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Abstract. Veech showed that if a translation surface has a sta-
bilizer which is a lattice in SL(2, R) then any direction for the
corresponding constant slope flow is either completely periodic or
uniquely ergodic. We show that the converse does not hold: there
are translation surfaces which satisfy Veech’s dichotomy but for
which the corresponding stabilizer subgroup is not a lattice. The
construction relies on work of Hubert and Schmidt.

1. Introduction

In a celebrated paper [Ve1] Veech gave precise information about
the billiard flow in regular polygons by establishing a link with the
properties of the affine automorphism group of the related translation
surfaces. Fix a regular polygon P in the plane. A starting point in P
and an angle θ determine a billiard trajectory. Veech showed that for
any angle θ one of two possibilities occurs:

(1) all trajectories in direction θ are either periodic or, if they hit a
vertex in forward time, they also hit a vertex in backward time;

(2) no trajectory in direction θ hits a vertex in forward and back-
ward time and all infinite trajectories are uniformly distributed.

A regular polygon has the property that the angles are rational mul-
tiples of π. We call a polygon with this property a rational polygon.
Associated to each rational polygon there is a translation surface and
the billiard trajectories correspond to geodesics on this translation sur-
face [FoKi]. General references for translation surfaces are [Vo, MaTa].
A direction in which all infinite trajectories are dense is said to be
minimal. A direction in which all infinite trajectories are uniformly
distributed is said to be uniquely ergodic. A direction in which all or-
bits are periodic or saddle connections is said to be completely periodic.
A translation surface satisfies the Veech dichotomy if each direction is
either completely periodic or uniquely ergodic.

Veech found a sufficient condition for the Veech dichotomy, in terms
of the affine automorphism group of the translation surface. An affine
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automorphism of a translation surface is a selfmap with constant de-
rivative. Mapping an automorphism to its derivative gives a homomor-
phism from the group of affine automorphisms to G = SL(2, R). The
image of the affine automorphism group under this map is called the
Veech group. Veech showed that the Veech dichotomy holds when the
Veech group is a lattice in G. We call such translation surfaces lattice

surfaces though they are also called Veech surfaces in the literature.
Examples of lattice polygons known prior to Veech include the square
(see [HW]) and arithmetic examples of [Gu]. At the current time there
are many known examples of translation surfaces which have the lattice
property and many known examples of translation surfaces which do
not have the lattice property. This raises the question of whether there
might be other ways to establish the Veech dichotomy, or if the lattice
property is in fact equivalent to the Veech dichotomy. The purpose of
this note is to show that:

Theorem 1. [thm: Veech does not imply Veech] There is a translation surface

which satisfies the Veech dichotomy but is not a lattice surface.

The proof of Theorem 1 relies on previous work of several authors.
In the remainder of this introduction we will review these ideas and
reduce the proof of the theorem to some observations about loci of
branched covers.

A useful technique for constructing new translation surfaces from old

is the branched cover construction. If π : S̃ → S is a branched cover
and S has a translation structure then S̃ has a natural translation
structure where the charts are obtained by pulling back the charts for
S. The inverse images of cone points of S are cone points of S̃ but
in addition the ramification points of the map π become cone points

for S̃. The relation between the Veech group of S and that of S̃ was
studied by Hubert and Schmidt [HuSc], building on previous work of
several authors (see [Ve2, GuJu, Vo, GuHuSc]). Hubert and Schmidt

found examples where S is a lattice surface but the Veech group of S̃
is not finitely generated. For their construction they define the notion
of a non-periodic connection point on a translation surface. This is a
point p which has an infinite orbit under the Veech group, and which
has the property that if one continues any segment from a cone point
to p one must reach a singularity. Hubert and Schmidt show that
there are surfaces in genus 2 and 3 containing non-periodic connection

points, and that if S̃ → S is branched over non-periodic connection
points in S then the Veech group of S̃ is infinitely generated. They
also observe that these examples satisfy the following weak form of
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the Veech dichotomy: every saddle connection direction is completely
periodic. According to [FoKi] in the remaining directions the flow is
minimal. These examples are the starting point for our analysis. To
summarize we have the following:

Proposition 2 (Hubert-Schmidt). [prop: HS] There are lattice surfaces

of genus 2 and 3 containing infinitely many non-periodic connection

points. If X is such a translation surface, and X̃ is a translation sur-

face obtained by forming a cover of X branched only at non-periodic

connection points, then X̃ is not a lattice surface, yet has the property

that any direction is either completely periodic or minimal.

