with L = Zn.
Given a convex body K, our goal is to find a lattice for which the

covering smoothness is small. We will choose this lattice to be L(S)
for a randomly chosen S ∈ Grn,r(Fp) for some r and p, and where
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L is a lattice for which we have a reasonable bound on ρK(L). For
instance, in the proof of Theorem 1.2, we will take L to be a randomly
chosen lattice according to the Haar-Siegel measure µn, which has a
small ρK (Proposition 3.6); importantly, by [ORW21, Proposition 2.1],
L(S) is also distributed according to µn (up to scaling), as needed for
the conclusion of Theorem 1.2.

By rescaling K we may assume that L forms a packing with respect
to K and a covering with respect to the dilate ρK(L)K. Recall that our
goal is to show that the function

TL(S) → N, x 7→ |(x+ L(S)) ∩ K| (15)

is uniformly close to a constant function. By a discretization procedure
(see Proposition 3.1), it will be sufficient to show that the restriction

of the function in (15) to P(disc)
L is close to a constant function. This

uses the fact that L is a covering with respect to ρK(L)K and assumes
that p is chosen sufficiently large with respect to ρK(L).

The final step in the proof is to reduce the problem to an analogous
problem in Fn

p . Denoting by A ⊂ Fn
p the set πL

(
L
p
∩ K

)
viewed as a

subset of Fn
p , we have that for any x ∈ P(disc)

L ,

|(x+ L(S)) ∩ K| =
∣∣∣πL

(
(x+ L(S)) ∩ K

)∣∣∣ = |(x+ S) ∩ A| , (16)

where the first equality uses the assumption that L forms a packing
with respect to K (and so πL is injective on K) and on the right-hand
side we think of x as being in Fn

p . Thus our problem reduces to showing
that a randomly chosen S leads to a smooth covering of Fn

p by the S-
translates of A. This is precisely the problem addressed by Dhar and
Dvir.

To state their result we need the following discrete analogue of the
covering smoothness:

Definition 2.1. Let p be a prime number. The smoothness of a set
S ⊂ Fn

p with respect to a set A ⊂ Fn
p is defined as

ηFp(A, S)
def
= sup

x∈Fn
p

∣∣∣∣ |(x+ S) ∩ A|
|S| · |A| · p−n

− 1

∣∣∣∣ .
With this notation we have:2

2The precise statement given in [DD22, Theorem III.3] deals only with the small-
est possible choice of r = 3+n−⌊logp |A|⌋ = ⌈3+n− logp |A|⌉. However, any larger
choice of r also works, since, as noted in [DD22], if a subspace S is τ -shift-balanced,
and S′ is a subspace containing S, then S′ is also τ -shift-balanced.
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Theorem 2.2 (Dhar and Dvir, Theorem III.3 in [DD22]). Let n ≥ 5,
let δ, τ ∈ (0, 1) and let p be a prime number satisfying p > 64n/(τδ)2.
Let A ⊂ Fn

p and let 4 ≤ r ≤ n be an integer satisfying r > 3 + n −
logp |A|. Then for S ∼ Uniform (Grn,r(Fp)) we have

Pr(ηFp(A, S) > τ) < δ. (17)

To summarize, by (16) and the discretization argument, if the con-
clusion of Theorem 2.2 holds with A = πL

(
L
p
∩K

)
, then we obtain the

desired result, namely, that with high probability, L(S) is a smooth
covering for K of density

vol(K)

covol(L(S))
= pr

vol(K)

covol(L)
.

Noting that |A| ≈ pn vol(K)
covol(L)

(Lemma 3.3) and taking r = 3+n−logp |A|
(ignoring here the technicality of r having to be an integer) we get
a density of about p3. Finally, we need to choose p to satisfy the
conditions of Theorem 2.2 and be large enough compared to ρK(L) for
the discretization argument to work.

We end this section by noting that improvements to Theorem 2.2 will
yield improvements in our results. We make this precise in Remark 3.7.

3. Proofs of Main Results for Lattices

3.1. Discretization. For subsets A,B ⊂ Rn and c ∈ R we denote as
usual

A+B
def
= {a+ b : a ∈ A, b ∈ B}, cA

def
= {ca : a ∈ A}.

Proposition 3.1. Let L′ ⊂ Rn be a discrete subset of Rn such that L′ =
−L′, let K ∈ Convn, and assume 0 < ρ < 1 is such that L′ + ρK = Rn.
Then for any x ∈ Rn there are y1, y2 ∈ L′ such that

(1− ρ)K + y1 ⊂ K + x ⊂ (1 + ρ)K + y2. (18)

Proof. The convexity of K implies that for any positive α and β we
have

αK + βK = (α + β)

{
α

α + β
k1 +

β

α + β
k2 : k1, k2 ∈ K

}
= (α + β)K.

