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Abstract. For the ‘infinite staircase’ square tiled surface we classify the
Radon invariant measures for the straight line flow, obtaining an analogue
of the celebrated Veech dichotomy for an infinite genus lattice surface. The er-
godic Radon measures arise from Lebesgue measure on a one parameter family
of deformations of the surface. The staircase is a

�
-cover of the torus, reducing

the question to the well-studied cylinder map.

Gutkin [G] and Veech [V1, V2] classified the invariant measures for a linear
flow on a square tiled surface (of finite area), showing that it satisfies the Veech
dichotomy: the flow is uniquely ergodic in any direction with irrational slope and
periodic in any rational direction. Motivated by recent works on infinite genus
translation surfaces (see e.g. [H1], [Va]) we consider the dynamics of the linear
flow on an infinite square tiled surface. Employing results of [ANSS], we obtain a
complete classification of invariant Radon measures for a particular infinite surface,
the ‘infinite staircase’ surface.

This surface, which we denote by M , is an infinite polygon with identifications on
the boundaries (see figure 1). Let R be the rectangle [0, 2]× [0, 1], and consider the
following boundary identifications on R×

�
: for any k ∈

�
, opposing vertical sides

of R × {k} are glued to each other. The left (resp. right) half of the top boundary
of R×{k} is glued to the right (resp. left) half of the bottom of R×{k− 1} (resp.
R × {k + 1}). Thus we will write points of M as (x, k) where x ∈ R and k ∈

�
.
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Figure 1. The infinite staircase

Removing from M the points (x, k) for which x ∈ R has integral coordinates, we
obtain an infinite genus orientable surface M ′, endowed with a complex structure
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and holomorphic 1-form. This surface is an infinite square tiled surface. M is the
completion of M ′ with respect to the flat metric, and M � M ′ consists of four
cone singularities with “infinite cone angle.” There is an obvious

�
-action on M by

translations, we call this the deck group action since it corresponds to the action of
the deck group in the covering map from M ′ to the twice-punctured torus. Valdez
pointed out to us that M ′ is homeomorphic to a ‘Loch Ness monster’ (see [Va] for
a definition). Denote by φα

s the flow in direction (of slope) α to time s. We use the
same notation for the flow on both M and

�
2.

In this note, we use results about cylinder maps (skew products over rotations)
to prove the following analogue of the Veech dichotomy:

Theorem 1. (i) If α is rational of the form p/q with p, q coprime and p or
q even, then, in direction of slope α, the surface M decomposes into an
infinite number of periodic cylinders.

(ii) If α is rational of the form p/q with p, q coprime and p and q both odd, then,
in direction of slope α, the surface decomposes into two infinite strips.

(iii) For every irrational α, the flow in direction of slope α is ergodic with respect
to Lebesgue measure.

(iv) For every irrational α, the locally finite Borel ergodic measures for the flow
in direction of slope α are precisely the Maharam measures.

The Maharam measures mentioned in case (iv) are obtained from a general con-
struction valid for any G-valued skew product over a probability measure preserving
transformation, where G is a locally compact abelian group; see [M] and [ANSS]
for definitions. In our context, by the results of [ANSS], for each irrational α and
each positive real parameter η, there is (up to scaling) one such measure µ = µη

α;
it is characterized by the formula

dµ(x, k) = e−kηdm(x), (1)

where m is a measure on the quotient of M by the deck group which is quasi-
invariant under the flow φα

s and satisfies

dφα
s0∗

m

dm
(x) = eη, (2)

where s0 is the return time to the bottom of R.
The following provides a geometric interpretation of the Maharam measures.

Recall that for any translation surface M0 and any slope α, there is a foliation Fα

of M0 by lines of slope α. The leaves of this foliation are orientable and the φα-
invariant Radon measures on M0 are in one-to-one correspondence with transverse
measures on M0 to Fα (this correspondence will be recalled in detail below).

Theorem 2. Given any η ∈ � , there is a translation surface Mη (obtained by
deforming M), so that for each irrational α there is α′ = α′(α, η) and a continuous
surjective map H = H(η, α) from Mη to M such that

a) The pushforward of the foliation Fα′ on Mη under H is the foliation Fα

on M .
b) The transverse measure corresponding to µη

α is the pushforward under H of
the transverse measure corresponding to Lebesgue measure on Mη.

Proof of Theorem 1. Rational directions. An affine automorphism of M is a diffeo-
morphism of M that acts as a matrix of SL2( � ) up to cutting M into polygons and
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repasting. Its image in SL2( � ) under the map sending an affine map to its linear
part is called the Veech group of M , and denoted by Γ. It is easy to see that Γ is a
lattice in SL2( � ), in fact

Γ =

〈(
1 2
0 1

)
,

(
0 1
−1 0

)〉
,

a 2-cusp subgroup of SL2(
�
) of index 3. In particular its set of cusp directions is

P 1( � ). It is classical that one cusp corresponds to rational numbers p/q with p
and q odd. This is the orbit of 1. The other cusp corresponds to the orbit of 0: the
rational numbers p/q with p or q even and the point at infinity.