We will show that, provided the branching takes place over a single

point, the flow in the minimal directions is in fact uniquely ergodic and
thus these surfaces satisfy the full Veech dichotomy though their Veech
groups are not lattices. The next proposition shows that such a surface
exists.

Proposition 3. [prop: construction] For a surface S of genus g ≥ 1 and

d ≥ 3 there is a surface S̃ and a branched covering map π : S̃ → S of

degree d where the branch locus is a single point.

This Proposition is not new (see e.g. [FaKr, §IV.9]) but we have
included a direct proof for the reader’s convenience. Taking g = 2 and
d = 3 the construction gives a surface of genus 5. Fixing the branch
point at an aperiodic connection point as in Proposition 2 we obtain
the surface of smallest genus for which our arguments show that it
satisfies the Veech dichotomy without the lattice property. It would be
interesting to know the minimal genus in which this phenomenon can
occur.

In order to prove that minimal directions on such a branched cover
are uniquely ergodic, we will use a fundamental result of Masur [Ma].
Masur’s theorem involves a moduli space for translation structures
which is most easily described in the language of quadratic differen-
tials. A translation structure on a surface S gives rise to a conformal
structure on S. If we are given a Riemann surface then the information
needed to reconstruct the translation structure is contained in a holo-
morphic quadratic differential with finite area. (The particular qua-
dratic differentials that come from translation structures correspond to
squares of Abelian differentials.) A useful way to construct a moduli
space for quadratic differentials on a surface of a fixed genus g is to
start with the moduli space Mg of Riemann surfaces of genus g. For
each surface S in Mg the collection of holomorphic quadratic differen-
tials on S with finite area is a vector space. The unit area quadratic
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differentials correspond to a sphere in this vector space. We define Qg

to be the total space of this sphere bundle over Mg. Also of impor-
tance for us will be Mg,b (resp. Qg,b), the moduli space of (quadratic
differentials over) Riemann surfaces of genus g with b marked points.

There is a natural action of G on Qg. We set

at =

(
et/2 0
0 e−t/2

)
, rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

A trajectory {atx : t ≥ 0} is called divergent if the map t 7→ atx is
proper; in other words, the trajectory eventually leaves any compact
subset of X. Masur established a relation between the unique ergod-
icity of the translation flow in the direction θ and the dynamics of the
geodesic trajectory {atrθ(q) : t ≥ 0}, namely:

Proposition 4 (Masur). [prop: Masur condition] If q ∈ Q and the translation

flow in the direction θ is not uniquely ergodic then {atrθ(q) : t ≥ 0} is

divergent.

Veech used Masur’s theorem in his proof that the lattice property
implies the Veech dichotomy. When q is a lattice surface with Veech
group Γ, we can identify the G-orbit of q with the coset space G/Γ and
we observe that the inclusion from the coset space to Qg is a proper
map. We can view this coset space as the unit tangent bundle of the
hyperbolic orbifold M = SO(2, R)\G/Γ. We can identify the flow at

with the geodesic flow on this tangent bundle. We can write a hy-
perbolic orbifold of finite volume as a union of a compact set and a
finite number of cusps. Veech showed that the saddle connection direc-
tions correspond to geodesics which diverge to cusps and that all other
geodesics return infinitely often to the compact piece. In particular for
lattice surfaces Masur’s condition is necessary and sufficient for unique
ergodicity. We summarize this discussion in the following proposition.

Proposition 5 (Veech). [prop: lattice] For a lattice surface q there is a

compact subset C ⊂ Γ\G so that for every minimal direction θ, atrθ(q)
returns to C infinitely often.

Let π : S̃ → S be a branched cover and let Σ ⊂ S be the branch
points. Below we will introduce the ‘locus of branched covers’ cor-
responding to π. This is a moduli space parametrizing the Riemann

surfaces X̃ with quadratic differentials, for which there is a Riemann

surface X and a holomorphic map p : X̃ → X pulling back the qua-
dratic differential on X to that on X̃. Furthermore the cover p is topo-

logically equivalent to the cover π in that there are diffeomorphisms
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h : S → X and h̃ : S̃ → X̃ so that hπ = ph̃. We will need the following
three Propositions:

Proposition 6. [prop: covers] For a branched cover π : S̃ → S with b
branch points the collection of holomorphic branched covers topologi-

cally equivalent to π can be parametrized by a topological space Q(π)
with a G-action. We have continuous maps P : Q(π) → Qg,b and

R : Q(π) → Qeg which are G-equivariant.

