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Abstract. We generalize Khintchine’s method of constructing totally irrational singular vectors
and linear forms. The main result of the paper shows existence of totally irrational vectors and linear
forms with large uniform Diophantine exponents on certain subsets of Rn, in particular on any analytic
submanifold of Rn of dimension ≥ 2 which is not contained in a proper rational affine subspace.

1. Introduction

1.1. Singular vectors and uniform Diophantine exponents. In this paper we consider uniform
rational approximations to n-tuples of real numbers. Denote by 〈x〉 the distance from x ∈ R to the
nearest integer, and for xxx = (x1, . . . , xn) ∈ Rn and yyy = (y1, . . . , yn) ∈ Rn let

〈xxx〉 def
=
(
〈x1〉, . . . , 〈xn〉

)
, ‖xxx‖ def

= max
1≤j≤n

|xj|, xxx · yyy def
= x1y1 + · · · xnyn.

A vector ξξξ = (ξ1, . . . , ξn) is called singular if for every c > 0 the system of inequalities

(1.1) ‖〈qξξξ〉‖ ≤ ct−1/n, 0 < q ≤ t

has an integer solution q for any sufficiently large t. Equivalently (in view of Khintchine’s Transference
Principle [19, 7]), ξξξ is singular if for every c > 0 the system of inequalities

(1.2) 〈qqq · ξξξ〉 ≤ ct−n, 0 < ‖qqq‖ ≤ t

has a solution qqq ∈ Zn for any sufficiently large t. We note that from Dirichlet’s theorem, or, alterna-
tively, from Minkowski’s convex body theorem, it follows that when c = 1, for all t ≥ 1 both (1.1)
and (1.2) have integer solutions.

It was observed by Khintchine, see [7, Ch. V, §7] that singular vectors form a set of Lebesgue
measure zero. One reason why singular vectors are an interesting object of study is their connection
with homogeneous dynamics. It was showed by Dani [10] that ξξξ is singular if and only if the trajectory
of a certain lattice in Rn+1 constructed from ξξξ diverges (i.e. leaves every compact subset of the space
of lattices). We will not exploit this connection in the present paper; see however [25, 35, 11] for
generalizations and further discussions. In particular, the Hausdorff dimension of the set of singular
vectors in Rn was only relatively recently shown by Cheung and Chevallier [8] to be equal to n2

n+1
;

see also an earlier work of Cheung [7] settling the case n = 2.
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One can also introduce different ‘levels of singularity’ of vectors ξξξ ∈ Rn by considering exponents
of uniform Diophantine approximation. Namely, one defines ω̂(ξξξ), the uniform exponent of ξξξ in the
sense of simultaneous approximation, as the supremum of γ > 0 for which the system of inequalities

‖〈qξξξ〉‖ ≤ t−γ, 0 < q ≤ t

has an integer solution q for all t large enough. Likewise, ω̂∗(ξξξ), the uniform exponent of ξξξ in the sense
of dual approximation, is defined as the supremum of such γ for which the system of inequalities

〈qqq · ξξξ〉 ≤ t−γ, 0 < ‖qqq‖ ≤ t

has an integer solution qqq for all t large enough. It is clear that always

(1.3) ω̂(ξξξ) ≥ 1/n and ω̂∗(ξξξ) ≥ n.

In [11] vectors ξξξ satisfying ω̂(ξξξ) > 1/n (equivalently, ω̂∗(ξξξ) > n) were called very singular; clearly
very singular implies singular. See [11, Theorem 1.3] for an interpretation of the quantities ω̂(ξξξ) and
ω̂∗(ξξξ) in terms of the rate of divergence of certain trajectories in the space of lattices.

1.2. Theorems of Khintchine and Jarńık. Let us say that ξξξ ∈ Rn is totally irrational if 1, ξ1, . . . , ξn

are linearly independent over Q. It is easy to see that for not totally irrational vectors ξξξ one has

ω̂∗(ξξξ) =∞ and ω̂(ξξξ) ≥ 1

n− 1
;

in particular, they clearly are very singular. On the other hand, in [16] Jarńık observed that for
totally irrational ξξξ one has the upper bound

(1.4) ω̂(ξξξ) ≤ 1.

In a fundamental paper [19] in the case n = 2 Khintchine discovered the phenomenon of existence of
very singular totally irrational vectors. This was later generalized by Jarńık to the setting of systems
of linear forms [17]. The following two theorems constitute a special case of Jarńık’s result.

Theorem A. There exist continuum many totally irrational ξξξ ∈ Rn such that ω̂∗(ξξξ) =∞.

Theorem B. There exist continuum many totally irrational ξξξ ∈ Rn such that ω̂(ξξξ) = 1.

Here we should note that in the case n = 2 Khintchine deduced Theorem B from Theorem A by
means of a transference argument. However for n > 2 Jarńık proved Theorem B directly, without
using transference. In fact, the transference argument from Jarńık’s paper [16], which can also be
found in the monograph by Cassels [7, Ch. V, §2, Thm. II], when applied to Theorem A gives a
weaker conclusion ω̂(ξξξ) ≥ 1

n−1
.

Further results, generalizations and applications are discussed in Cassels’ book [7] and in a survey
by the second-named author [27]. We note that Khintchine’s method was used by Dani [10] and
later by the third-named [35] to exhibit rapidly divergent trajectories of diagonalizable semigroups
on homogeneous spaces of higher rank semisimple Lie groups.
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1.3. Approximation on manifolds and fractals. A recurrent theme in Diophantine approx-
imation is the introduction of restrictions on the vector ξξξ, for instance by imposing a functional
dependence between its components, or restrictions on the digital expansion of its coefficients. In
other terms, one is interested in the Diophantine properties of vectors ξξξ which are known to lie in a
certain subset of Rn, such as a fractal or a smooth submanifold. See [3] for history and references, and
[23, 22, 21] for developments utilizing dynamics on the space of lattices, and in particular quantitative
non-divergence estimates.

