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ABSTRACT. We state some of the results obtained in the recent
papers [SmWel, SmWe2, SmWe3], describe some of the ideas in-
volved, and list some open problems related to this work.

1. INTRODUCTION

The purpose of this note is to decribe some of the results and ideas
of [SmWel, SmWe2, SmWe3] and to list some open questions which
this work leaves unanswered. Besides describing these results, one of
our goals in writing this survey is to emphasize the common point of
view and similar ideas involved in the proof.

Our objects of study are flat surfaces and their Veech groups. Flat
surfaces arose in different mathematical communities and were given
different names. In complex analysis they are known as abelian and
quadratic differentials over complex structures on a surface. In the
study of billiards on rational polygons they have become known re-
spectively as translation and half-translation surfaces. In the study
of homeomorphisms of surfaces they were known as pairs of trans-
verse measured foliations. All of these are essentially equivalent, and
we refer to them as flat surfaces. We refer the reader to the surveys
[MaTa, Sm, Vo, HuSc3] for definitions of these structures and discus-
sions of some of the many mathematical problems in which they arise.

In writing this survey we have assumed that the reader has some fa-
miliarity with flat surfaces. In particular the paper is not self-contained,
and we refer the reader to the surveys above for the relevant definitions.

We state our main results in §2—84, describe some representative
ideas in §5-§9, and conclude with some open questions.
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2. ORGANIZING THE STUDY OF VEECH GROUPS

Let M be a flat surface of area 1, let M be the stratum of flat
surfaces containing M, and let G = PSL(2,R). There is an action of
G on M and the stabilizer

Ty={geG:gM=M}

is a Fuchsian group called the Veech group of M. Alternatively this
group is the image of the affine automorphism group Aff(M) under
the map D : Aff(M) — G sending an affine map to its derivative.
For generic M € M this group is trivial, however non-trivial Veech
groups do arise and are quite interesting. It is a challenging question
to determine which Fuchsian groups may arise as Veech groups. Veech’s
discovery [Vel] of Veech groups which are non-arithmetic lattices in G
stimulated a lot of interest in this and related questions. Here is a
partial list of what is known at present:

e Veech groups are never cocompact [Vel].

e Lattices (i.e. subgroups of finite covolume) may arise, including
non-arithmetic lattices [Gu, Vel].

e A finite index subgroup of any Veech group is conjugate to a
subgroup of PSL(2, O) where O is the ring of integers in a number
field whose degree over QQ is bounded above by the genus of the
surface [KeSm)].

e There are infinitely generated Veech groups [HuSc2, McM1].

e There are infinitely many non-commensurable non-arithmetic lat-
tices among Veech groups in genus 2 [Cal, McM2].

e There are Veech groups which do not contain parabolic elements
[HuLa).

This is certainly not an exhaustive list; we refer the reader to the
survey [HuSc3] and the papers [HuScl, GuHuSc, GuJu, McM2, BM]
for additional information about Veech groups.

A successful, and quite nontrivial, classification of Veech groups was
carried out in two restricted settings: lattices arising from acute and
right-angled rational triangles [KeSm, Pu] and the lattices arising in
genus 2 surfaces [Cal, McM2]. However, as is evident from the above
(particularly from the existence of infinitely generated Veech groups),
classifying all Veech groups is a formidable task.

As a first step, one would like to organize the list of Veech groups and
the associated flat surfaces in a sensible way. Note that Veech groups
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are invariant under conjugation in G, i.e. Tgy = glpyg™'. Ideally
one would like to associate a parameter or parameters to a flat surface
such that for a fixed bound on the value of the parameter one has
only finitely many flat surfaces (up to the G-action), and relate these
parameters to the geometry of either M or the quotient orbifold H/T',
(here H is the upper half plane).

This point of view motivates our first set of results.