Proposition 7. [prop: P proper] The map P is proper.

There is a surjective continuous ‘forgetful’ map Φ̄g,n : Qg,n → Qg

which maps a surface together with a collection of marked points to
the surface alone.

Proposition 8. [prop: proper] The forgetful map Φ̄g,1 : Qg,1 → Qg is

proper for g ≥ 2.

Proof of Theorem 1 assuming Propositions 3, 6, 7, and 8. Using Propo-

sitions 2 and 3, let π : X̃ → X be a cover branched at a single non-
periodic connection point x. Let θ be a direction for which the flow

on X̃ is minimal. We need to show that the flow in direction θ is
in fact uniquely ergodic. By Masur’s theorem we need to show that

{atrθ(X̃) : t ≥ 0} is not divergent when viewed as a path in Qeg. The

pair (X̃, X) corresponds to a point in Q(π) which maps by P to the
surface X in Qg,1 with the marked point x.

Q(π)
R

""D

D

D

D

D

D

D

D

P
��

Qg,1

Φ̄g,1

��

Qeg

Qg

This pair maps via Φ̄g,1 to the surface X in Qg. The path {atrθ(X) :
t ≥ 0} returns infinitely often to a compact set C ⊂ Qg by Proposition
5. The map P is proper by Proposition 7, and Φ̄g,1 is proper by Propo-

sition 8. Therefore C ′ =
(
Φ̄g,1 ◦ P

)
−1

(C) is compact and the path

atrθ((X̃, X)) returns infinitely often to C ′. Applying R we see that

atrθ(X̃) ⊂ Qeg returns infinitely often to the compact set R(C ′) so by

Masur’s theorem the flow in direction θ on X̃ is uniquely ergodic. �
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To explain intuitively the maps in Proposition 6 and why they should
be proper, note that we might naively expect to be able to define a map
Qg,b → Qeg by ‘placing the branch points of π at the marked points and
pulling back q via π’. This definition might not make sense however
due to the different equivalence relations imposed in the definitions of
Qg,b and Qeg. To make this idea meaningful we resolve the ambiguity
by passing to finite covers. An intuitive explanation of why the map in
Proposition 8 is proper, is that the forgetful map ‘forgets the location
of the marked point’, and thus the fiber is the compact underlying
surface; when b ≥ 2 the fiber of Φ̄g,b is the b-fold power of the surface
with the diagonals removed, and is not compact. This explains why it
is important to branch over a single point. By recent work of Cheung,
Hubert and Masur [CHM], surfaces obtained by degree 2 covers of genus
2 surfaces, which necessarily have more than one branch point, admit
minimal non-uniquely-ergodic directions.

In the remainder of the paper we make this intuitive picture rigor-
ous by constructing moduli spaces of branched coverings of quadratic
differentials by quadratic differentials and establishing the properties
we need. The paradigm that we follow for the construction of moduli
spaces is quite standard. Moduli spaces of branched covers of Riemann
surfaces were constructed by [Nat] using a similar paradigm. A novel
feature of our construction is that we use the language of orbifold fi-
brations which is very well suited to our purposes. Along the way we
will prove Propositions 3, 6, 7, and 8.

2. Orbifolds and Moduli Spaces

An issue that arises in the construction of moduli spaces is the fact
that some of spaces that arise are quotients of non-free group actions.
This is often resolved by considering Teichmüller spaces which play the
role of universal covering spaces of moduli spaces. For more information
on the general construction of Teichmüller spaces see [E]. This solution
will not work for us because we are interested in showing that certain
maps are proper and this property is not preserved after passing to the
universal cover. Instead we will make use of the notion of orbifold and
orbifold fibration as introduced in [Th, §13.2].

We recall these notions. An orbifold is a topological space X with
a system of ‘orbifold charts’ φj : Uj → X where for each index j
there is an open set Uj in Euclidean space and a finite group Γj acting
smoothly on Uj so that φj induces an injective map Uj/Γj → X (the
complete definition prescribes how these charts fit together, see [Th]
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or the definition of orbifold in Wikipedia.) Orbifolds are produced by
group actions on manifolds.

Proposition 9. [prop: quotient] If Γ acts properly discontinuously on a

manifold M then the quotient has an orbifold structure.