(19)

For the containment on the right-hand side of (18), since L′+ρK = Rn,
for any x ∈ Rn there is y2 ∈ L′ such that x ∈ y2+ρK. Thus if y ∈ K+x
then y ∈ K + ρK + y2 = (1 + ρ)K + y2.
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For the other containment, since Rn = −Rn = −(L′+ρK) = L′−ρK,
there is y1 ∈ L′ such that x ∈ y1 − ρK, and thus y1 ∈ x + ρK. Now if
y ∈ (1− ρ)K + y1 then y ∈ (1− ρ)K + ρK + x = K + x. □

As an immediate corollary we see that if L′, K and ρ satisfy the
conditions of Proposition 3.1 and L ⊂ Rk is a discrete subset, then:

(1) ∀x ∈ Rn ∃x′ ∈ L′ such that N(L,K, x) ≤ N(L, (1 + ρ)K, x′);
(2) ∀x ∈ Rn ∃x′ ∈ L′ such that N(L,K, x) ≥ N(L, (1− ρ)K, x′).

Consequently, we have:

Lemma 3.2. Let L′,K and ρ satisfy the conditions of Proposition 3.1
and let L ⊂ Rn be a discrete subset. Then:

(1) maxx∈Rn N(L,K, x) ≤ maxx′∈L′ N(L, (1 + ρ)K, x′);
(2) minx∈Rn N(L,K, x) ≥ minx′∈L′ N(L, (1− ρ)K, x′).

The following standard lemma will be useful. We give the proof for
lack of a suitable reference.

Lemma 3.3. Let L ⊂ Rn be a lattice and D ∈ Convn, and assume
that L+ βD = Rn for some β ∈ (0, 1). Then

(1− β)n
vol(D)

covol(L)
≤ |L ∩ D| ≤ (1 + β)n

vol(D)

covol(L)
. (20)

Proof. Let ND
def
= L ∩ D, and let V be a fundamental domain for L

contained in βD; that is, a measurable set such that for each x ∈ Rn

there is exactly one ℓ ∈ L for which x ∈ ℓ + V . Such a fundamental
domain exists since L+ βD = Rn. Define the sets

S+
def
= ND + V

S−
def
= ND + (−V).

We have that vol(S+) = vol(S−) = |ND|covol(L). Thus, to estab-
lish (20), it suffices to show that

S+ ⊆ (1 + β)D
S− ⊇ (1− β)D.

The inclusion S+ ⊆ (1 + β)D follows from ND ⊂ D, V ⊆ βD and the
convexity of D, using (19). To see that (1 − β)D ⊆ S−, since −V is
also a fundamental domain for L, for any x ∈ (1− β)D there is y ∈ L
such that x ∈ y − V . Thus, y ∈ x + V ⊂ (1 − β)D + βD = D, and
consequently y ∈ ND. □
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3.2. From packing to smooth covering. Our analysis of η(K, L(S))
(the covering smoothness of a lattice, Definition 1.1) relies on the anal-
ysis of ηFp(A, S) (the analogous discrete smoothness, Definition 2.1),
where A is a discrete analogue of the projection of K modulo L, and S

is a randomly chosen subspace of Fn
p
∼= P(disc)

L of dimension r, where r
will be carefully chosen.

We now derive our main technical statement from Theorem 2.2.

Theorem 3.4. Let n ≥ 5, let δ, τ ∈ (0, 1) and let p be a prime number
satisfying p > 64n/(τδ)2. Let L ⊂ Rn be a lattice and let K ∈ Convn,
and assume that there is some real number 1 < c < p

2n
such that(

L,
(
1+ c

p

)
K
)
is a packing and (L, cK) is a covering. Let 4 ≤ r ≤ n be

an integer satisfying

r > 3 + logp
covol(L)

vol(K)
+ 3c

n

p log p
, (21)

and let S ∼ Uniform (Grn,r(Fp)). Then

Pr

(
η(K, L(S)) ≥ τ + 8c

n

p

)
< 2δ. (22)

Proof. Set ρ
def
= c

p
, so that ρ ∈

(
0, 1

2n

)
and (L

p
, ρK) is a covering. Set

D def
= (1 + ρ)K and β

def
= ρ

1+ρ
, so that βD = ρK and we can apply the

right-hand side of (20) to obtain∣∣∣∣Lp ∩ (1 + ρ)K
∣∣∣∣ ≤ (1 + β)n · vol(D)

covol(L
p
)
= (1 + 2ρ)n

vol(K)

covol(L)
pn. (23)

Similarly, by setting D def
= (1− ρ)K and β

def
= ρ

1−ρ
, we have

(1− 2ρ)n
vol(K)

covol(L)
pn ≤

∣∣∣∣Lp ∩ (1− ρ)K
∣∣∣∣ . (24)

Write L = gZn and for any S ∈ Grn,r(Fp), define L(S) by (13) and

define P(disc)
L by (12), where the vi are the columns of g. Denote by A0

(respectively, A1) the set of all points in P(disc)
L covered by L+(1−ρ)K

(respectively, L+(1+ ρ)K), viewed as elements of Fn
p . Since L forms a

packing with respect to (1 + ρ)K (and also with respect to (1− ρ)K),
the restriction of the projection πL : Rn → TL to (1 + ρ)K (and thus
to (1− ρ)K) is injective. Thus, by (23) and (24) we have

