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ABSTRACT. Extending results of a number of authors, we prove
that if U is the unipotent radical of an R-split solvable epimor-
phic subgroup of a real algebraic group G which is generated by
unipotents, then the action of U on G/I' is uniquely ergodic for
every cocompact lattice I' in G. This gives examples of uniquely
ergodic and minimal two-dimensional flows on homogeneous spaces
of arbitrarily high dimension. Our main tools are the Ratner classi-
fication of ergodic invariant measures for the action of a unipotent
subgroup on a homogeneous space, and a simple lemma (the ‘Cone
Lemma’) about representations of epimorphic subgroups.

In his 1972 paper [F] Hillel Furstenberg proved that the horocycle
flow on the unit tangent bundle to any compact Riemann surface is
uniquely ergodic (i.e., admits a unique finite U-invariant Borel mea-
sure). This flow may be realized as the action of the subgroup U of
upper—triangular matrices in L = SL(2,R) on the quotient of L by a
cocompact lattice A, acting by

u(CA) = (uh)A.

Such an action is called a subgroup action on a homogeneous space.
It follows from unique ergodicity that the action is minimal (i.e., any
U-orbit is dense).

Various generalizations of Furstenberg’s result were subsequently ob-
tained by a number of authors (see [V, Bo, EP, D1]). In these gen-
eralizations what is proved is unique ergodicity of the action of U on
L/A, where L is a real algebraic group, U an algebraic subgroup which
is unipotent (all its elements have all eigenvalues equal to 1 in a rep-
resentation of L as a matrix group; in other words all its elements are
unipotent) and A is a cocompact lattice. Typically in these results the
dimension of the acting group U may be quite large. In this note we
generalize these results. For example, for any simple noncompact L,
we obtain a 2-dimensional unipotent U which acts uniquely ergodically
on L/A for any cocompact lattice A. On the other hand we show by
examples that L = SL(3,R) does not contain any one—-dimensional U
with this property.
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The two essential ingredients we shall use are Marina Ratner’s the-
orems regarding actions of a unipotent subgroup on a homogeneous
space, and a simple result concerning epimorphic subgroups. Recall
that Ratner’s Measure Classification Theorem (see [R1], Theorem 1)
asserts that if L, A are as above, and U is a connected subgroup of L
generated by unipotent elements, then for any U-invariant U-ergodic
measure 4 there are a connected subgroup H and z € L/A, such that
H contains U and p is an H-invariant measure supported on the closed
orbit Hz. Recall also that Ratner’s Orbit-Closure Theorem (see [R2],
Theorem A) asserts that if L, A are as above, and U is a connected
subgroup of L generated by unipotent elements, then for any = € L/A
there exists a connected subgroup H containing U such that Uz = Hz
and Hx supports an H-invariant probability measure. Ratner’s results
are in fact stronger, see [R3] for a survey.

Let F' < G be an inclusion of real algebraic groups. Recall that F
is eptmorphic in G if for any representation of real algebraic groups
p:G— GL(V), and any v € V,

p(F)v =v = p(G)v = v.

In [Mo], Shahar Mozes proved that this representation-theoretic prop-
erty has implications for invariant measures on homogeneous spaces.
His theorem is the following:

Theorem 1 (Mozes). Let F < G < L be an inclusion of real algebraic
groups, where G is generated by unipotent elements, and F' is epimor-
phic in G. Let A be a discrete subgroup of L. Then any F-invariant
probability measure on L/A is G-invariant. In particular, if G = L
then the action of F on L/A is uniquely ergodic.

Note that in this result A is not assumed to be cocompact. Our goal
in this paper is to see to what extent the conclusion of Theorem 1 can be
strengthened under the additional assumption that A is cocompact. We
should mention that by a result of Gregory A. Margulis (see [Ma]) the
cocompactness condition is satisfied whenever L/A admits a uniquely
ergodic action of a unipotent subgroup.