See [Th, Prop. 13.2.1]. A key point in the proof is that for any
point x ∈ M we can find a neighborhood Ux so that if γ ∈ Γ satisfies
γ(Ux) ∩ Ux 6= ∅ then γ(x) = x and γ(Ux) = Ux. The orbifold charts
arise by composing the inclusion ι : Ux → M with the projection
M → M/Γ. If Ix denotes the isotropy group of x then Ix is finite and
the chart induces a homeomorphism from Ux/Ix to its image in M/Γ.

A map p : X → Y between orbifolds is an orbifold fibration with

generic fiber F if each point y ∈ Y has a neighborhood U = Ũ/Λ so

that p−1(U) = (Ũ ×F )/Λ where the action of Λ on Ũ ×F preserves the
factors and the action of Λ on the first factor agrees with the previous

action of Λ on Ũ . See [Th, Def. 13.4.1]. An orbifold covering space is
an orbifold fibration for which the fiber is discrete.

Proposition 10. [prop: fibration quotient] Suppose p : E → B is an orbifold

fibration with generic fiber F , and that Γ acts on E and B so that p is

equivariant. Assume that Γ acts properly discontinuously on E. Let Γ0

be the subgroup of Γ acting trivially on B and assume that Γ/Γ0 acts

properly discontinuously on B and that the induced map q : E/Γ0 → B
is an orbifold fibration. Then the induced map p̄ : E/Γ → B/Γ is an

orbifold fibration with generic fiber F/Γ0.

Proof. For each x ∈ B we have a neighborhood Ux as discussed above.
By assumption the projection q : E/Γ0 → B is a fibration. Let Vx ⊂
E/Γ0 denote the set q−1(Ux). By replacing Ux with a smaller set if
necessary we can assume that Vx is diffeomorphic to Ux × (F/Γ0). Let
Ix denote the isotropy group of x in Γ/Γ0. The group Ix is finite and
acts on Ux × (F/Γ0) preserving the projection onto the first factor.
Since the action of Γ/Γ0 on B is faithful a generic point has a trivial
stabilizer so the generic fiber is F/Γ0. �

We will be dealing with closed surfaces with marked points. In order
to apply a result of [EE] in Proposition 11 we assume that when we
are dealing with the torus at least one point is marked, and when we
are dealing with the sphere at least 3 points are marked.

We begin by sketching the construction of the standard moduli space
following [E]. Let S be a fixed smooth surface of genus g. Consider the
collection of pairs (X, h) where X is a Riemann surface of genus g and
h is a diffeomorphism from S to X. Two pairs (X1, h1) and (X2, h2)



8 JOHN SMILLIE AND BARAK WEISS

are equivalent if there is a holomorphic map f : X1 → X2 such that
fh1 = h2.

S

h2 ��@
@

@

@

@

@

@

@

h1
// X1

f
��

X2

Let Conf(S) denote the set of equivalence classes of pairs. We can
identify this set with the set of conformal structures on S. Let Diffeo(S)
denote the group of orientation preserving diffeomorphisms of S. There
is a natural action of Diffeo(S) on the set Conf(S) where the diffeo-
morphism γ ∈ Diffeo(S) sends (X, h) to (X, hγ). Set-theoretically, the
moduli space Mg = M(S) is the quotient Conf(S)/Diffeo(S).

In fact the space M(S) has an orbifold structure but this structure
is not apparent from the quotient construction above. In order to
establish the existence of the orbifold structure it is useful to form the
quotient in two stages. Let Diffeo0(S) ⊂ Diffeo(S) denote the normal
subgroup of diffeomorphisms isotopic to the identity. The quotient
Conf(S)/Diffeo0(S) is Teichmüller space, and will be denoted by Tg or
T (S). Teichmüller space has a natural smooth manifold structure and
in fact it is diffeomorphic to Rn (see [E, §11]). We define the mapping
class group to be Mod(S) = Diffeo(S)/Diffeo0(S). The group Mod(S)
acts properly discontinuously on T (S). We can recover the moduli
space as M(S) = T (S)/ Mod(S). Since it is the quotient of a smooth
manifold by a properly discontinuous smooth action, M(S) has the
structure of an orbifold (see Proposition 9).