(1− 2ρ)n
vol(K)

covol(L)
pn ≤ |Ai| ≤ (1 + 2ρ)n

vol(K)

covol(L)
pn, i = 0, 1, (25)

and each point in A0 (or A1) is covered exactly once.
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For any x ∈ P(disc)
L we have that

N(L(S), (1− ρ)K, x) = |(x+ S) ∩ A0|,
N(L(S), (1 + ρ)K, x) = |(x+ S) ∩ A1|,

where, with some abuse of notation, on the left-hand side we treat x as

a vector in Rn and on the right-hand side as an element of Fn
p
∼= P(disc)

L .
Let

E0
def
=
{
S ∈ Grn,r(Fp) : ηFp(A0, S) > τ

}
(26)

E1
def
=
{
S ∈ Grn,r(Fp) : ηFp(A1, S) > τ

}
, (27)

and E = E0 ∪ E1. For all S ∈ Ec and x ∈ P(disc)
L we have

N (L(S), (1− ρ)K, x) ≥ (1− τ)|S| · |A0| · p−n

≥ (1− τ)
|S| · (1− 2ρ)nvol(K)

covol(L)

= (1− τ)(1− 2ρ)n
vol(K)

covol(L(S))
,

and

N(L(S), (1 + ρ)K, x) ≤ (1 + τ)|S| · |A1| · p−n

≤ (1 + τ)
|S| · (1 + 2ρ)nvol(K)

covol(L)

= (1 + τ)(1 + 2ρ)n
vol(K)

covol(L(S))
.

Let L′ = 1
p
L = L+P(disc)

L . By assumption, (L′, ρK) is a covering. Thus,

by part (2) of Lemma 3.2 we have that for all S ∈ Ec,

min
x∈Rn

N(L(S),K, x) ≥ min
x′∈L′

N (L(S), (1− ρ)K, x′)

= min
x′∈P(disc)

L

N(L(S), (1− ρ)K, x′)

≥ (1− τ)(1− 2ρ)n
vol(K)

covol(L(S))
, (28)

and

max
x∈Rn

N(L(S),K, x) ≤ max
x′∈L′

N (L(S), (1 + ρ)K, x′)

= max
x′∈P(disc)

L

N (L(S), (1 + ρ)K, x′)

≤ (1 + τ)(1 + 2ρ)n
vol(K)

covol(L(S))
. (29)
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Combining (28) and (29), we see that for any S ∈ Ec we have

η(K, L(S)) = sup
x∈Rn

∣∣∣∣ N(L(S),K, x)

vol(K)/covol(L(S))
− 1

∣∣∣∣
≤ max {1− (1− τ)(1− 2ρ)n, (1 + τ)(1 + 2ρ)n − 1}
≤ max {τ + (1− τ)2ρn, τ + (1 + τ)4ρn} (30)

< τ + 8ρn,

where in (30) we have used the basic bounds (for 0 < 2ρ < 1/n)

1− (1− 2ρ)n < 2nρ, (31)

(1 + 2ρ)n − 1 < 4nρ.

Thus, we have shown that

η(K, L(S)) < τ + 8ρn, ∀S ∈ Ec. (32)

Using our assumption on r in (21) and the lower bound in (25), we
have that for i = 0, 1,

r > 3 + logp
covol(L)

vol(K)
+

3ρn

log p

≥ 3 + logp

(
pn

|Ai|
(1− 2ρ)n

)
+

3ρn

log p

= 3 + n− logp |Ai|+ n logp(1− 2ρ) +
3ρn

log p

≥ 3 + n− logp |Ai| .

Here, we have used the inequality

− logp(1− 2ρ) = logp

(
1 +

2ρ

1− 2ρ

)
≤ 1

(1− 2ρ) log p
· 2ρ <

3ρ

log p
,

where the last inequality follows from ρ < 1/2n and n ≥ 5. Thus, we
may invoke Theorem 2.2 to obtain

Pr(S ∈ Ei) < δ, i = 0, 1,

and therefore, by the union bound,

Pr(S ∈ E) < 2δ,

establishing our claim. □

In the sequel we will use the following convenient consequence of
Theorem 3.4.
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Corollary 3.5. Let n > 25, L ⊂ Rn be a lattice with covol(L) = 1,
and δ, τ ∈ (0, 1). Also let K ∈ Convn satisfy ρK(L) ≤ ρ̄ for some

1 ≤ ρ̄ <
(
2
δ

)n
2 and vol(K) > c5ρ̄

6
(

1
τδ

)6
n3, where c5 = e · (128)3. Then,

for any prime number p satisfying

max

{
64ρ̄2n

(τδ)2
,
(
(2.5)−n · vol(K)

)1/3}
< p < (e−1 · vol(K))1/3, (33)

denoting r = 3 +
⌈
n log 3ρ̄
log p

⌉
, we have that for S ∼ Uniform (Grn,r(Fp))

(so that covol(pr/nL(S)) = 1),

Pr
(
η(K, pr/nL(S)) ≥ 2τ

)
< 2δ. (34)

We remark that the statement is not vacuous, i.e., there exists a
prime number p satisfying (33). To see this, note that

(e−1 · vol(K))1/3

max
{

64ρ̄2n
(τδ)2

, ((2.5)−n · vol(K))1/3
}

=min

{
(e−1 · vol(K))1/3

64ρ̄2n
(τδ)2

,
(e−1 · vol(K))1/3

((2.5)−n · vol(K))1/3

}
≥ 2,

and therefore, by Bertrand’s postulate, there must exist a prime num-

ber satisfying (33). Recalling that p > 64ρ̄2n
(τδ)2

> (3ρ̄)2, it also holds that

r < n since

n log 3ρ̄

log p
≤ n log 3ρ̄

2 log 3ρ̄
=

n

2
.