2.1. Finiteness results. Recall that g € G is called hyperbolic (resp.
parabolic) if |tr(g)| > 2 (resp. |tr(g)| = 2). Suppose I'j; contains a hy-
perbolic element A which is the derivative of an affine automorphism ¢
of M; in Thurston’s terminology [Th], ¢ is a pseudo-Anosov homeomor-
phism of S. We denote the larger eigenvalue of h by A(h). Associated
to ¢ are Markov partitions of M. A Markov partition of M is a decom-
position of M into finitely many parallelograms P;, with sides parallel
to the eigenvectors of h, such that the boundary of P; in the contract-
ing (resp. expanding) direction are mapped into the boundary of one
of the P; by ¢ (resp. ¢ '); i.e., if o(P;) N P; # @ then ¢(F;) extends
all the way across P; in the expanding direction. We let p = p(M, h)
be the minimal number of parallelograms in such a partition. These
quantities are constant along G-orbits, that is, if h € 'y, is hyperbolic
then ghg ' € Ty is also hyperbolic with p(M, h) = p(gM, ghg ') and
A(h) = A(ghg™'). For T > 0 and m € N we define

NSMP(p,T) = {(M,h) : p(M,h) = p,\(h) < T}

(NSMP stands for ‘no simple Markov partition’).
A well-known argument, probably dating back to Thurston, shows:

Proposition 2.1 ([SmWe3|). For a fited T > 0 and p € N, the num-
ber of G-orbits in NSMP(p, T) is finite.

Associated with a parabolic element ¢ = Dy € I'y, is a cylinder
decomposition of the surface, see [Vel, Vo|. That is, M is decomposed
into finitely many cylinders C;, whose waist direction is fixed by g, such
that the inverse moduli y; of C; are linearly dependent over Q. The
action of ¢ on M amounts to n; Dehn twists around the cylinder C;,
where n;u; is a constant independent of 7. Using this it is not hard
to find, in any stratum, countably many M in different G-orbits such
that I'y; contains a parabolic.

The situation is different if I' = I'y; is assumed to be non-elementary,
i.e., I' does not contain an abelian subgroup of finite index. Maximal
subgroups P of I' consisting of parabolics are in one to one correspon-
dence with cusps in the quotient orbifold H/T', where a cusp is a union
of a continuous family of parallel closed horocycles. We can associate
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to a pair (I, P) the least upper bound of hyperbolic areas of a cusp as-
sociated to P, which we denote by o (T", P). Also associated to P is the
number m (M, P) of cylinders in the decomposition of M corresponding
to a generator of P. We let

NLC(m,T) = {(M, P) : to(Tps, P) < T, m(M, P) =m}
(NLC stands for ‘no large cusp’). Then we have:

Theorem 2.2 ([SmWe3]). For anyT > 0 and any m € N, the number
of G-orbits in NLC(m,T) is finite.

A flat surface M is equipped with a finite set of distinguished points
Y, = ¥y # & (which includes all singularities and may or may not
include ‘marked points’). A triangle in M is the image under an affine
map of a triangle in R?, such that map is an embedding on the interior
of the triangle and takes the vertices of the triangle to points in ¥ (in
particular the vertices of the triangle need not be distinct). We will say
that M has no small triangles if there is a uniform lower bound on the
area of any triangle in M. In other words, let T (M) be the collection
of areas of all triangles in M, and for o > 0, write

NST(a) = {M :inf T (M) > a}.

Then M has no small triangles if M € NST(«) for some a > 0. Since
elements of g preserve area and map triangles to triangles, we have
T(M) =T (gM). In particular NST(«) is G-invariant.

Theorem 2.3 ([SmWel|). For any o > 0, the number of G-orbits in
NST(«) is finite.

The no small triangles property was introduced by Vorobets [Vo].
Answering a question of Vorobets we prove:

Theorem 2.4 ([SmWel|). M has no small triangles if and only if M
is a lattice surface (i.e. T is a lattice in G).

Thus our finiteness results give a way to list the following sets (up
to the G-action):
(i) Pairs (M, h) where h € I'y; is hyperbolic.
(ii) Pairs (M, P) where ' is non-elementary and P C I'j; is maximal
parabolic.
(iii) Lattice surfaces.

Moreover these lists are organized in order of increasing complexity,
with respect to some natural geometric measures of complexity. In
addition, the proofs of these results describe the finite sets in (i), (ii),
(iii) in terms of elementary combinatorial quantities such as certain
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permutations or certain integer matrices. This makes it possible to
obtain explicit bounds on the finite numbers in these results, and raises
the possibility of conducting effective computer searches to investigate
the three lists above.