A modification of this construction produces moduli spaces of Rie-
mann surfaces with finite sets of marked points [E, §5]. In this case
we start with a surface S and a finite set Σ ⊂ S with cardinality b.
Let Diffeo(S, Σ) ⊂ Diffeo(S) be the subgroup of diffeomorphisms that
fix Σ. Let Diffeo0(S, Σ) be the normal subgroup consisting of diffeo-
morphisms which are isotopic to the identity relative to Σ. We define
T (S, Σ) to be Conf(S)/Diffeo0(S, Σ). Once again T (S, Σ) has a nat-
ural smooth manifold structure and is diffeomorphic to Rm. Define
Mod(S, Σ) = Diffeo(S, Σ)/Diffeo0(S, Σ). Mod(S, Σ) acts properly dis-
continuously on T (S, Σ) and we let

M(S, Σ) = T (S, Σ)/ Mod(S, Σ).

This space has a natural orbifold structure. The topology of the spaces
T (S, Σ) and M(S, Σ) as well as the isomorphism type of the groups
Mod(S, Σ) depend only on g and b and are usually written as Tg,b, Mg,b

and Modg,b.
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The inclusion Diffeo(S, Σ) ⊂ Diffeo(S) defines a surjective map

Φg,b : Mg,b = Conf(S)/Diffeo(S, Σ) → Mg = Conf(S)/Diffeo(S).

We call Φg,b the forgetful map. This map can be shown to be an orbifold
fibration in general but we only need the special case described in the
following result.

Proposition 11. [prop: fibration1] For g ≥ 2, the map Φg,1 : Mg,1 → Mg

is an orbifold fibration and the generic fiber is the surface with genus

g.

Proof. Let S be a surface of genus g and let Σ be a subset with a single

element z. Let Φ = Φg,1 and let Φ̃ be the natural map from Tg,1 to Tg.

The map Φ̃ was shown to be a fibration with fiber S̃ in [B].
Since the inclusion of Diffeo(S, Σ) into Diffeo(S) maps Diffeo0(S, Σ)

into Diffeo0(S), it defines a homomorphism from Modg,b to Modg. This
homomorphism is surjective since any diffeomorphism is isotopic to one
which fixes Σ. Write Γ = Modg,1 and let Γ0 denote the kernel of the
homomorphism from Γ to Modg. An element γ0 ∈ Γ0 is represented
by a diffeomorphism which fixes z and is isotopic to the identity. The
track of the point z under such an isotopy is a loop based at z, so each
isotopy from γ0 to the identity gives rise to an element of π1(S). The
group Diffeo0(S) is contractible by [EE] so any two isotopies from γ0

to the identity are connected by a one parameter family of isotopies
from γ0 to the identity. It follows that the corresponding element of
π1(S) is well defined and we obtain a homomorphism from Γ0 to π1(S).
Using the isotopy extension theorem we can show that this map is
an isomorphism. If we act by Γ0 then the induced projection on the
quotient space Tg,1/Γ0 → Tg is a fibration with fiber S (see [EF]),
known as the universal curve. According to Proposition 10 the fibration
Φ : Tg,1/Γ → Tg/Γ is an orbifold fibration with generic fiber S. �

We can modify the previous construction to produce the moduli
space of unit area quadratic differentials, Q(S) = Qg. Consider pairs
(X, h) where X is a Riemann surface with a holomorphic quadratic
differential with area 1 and h : S → X is a diffeomorphism. Two
pairs (X1, h1) and (X2, h2) are equivalent if there is a holomorphic map
f : X1 → X2 such that fh1 = h2 and f preserves the quadratic differ-

ential. We denote by Quad(S) the set of equivalence classes. There is
a natural action of Diffeo(S) on Quad(S) and the quotient (as a set)
is Qg. As before it is useful to deal with an intermediate quotient. We

define Q̃g = Quad(S)/Diffeo0(S). We call it the Teichmüller space of
quadratic differentials. This space can be identified with the cotangent
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bundle of Teichmüller space and the projection map of the cotangent
bundle can be identified with the map which maps a marked quadratic
differential to its underlying marked Riemann surface. The collection of
unit area quadratic differentials can be identified with the unit sphere
bundle in this cotangent bundle with respect to an appropriate metric
[E]. Since the Teichmüller space of quadratic differentials is the to-
tal space of a fiber bundle with smooth fiber and smooth base it is a
smooth manifold.