By a theorem of Frederic Bien and Armand Borel (see [BB], Theorem
2), for any algebraic group G generated by unipotent elements and any
epimorphic subgroup F', there is a subgroup F’ of F' which is also
epimorphic in G and is of the form F' = T - U, where U is unipotent
and 7T is an R-split algebraic torus normalizing U. We now describe
the setup for our results.
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Basic Assumptions: Let U < G < L be an inclusion of real alge-
braic groups, with U unipotent and G generated by unipotents. As-
sume that there is an R-split torus 7" such that 7" normalizes U and
T - U is epimorphic in G. Let A be a subgroup of L such that L/A is
compact and carries a finite L-invariant measure.

Note that any simple noncompact G contains a subgroup U satisfying
the Basic Assumptions, with dimU < 2 (see [BBJ, §5 (b)).
These are our results:

Theorem 2. Let U,G, L, A be as in the Basic Assumptions. Suppose
also that L = G. Then the action of U on G/A is uniquely ergodic and
minimal.

Theorem 3. Let U,G, L, A be as in the Basic Assumptions. Suppose
also that G is normal in L. Then any U-invariant closed set, as well
as any U-invariant measure, is also G-invariant.

Theorem 4. Let U,G, L, A be as in the Basic Assumptions. Suppose
also that the action of G on L/A is either minimal or uniquely ergodic.
Then the action of U is both minimal and uniquely ergodic.

Theorems 2,3 and 4 all follow from the following:

Lemma 5. Let U,G, L, A be as in the Basic Assumptions. Assume
that A s discrete. Let H be a connected subgroup containing U as in
the conclusion of either Ratner’s Measure Classification Theorem or
Ratner’s Orbit-Closure Theorem. Then for some ¢ € L, G C {H{™'.

Lemma 5 follows in turn from the following simple Lemma, which is
a variant of what we have called the ‘cone lemma’ (see [W], Lemma 1):

Lemma 6. Let G be an algebraic group with no nontrivial rational
characters, and let T - U be epimorphic in G, where U is unipotent and
T is an R-split torus normalizing U. Then for any representation (of
real algebraic groups) p : G — GL(V), there ist € T such that for any
p(U)-invariant vector v, p(t")v converges to a p(G)-invariant vector as
n — 0o.

After receiving a preliminary version of this paper Nimish Shah
pointed out to the author that the ideas used in proving Lemma 5
also have implications when A is not assumed to be cocompact. To
state them, recall that if A is a semigroup in L and z € L/A, a tra-
jectory Az is said to be divergent if for every compact K C L/A there
exists a compact C' C G such that ax ¢ K whenever ¢« € A — C. Then
the following holds:
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Theorem 7 (Shah). Let U < L be an inclusion of real algebraic groups,
where U is unipotent and L is generated by the unipotent elements con-
tained in it. Let T be an R-split torus in L, normalizing U, such that
TU s eptmorphic in L. Then there is an open subsemigroup T— C T
(a ‘cone’) such that for any lattice A in L and any z € L/A, if T~z is
not a divergent trajectory then Ux = L/A.

Theorem 7 improves a result proved by S. G. Dani in 1985 (see [D2],
Theorem 1.6).

The paper is organized as follows. First we prove Lemma 5. Then we

deduce Theorems 2, 3, 4. We then show by an example that the Basic
Assumptions alone do not guarantee that any U-invariant measure on
L/A is G-invariant. This explains why the additional hypotheses in our
theorems are needed. We also explain why, for L = SL(3,R), no one-
dimensional unipotent subgroup U acts minimally on L/A for every
cocompact lattice A. We then sketch, for the reader’s convenience, the
proof of Lemma 6, and end by proving Theorem 7.
Proof of Lemma 5: Let U,G, L, A, H be as in the statement of the
Lemma. Thus UlyA = H/,A for some ¢y € L. Let d = dim H and let p
be the representation of L on its d-dimensional Lie subalgebras. That
is,

d d
p= /\Ad : L — GL(V) where V = /\Lie(L).
1 1

Let vy be a nonzero element in the one-dimensional subspace of V'
corresponding to Lie(H).