As far as singular vectors on fractals or manifolds go, only a few results have been known until
recently. Davenport and Schmidt [13, Theorem 3] proved that almost all vectors of the form (x, x2)

are not singular. This was later extended to other manifolds [1, 2, 14, 5]. Recall that a smooth
submanifold of Rn is called nondegenerate if at its Lebesgue-almost every point partial derivatives
of its parametrizing map up to some order span Rn; if M is connected and real analytic, this is
equivalent to not lying in any proper affine subspace (we define real analytic manifolds in §3).
Using quantitative non-divergence results obtained in [22], two of the authors in [25, Theorem 1.1]
generalized the results of Davenport and Schmidt, proving that the intersection of the set of singular
vectors with any smooth nondegenerate manifold has measure zero. They also showed that on a
large class of fractal sets, the set of singular vectors has measure zero with respect to the Hausdorff
measure on the fractal.

A natural question to ask is whether the above intersection is in fact nontrivial, that is, not
contained in the set of totally irrational vectors.

The only examples of curves on which nontrivial singular vectors have been exhibited are rational
quadrics in R2 such as the parabola {(x, x2) : x ∈ R}. This was done by Roy [31, 32]. His result for
the parabola was optimal, in the sense that he exhibited the least upper bounds for the sets {ω̂(ξξξ)}
and {ω̂∗(ξξξ)} where ξξξ runs through all totally irrational vectors of the form (x, x2). Optimal results for
quadric hypersurfaces in Rn were very recently obtained by Poëls and Roy [30, 29], complementing
upper estimates for uniform Diophantine exponents found earlier by two of the authors [24], see §1.7.

For a quite general class of higher-dimensional real analytic manifolds this question was addressed
in [25, Theorem 1.2]:

Theorem C. Let S be a connected real analytic submanifold of Rn of dimension at least 2 which
is not contained in any proper rational affine subspace of Rn. Then there exists a totally irrational
singular vector ξξξ ∈ S. Moreover, one can find uncountably many such ξξξ with

(1.5) ω̂(ξξξ) ≥ n2 + 1

n(n2 − 1)
=

1

n
+

2

n(n2 − 1)
.

This was actually done in the context of weighted approximation, see §1.5. The ‘moreover’ part
was not written explicitly in [25], but can be easily derived from [25, Corollary 5.2 and Remark 5.4].
However the proof given in [25] contains a gap, and one of the goals of the present paper is to rectify
it by providing a complete proof of a stronger statement. We will discuss the gap in the proof at the
end of §4.
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1.4. The main result. We now formulate a general result, which extends Theorem A to quite gen-
eral subsets S ⊂ Rn, and from which a stronger version of Theorem C follows. The conditions on S will
be phrased in terms of its intersections with rational affine hyperplanes. If m = (m0,m1, . . . ,mn) ∈
Zn+1 is a primitive vector, we will denote by Am the hyperplane

(1.6) Am
def
=

{
ξξξ ∈ Rn :

n∑
i=1

miξi = m0

}
,

and write

(1.7) |Am|
def
= ‖(m1, . . . ,mn)‖.

We will also work with a generalized version of the uniform exponent for dual approximation. Let
Φ : Znr{0} → R+ be a proper function, that is

(1.8) the set {qqq ∈ Zn : Φ(qqq) ≤ C} is finite for any C > 0.

In accordance with Φ we define the following irrationality measure function

(1.9) ψΦ, ξξξ(t)
def
= min

qqq∈Znr{000}, Φ(qqq)≤t
〈qqq · ξξξ〉.

For example for Φ(qqq) = ‖qqq‖ the function ψ‖·‖, ξξξ can be used to define the uniform exponent of ξξξ in
the sense of dual approximation:

(1.10) ω̂∗(ξξξ) = sup

{
γ : lim sup

t→∞
tγψ‖·‖, ξξξ(t) <∞

}
.

Recall that S ⊂ Rn is called locally closed if there is an open set W such that S = S ∩W . The
following is our main result.

Theorem 1.1. Let S ⊂ Rn be a nonempty locally closed subset, let {L1, L2, . . .} and {L′1, L′2, . . .}
be disjoint collections of distinct closed subsets of S, each of which is contained in a rational affine
hyperplane in Rn, and for each i let Ai be a rational affine hyperplane containing Li. Assume the
following hold:

(a)

(1.11)
⋃
i

Li ∪
⋃
j

L′j = {xxx ∈ S : xxx is contained in a rational affine hyperplane}.

(b) For each i and each T > 0,

Li =
⋃
|Aj |>T

Li ∩ Lj;

(c) For each i, and for any finite subsets of indices F, F ′ with i /∈ F , we have

(1.12) Li = Li r

(⋃
k∈F

Lk ∪
⋃
k′∈F ′

L′k′

)
;

(d)
⋃
i Li is dense in S.
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Then for arbitrary Φ : Zn → R+ satisfying (1.8) and for any non-increasing function ϕ : R+ → R+,
there exist uncountably many totally irrational ξξξ ∈ S such that ψΦ,ξξξ(t) ≤ ϕ(t) for all large enough t.

An application of Theorem 1.1 to Φ(qqq) = ‖qqq‖, in view of (1.10), immediately produces

Corollary 1.2. Let S ⊂ Rn for which there exist collections {Li}, {L′j}, {Ai} satisfying the con-
ditions of Theorem 1.1. Then there exist uncountably many totally irrational ξξξ ∈ S such that
ω̂∗(ξξξ) =∞.

From this, a standard transference argument from [16] and [7, Ch. V, §2, Thm. II] readily gives

Corollary 1.3. Let S be as in Corollary 1.2. Then there exist uncountably many totally irrational
ξξξ ∈ S such that ω̂(ξξξ) ≥ 1

n−1
.