3. THE VEECH DICHOTOMY AND CHARACTERIZATIONS OF THE
LATTICE PROPERTY

Combining Theorem 2.4 with previous results of Vorobets yields sev-
eral characterizations of the lattice property. These involve dynamics of
both the directional foliations on M, and the G-action on the stratum
M containing M.

Let £ = Lj; denote the set of all saddle connections on M, and
for a direction 6 € [0,27) let L£(0) = Ly(0) denote the set of saddle
connections in direction #. We say that 6 is a periodic direction if
each connected component of M \ L(#) is a cylinder (equivalently, all
noncritical leaves of the foliation of M in direction # are are closed).
Veech [Vel]| showed that a lattice surface satisfies the following Veech
dichotomy:

I. If £(#) # @ then 6 is a periodic direction.
II. If £(#) = @ then F} is uniquely ergodic.

Namely, say that M is uniformly completely periodic if there is s > 0
such that each 6 for which £(f) # & is a periodic direction, and the
ratio of lengths of any two segments in £(6) does not exceed s.

A periodic direction 0 is called parabolic if the moduli of all the cylin-
ders are commensurable, and M is called uniformly completely parabolic
if it is uniformly completely periodic, with all periodic directions para-
bolic. The restriction of the action of G' to the one-parameter diagonal
subgroup {g;} is called the geodesic flow.

Theorem 3.1 ([Vo, SmWel]). The following are equivalent for a flat
surface M :

(i) M is a lattice surface.

(il) M is uniformly completely periodic.

(iii) M is uniformly completely parabolic.

(iv) The set of triangles for M consists of finitely many Aff(M)-orbits.
(v) M has no small triangles.

(vi) The G-orbit of M is closed in the stratum M containing M.

(vii) There is a compact K C M such that for any g € G, the geodesic

orbit of gM intersects K.
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Additional characterizations of the lattice property, as well as prop-
erties of the billiard in a polygon which gives rise to a lattice surface,
are obtained in [SmWel].

A stronger form of Veech’s dichotomy was established in [Vo]. Let us
say that a surface M satisfies the V-dichotomy if it satisfies II above,
in addition:

I’. M is uniformly completely periodic.

Combining Theorem 3.1(ii) with Veech’s theorem one sees that the
lattice property is equivalent to the V-dichotomy. In contrast, Veech’s
dichotomy is not equivalent to the lattice property:

Theorem 3.2 ([SmWe2|). There is a surface M which satisfies the
Veech dichotomy but is not a lattice surface.

4. RESTRICTIONS ON VEECH GROUPS

Recall that two Fuchsian groups I'y, 'y are commensurable if 'y N[y
is of finite index in both. For a group I" and h € I we write A" for the
conjugacy class of A in I'. Our results easily imply:

Corollary 4.1 ([SmWe3]). Suppose ' is commensurable to Iy for some
M. Then:

a. For anyT > 0,
#{P C T': P is a maximal parabolic, ¢,(I', P) < T} < oc.

b. #{h" : h € T is hyperbolic with A\(h) < T} < co.
c. I'' is of finite index in its normalizer.

Given a Fuchsian group, it is natural to ask ‘how often’ it arises
as a Veech group. Using torus covers and increasing the genus of the
surface, one can construct infinitely many lattice surfaces which are not
affinely equivalent. On the other hand for a fixed stratum the following
holds:

Corollary 4.2. For any stratum M and any non-elementary I, there
are only finitely many M € M for which T' = T'yy.

5. CLOSED ORBITS HAVE FINITE VOLUME

Note that a closed G-orbit of a flat surface is naturally identified with
the quotient G/T'y; and thus carries a well-defined volume element. A
key ingredient in the proof of Theorems 2.4 and 3.1 is the following:

Proposition 5.1. If the G-orbit of M 1is a closed subset of the stratum
M containing M, then it has finite G-invariant measure, i.e. M 1is a
lattice surface.
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The result was proved by both authors independently. Smillie’s proof
was described in [Ve2]. Here we describe the proof in [MiWe], which is
modelled on an argument of Dani [Da] and gives a stronger conclusion.
Recall that the horocycle flow {h} is the restriction of the G-action to
the one parameter subgroup of upper triangular unipotent matrices.