Proof of Corollary 3.5. We show that with the parameters above, the
conditions of Theorem 3.4 hold for the lattice pr/nL with c = 3p

1
n ρ̄2. To

that end, first note that p > 64ρ̄2n
(τδ)2

≥ 64n
(τδ)2

by definition. Furthermore,
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we have that

8cn

p
= 24ρ̄2p−(1− 1

n
)n

≤ 24ρ̄2
(
64ρ̄2n

(τδ)2

)−(1− 1
n
)

n

=
24ρ̄

2
nn1/n

641−1/n
(τδ)2(1−

1
n
)

<
ρ̄

2
n

2
(τδ)2(1−

1
n
)

<

(
ρ̄δ

n
2

) 2
n

2
τ

< τ, (35)

and in particular, this implies that c < p
2n
. Next we lower bound the

packing radius as

rpack,K(p
r
nL) = p

r
n rpack,K(L) ≥ p

3
n3ρ̄rpack,K(L) ≥ 3p

3
n rcov,K(L)

≥ 3p
3
n

(
1

vol(K)

) 1
n

= 3

(
p3

vol(K)

) 1
n

>
3

2.5

(35)
> 1 +

c

p
,

(36)

and upper bound the covering radius as

rcov,K(p
r
nL) = p

r
n rcov,K(L) ≤ 3p

4
n rcov,K(L)ρ̄ ≤ 3p

4
n ρ̄2rpack,K(L)

≤ 3p
4
n ρ̄2

(
1

vol(K)

) 1
n

= 3p
1
n ρ̄2

(
p3

vol(K)

) 1
n

≤ 3p
1
n ρ̄2e−

1
n < c.

(37)

Finally, we have that

r = logp covol(p
r/nL)

= logp
covol(pr/nL)

vol(K)
+ logp vol(K)

(33)

≥ logp
covol(pr/nL)

vol(K)
+ 3 + logp(e)

> 3 + logp
covol(pr/nL)

vol(K)
+ 3c

n

p log p
,

where we have used the fact that 3cn
p

< 1, due to (35), in the last

inequality. Therefore, the conditions of Theorem 3.4 apply to the
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lattice pr/nL and the convex body K, with c = 3p
1
n ρ̄2. Thus, for

S ∼ Uniform (Grn,r(Fp)), we have that

Pr

(
η(K, pr/nL(S)) ≥ τ + 8

cn

p

)
< 2δ.

The statement in (34) follows since 8 cn
p
< τ by (35). □

To prove Theorem 1.2, we will also need the following auxiliary state-
ment, proved in §3.3. Recall that µn denotes the Haar-Siegel probabil-
ity measure.

Proposition 3.6. For L ∼ µn, any convex body K ∈ Convn, and any
α > 0,

Pr(ρK(L) ≥ 2 · α2) < 3 ·
(
2

α

)n

.

Proof of Theorem 1.2 (assuming Proposition 3.6). Let L′ ∼ µn. Re-
call from [ORW21, Prop. 2.1] that for any fixed prime p and any
1 ≤ r ≤ n, if we sample S according to the uniform distribution on
Grn,r(Fp), statistically independent of L′, the lattice L = pr/nL′(S)
will also be distributed according to µn. Thus, for L ∼ µn and any
τ ∈ (0, 1),

Pr(η(K, L) ≥ 2τ) = Pr(η(K, pr/nL′(S)) ≥ 2τ).

We proceed to upper bound the right hand side of the above expression,

using Corollary 3.5. Let ρ̄ = 8 ·
(
50
δ

) 2
n (note that ρ̄ <

(
2
δ

)n
2 for n > 25),

and let E be the set of all lattices L′ with unit covolume for which

ρK(L
′) < ρ̄. Applying Proposition 3.6 with α = 2

(
50
δ

) 1
n , we have that

Pr(L′ ∈ Ec) < 0.06δ. Now, applying Corollary 3.5 with δ′ = 0.47δ,
τ = ε/2, we see that for any K ∈ Convn with

vol(K) >

(
2

0.47

)6

c5ρ̄
6

(
1

εδ

)6

n3

=

(
2

0.47

)6

· 86 · 50
12
n · c5 ·

(
1

δ

) 12
n
(

1

εδ

)6

n3, (38)

there is a prime number p and an integer 3 < r < n for which

Pr
(
η(K, pr/nL′(S)) ≥ ε | L′ ∈ E

)
< 0.94δ.