We note that the above corollary gives a stronger statement than Theorem C, since the exponent
n2+1

n(n2−1)
= 1

n−1
− 1

n(n+1)
appearing in (1.5) is strictly smaller than 1

n−1
.

1.5. Approximation with weights. One advantage of the general setup of Theorem 1.1 is the
possibility to extend our results to approximation with weights. The weighted setting in Diophantine
approximation was initiated by Schmidt [34] and became very popular during recent decades, see
e.g. [20]. Consider

(1.13) sss = (s1, . . . , sn) ∈ (0, 1)n, s1 + · · ·+ sn = 1,

and put

(1.14) ρ
def
= max

1≤j≤n
sj, δ

def
= min

1≤j≤n
sj.

Then introduce the sss-quasinorm ‖·‖sss on Rn by

‖xxx‖sss
def
= max

1≤j≤n
|xj|1/sj .

Clearly ‖xxx‖sss = ‖xxx‖n when sss =
(

1
n
, . . . , 1

n

)
. Now we define the weighted uniform exponent ω̂sss(ξξξ) for

simultaneous approximation as the supremum of those γ for which the system of inequalities

‖〈qξξξ〉‖sss ≤ t−nγ, 0 < q ≤ t

has a solution q ∈ Z+ for all t large enough, and the weighted uniform exponent ω̂∗sss(ξξξ) of a linear
form ξξξ as the supremum of those γ for which the system of inequalities

〈qqq · ξξξ〉 ≤ t−γ, 0 < ‖qqq‖sss ≤ tn

has a solution qqq ∈ Zn for all t large enough. Analogously to (1.3) and (1.4), for totally irrational ξξξ
one always has

ω̂∗sss(ξξξ) ≥ n and
1

n
≤ ω̂sss(ξξξ) ≤

1

ρn
.

Now, in order to construct vectors with large weighted exponents all one needs is to apply Theorem
1.7 to the function

Φsss(qqq)
def
= ‖qqq‖1/n

sss ,
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observing that one has

ω̂∗sss(ξξξ)
def
= sup{γ : lim sup

t→∞
tγψΦsss,ξξξ(t) <∞}.

This way we arrive at

Corollary 1.4. Let S be as in Corollary 1.2, and let sss be as in (1.13). Then there exist uncountably
many totally irrational ξξξ ∈ S such that ω̂∗sss(ξξξ) =∞.

Exact transference theorems for the weighted setting were obtained quite recently. Improving
on a paper by Chow, Ghosh, Guan, Marnat and Simmons [9], German [15] proved a transference
inequality which in particular states that

ω̂∗sss(ξξξ) =∞ =⇒ ω̂∗sss(ξξξ) ≥
1

n(1− δ)
,

where δ is defined in (1.14). This leads to the following

Corollary 1.5. Let S be as in Theorem 1.1, let sss be as in (1.13), and let δ be as in (1.14). Then
there exist uncountably many totally irrational ξξξ ∈ S such that ω̂sss(ξξξ) ≥ 1

n(1−δ) .

1.6. Applications to manifolds and fractals. We now describe two classes of subsets S ⊂ Rn for
which the assumptions of Theorem 1.1 can be verified. The first application involves certain product
subsets of Rn. Recall that a subset of R is called perfect if it is compact and has no isolated points.

Theorem 1.6. Let n ≥ 2 and let S1, . . . , Sn be perfect subsets of R such that

(1.15) Q ∩ Sk is dense in Sk for each k ∈ {1, 2}.

Let S =
∏n

j=1 Sj. Then there are collections {Li}, {L′j}, {Ai} satisfying the hypotheses of Theorem
1.1. In particular, the conclusions of Theorem 1.1 and Corollaries 1.2—1.5 hold for S.

For example, the above theorem applies to products of one-dimensional limit sets of rational
iterated function systems such as the middle third Cantor set and its generalizations. Thus as a
special case we see that a Cartesian product of two copies of Cantor’s middle thirds set contains
uncountably many totally irrational singular vectors. The question of determining the Hausdorff
dimension of the set of singular vectors in this fractal was raised in the recent paper [6] of Bugeaud,
Cheung and Chevallier, and an upper bound was obtained by Khalil [18].

As a second application, let us consider real analytic submanifolds.

Theorem 1.7. Let S be a connected real analytic submanifold of Rn of dimension at least 2 which is
not contained in any proper rational affine subspace of Rn. Then there are collections {Li}, {L′j}, {Ai}
satisfying the hypotheses of Theorem 1.1. In particular, the conclusions of Theorem 1.1 and Corol-
laries 1.2—1.5 hold for S.
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1.7. Optimality of exponents. One may wonder whether it is possible to strengthen the conclusion
of Corollary 1.3 and, for S as in Theorem 1.1, construct totally irrational ξξξ ∈ S with ω̂(ξξξ) = 1, thereby
obtaining an optimal result identical to the conclusion of Theorem B restricted to S. However this
is not the case. To explain why, we give two examples. First of all we refer to the paper [24], where
it is shown that for hypersurfaces of the form

S = {ξξξ ∈ Rn : f(ξξξ) = 1} ⊂ Rn,

where f is a homogeneous polynomial of degree s such that #{xxx ∈ Qn : f(xxx) = 0} <∞, one has

sup
totally irrational ξξξ∈S

ω̂(ξξξ) ≤ Hn−1,s,

where Hn−1,s < 1 is the unique positive root of the equation 1 − x = x ·
∑d

k=1

(
x
s−1

)k. In particular
for any totally irrational ξξξ on the unit sphere

{(x1, . . . , xn) : x2
1 + · · ·+ x2

n = 1} ⊂ Rn

one has ω̂(ξξξ) ≤ Hn−1, where Hn−1 = Hn−1,2 is the unique positive root of the polynomial
xn + · · · + x − 1. More general results for quadric hypersurfaces, as well as the optimality of the
aforementioned bound, were very recently proved by Poëls and Roy in [30].