Theorem 5.2 ([MiWe|, Theorem 2.6). Suppose p is a locally finite mea-
sure on a stratum M which is invariant under either {hs}-action or
the full G-action. Then there is a sequence of invariant sets @), with
w(Qr) < 00 and pp (M N U, Qn) =0. In particular if p is ergodic then
1 1S finite.

Proof. First we claim that it suffices to prove the theorem for the horo-
cycle flow. To see this, suppose yu is a locally finite G-invariant measure
on M. An elementary calculation (see e.g. [Mar, §1]) shows that for
any unitary representation of G, any vector which is fixed by {hs} is
fixed by G. Considering the natural action of G' on the Hilbert space
L?(M, 1), and the vectors which are indicator functions of the sets @,
we obtain that these {h,}-invariant sets are also G-invariant, so if the
result holds for the horocycle flow, it also holds for the G-action.

So let u be an {hg}-invariant measure, which we assume to be locally
finite, so there is a continuous positive function f on M such that
J fdu = 1. The methods of [KeMaSm]| were sharpened in [MiWe],
showing that for every x € M there is a compact K C M such that

1 1
im inf — : > —.
llTrglcng\{sE[O,T] hsx € K}| > 5 (1)

By Birkhoff’s ergodic theorem there is a measurable {h,}-invariant
function F such that for py-a.e. z,

= /0 F(haz) ds — F(x). 2)

Moreover F' € L'(M, p). It follows from (1) and (2) that for any z for
which the limit in (2) exists,

F(z) > %gél}f{lf(:c) > 0.

Thus the sets Q, = {x € M : F(z) > 1/n} have the required proper-
ties. O

6. COMBINATORIAL DESCRIPTIONS AND FINITENESS

The strategy for proving Proposition 2.1 and Theorems 2.2, 2.3 is the
same: we show that the flat surfaces which are being counted have a
certain geometric structure which admits a combinatorial description,
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and that the combinatorial description determines the G-orbit of the
flat surface. In other words we construct an injective map from the
G-orbits of flat surfaces under consideration to a certain set of combi-
natorial data. The finiteness of these sets of combinatorial data then
implies the result, and moreover gives explicit bounds on the finite
numbers involved. To illustrate this we now give a

Sketch of proof of Theorem 2.2. Associated with a pair (M, P), where
M is a flat surface and P is a maximal parabolic subgroup of I'y;, are
two geometric structures: a cusp on H/T'y;, and a pair of transverse
cylinder decompositions of M. A cusp is a continuous family of parallel
closed horocycles, which are injectively embedded in H/T'y,. It follows
from the fact that I'j; is non-elementary that the cusp has finite area,
which means that if we move a closed horocycle ‘down the cusp’, at
some point it will develop a self-tangency and cease being injectively
embedded. Considering the element of I'y; which causes the horocycle
to close up, as well the element responsible for the self-tangency, one
finds that after applying an appropriate element of G, I'; contains the
elements

() (Y 0D e

Note that vy, = 7y, 771

Corresponding to any parabolic element v of I';; is a decomposition
of M into cylinders C1, ... ,C,, whose waist curves are parallel to the
direction fixed by 7, and (possibly after replacing v with a power) such
that the action of the corresponding affine automorphism of M is a
multitwist, i.e. induces n; Dehn twists around C;. Moreover, since
conjugation by 7 = Dy maps 7y; to 79, the cylinders in the decompo-
sition corresponding to vy, are C] = ¢(C;); thus M has two transverse
cylinder decompositions with the same number of cylinders, such that
the height of C; is the circumference of C] and vice versa.