In particular, this holds for any K ∈ Convn with vol(K) > c1
(

1
εδ

)6.5
n3,

since c1
(

1
εδ

)6.5
n3 is greater than the right hand side of (38). Our claim
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now follows since

Pr (η(K, L) ≥ ε) = Pr
(
η(K, pr/nL′(S)) ≥ ε

)
≤ Pr(L′ ∈ Ec) + Pr

(
η(K, pr/nL′(S)) ≥ ε | L′ ∈ E

)
< 0.06δ + 0.94δ.

□

Remark 3.7. Improved bounds in Theorem 2.2 will result in tighter up-
per bounds on the minimal required volume for smooth covering. Specif-
ically, assume the following holds: for n large enough, δ, τ ∈ (0, 1) any
prime p > p∗ and any A ⊂ Fn

p and r > m∗ + (n − logp |A|), the con-
clusion of Theorem 2.2 holds. Then, roughly speaking, the proof we
give for Theorem 1.2, with simple modifications, shows that there is a
constant c > 0, such that (2) holds for any convex body K for which
vol(K) ≥ c · (p∗)m∗, as long as p∗ = Ω(n).

On the other hand, it follows from [CFR59] that there exists K ∈
Convn with volume Ω(n) such that η(K, L) ≥ 1 for all unit covolume
lattices. This gives an obvious bound on the extent to which Theo-
rem 1.2 can be improved. Namely, if one can prove that (17) holds for
fixed 0 < δ, τ < 1, p∗ ≍ n and m∗ arbitrarily close to 1, this will show
that the lower bound in [CFR59] is essentially tight, and is attained for
a “typical” lattice (and even for η < 1, i.e., with smooth covering).

For the proof of Theorem 1.4 we will also need the following state-
ment, proved in §3.4.

Lemma 3.8. For any lattice L ⊂ Rn, convex set K ∈ Convn, and
positive integer m, we have

η(mK, L) ≤ η(K, L).

Proof of Theorem 1.4 (assuming Lemma 3.8). Let

M = c5 · 46 ·
(

1

εδ

)6

n3(1+2b) = c3

(
1

εδ

)6

n3(1+2b),

so that by assumption we have vol(K) ≥ M . By Lemma 3.8, replac-
ing K if necessary with 1

a
K for some integer a ≥ 2, we may further

assume vol(K) ∈ [M, 2nM). We apply Corollary 3.5 with L = Zn,
ρ̄ = nb, δ′ = δ/2 and τ = ϵ/2. It is straightforward to verify that
p satisfies (33) for vol(K) ∈ [M, 2nM), and the conditions on vol(K)
and r also trivially hold. Thus, recalling that pr/nL(S) = pr/nZn(S) is
distributed as a lattice drawn from the (p, r) random construction A
ensemble, we obtain the required statement. □
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3.3. High probability bounds on ρK(L). In this subsection we will
give a simple proof of Proposition 3.6. The first results showing the
existence of a global constant c > 0, independent of the dimension n,
such that for any K ∈ Convn there is a lattice L such that ρK(L) < c,
are due to Butler [But72] and Bourgain [Bou87]. The probability (with
respect to the Siegel-Haar measure) that a randomly chosen lattice
satisfies ρK(L) < c was not discussed in these papers. Using [ORW21,
Cor. 1.6] together with the bound vol(K − K) ≤ vol(4K) proved in
[RS57], one sees that Pr (ρK(L) > 4 + o(1)) vanishes exponentially fast
with n. However, we can give a much simpler proof, albeit with a worse
constant. Note that the value of the constant has small effect on the
bounds we obtain for the covering smoothness.

Proof of Proposition 3.6. We will derive a high-probability lower bound
on rpack,K(L) and a high-probability upper bound on rcov,K(L). Assume
without loss of generality that vol(K) = 1. Denote

N∗(L,K, x)
def
= |((L \ {0})− x) ∩ K| = |{y ∈ L \ {0} : x ∈ y −K}| .

For lower bounding rpack,K(L), let K0 =
1
2α
K and let N∗(L,K0 −K0, 0)

be the number of non-zero points of the lattice L in K0−K0. By Siegel’s
theorem [Sie45], we have

E[N∗(L,K0 −K0, 0)] = vol(K0 −K0).

Thus, by Markov’s inequality,

Pr(N∗(L,K0 −K0, 0) ̸= 0) = Pr(N∗(L,K0 −K0, 0) ≥ 1)

≤ E[N∗(L,K0 −K0, 0)]

= vol(K0 −K0)

≤ vol(4K0) =

(
4

2α

)n

, (39)

where the last inequality in (39) follows from [RS57, Theorem 1]. Now,
since N∗(L,K0−K0, 0) = 0 implies that L forms a packing with respect
to K0, we see that

Pr

(
rpack,K(L) ≤

1

2α

)
≤
(
2

α

)n

. (40)

Recall that mL denotes the Haar measure on TL = Rn/L. For the
upper bound on the covering radius recall the basic fact (see, e.g.,
[ORW21, Lemma 2.5]) that

mL

(
πL

(α
2
K
))

>
1

2
=⇒ rcov,K(L) ≤ α.
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It therefore only remains to upper bound Pr
(
mL(πL(K1)) ≤ 1/2

)
,

where K1 = α
2
K. We do this by showing that E[mL(πL(K1))] is close

to 1. We begin by noting that

mL(πL(K1)) =

∫
x∈K1

1

|(x+ L) ∩ K1|
dx

=

∫
x∈K1

1

1 +N∗(L,K1,−x)
dx.