We first claim that p(L)vg is closed in V. Indeed, it is proved in
[DMa, Theorem 3.4] that p(¢yAl, " )vy is discrete. Hence if p(¢,)vy —
w then passing to a subsequence we can write, by the cocompactness
of A,

ly = ly)p, where \, € (eALy" and £, — £.
Thus
p(Aa)vir — p(£Hw
and, by discreteness,

p(INw € p(LoAly vy,

sow € p(L)vy.

Since U C H, p(U) stabilizes the line through vy and since U has no
rational characters, vy is p(U)-invariant. Letting T be as in the Basic
Assumptions, we apply Lemma 6 to p and to vyg. We obtain that for
some t € T, p(t")vy — vy where vy is p(G)-invariant. Since p(L)vy is
closed there exists £ € L such that vy = p(¢)vy, that is vy corresponds
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to the Lie algebra of H' = ¢H¢™!, and H' is normalized by G. Since T
normalizes U, for any n we have U C t"Ht~". This implies that also
UcCH'

We now claim that G C H'. Indeed (replacing H' if necessary by
the subgroup of H' generated by the unipotent elements in H'), we can
assume that H’ is generated by unipotents. Therefore H' is algebraic
(this follows from [Sh]|, Lemma 2.9). Let Go = G N H' (a normal
subgroup of G) and let 7 : G — G/Gy be the natural quotient map.
Since H' is algebraic, 7 (T'-U) is epimorphic in G /Gy, and since U C H',
7n(T-U) = w(T) is an algebraic torus. Since proper toral subgroups are
never epimorphic (see [BHM]|, Theorem 2) this implies that G/Gy =
7©(T). But G/Gy is generated by unipotents since G is, whereas 7(7T)
consists of semisimple elements. Thus G/Gy is trivial, whence G C
H'. O

Deduction of Theorems 2, 3, 4:

First we claim that in proving the theorems we may assume that
A is discrete. For this we use an argument of Dave Witte (see [Wi]).
Let Lo be the Zariski closure of A. The space L/Lg is the support of
an L-invariant finite measure, namely the projection of the L-invariant
measure on L/A. From Dani’s version of the Borel density theorem (see
[Wi], Theorem 4.2) it follows that L, contains an algebraic subgroup
Ly which is normal and cocompact in L. Since G is generated by
unipotents, the projection of G onto L/L; is trivial, and therefore G' <
L,. In particular G < Ly. Thus replacing L by Ly we may assume that
A is Zariski dense in L. Let A’ be the connected component of the
identity in A. Then A normalizes A and by Zariski density, so does L.
We can now quotient out by A’; this means that the map

L/A — (L/A%)/(A/A%), CA — EA°(A/A%)

is a homeomorphism which intertwines the action of G on L/A with
the action of G/(G N A%) on (L/A%)/(A/A®). Since A/A° is discrete,
this proves our claim.

Suppose G is normal in L. Given any orbit-closure Uz (respec-
tively, a U-invariant U-ergodic measure ), we get from Ratner’s Orbit-
Closure Theorem (resp., Ratner’s Measure Classification Theorem) a
subgroup H such that Uz = Hz (respectively, U C H and u is H-
invariant). From Lemma 5 we get that G C H' = (H{™!, and since G
is normal, this implies that G C H. This proves Theorem 3. Theorem 2
is a special case.

Now let us prove Theorem 4. It follows from Ratner’s theorems that
for groups generated by unipotents, minimality and unique ergodicity
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are equivalent properties. So it will suffice to prove that if the action
of G is minimal, so is the action of U.
Let z € L/A and Uz = Hx. Let H' = (H{ ! be as in Lemma 5.
Then
Uz = s = 0Tz = "z > -'Glz = LA,
Therefore the action of U is also minimal. O

Examples:
1. Let L = SL(3,R),

G, =

ML

O x ¥
O *x ¥
— o O

and
1 ¢ 0
U= 010
0 01
It is possible to find a cocompact lattice A in L such that A N G,
is a lattice in G (such an example was communicated to me by Mary
Rees). Now let

:teR

g:

o O =
— = O
— o O

Then gUg™! = U and Gy = ¢G197! # G;. Tt is easy to see that both
U,Gy,L,A and U,Gy, L, A satisfy the Basic Assumptions, and (e.g.
using the main result of [F]) that UA = G1A. In particular, UA # GoA.
Letting p be the Gi-invariant measure on G1A and setting G = Gy
gives a counterexample to the following statement, which is analogous
to Theorem 1: Under the Basic Assumptions, any U-invariant measure
on L/A is G-invariant. This shows that ome additional assumption on
G, as in Theorems 2, 3, 4, is required.