Now suppose (M, P) € NLC(m,T). We define some combinatorial
quantities describing the cusp and cylinder decompositions above, and
show how to bound these in terms of m and 7. First it is easy to
compute that the number ¢ in (3) is the hyperbolic area of the cusp,
so that tg < T. The inverse modulus g of a cylinder is the ratio of
its width to its height; for the parabolic v; of (3) the inverse moduli
satisfy

Consider the rectangles which are the connected components of C;NCY.
These glue together to form the surface; specifying which rectangle
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glues to which leads to another combinatorial structure which we call
a gluing pattern, and is described in detail in [SmWel]. Although one
can make a more precise statement, for the purpose of this summary it
suffices to note that the number of gluing patterns for a fixed number
of rectangles is finite. Let A = (a;;) be the m x m matrix such that a;;
is the number of rectangles in C;NC; and let B be the diagonal matrix
with n;’s on the diagonal. One can easily show that BA is a positive
matrix (in the sense of the Perron-Frobenius theorem). Consider now
the vector a' of heights of cylinders C}. They add up to form the

circumferences w; of the C;, so that @ = Ad’. Multiplying by B and
using (4) we find that tya’ = to@ = BA®@, so that o' is a positive
eigenvector of BA. By Perron-Frobenius, t; is the maximal eigenvalue
of BA.

There are only finitely many positive m X m integer matrices with
a fixed upper bound on their maximal eigenvalue. Thus the numbers
m, T lead to explicit finite bounds on the possible matrices B and A,
on the total number of rectangles ) a;;, and hence on the number
of gluing patterns. The vector d@, being the positive eigenvector of a
positive matrix, is uniquely determined by the matrix BA, and since
w = Ad, the dimensions of all rectangles are specified by the matrices B
and A. The dimensions of the rectangles and the gluing pattern specify
a unique flat surface structure, and this completes the proof. O

The proofs of Proposition 2.1 and Theorem 2.3 employ similar con-
siderations. The relevant geometric patterns are respectively Markov
partitions and pairs of transverse cylinder decompositions. Again the
given bounds in the definitions of NSMP(p,T) and NST(«) bound the
number of possibilities for the combinatorial data; and again in both
cases the uniqueness of a positive eigenvector in the Perron-Frobenius
theorem is used to show that the combinatorial data determines the
flat surface uniquely.

7. A CLOSED LOCUS CONSISTING OF ISOLATED ORBITS

The principle that the combinatorial description determines the flat
surface uniquely, up to the G-action, implies more than finiteness. It
also shows that different orbits with bounds on their combinatorics
cannot accumulate on each other, and furthermore that a given orbit
cannot accumulate on itself in a complicated manner. Namely:

Theorem 7.1 (Isolation). Suppose M is a stratum of flat surfaces,
and M, — My is a convergent sequence in M such that one of the
following holds form =0,1,2,... and ', =y, :
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(i) There are p, T and h,, € T',, such that (M, h,) € NSMP(p,T) and
hn — h().
(ii) There are m,T and mazimal parabolic subgroups P, C T, with
generators py, such that (M, P,) € NLC(m,T) and p, — po.
(iii) There is o > 0 such that M, € NST ().

Then for all sufficiently large n, there are g, € G such that g, — e
and M,, = g, My. Moreover in case (i), h, = g,hog; ", and in case (ii),
Pn = GnDoGy -

As an application we now prove:

Proof of direction —> in Theorem 2.4. We need to show that the no
small triangle property implies the lattice property. It is clear from
the topology on M that NST(«) is a closed subset of M, and using
Theorem 7.1(iii) this implies that each individual orbit in NST(«) is
closed. Using Proposition 5.1 we obtain that any M € NST(«) is a
lattice surface. O

This answers a question of Vorobets, who introduced the no small
triangles property in [Vo] and showed the implication <.

8. MARKED POINTS AND BRANCHED COVERS

Two natural operations which one can perform on a flat surface are
marking points and constructing a branched cover. Recall that a flat
structure M is equipped with a finite set of points on the underlying
surface called the singularities. A small neighborhood of a singularity x
is metrically isomorphic to » = r, half-planes glued together cyclically
around x. Thus a parallel line field on M acquires at x an r-pronged
singularity. Most authors only permit for r the values 1,3,4,5,...,
since if » = 2 the flat surface structure can be completed to remove
the singularity. However for various applications it is convenient to
allow singularities = for which r, = 2; to distinguish these removable
singularities from non-removable ones, they are often called marked
points.

Marking a point does not affect the foliations on M or their dynam-
ical properties. However it can have a dramatic effect on Aff(M) and
['5s, which by definition are required to map singularities to singulari-
ties. Thus marking a point on M we create a new flat surface M’ which
has identical geometry but for which I'jy;» could be significantly smaller
than FM

For example, in [HuSc2] Hubert and Schmidt described so-called
aperiodic connection points on a genus 2 lattice surface M, such that
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if M’ denotes the surface obtained from M, by marking such points,
then I'yp is of infinite index in 'y, but is infinitely generated.