The group Mod(S) acts smoothly and properly discontinuously on

Q̃g. We define the moduli space of quadratic differentials

Qg = Q̃g/ Mod(S)

This space has an orbifold structure by Proposition 9.
We can define versions of these spaces for surfaces with finite sets

of marked points following the same paradigm. Note that we are not
assuming any relation between the marked points and the quadratic
differential. In particular the collection of marked points need not
contain the collection of zeros and poles of the quadratic differential.

We define Q̃g,b = Q̃(S, Σ) to be the quotient Quad(S, Σ)/Diffeo0(S, Σ).
This space has a manifold structure. We can see this by looking at

the projection pb from Q̃(S, Σ) to T̃ (S, Σ) which takes a quadratic
differential on a marked surface to the underlying marked surface. This
map is the projection map of a fiber bundle where the fiber is the
(topological) sphere of unit area quadratic differentials on the surface.

The space

Qg,b = Q̃(S, Σ)/ Mod(S, Σ)

has an orbifold structure. We define the forgetful map Φ̄g,b : Qg,b → Qg

using the inclusion Mod(S, Σ) ⊂ Mod(S).

Proposition 12. [prop: fibration2] The natural maps p0 : Qg → Mg and

pb : Qg,b → Mg,b are orbifold fibrations with the sphere as generic fiber.

They satisfy p0Φ̄g,b = Φg,bpb.

Proof. The projection p0 is mapping class group equivariant. The quo-
tient spaces are the moduli space of unit area quadratic differentials
and the moduli space of Riemann surfaces. There is an induced map
between the quotient spaces which is just the map which projects a
quadratic differential to its underlying Riemann surface. According to
Proposition 10 the induced projection map on the quotient spaces is
an orbifold fibration with sphere as generic fiber (in the terminology
of Proposition 10 the group Γ0 is trivial). The argument for pb is the
same. The second assertion is clear from definitions. �
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Orbifold fibrations are useful for us because of the following result,
whose proof is immediate from the definitions and is omitted.

Proposition 13. [prop: fibration3] An orbifold fibration with compact generic

fiber is a proper map.

We now have the tools we need for the following.

Proof of Proposition 8.

Qg,1

p1

��

Φ̄g,1
// Qg

p0

��

Mg,1
Φg,1

// Mg

The map p1 mapping quadratic differentials to their underlying Rie-
mann surfaces is proper because it is an orbifold fibration with sphere
as generic fiber. By Proposition 11, the fiber of the forgetful map Φg,1

is the surface of genus g. Since the fiber is compact the map Φg,1 is
proper. Thus Φg,1p1 is proper and since the diagram commutes, so is
p0Φ̄g,1. In particular Φ̄g,1 is proper. �

3. The moduli space of a branched cover

Let π : S̃ → S be a branched covering map, where S̃ is a surface of
genus g̃, and let Σ ⊂ S be the set of branch points, i.e. the points over
which π is not a covering map. We want to follow the same paradigm
to construct a moduli space of branched covering maps of Riemann
surfaces or holomorphic quadratic differentials topologically equivalent
to π. We will consider the case of quadratic differentials because that
is what we will need but the same construction gives a moduli space of
branched covers of Riemann surfaces as in [Nat].

Consider quintuples (p, X̃, X, h̃, h) where X̃ and X are Riemann sur-

faces with holomorphic quadratic differentials, p : X̃ → X is a holomor-
phic branched covering map which pulls back the quadratic differential

on X to that on X̃, h̃ : S̃ → X̃ and h : S → X are diffeomorphisms

such that hπ = ph̃.

S̃

π

��

eh
// X̃

p

��

S
h

// X

We say (p1, X̃1, X1, h̃1, h1) and (p2, X̃2, X2, h̃2, h2) are equivalent if

there are holomorphic equivalences w̃ : X̃1 → X̃2 and w : X1 → X2
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which preserve quadratic differentials so that p2w̃ = wp1, w̃h̃1 = h̃2

and wh1 = h2. Let Quad(π) denote the set of equivalence classes.