Since the function t 7→ 1
1+t

is convex in the regime t > 0, we can apply
Jensen’s inequality and obtain

E[mL(πL(K1))] = E
[∫

x∈K1

1

1 +N∗(L,K1,−x)
dx

]
=

∫
x∈K1

E
[

1

1 +N∗(L,K1,−x)

]
dx (41)

≥
∫
x∈K1

1

1 + E [N∗(L,K1,−x)]
dx (42)

=

∫
x∈K1

1

1 + vol(K1)
dx (43)

=
vol(K1)

1 + vol(K1)
, (44)

where (41) follows from Fubini’s Theorem, (42) from Jensen’s inequality
and (43) from Siegel’s summation formula. Let

Pe = Pr

(
mL(πL(K1)) ≤

1

2

)
.

Since mL(πL(K1)) ≤ 1 we have that

E[mL(πL(K1))] ≤
Pe

2
+ (1− Pe) = 1− Pe

2
.

Combining this with (44), we obtain

Pe ≤ 2

(
1− vol(K1)

1 + vol(K1)

)
<

2

vol(K1)
.

Thus,

Pr(rcov,K(L) ≥ α) < 2 ·
(
2

α

)n

. (45)

Combining (40) and (45) we obtain the claimed result. □
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3.4. On the monotonicity of α 7→ η(αK, L). As mentioned above,
the mapping α 7→ η(αK, L) is not monotonically non-increasing in
general. Nevertheless, Lemma 3.8, stated above, shows that for dilates
by positive integers, the covering smoothness can only decrease. We can
exploit this fact to establish Theorems 1.3 and 1.6, which show that for
any K ∈ Convn with sufficiently large (polynomial) volume, a typical
lattice has small η(αK, L) for all α ≥ 1. We first provide the proof
of Lemma 3.8, and then leverage this result and prove Theorems 1.3
and 1.6.

Proof of Lemma 3.8. We can write

N(L,mK, x) = N

(
L

m
,K,

x

m

)
=
∑
a

N
(
L,K,

x

m
− a
)

,

where the sums runs over all coset representatives a for the inclusion
L ⊂ L

m
. We therefore have

η(mK, L) = sup
x∈Rn

∣∣∣∣ N(L,mK, x)

vol(mK)/covol(L)
− 1

∣∣∣∣
= sup

x∈Rn

∣∣∣∣∣m−n
∑
a

(N(L,K, x/m− a)

vol(K)/covol(L)
− 1
)∣∣∣∣∣

≤ m−n sup
x∈Rn

∑
a

∣∣∣∣N(L,K, x/m− a)

vol(K)/covol(L)
− 1

∣∣∣∣
≤ m−n

∑
a

sup
x∈Rn

∣∣∣∣N(L,K, x/m− a)

vol(K)/covol(L)
− 1

∣∣∣∣ = η(K, L) .

□

Using this weak monotonicity property, we now show that if a lattice
L smoothly covers Rn with respect to αiK for all αi in a dense enough
net in [1, 2), it must smoothly cover Rn with respect to αK for all
α ≥ 1.

Lemma 3.9. Let n ∈ N and 0 < ε < 1. Let β = ε
8n

and I =
⌈

log 2
log(1+β)

⌉
.

Define αi = (1+β)i for all i = 0, 1, . . . , I, such that α0 = 1, and αI ≥ 2.
For a lattice L ⊂ Rn and K ∈ Convn assume that η(αiK, L) ≤ ε/2 for
all i = 0, 1, . . . , I. Then η(αK, L) < ε for all α ≥ 1.
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Proof. Note that for any α ∈ [1, 2) there is i ∈ {1, . . . , I} such that
αi−1 ≤ α ≤ αi. We therefore have that for any x ∈ Rn,

N(L, αK, x)

vol(αK)/covol(L)
≤ vol(αiK)

vol(αK)

N(L, αiK, x)

vol(αiK)/covol(L)

≤ (1 + β)n
(
1 +

ε

2

)
< (1 + ε),

where in the last inequality we used the fact that (1 + β)n ≤ eβn ≤
1 + 2βn = 1+ ε

4
, which follows since et < 1 + 2t for t < 1/2. Similarly,

N(L, αK, x)

vol(αK)/covol(L)
≥ vol(αi−1K)

vol(αK)

N(L, αi−1K, x)

vol(αi−1K)/covol(L)

≥ (1 + β)−n
(
1− ε

2

)
> (1− ε),

where, as above, in the last inequality we used the fact that (1+β)−n ≥
1

1+2βn
≥ 1−2βn = 1− ε

4
. Thus, η(αK, L) < ε for all α ∈ [1, 2). Finally,

for any α ≥ 1 there is a positive integer m such α′ = α/m ∈ [1, 2), and
thus, by Lemma 3.8, η(αK, L) < ε. □

Proof of Theorem 1.3. Assume vol(K) = c2
(

1
ε2δ

)6.5
n3. Let

β =
ε

8n
and I =

⌈
log 2

log(1 + β)

⌉
≤ 8n

ε
− 1.