In addition to that, in §5 below we show that in the case when S is a so-called badly approximable
affine subspace of Rn, the value ω̂(ξξξ) is uniformly bounded away from 1 for any totally irrational
ξ ∈ S.

2. Proof of Theorem 1.1

The idea of proof goes back to Khintchine’s original argument [19] and has appeared in many
incarnations in work on the subject, see [27] for a survey. We retain the notation and assumptions
of the theorem; that is,

• S ⊂ Rn is a nonempty locally closed subset;
• {L1, L2, . . .}, {L′1, L′2, . . .} are disjoint collections of distinct closed subsets of S such that
conditions (a)–(d) of Theorem 1.1 hold;
• Φ : Znr{0} → R+ is such that (1.8) holds;
• ϕ : R+ → R+ is non-increasing.

Also for a rational affine hyperplane Ai as in the statement of the theorem we let mi ∈ Zn+1 be
a primitive vector so that Ai = Ami

, where the notation and normalization are as in (1.6).

Proof of Theorem 1.1. Let

B def
= {ξξξ ∈ S : ∃ t0 such that ∀ t ≥ t0, ψΦ,ξξξ(t) ≤ ϕ(t) and ξξξ is totally irrational} ,

and suppose by contradiction that B is at most countably infinite. Write B = {bbb1, bbb2, . . .} (in case B
is finite, this is a finite list). Let W be an open subset of Rn for which S = S ∩ W . Put U0 = W ,
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qqq0 = 0, p0 = 0, i0 = 0, Φ(0) = 0. We will show that for each ν ∈ N there is a bounded open set
Uν ⊂ W , and an index iν ∈ N, such that, with the notation

(pν , qqqν)
def
= miν ,

the following conditions are satisfied:

(1) ∅ 6= S ∩ Uν ⊂ Uν−1;
(2) iν > iν−1 and Φ(qqqν) > Φ(qqqν−1) for all ν ∈ N.
(3) For all k < ν, Uν is disjoint from Lk ∪ L′k ∪ {bbbk}.
(4) For all ν ∈ N and all ξξξ ∈ Uν we have

|ξξξ · qqqν−1 − pν−1| < ϕ
(
Φ(qqqν)

)
.

(5) For all ν ∈ N, Uν ∩ Liν 6= ∅.

To see this suffices, take a point

(2.1) ξξξ ∈ S ∩
⋂
ν

Uν =
⋂
ν

S ∩ Uν .

This intersection is nonempty since the right-hand side of (2.1) is by (1) an intersection of nonempty
nested compact sets, and the equality between both sides of (2.1) follows from the fact that for ν ≥ 2,
the sets Uν are contained inW . We will reach a contradiction by showing that both ξξξ /∈ B and ξξξ ∈ B.
By (3), ξξξ is not equal to any of the bbbi and hence ξξξ /∈ B. Also by (3), ξξξ is not contained in any of
the sets in the collections L,L′, and thus by (1.11), ξξξ is totally irrational. The function ϕ is non-
increasing by assumption, and so is the irrationality measure function t 7→ ψΦ,ξξξ(t), as follows from
its definition (1.9). The properness condition (1.8) guarantees that Φ(qqqν) → ∞ as ν → ∞. By (2),
for any t > t0

def
= Φ(qqq1) there is ν with t ∈ [Φ(qqqν),Φ(qqqν+1)] and by (4) we have

ψΦ,ξξξ(t) ≤ ψΦ,ξξξ

(
Φ(qqqν)

)
≤ 〈qqqν · ξξξ〉 ≤ |qqqν · ξξξ − pν | < ϕ

(
Φ(qqqν+1)

)
≤ ϕ(t).

This shows that ξξξ ∈ B.
Note that when utilizing the above properties, we did not require property (5). However we will

use it for constructing the sequences Uν , iν .

The inductive construction starts with ν = 1. Choose i1
def
= min{i ∈ N : Li 6= ∅}, which exists in

view of hypothesis (d), and define U1 to be some open set containing a point in Li1 and such that
U1 ⊂ W . Then (1) and (5) follow from this choice, and properties (2–4) hold vacuously for ν = 1.

Now suppose we have constructed Uk and ik with the required properties for k = 1, . . . , ν, and we
explain the construction for ν + 1. Let i = iν . By (5) for k = ν we have Uν ∩ Li 6= ∅. By hypothesis
(b) there is an infinite subsequence of indices j such that along this subsequence,

(2.2) Uν ∩ Li ∩ Lj 6= ∅ and |Aj| →j→∞ ∞.

For each such j, write Aj = Amj
, mj = (p′j, qqq

′
j). Then by (1.7), along this subsequence we have

‖qqq′j‖ → ∞, and hence by the property (1.8) of Φ, we can choose j > i so that Φ(qqq′j) > Φ(qqqν). We
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then set iν+1 = j. This choice ensures that (2) holds for ν + 1. Let

ξξξ1 ∈ Uν ∩ Li ∩ Lj.

The point ξξξ1 belongs to Li and hence satisfies ξξξ1 · qqqν = pν . By continuity, we can take a small
neighborhood V ⊂ Uν around ξξξ1, so that for all ξξξ ∈ V we have

|ξξξ · qqqν − pν | < ϕ
(
Φ(qqqν+1)

)
.

This is the inequality in (4), for ν + 1.
Since ξξξ1 ∈ Lj = Liν+1 we have V ∩Liν+1 6= ∅, so we can apply hypothesis (c) to find that there is

ξξξ ∈ Lj ∩ V r
⋃

k<ν+1

(
Lk ∪ L′k ∪ {bbbk}

)
.