Note that an affine automorphism with linear part A intertwines the linear flow
in direction α with the linear flow in direction Aα (where A acts on directions by
projectivizing the linear action). Since in the horizontal direction, the surface is
decomposed into an infinite number of cylinders (of finite area), the same is true
in the orbit of 0 by the Veech group. In the direction of slope 1, the surface M is
decomposed into two infinite strips of the same width. This proves (i) and (ii).

Irrational directions. We will reduce the proofs of (iii), (iv) to known results on
skew products over rotations. Recall that if α ∈ � and f :

�
1 →

�
is measurable,

then the cylinder map over the rotation Rα : x → x + α mod 1 is the map

Tα,f :
� 1 ×

�
→

� 1 ×
�
, (x, k) 7→ (Rα(x), k + f(x))

The map f is called the cocycle of the cylinder map.
Recall that GL2( � ) acts on translation surfaces via its linear action on the plane.

We change M by applying to it the map h =

(
1/2 −1/2
0 1

)
, which is a horizontal

shear mapping the direction of slope 1 to the vertical direction, followed by a
contraction of the horizontal direction by a factor of 1/2. In particular h maps R
to a parallelogram R′ which can be identified with the unit square by considering
coordinates mod 1, and maps irrational directions to themselves, so that instead of
studying the flows on φα

s we may study their conjugates under h. With this new
parametrization:

• Points m ∈ M are of the form (x, k) where x ∈ R′ and k ∈
�
. We call

k = k(m) the level of m.
• For every k, the vertical boundaries of R′ ×{k} are glued to each other by

a horizontal translation.
• Denoting by I the top boundary of R′ and by J its bottom boundary, we

have that I is partitioned into intervals I1 = [0, 1/2), I2 = [1/2, 1), and J
is partitioned into J1 = [0, 1/2), J2 = [1/2, 1), and for each k ∈

�
, I1 × {k}

is glued by translation to J1 ×{k + 1} and I2 ×{k} is glued by translation
to J2 × {k − 1}.

• The first return map of the flow of slope α on I ×
�

is the cylinder map
Tα,f0

over the rotation Rα, where the cocycle is the step function

f0 : I → I, x 7→ (−1)j+1 for x ∈ Ij , j = 1, 2.

Since I ×
�

intersects all orbits infinitely often with a constant return time, we
have a bijection between the invariant Radon measures for the flow φα

s and those
for Tα,f0

. The ergodicity of Lebesgue measure for the cylinder map was proven by
Conze [Co]. This implies (iii). To prove (iv) we apply a result of Aaronson, Nakada,
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Figure 2. Changing the staircase to a cylinder flow

Sarig and Solomyak [ANSS, Theorem 2.4] showing that the locally finite ergodic
invariant measures for the cylinder flow are precisely the Maharam measures. �

Proof of Theorem 2. For each η ∈ � , construct a ‘deformed staircase’ Mη as follows.

Let t = eη/2, and for each k ∈
�
, let Rk be a rectangle in the plane, with sides

parallel to the coordinate axes, with vertical side of length t2k, and horizontal side
of length t2k−1+t2k+1. Now paste the right-hand (respectively left-hand) portion of
the top edge of Rk, of length t2k+1 (resp. t2k−1), to the left-hand (resp. right-hand)
portion of the bottom edge of Rk+1 (resp. Rk−1). See Figure 3.

Figure 3. The deformed staircase Mη, with eη = 2
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The surface Mη has been constructed so that the group Γη = 〈ht′ , nt′〉 is con-
tained in its Veech group, where

t′ = t′(η) = t + 1/t, hs =

(
1 s
0 1

)
and ns =

(
1 0
s 1

)
.

Indeed, in the horizontal and vertical directions, the surface decomposes into hori-
zontal and vertical cylinders each of inverse-modulus equal to t′. The group homo-
morphism Γη → Γ defined by ht′ 7→ h2, nt′ 7→ n2 identifies Γη with an isomorphic
index two subgroup of Γ, and these two groups act in the same way on correspond-
ing cylinders. In fact, for all η 6= 0, the group Γη is the Veech group of Mη, but we
will not be using this.

Now let M̂η be the topological space obtained by pasting the right-hand (re-
spectively left-hand) portion of the top edge of R0, of length t (resp. t−1), to the
left-hand (resp. right-hand) portion of the bottom edge of R0, by a dilation by a
factor of t−2 (resp. t2). The group

�
acts on Mη by moving up and down along lev-

els and expanding, and M̂η is the quotient of Mη by this action. It is topologically a
torus, endowed with the structure of a dilation surface, i.e. equipped with an atlas
of charts into the plane whose transition maps are compositions of translations and
homotheties. This atlas is defined away from a pair of singularities. See figure 4.
Note that like a translation surface, a dilation surface has foliations Fθ by parallel
lines of slope θ.