One can also consider the effect of marking points on a stratum M
of flat surfaces (without removable singularities). Recall that M is
equipped with the structure of an orbifold, carrying a smooth finite
G-invariant measure. Denote by M, the set of all flat surfaces M’
obtained by adding b marked points to flat surfaces M € M. There is
a natural map ® : M, — M which ‘forgets marked points’. Then one
has:

Proposition 8.1. There is an orbifold structure on My such that @ :
My — M is a G-equivariant orbifold cover. If b =1 then ® is a proper
map whose generic fiber can be identified with S.

This statement is well-known to experts but hard to locate in the
literature. To remedy this we have provided a detailed exposition in
[SmWe2, Appendix].

A branched cover is a surjective continuous map 7 : §~—> S of
connected compact surfaces, such there are finite set ¥ C 5, X C S
with 3 = 771(X) such that the restriction of 7 to S \ X is a covering
map. Points in ¥ are called branch points. Given a branched cover and
a flat surface structure M on the topological surface S, one can form a
flat structure on M on S , called the pullback of M. On S Y the flat
structure is pulled back via the covering 7, and 3 becomes a subset of

the set of singularities of M. Using the branched cover construction,
the following was proved:

Proposition 8.2 (Hubert-Schmidt). Let My be as in the previous dis-
cussion. If M is the pullback of My via a branched cover m branched

over aperiodic connection points, then M is not a lattice surface, has an
infinitely generated Veech group, and satisfies property I of the Veech
dichotomy.

Given strata M and M of flat surface structures, on the topological
surfaces S, S respectively, and a branched cover 7 : j — S with b
branch points, one can consider the subset Q(7) of M consisting of
all M which arise by pullback via a branched cover # topologically
equivalent to 7w (i.e. there are self-homeomorphisms ?L, h such that
moh=ho ). An imprecise folklore theorem asserts that up to finite
ambiguity, M e Q(m) is uniquely determined by M, 7 and the choice of
branch points. Since M, is equipped with the structure of an orbifold
via Proposition 8.1, one can use this to equip Q(7) with an orbifold
structure as well:
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Proposition 8.3. There is an orbifold £~2(7r) equipped with a G-action,
and finite-to-one G-equivariant surjective orbifold maps R : §(7r) —
Q1) € M and P : Q(r) — M,, such that for z € Q(x), R(z) is a
pullback of ® o P(x) via a branched cover topologically equivalent to
and branched at the marked points of P(x).

A detailed exposition of this result is also provided in [SmWe2, Ap-
pendix].

9. A NON-LATTICE SURFACE WITH THE VEECH DICHOTOMY

The simplest example of a flat surface which is not a lattice surface,
but satisfies the Veech dichotomy, is obtained by marking an aperiodic
connection point on the surface M, described by Hubert and Schmidt.
As shown in [HuSc2|, after marking this point, the lattice property is
destroyed, but property I of the Veech dichotomy continues to hold.
Clearly property II depends only on the flat surface and cannot be
destroyed by marking a point, so the resulting surface satisfies the con-
clusion of Theorem 3.2. Note however that the example has a removable
singularity, so may be considered ‘artificial’. Hubert and Schmidt ask
[HuSc3] whether non-lattice surfaces, without removable singularities,
can satisfy the Veech dichotomy. We answer this question affirmatively
by transforming the marked point into a non-removable singularity us-
ing a branched cover construction. The main point is doing so without
destroying property II. It will develop below that property II survives
in the pulled back flat surface if the branch locus consists of a single
point.