Furthermore, we can take a small enough neighborhood Uν+1 of ξξξ so that

Uν+1 ⊂ Uν , and Uν+1 ∩
⋃

k<ν+1

(Lk ∪ L′k ∪ {bbbk}
)

= ∅.

With these choices Uν+1 and iν+1 will also satisfy (1), (3) and (5). Thus we have completed the
inductive construction. �

With Theorem 1.1 in hand, it is easy to complete the

Proof of Theorem 1.6. Recall that we are given S =
∏n

j=1 Sj, where S1, . . . , Sn are perfect subsets
of R satisfying (1.15). Let e1, . . . , en be the standard base vectors, and let {Ai} be the collection of
all rational hyperplanes which are normal to one of e1, e2 and have nontrivial intersection with S

(where each of the rational hyperplanes appears exactly once). That is, each of the hyperplanes Ai
is of the form

(2.3) Ai =

{
ξξξ ∈ Rn : ξki =

pi
qi

}
, where pi ∈ Z, qi ∈ N are coprime, and ki ∈ {1, 2};

note that necessarily we have pi
qi
∈ Ski .

For each i define Li
def
= S∩Ai, and let {L′j} denote the collection of non-empty intersections S∩A,

where A is a rational affine hyperplane, and the set L′j does not appear in the list {Li}. We claim
that with these choices, hypotheses (a)—(d) of Theorem 1.1 are satisfied.

Indeed, (a) is obvious from the definition, and (d) follows from (1.15). For (b) and (c), suppose
for concreteness that ki = 1. Then it follows from (2.3) that

(2.4) Li =

{
ξξξ ∈ Rn : ξ1 =

pi
qi

and ξj ∈ Sj ∀ j 6= 1

}
.

Let ξξξ ∈ Li and let pj/qj be a sequence of distinct rationals in S2 satisfying pj/qj → ξ2. Such a
sequence exists since S2 is perfect and the rationals are dense in S2. Let

Lj
def
=

{
ξξξ ∈ Rn : ξ2 =

pj
qj

}
∩ S.

Then it is clear from (2.4) that Li∩Lj contains elements ξξξj such that ξξξj → ξξξ, and such that ξξξj differs
from ξξξ only in the 2nd coordinate. Also |Aj| = qj →∞ and so for any T > 0, ξξξ is an accumulation
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point of the sets Li ∩ Lj with |Aj| > T . This proves (b). To show (c), note that because S2, . . . , Sn

are perfect, the intersection of the set (2.4) with an arbitrary open subset of Rn cannot lie in a union
of finitely many proper affine subspaces of Rn different from Ai; hence (1.12). �

3. Real analytic submanifolds

Let k ≤ n, and let U ⊂ Rk be open. We say that f : U → Rn is real analytic immersion if it is
injective, each of its coordinate functions fi : U → R (i = 1, . . . , n) is infinitely differentiable, the
Taylor series of each fi converges in a neighborhood of every xxx ∈ U , and the derivative mapping
dxxxf : Rk → Rn has rank k. By a k-dimensional real analytic submanifold in Rn we mean a subset
M⊂ Rn such that for every ξξξ ∈M there is a neighborhood V ⊂ Rn containing ξξξ, an open set U ⊂ Rk,
and a real analytic immersion f : U → Rn such that V ∩M = f(U). By a real analytic curve (resp.,
surface) we mean a connected one-dimensional (resp., two-dimensional) real analytic submanifold.
A mapping h : M → Rm is real analytic if for any ξξξ, f,U as above, each coordinate function of
h ◦ f : U → Rm is infinitely differentiable and its Taylor series converges in some neighborhood of
f−1(ξξξ).

The crucial property which distinguishes real analytic submanifolds from smooth manifolds, and
follows easily from definitions, is the following. Let M1,M2 be real analytic submanifolds (where
we equip them with the topology inherited from the ambient space Rn). Then, if the intersection
M1∩M2 has nonempty interior inM1, then this intersection is open inM1; and thus, if additionally
M1 is connected andM2 is closed, thenM1 ⊂M2.

A subset N ⊂ M is called semianalytic if it is locally described by finitely many equalities and
inequalities involving real analytic functions, i.e. for every ξξξ0 ∈ N there is an open neighborhood U
containing ξξξ0 such that

N ∩ U =
{
ξξξ ∈M∩ U : ∀i, hi(ξξξ) = 0 and ∀j, h̄j(ξξξ) > 0

}
,

for finitely many real analytic functions hi, h̄j onM∩U . For background on the geometry of analytic
and semianalytic manifolds we refer the reader to [4] and the references therein. In particular the
reader may consult [4] for the definition of the dimension of a semianalytic set.

We will need to decompose semianalytic subsets into analytic submanifolds. In this regard we
have the following (see [4, §2]):

Proposition 3.1. Let N ⊂ M be a semianalytic subset of a real analytic submanifold M ⊂ Rn.
Then any connected component of N is semianalytic, and N has a locally finite presentation as a
disjoint union of sets N1,N2, . . ., each of which is a connected analytic submanifold of dimension at
most dimN , and such that

(3.1) i 6= j, Ni ∩Nj 6= ∅ =⇒ dimNj > dimNi.

It will be easier to work with real analytic surfaces than with manifolds of higher dimension. The
reason for this is that in this case it will be possible to describe a stratification as in Proposition 3.1
in topological terms.
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Proposition 3.2. Let S be a bounded real analytic surface, and let A be an affine hyperplane such
that S 6⊂ A. Denote by F the set of points ξξξ ∈ S ∩A for which there does not exist a neighborhood U
of ξξξ such that U∩S∩A is a real analytic curve. Then F is finite, the number of connected components
of (S ∩ A) r F is finite, and each of these connected components is a real analytic curve.