Define αi = (1 + β)i for all i = 0, 1, . . . , I and note that

αn
i ≥ e

ε
9
i. (46)

Indeed,

(1 + β)n =
(
1 +

ε

8n

)n
= en log(1+ ε

8n
) ≥ en

ε/8n
1+ε/8n = e

ε/8
1+ε/8n > e

ε/8
9/8 = e

ε
9 .

For all i = 0, 1, . . . , I we apply Theorem 1.2 with ε′ = ε/2 and δi =
δε
64

· e− ε
60

i and Ki = αiK. Noting that

c1

(
1

ε′δi

)6.5

n3 < (128)6.5c1

(
1

ε2δ

)6.5

e
ε
9
in3

(46)
< αn

i c2

(
1

ε2δ

)6

n3 ≤ vol(Ki),

the theorem implies that

Pr
(
η(αiK, L) ≥ ε

2

)
< δi, ∀i = 0, 1, . . . , I. (47)
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Let E be the set of all unit covolume lattices such that η(αiK, L) < ε/2
for all i = 0, 1, . . . , I. By the union bound and (47), we have that

Pr(L /∈ E) ≤
I∑

i=0

δi =
δε

64

I∑
i=0

e−
ε
60

i <
δε

64

∞∑
i=0

e−
ε
60

i =
δε

64

1

1− e−
ε
60

≤ δε

64

(
1 +

60

ε

)
< δ,

where we have used the fact that e−x ≤ 1
1+x

for x ≥ 0. Our claim now
follows by applying Lemma 3.9. □

Proof of Theorem 1.6. Assume vol(K) = c4
(

1
ε2δ

)6
n9+6b. Let β = ε

8n

and I =
⌈

log 2
log(1+β)

⌉
≤ 8n

ε
− 1. Define αi = (1+ β)i for all i = 0, 1, . . . , I.

For all i = 0, 1, . . . , I we apply Theorem 1.4 with ε′ = ε/2 and δ′ =

δ/(I + 1) and K′ = αiK. Noting that ε′δ′ ≥ ε2δ
16n

and that

c3

(
1

ε′δ′

)6

n3(1+2b) ≤ c4

(
1

ε2δ

)6

n9+6b ≤ vol(K′),

the theorem implies that

Pr(η(αiK, pr/nL) ≥ ε/2) <
δ

I + 1
, ∀i = 0, 1, . . . , I. (48)

Let E be the set of all (p, r) construction A lattices such that

η(αiK, pr/nL) <
ε

2
, for i = 0, 1, . . . , I.

By the union bound and (48), we have that Pr(L /∈ E) < δ. Our claim
now follows by applying Lemma 3.9. □

3.5. Non-lattice smooth coverings. In this subsection we will prove
Theorem 1.7. The proof follows the same outline and notation as the
proof of Theorem 3.4. In the previous sections we started with a lattice
L with a reasonable ρK(L) and constructed from it a denser lattice
L(S) by choosing S ⊂ Fn

p to be a subspace. The work of Dhar and
Dvir [DD22] was then used to show that for any subset A ∈ Fn

p , and
a randomly uniform subspace S ∈ Fn

p , if p is sufficiently large and
|S|·|A|
pn

> p3, then ηFp(A, S) is small with high probability. This was

then leveraged for showing that under suitable conditions a randomly
chosen subspace S will yield a lattice L(S) such that L(S)+K smoothly
covers Rn. Note that if S ⊂ Fn

p is not a subspace, the discrete set L(S),
as given in (13) is not a lattice, but is nevertheless well defined, and

has asymptotic density |S|
covol(L)

. Furthermore, recall that the definition

of ηFp(A, S) does not require S to be a subspace. For a random set
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S (rather than a random subspace, as in [DD22]), controlling the tail
of ηFp(A, S) is a significantly simpler task. The following result easily
follows from large deviation theory.

Lemma 3.10. Let n,m be positive integers, p be a prime number and
let δ, τ ∈ (0, 1). Let S be a set of m points identically distributed
independently uniformly over Fn

p . Then, for any set A ⊂ Fn
p , we have

that if m|A|
pn

> 3
τ2

(
n log p− log δ

2

)
, then

Pr(ηFp(A, S) ≥ τ or |S| ≠ m) ≤ δ +m2p−n.

The lemma follows easily from the following well-known large devi-
ations bound, see e.g., [MU17, Corollary 4.6].

Proposition 3.11 (Chernoff bound). For any η ∈ (0, 1) and any m
identically distributed independent Bernoulli random variables Y1, . . . , Ym,

the sum Y
def
=
∑m

i=1 Yi satisfies

Pr (|Y − µ| ≥ ηµ) ≤ 2e−
η2µ
3 , (49)

where µ
def
= E(Y ).