2. Again let L = SL(3,R). Let G3 be the subgroup of L whose Lie
algebra is generated by

10 0 010 000
00 0 |,loo1],l100
00 —1 000 010

An example communicated to me by A. Rapinchuk shows that one
may find a cocompact lattice A in L = SL(3,R) such that G3 N A is
a lattice in G3. Since, by Jordan canonical form, any one—parameter
unipotent subgroup of L is conjugate either to a subgroup of G3 or to a
subgroup of G'1, we have that no one-parameter unipotent subgroup of



UNIQUE ERGODICITY ON COMPACT HOMOGENEOUS SPACES 7
L acts uniquely ergodically or minimally on L/A for every cocompact
lattice A in L.

Proof of Lemma 6: Let W be the subspace of V' consisting of
p(U)-invariant vectors. Then v € W and W is p(7T)-invariant since T
normalizes U. Since T is an R-split torus, we can write

W= w,,
XEY

where VU is a subset of the set of rational characters on 7" and
Vwe W,, teT, pt)w=x(t)w.

Denote the trivial character by 0 and for x € W let dy denote its
derivative, which is just a linear functional on Lie(7"). Write

Since T'-U is epimorphic in G, wy is p(G)-invariant. We will prove that
for some t € T, p(t")v — wq by showing that there exists ¢ such that

(1) dx(t) < 0 for all x € ¥ — {0}.

For this it suffices to show that 0 is not contained in the convex hull
(over R) of {dx : x € ¥ —{0}}. If we had constants a, € R, such that

Z a,dx = 0, Z(J,X: 1,

xev—{0}

then using the fact that the derivatives of the rational characters of T
form a discrete Z-module in Lie(T")* it follows (see [W] for more details)
that there are b, € Z, not all zero, such that

(2) D> bydx =0.

x€v—{0}
Consider then the action of G on the vector

— ®b
w= ® Wy,

x€v—{0}

in the space @?V, where d = 3 b,. Then it follows from (2) that w
is invariant under the action of po(7 - U) and hence of py(G), where
po = ®%p. Thus the line through each w, is invariant under p(G).
However, since G has no rational characters, this implies that each w,
is p(G)-invariant, which implies that ¥ = {0}. O
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Proof of Theorem 7: The proof sketched here is somewhat different
from the one communicated to the author by Nimish Shah.

Notice that the proof of Lemma 6 in fact implies a stronger state-
ment: for any representation p : G — GL(V) there is an open subsemi-
group T~ C T such that for any p(U)-invariant vector v € V and any
sequence {t,} with ¢, € T~ and ¢, — oo (i.e., t,, eventually leaves every
compact subset of GG), the sequence p(t,)v tends to a p(G)-invariant
vector. To see this take

T~ ={teT:dx(t) <0forall x e ¥—{0}}.

Arguing as in the proof of (1) in Lemma 6 shows that 7'~ is non—
empty and satisfies the claim. So now let us take for 7'~ the semigroup
corresponding to the natural action of L on

(3) D /\ Lie(L).

Let x = ¢yA, and suppose that T~z is not divergent, that is, there
exists a compact K C L and a sequence t, € T~ such that ¢, — oo
and t,4y € KA. Thus ¢, € KAl !, Let Uz = Hx and consider again
the representation p : L — GL(V) and the vector vy € V as in the
proof of Lemma 5. Notice that this representation is contained as a
summand in (3).

Arguing as in the second paragraph of the proof of Lemma 5 we see
that p(KAly')vy is closed. On the other hand we know that p(t,)vy
tends to a p(L)-invariant vector as n — oco. This implies as in the proof
of Lemma 5 that a conjugate H' of H contains U and is normalized by
L. Again as in the proof of Lemma 5 we get that L C H'. O
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