We will refer to the connected components of the set (S ∩ A) r F as the one-dimensional basic
components of S ∩ A.

Example 3.3. Let n = 3, let S be defined by

S = {(x, y, xy) : x, y ∈ (−1, 1)} ,

and let
A = {(x, y, 0) : x, y ∈ R} .

Then A ∩ S is the union of a vertical line {x = 0} and a horizontal line {y = 0} in the plane A,
intersecting at the origin (0, 0, 0). The set F defined in Proposition 3.2 consists of the origin, and the
one-dimensional basic components are four open intervals (two horizontal and two vertical) in A.

Proof of Proposition 3.2. Write S0
def
= S ∩ A, a semianalytic subset of S. Clearly dimS0 ≤ 2 and we

claim that dimS0 6= 2. Indeed, if this were to hold then S0 would be open in S, but also closed since
A is a closed subset of Rn. By connectedness this would imply S ⊂ A, contrary to assumption.

Thus dimS0 ≤ 1. We treat separately the cases dimS0 = 0 and dimS0 = 1. If S has dimension
0, then each of its connected components is a real analytic submanifold of dimension 0, i.e. S0 is a
discrete subset of S. Moreover S0 is finite, since the collection described in Proposition 3.1 is locally
finite and S is bounded, and by definition F = S0.

If dimS0 = 1, then by Proposition 3.1 (and using again that S is bounded) we can write S0 as
a disjoint union F0 ∪ F1, where F0 is a finite set of points and F1 is a finite union of disjoint real
analytic curves Ni. Such a stratification is not unique, but we choose one so that the cardinality of
F0 is as small as possible. We claim that with this choice, F0 = F and the real analytic curves Ni
are the connected components of S0 r F .

To see this, note that since the Ni are real analytic curves, any point in any one of the Ni cannot
belong to the set F , so F ⊂ F0. Suppose if possible that there is some ξξξ ∈ F0 r F . Since ξξξ /∈ F , it is
not an isolated point of S0. Thus, if we denote by F1(ξξξ) the collection of curves Ni for which ξξξ ∈ Ni,
then F1(ξξξ) 6= ∅.

Let η be the connected component of S0 rF containing ξξξ. Then η is a real analytic curve. By the
connectedness of η and property (3.1), any Ni in the collection F1(ξξξ) must be contained in η. Since ξξξ
is a smooth point of η, i.e. there is a neighborhood W of ξ such that W ∩S0 = W ∩ η, it follows that
F1(ξξξ) consists of two real analytic curves Ni,Nj such that the union γ def

= Ni ∪ {ξξξ} ∪Nj is also a real
analytic curve contained in η. We can therefore modify F0 and F1, by replacing F0, F1 respectively
with

F0 r {ξξξ} and F1 ∪ {ξξξ} = F1 ∪ γ r (Ni ∪Nj) .
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But this contradicts the minimality of F0, showing that F0 = F . Since by (3.1) any boundary point
of any Ni is in F , the Ni are open and closed as subsets of S0 r F . Thus they coincide with the
connected components of S0 r F . �

In order to be in a position to apply Proposition 3.2 we will need the following.

Proposition 3.4. Let k ≥ 2, and letM⊂ Rn be a connected k-dimensional real analytic submanifold
which is not contained in a proper rational affine subspace of Rn. Then M contains a bounded real
analytic surface which is not contained in a proper rational affine subspace of Rn.

Proposition 3.4 is proved by induction on the dimension k, the base case k = 2 being obvious. For
k ≥ 3, the deduction of case k from case k − 1 follows from the observation that any proper affine
rational subspace of Rn is contained in a rational affine hyperplane, and from the following. For each
k we denote Ik

def
= (0, 1)k the open unit k-dimensional cube.

Lemma 3.5. Suppose that for k ≥ 3, M is a k-dimensional real analytic submanifold which is the
image of Ik under a real analytic immersion f : Ik → Rn. Suppose also that M is not contained in
any rational affine hyperplane. Then there exists α ∈ (0, 1) such that the analytic manifold fα(Ik−1),
where

(3.2) fα : Ik−1 → Rn, fα(x1, ..., xk−1)
def
= f(x1, ..., xk−1, α),

does not belong to any rational affine hyperplane.

Proof of Lemma 3.5 (and hence of Proposition 3.4). If the conclusion of the Lemma is not true, then
for any α ∈ (0, 1) there exists a rational affine hyperplane A containing the image of the function
(3.2). This means that

(3.3)
⋃
m

f−1 (Am ∩M) = Ik

where the union is taken over all primitive vectors m ∈ Zn+1 and Am is the rational affine hyperplane
defined via (1.6). This is a countable union of closed subsets of Ik so by the Baire category theorem,
one of them has nonempty interior. That is there is a nonempty open subset U ⊂ Ik and m0 such
that f(U) ⊂ Am0 . That is,M∩Am0 has nonempty interior inM. By analyticity and connectedness
ofM we then haveM⊂ Am0 , contrary to hypothesis. �

4. Proof of Theorem 1.7

We first explain informally the main difficulty in the proof and the idea that allows us to overcome
it. As was mentioned above, the intersections of real analytic submanifolds with affine hyperplanes
are semianalytic sets, but they need not themselves be real analytic submanifolds. This makes it
tricky to verify the hypotheses of Theorem 1.1. To deal with this, we first pass to the case in which
S is a surface and is not contained in a proper rational affine hyperplane. This means that the
intersections S ∩A can be described by Proposition 3.2. Moreover for some affine hyperplanes A, the
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sets S ∩A can be taken to satisfy a transversality condition which implies that they are real analytic
curves. Specifically in the proof below, the Li will be closed real analytic curves, while the L′j will
be basic one-dimensional components of one-dimensional semianalytic sets. We now proceed to the
details of the argument.