Figure 4. The dilation surface M̂η

Fix σ ⊂ M̂η to be the bottom segment of the rectangle R0, and consider the map

τ = τ(α′) : σ → σ obtained by moving in M̂η along leaves of Fα′ . This is a circle
homeomorphism, so by classical results (see e.g. [HK, §11.1]) is semi-conjugate1 to
a unique rotation t 7→ t + α, and α ∈ � /

�
is called the rotation number of the

homeomorphism. We will require the following:

Claim 3. For each irrational α, there is α′ such that τ(α′) has rotation number α.

The claim will be proved further below; assuming its validity, let Rα : I → I
be the rotation by α, which, as in the proof of Theorem 1, we consider as the
return map along the leaves of Fα to a transverse segment I in the quotient torus
R′ = M/

�
. We will take this segment I = [0, 2] to be the bottom edge of the

rectangle R mentioned in the second paragraph of this note. By the above, there
is a semi-conjugacy Ĥ : σ → I ; that is Ĥ ◦ τ = Rα ◦ Ĥ .

We are free to choose this semi-conjugacy up to post composition with a rotation,
and so we choose Ĥ so that it takes the left endpoint of σ to the left endpoint of I .

1Since τ is piecewise affine, results of Herman [He] actually imply that it is conjugate to a
rotation, but we will not need this.



6 W. PATRICK HOOPER, PASCAL HUBERT, AND BARAK WEISS

Let σ1, σ2 ⊂ σ be the two horizontal segments joining the singularities. We claim

that Ĥ also takes the second singularity of M̂η to the midpoint of I . To see this,

note that the surface M̂η admits a hyperelliptic involution which swaps σ1 and σ2

and preserves the dilation surface structure (thinking of M̂η as two rectangles with
horizontal sides glued to each other, the involution rotates each rectangle by an
angle π around its midpoint). Let ι : σ → σ be the restriction of this involution to
σ. Because ι swaps σ1 and σ2 and satisfies ι ◦ τ ◦ ι = τ−1, the ergodic averages of
the characteristic functions of these two intervals are equal. So Ĥ must take each
interval σi to an interval which is half the length of I , and must take the second
singularity to the midpoint of I .

We can then extend Ĥ to a continuous surjective map H : Mη → M as follows.
Let σk be the component of the pre-image of σ, contained in the bottom edge of Rk

and let Jk be the corresponding segment in M . There is a unique way to define H
on each σk so that H(σk) = Jk and H is a lift of Ĥ . Now extend H to a continuous
map Mη → M by requiring that it map the foliation Fα′ on Mη to Fα on M .

Our construction ensures that property a) is satisfied, and we proceed to show b).
We recall the correspondence between straightline flow invariant Radon measures
and transverse measures to the foliation by straight lines. A transverse measure to
a foliation F is an assignment, for each compact arc δ transverse to F , of a finite
Borel measure µδ , such that the system of measures is invariant under isotopy
through arcs transverse to F . The relation between a flow-invariant measure and
the system of transverse measures is given by the formula

ε µδ(A) = µ

( ⋃

0<s<ε

φs(A)

)
,

for any 0 < ε < ε0 = ε0(δ). Here φs denotes the straightline flow.
It follows from the description above, that on each σk that the transverse measure

associated to Lebesgue measure on Mη is simply the length element dx, multiplied
by a constant depending only on α (and independent of k). Let µk denote the

restriction of this length measure to each σk and let m = Ĥ∗µ0 be the pushforward
of the measure defined on σ0. Since the deck group acts by dilations on Mη, the
choice of t ensures that the pushforward of µk under H scales by a factor of e−kη.
That is, (1) and (2) hold. It is shown in [ANSS] that these properties characterize
the Maharam measure up to scaling. Thus b) holds. �

Proof of Claim 3. When we decrease α′, the maps τ(α′) increase in the following
sense. For each α′, let Fα′ : � → � be a lift of τ(α′) (where � is thought of as the
universal cover of S1). Such a lift is well-defined up to pre- and post-composition
with adding an integer. We can choose the lifts so that Fα′(x) varies continuously
with α′ for each x. Then for any α′′ < α′ and any x we have Fα′′ (x) > Fα′(x).
By [HK, Prop. 11.1.8-9], the rotation number of τ(α′) is a decreasing function
of α′ which is strictly decreasing at irrational points, and by [HK, Prop. 11.1.6]
this map is continuous. We find that the map S1 → S1 which assigns to α′ the
rotation number of τ(α′) is non-constant, continuous, and monotone. Thus it is
surjective. �
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This paper combines a preprint by the same name by Hubert and Weiss with
Hooper’s subsequent Notes on deforming the infinite staircase.
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