Proof of Lemma 3.10. Let Xi
i.i.d∼ Uniform(Fn

p ) for i = 1, . . . ,m, and
S = {X1, . . . , Xm}. For any x ∈ Fn

p let Yi,x be the indicator of the event
that x +Xi ∈ A. We clearly have that the random variables {Yi,x}mi=1

are i.i.d. Bernoulli with Pr(Yi,x = 1) = |A|
pn
. Thus, Yx =

∑m
i=1 Yi,x

satisfies the conditions of Proposition 3.11, and applying it with µ =

E(Yx) =
m|A|
pn

and η = τ , gives that if m|A|
pn

> 3
τ2

(
n log p− log δ

2

)
then

Pr

(∣∣∣∣ |(x+ S) ∩ A|
m · |A|p−n

− 1

∣∣∣∣ ≥ τ

)
= Pr(|Yx − µ| ≥ τµ) ≤ 2e−

τ2

3
3
τ2
(n log p−log δ

2) = δ · p−n.

Applying the union bound, this implies that

Pr

(
max
x∈Fn

p

∣∣∣∣ |(x+ S) ∩ A|
m · |A|p−n

− 1

∣∣∣∣ ≥ τ

)
≤ δ.

Finally, noting that

Pr(|S| ≠ m) ≤
∑

1≤i<j≤m

Pr(Xi = Xj) =

(
m

2

)
p−n < m2p−n,

and applying the union bound again, we obtain the claimed result. □
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Proof of Theorem 1.7. Let K ∈ Convn,
320n
τ

< p < 640n
τ

be a prime
number for some τ ∈ (0, 1) to be chosen later, and c = 40. Let L be
a lattice so that (L, (1 + c

p
)K) is a packing and (L, cK) is a covering.

Such a lattice exists by Proposition 3.6. Note further, that for such

a lattice we have that covol(L)
vol(K)

< cn = 40n. Denote ρ = c
p
< τ

8n
, such

that in particular 0 < ρ < 1
2n
. We follow the derivations in the proof

of Theorem 3.4 up to equation (32), where instead of assuming S ∈
Grn,r(Fp), we assume S ⊂ Fn

p is an arbitrary subset of m points in Fn
p .

This derivation does not rely on S being a subspace and therefore holds
verbatim, where the only difference is that we replace the definitions
of the sets E0 and E1 from (26) and (27) with

E0
def
=
{
S ∈ Rm,n(Fp) : ηFp(A0, S) > τ

}
,

E1
def
=
{
S ∈ Rm,n(Fp) : ηFp(A1, S) > τ

}
,

where Rm,n(Fp) = {S ⊂ Fn
p : |S| = m}. We therefore have that

η(K, L(S)) ≤ τ + 8ρn ≤ 2τ, ∀S ∈ Ec. (50)

We proceed to upper bound Pr(S ∈ E) for the case where S consists of
m points drawn i.i.d. from the uniform distribution over Fn

p . By (25),
we have that for i = 0, 1

|Ai|
pn

≥ (1− 2ρ)n
vol(K)

covol(L)
≥ (1− 2nρ)

vol(K)

covol(L)
≥
(
1− τ

4

) vol(K)

covol(L)
,

(51)

where the second inequality is due to (31), and the third follows since
ρ < τ

8n
. Thus, by Lemma 3.10, for any δ ∈ (0, 1), if(

1− τ

4

)
· vol(K) · m

covol(L)
>

3

τ 2

(
n log p− log

δ

2

)
(52)

then Pr(Ei) < δ +m2p−n for i = 1, 2. We take τ = ε/2 and δ = 2e−2

and choose

m =

⌈
covol(L)

vol(K)

1(
1− ε

8

) 12
ε2

(n log p+ 2)

⌉

<
covol(L)

vol(K)

14

ε2
(n log p+ 2)

to be the smallest integer satisfying the above constraint, so that

Pr(E) ≤ 2δ + 2m2p−n = 4e−2 + 2m2p−n. Recalling that covol(L)
vol(K)

< 40n
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and that 640n
ε

≤ p ≤ 1280n
ε

we see that

m2p−n ≤ 402n
142

ε4

(
n log

2560n

ε

)2(
640n

ε

)−n

< 402n
142

ε4

(
2560n2

ε

)2(
640n

ε

)−n

<

(
402

640

)n (n
ε

)−(n−6)

(14 · 2560)2

and this is smaller than 0.08 for all n ≥ 20, and so Pr(E) ≤ 4e−2 +
2m2p−n < 1 for all n ≥ 20. We therefore see that there exists a discrete
set L(S) with asymptotic density D(L(S)) = m

covol(L)
such that

vol(K)D(L(S)) <
14

ε2
(n log p+ 2) (53)

and η(K, L(S)) < ε. Recalling that p < 1280n
ε

, we obtain the claimed
result. □
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Steinfeld, Improved security proofs in lattice-based cryptography: using
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