S̃

π

��

eh1
// X̃1

p1

��

ew
// X̃2

p2

��

S̃
eh2

oo

π

��

S
h1

// X1

w
// X2 S

h2
oo

We define Diffeo(π) to be the set of pairs of diffeomorphisms (γ̃, γ)

where γ : S → S and γ̃ : S̃ → S̃ such that γπ = πγ̃ and γ fixes Σ. We
obtain a group structure by defining multiplication in Diffeo(π) to be
coordinatewise composition. We define Diffeo0(π) to be the set of pairs
(γ̃, γ) isotopic to (id, id) via an isotopy respecting π, i.e. parametrized

families Ht, H̃t of diffeomorphisms of S and S̃ respectively, such that

Ht fixes Σ and H0 = id, H1 = γ, H̃0 = id, H̃1 = γ̃ and πH̃t = Htπ

for each t. We define Mod(π) = Diffeo(π)/Diffeo0(π) and Q̃(π) =

Quad(π)/Diffeo0(π). There is a natural action of Mod(π) on Q̃(π),
and we denote the quotient by Q(π). Below we will equip Q(π) with a
natural topology.

Let b be the cardinality of Σ and let d the degree of the cover π. Ob-
serve that the definition of Diffeo0(π) ensures that if (γ̃, γ) ∈ Diffeo(π)
(resp. Diffeo0(π)) then γ ∈ Diffeo(S, Σ) (resp. Diffeo0(S, Σ)). Let

P̃ : Quad(π) → Quad(S, Σ) be the map which takes the quintuple

(p, X̃, X, h̃, h) to the pair (X, h). It follows that P̃ induces a map on

equivalence classes Q̃(π) → Q̃g,b which we also denote by P̃ . It also
follows that the homomorphism

H : Mod(π) → Mod(S, Σ), H(γ̃, γ) = γ

is well-defined. H gives us a Mod(π)-action on Q̃g,b and P̃ is Mod(π)-
equivariant.

Let z ∈ S r Σ, z̃ ∈ π−1(z), Σ̃ = π−1(Σ), Γ ⊂ π1(S r Σ, z) be the

image of π1(S̃ r Σ̃, z̃) under the projection π, and let N(Γ) be the
normalizer of Γ in π1(S r Σ, z).

Lemma 14. [lem: finite ker] ker H is finite, and can be identified with

N(Γ)/Γ.

Proof. Suppose (γ̃, γ) represents an element of Mod(π) which is in
ker H so that γ is isotopic to the identity via an isotopy fixing Σ.
The map π|eSr

eΣ
is a covering map, so lifting the isotopy to S̃ r Σ̃ we

obtain that γ̃ is isotopic to a diffeomorphism γ̃1 : S̃ r Σ̃ → S̃ r Σ̃ cover-
ing the identity. The collection of such diffeomorphisms forms a group
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F which we can identify with the deck group N(Γ)/Γ (see [Ha, Prop.
1.39]). This is a finite group since Γ is of finite index (its index is d, the
degree of the cover). Moreover all elements of the deck group can arise.

By the unique lifting property [Ha, Prop. 1.34], F ∩Diffeo0(S̃) = {id},

i.e., the inclusion of F in Mod(S̃) induces an inclusion of groups. �

Let Q̃′(π) denote the quotient of Q̃(π) by ker H (considered at this
point only as a set with no additional structure). By equivariance, two
quintuples which differ by an element of ker H map to the same point

under P̃ , so that P̃ induces a map P̃ ′ : Q̃′(π) → Q̃(S, Σ).

Lemma 15. The map P̃ ′ is bijective. [lem: bijective]

Proof. We begin by proving surjectivity. Given (X, h) we need to pro-

duce X̃, p and h̃ so that the quintuple (p, X̃, X, h̃, h) represents an

element of Q̃(π). We define X̃ to be the surface S̃ with the Riemann
surface structure and quadratic differential structure pulled back via

the branched cover hπ. We take p to be the map hπ and we take h̃ to
be the identity.

We now prove injectivity. Say we are given (p1, X̃1, X2, h̃1, h1) and

(p2, X̃2, X2, h̃2, h2) for which (X1, h1) and (X2, h2) are equivalent in

Q̃(S, Σ), so there is a holomorphic f : X1 → X2 preserving the qua-
dratic differentials with fh1 = h2. Pick a basepoint z in S r Σ, and

let z̃ ∈ π−1(z). Let x̃1 = h̃1(z̃) and x̃2 = h̃2(z̃). Let Σ̃ = π−1(Σ), Σ̃i =
p−1

i (h(Σ)) for i = 1, 2. By chasing the diagram below we see that

(fp1)∗π1

(
X̃1 r Σ̃1, x̃1

)
= (h2π)∗π1

(
S̃ r Σ̃, z̃

)
= p2∗π1

(
X̃2 r Σ̃2, x̃2

)
.