Proof of Theorem 1.7. By Proposition 3.4 we can assume that S is bounded, connected and two-
dimensional. Let {Ai} be the collection as in the proof of Theorem 1.6, that is the Ai are the affine
rational hyperplanes normal to one of the two standard basis vectors e1, e2. For each ξξξ ∈ S, the
tangent space TξξξS is a two dimensional affine subspace of Rn passing through ξξξ. Recall that S is not
contained in any proper rational affine subspace of Rn; thus, by possibly replacing S with its smaller
connected open subset, we can assume that for every ξξξ ∈ S, the tangent space TξξξS is not normal to
either of e1, e2. This implies that we can view S as a graph of a smooth function over its projection
to the two-dimensional space V12

def
= span(e1, e2) ∼= R2. This implies furthermore that for each i and

each ξξξ ∈ S ∩Ai, the intersection TξξξS ∩Ai is a transversal intersection, that is, an affine subspace of
dimension one. By taking S smaller, we can ensure that its projection to the plane V12 is an open
bounded convex set. Now define Li

def
= S ∩Ai (where we only take those indices i for which Li is not

empty). Each Li is closed as a subset of S, and by the implicit function theorem it is a real analytic
curve. Since the projection of S on V12 is convex, each Li is also connected.

Having defined the collections {Li}, {Ai} we now define the collection {L′j}. For any rational affine
hyperplane A for which S ∩ A is nonempty, we have by Proposition 3.2 its one-dimensional basic
components. There are at most countably many such sets {γj} where each γj is a real analytic curve
whose closure γj satisfies that γj r γj consists of at most two points. We take

{L′j}
def
= {γj : ∀ i, γj 6⊂ Li}.

We claim that with these choices, conditions (a)—(d) of Theorem 1.1 are satisfied (note that as a
real analytic submanifold of Rn, S is locally closed).

Properties (a), (b), (d) are straightforward. Indeed, since each Li is a connected real analytic
curve, the condition γj 6⊂ Li is equivalent to γj 6⊂ Li. Also the sets γj contain all points of S which
belong to rational affine hyperplanes but not to one of the hyperplanes Ai. Thus we have (a). For (d)
note we can apply the projection to the plane V12, since S is a graph over this plane. By construction,
the projections of the Li form a dense collection of horizontal lines and a dense collection of vertical
lines. In particular (d) holds. For (b) we continue to work in the plane V12. For every point ξξξ on (say)
a horizontal line ` ⊂ V12, which is the projection of some Li, there is a sequence of intersection points
ξξξj of ` with vertical lines such that ξξξj → ξξξ and ξξξj is contained in spaces Aj. A computation similar
to the one used in the proof of Theorem 1.6 shows that along this sequence, we have |Aj| → ∞, and
(b) follows.

For (c) we argue as follows. Let F, F ′ be as in statement (c). The set Li is a real analytic curve
and for each k ∈ F , Li∩Lk is either empty or consists of a single point. Now let k′ ∈ F ′, and suppose
by contradiction that L′k′ ∩Li has nonempty interior, relative to the topology on Li. Then, since L′k′
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is the closure of a real analytic curve γ with γ r γ consisting of at most two points, Li ∩ γ also has
nonempty interior relative to Li, and, since the dimensions are both equal to one, γ ∩ Li also has
nonempty interior relative to the topology of γ. Since Li is closed and γ is connected, this means
that γ ⊂ Li, contradicting the definition of L′k′ . �

We close the section by commenting on Theorem C and its proof given in [25], which, as was
mentioned in the introduction, contained an error. Since in this paper we prove a strengthening,
namely Theorem 1.7, we do not rewrite the proof of [25] completely. Rather we explain the gap in
the proof and sketch how it can be fixed.

Theorem C is derived in [25] from an abstract result [25, Theorem 5.1], which is similar to Theo-
rem 1.1 (abstracting Khintchine’s classical argument). The statement of [25, Theorem 5.1] involves
two countable lists X1, X2, . . . and X ′1, X

′
2, . . . of closed subsets of a subset X of a Lie group. The

application deals with a real analytic submanifold S ⊂ Rn of dimension at least two, embedded in
the group SLn+1(R). In order to conclude that S contains totally irrational singular vectors ξξξ, and
to obtain a bound on their associated parameter ω̂(ξξξ), some conditions on the sets Xi, X

′
j must be

checked. One of these is the following transversality condition:

(4.1) for every i, j, Xi = Xi rX ′j

(which is analogous to hypothesis (c) of Theorem 1.1). The argument given in [25] defines theXi, X
′
j as

connected components of the intersection of S with rational affine hyperplanes. It is then erroneously
claimed that (4.1) holds for these choices. Indeed, with the notations of Example 3.3, set A1

def
= A

and A′1
def
= {(0, y, z) : y, z ∈ R} . Then X1 = S ∩ A1 is the union of two lines intersecting at a point,

and X ′1 = S ∩ A′1 is one of these lines. So (4.1) fails.
It is possible to rectify the proof by adapting some of the arguments we used in the proof of

Theorem 1.7; namely, by replacing S with a two-dimensional real analytic submanifold, and adjusting
the definitions of the sets Xi, X

′
i using the notion of basic components. We leave the details to the

reader.

5. Badly approximable subspaces

In this section we give upper bounds for the exponent ω̂(ξξξ) for points ξξξ ∈ A in case when an s-
dimensional affine subspace A of Rn is badly approximable. To define the latter property, we identify
Rn with the affine subspace

Rn
1 :=

{
x = (x0, x1, . . . , xn) ∈ Rn+1 : x0 = 1

}
and consider the affine subspace

A def
= {x ∈ Rn+1 : x0 = 1 , (x1, ..., xn) ∈ A}.