Proof of Theorem 3.2. We will show that the flat surface M of Propo-
sition 8.2 satisfies the Veech dichotomy, as long as 7 has a single branch
point. Property I is contained in Proposition 8.2, so suppose 6 is such
that £(f) = @ and suppose by contradiction that # is not a uniquely

ergodic direction for M. Let ry € G be the rotation matrix which
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moves the direction # to the vertical direction. By a well-known re-
sult of Masur [Mas], the forward trajectory of r¢M under the geodesic
flow is divergent, i.e. eventually leaves every compact subset of M.
Let z € Q(r) such that R(z) = M and ® o P(z) = M,. Since R is G-
equivariant, the forward geodesic trajectory of ryx is divergent in Q(w),
and since, by Propositions 8.1 and 8.3, ® o P is proper, the geodesic
trajectory of roMy is divergent. Since M is a lattice surface, 6 is a
parabolic direction for My, and hence is periodic for M. This implies
that L77(0) # 9, a contradiction. O

10. A PROBLEM LIST

10.1. From effective bounds to effective searches. As we have
seen, Proposition 2.1 and Theorems 2.2, 2.3 yield a list of certain flat
surfaces with large Veech groups, in order of increasing complexity. For
example, for a lattice surface M one could define

a(M) =inf T(M),
and list all lattice surfaces as My, Ms, ..., where a(M;) > «a(Ms) >

-+« . The first few elements of this list were found in [SmWel]. Thus
NST(3) consists of seven arithmetic surfaces.

Question 1. What is the first non-arithmetic example?

We have also seen that the proofs of the finiteness theorems above
yield effective bounds on the size of these sets. Moreover they set
up a correspondence between the sets of G-orbits of flat surfaces and
explicit combinatorial data. It seems likely that this correspondence
can be used to conduct effective computer searches. Thus for example:

Question 2. Program a computer to produce, for a given o > 0, all
lattice surfaces in NST(«).

10.2. From triangles to other configurations. The discussion in
[SmWel] focuses on the ‘no small triangles’ property introduced by
Vorobets. One could extend the discussion by defining, for any n, the
set of all flat surfaces with a uniform lower bound on the area of all
their n-gons. For a fixed bound « let us denote this set by NSnG(«).
One could add additional restrictions on the configurations defining
NSnG(a), e.g. require them to be convex, require them to exist in the
set hol(M) of holonomy vectors of saddle connections in M, etc.

Question 3. Givenn > 4 and «, describe all flat surfaces in NSnG ().

It is interesting to note that for certain configurations, non-lattice
examples can arise. For example, a surface constructed from gluing
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tori along a slit (see [MaTa]) has a lower bound on the areas of convex
pentagons, although it need not be a lattice surface. This can be seen
by noting that in this case

hol(M) =P & (Z* +v),

where P is the set of primitive vectors in Z? and v € R? is the holonomy
vector of the slit. Any pentagon has at least 3 vertices in either P or
Z? + v and this leads to a lower bound on its area.

One reason why Question 3 might be interesting regards the dynam-
ics of the G-action on a stratum. There has been a lot of research
on understanding closed G-invariant subsets of a stratum M, and a
nice feature of NST(«) is that its intersection with M is closed and
G-invariant; moreover the same holds for NSnG(«). There are many
questions one could ask about the sets NSnG(«) but so far not many
answers. Here is a special case of Question 3:

Question 4. Are there oy # aw, a stratum M, and n such that
dim (M N NSnG(ay)) # dim (M N NSnG(az))?
Here dim denotes Hausdorff dimension.

10.3. Variants of the Veech dichotomy. As we have seen, the V-
dichotomy, in which property I is replaced with a uniform version I’,
is equivalent to the lattice property. In fact I’ by itself is equivalent to
the lattice property. There are various refinements of these properties
one could consider. This requires two more definitions. We say that M
is completely parabolic if any direction containing a saddle connection
is parabolic. We say that M is completely parabolic with a uniform
bound on twists if there is T' > 0 such that for any direction containing
a saddle connection, M has a cylinder decomposition in that direction
with commensurable moduli, such that the corresponding number of
Dehn twists around each cylinder is bounded above by 7. It was shown
by Veech [Vel] that a lattice surface is completely parabolic, and by
Vorobets [Vo] that it is completely parabolic with a uniform bound on
twists.

Question 5. Do any of the following conditions tmply that M 1is a
lattice surface?

o M is completely parabolic.

o M s completely parabolic and any non-saddle direction for M s
uniquely ergodic.

e M is completely parabolic with a uniform bound on twists.

e M 1is completely parabolic with a uniform bound on twists, and
any non-saddle direction for M 1is uniquely ergodic.
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