Let us define the linear subspace

LA
def
= spanA ⊂ Rn+1.
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It is clear that LA has dimension s+ 1. From Minkowski’s convex body theorem it follows that there
exists a constant C dependent only on n such that for any A there exists infinitely many integer
vectors m ∈ Zn+1 such that

dist (LA,m)n−s · ‖m‖s+1 < C.

We define A to be a badly approximable subspace if

inf
m∈Zn+1r{0}

dist (LA,m)n−s · ‖m‖s+1 > 0.

It is clear that badly approximable subspaces exist. Moreover from a famous theorem of Schmidt [33]
it follows that they form a thick set (that is, the set of badly approximable subspaces in any non-
empty open subset of the Grassmanian of all s-dimensional affine subspaces of Rn has full Hausdorff
dimension). Indeed, without loss of generality one can parametrize A in the following form:

(5.1) A =

{
ξξξ =

(
xxx

yyy0 + Y xxx

)
: xxx ∈ Rs

}
,

where Y ∈Mn−s,s and yyy0 ∈ Rn−s. Define

ws,n
def
=
s+ 1

n− s
.

Then it is easy to see that A is badly approximable if and only if the augmented matrix

(5.2) Ỹ :=
[
yyy0 Y

]
∈Mn−s,s+1

is badly approximable, that is, if

inf
q∈Zs+1r{0}

‖q‖ws,n‖〈Ỹ q〉‖ > 0.

Note that

(5.3) ws,n < 1 ⇐⇒ s < n− 2.

Let Ws,n be the unique root of the equation

(5.4) xn+1 − wn−1
s,n (1 + ws,n)x+ wns,n = 0

in the interval (0, ws,n).

Proposition 5.1. Let A be an s-dimensional badly approximable affine subspace of Rn. Then:

(i) for any ξξξ ∈ A one has

(5.5) ω̂(ξξξ) ≤ ws,n;

(ii) for any totally irrational ξξξ ∈ A one has

(5.6) ω̂(ξξξ) ≤ Ws,n.

Remark 5.2. In view of (5.3), when ξξξ is totally irrational, the estimate in (i) is non-trivial only if
s < n− 2. If s is fixed, then ws,n = O( 1

n
) as n→∞, which shows that for large n the conclusion of

Corollary 1.3, that is, the existence of uncountably many totally irrational ξξξ ∈ S with ω̂(ξξξ) ≥ 1
n−1

,
is close to optimal, in some sense. Statement (ii) gives a slight improvement of this bound.
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In particular, we can consider the following examples:

1) if n = 4 and s = 1, the inequality (5.5) gives ω̂ ≤ w1,4 = 2
3
;

2) if n = 2 and s = 1, we have w1,2 = 2. Equation (5.4) is now x3−6x+4 = 0, and the inequality
(5.6) gives

ω̂ ≤ W1,2 =
√

3− 1 = 0.732...

3) if n = 3 and s = 1, we have w1,3 = 1, equation (5.4) has the form x4 − 2x + 1 = 0, and the
inequality (5.6) gives

ω̂ ≤ W1,3 = 0.54...

4) if n = 3 and s = 2, we have w2,3 = 3, equation (5.4) is now x3 − 36x + 27 = 0, and the
inequality (5.6) gives

ω̂ ≤ W2,3 = 0.759...

Proof of Proposition 5.1. To prove (i), we will use the following elementary

Lemma 5.3. If ξξξ ∈ A and A is badly approximable, then there exists a positive c such that for every
q ∈ N we have

(5.7) ‖〈qξξξ〉‖ ≥ cq−wn,s .

From this lemma (5.5) follows immediately.

Proof of Lemma 5.3. We will use the parameterization (5.1). Assume the contrary, that is, for some

ξξξ =

(
xxx

yyy0 + Y xxx

)
and any ε > 0 there exists mmm =

(
ppp
rrr

)
∈ Zn such that

‖qξξξ −mmm‖ =

∥∥∥∥( qxxx
qyyy0 + Y (qxxx)

)
−
(
ppp
rrr

)∥∥∥∥ < εq−wn,s .

In particular, ‖qxxx− ppp‖ < εq−wn,s ; thus, if we define q :=

(
q
ppp

)
, it follows that

(5.8) ‖q‖ ≤ Cq for some C = C(xxx) independent on q, ppp and ε.

Note that
qyyy0 + Y (qxxx)− rrr = qyyy0 + Y (ppp+ qxxx− ppp)− rrr = Ỹ q− rrr + Y (qxxx− ppp),

where Ỹ is as in (5.2). Hence

‖〈Ỹ q〉‖ ≤ ‖qyyy0 + Y (qxxx)− rrr‖+ ‖Y (qxxx− ppp)‖ < C̃εq−wn,s ,

where C̃ is a constant depending only on Y . Since ε was arbitrary and in view of (5.8), this shows
that Ỹ , and hence the subspace A, is not badly approximable. �

To prove (ii) we consider the ordinary Diophantine exponent ω = ω(ξξξ), defined as supremum of
those γ > 0 for which the inequality

||〈qξξξ〉|| < q−γ
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has infinitely many solutions in q ∈ N. It is clear from (5.7) that for ξξξ ∈ A one has

(5.9) ω(ξξξ) ≤ s+ 1

n− s
= ws,n.

Then we apply the inequality

(5.10)
ω(ξξξ)

ω̂(ξξξ)
≥ Gn,

where Gn the unique positive root of the equation

xn−1 =
ω̂

1− ω̂
(xn−2 + xn−3 + · · ·+ x+ 1),

which is valid for all totally irrational ξξξ ∈ Rn. This result was proven in [26], and a short and beautiful
proof was given recently in [28].

Note that Gn is also a root of the simpler equation

(1− ω̂)x+
ω̂

xn−1
= 1 ⇐⇒ (1− ω̂)xn − xn−1 + ω̂ = 0.

Now (5.6) immediately follows from (5.9) and (5.10). �
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