The Galois correspondence for covering spaces shows that these two

covering spaces are equivalent so there is f̃ : X̃1 r Σ̃1 → X̃2 r Σ̃2 taking

x̃1 to x̃2 such that p1 = p2f̃ . We can extend f̃ to a map X̃1 → X̃2, which

we continue to denote by f̃ . Since both X̃1 and X̃2 have the quadratic
differential structure obtained by pulling back the quadratic differential

from X the map f̃ preserves the quadratic differential structure so

(p1, X̃1, X1, h̃1, h1), (p2, X̃2, X2, h̃2, h2) are equivalent.

S̃

π

��

eh1
// X̃1

p1

��

ef
//___ X̃2

p2

��

S̃
eh2

oo

π

��

S
h1

// X1

f
// X2 S

h2
oo

�
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Since Q̃g,b is a manifold, we can use P̃ to induce a manifold topology

on Q̃′(π) as well. Taking quotients by the action, the map P̃ ′ induces
a map P : Q(π) → Q(S, Σ). Our next objective is to analyze this map.

We begin with some general observations on diffeomorphisms and
fundamental groups. Let Y be a surface, and let z ∈ Y . Let Aut(π1(Y, z))
(resp. Inn(π1(Y, z))) be the group of (inner) automorphisms of π1(Y, z).
Define Out(Y ) = Out(π1(Y, z)) to be

Aut(π1(Y, z))/Inn(π1(Y, z)).

There is a well-defined homomorphism from Mod(Y ) to Out(Y ) which
we now describe. Given f : Y → Y , set w = f(z), and consider the
isomorphism f∗ : π1(Y, z) → π1(Y, w). Given a path ρ from w to z there
is a canonical map ρ∗ : π1(Y, w) → π1(Y, z). If we change the path ρ to
a path σ then the two identifications differ by the inner automorphism
corresponding to conjugation by ρ · σ−1. In particular the composition
ρ∗f∗ determines an element of Out, which is independent of the path ρ
and depends only on the isotopy class of f .

Lemma 16. [lem: cofinite im] The image of H is of finite index in Mod(S, Σ).

Proof. By definition, the image of H consists of those elements γ ∈
Diffeo(S, Σ) for which there is a lift γ̃ ∈ Diffeo(S̃) with γπ = πγ̃. We
claim that it suffices to consider this lifting problem for Y = S rΣ and

Ỹ = S̃ r Σ̃ in place of S and S̃. Indeed, if γ ∈ Diffeo(S, Σ) and f = γ|Y
has a lift f̃ : Ỹ → Ỹ , since S̃ is the completion of Ỹ with respect to

a complex structure for which f̃ is holomorphic, we can continuously

extend f̃ to obtain a lift of γ̃ defined on S̃.

Let z̃ be a point in Ỹ that maps to z and let w̃ be a point that maps

to w. Let Γez be the group p∗(π1(Ỹ , z̃)) ⊂ π1(Y, z) and let Γ ew be the

group p∗(π1(Ỹ , w̃)) ⊂ π1(Y, w). The Galois theory of covering spaces
tells us that the diffeomorphism f : Y → Y lifts to a diffeomorphism

f̃ : Ỹ → Ỹ taking z̃ to w̃ if and only if f∗(Γez) = Γ ew. If we want to

know whether f has any lift to a map f̃ then we need to consider all
possible values for w̃′ = f(z̃). As w̃′ ranges over points in p−1(w) the
groups Γ ew′ range over all conjugates of Γ ew. Thus f lifts if and only if
f∗ maps Γez to a conjugate of Γ ew.

As before let d denote the degree of the covering which is also the
index of Γez. Let Fd be the collection of subgroups of π1(Y, z) of index
d, and let F ′

d be the set of conjugacy classes in Fd. The group Aut acts
on Fd and on F ′

d and its subgroup Inn acts trivially on F ′

d so Out acts
on F ′

d.
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If we choose a path ρ from w to z then ρ∗(Γ ew) is conjugate to Γez

so f lifts to an f̃ if an only if the element of Aut corresponding to
f fixes the conjugacy class of Γez in F ′

d. This shows that the image
of H corresponds to the stabilizer of the conjugacy class of Γez in F ′

d.
Since the set F ′

d is finite the image of this homomorphism has finite
index. �

Corollary 17. The moduli space Q(π) has a natural orbifold structure

and P : Q(π) → Q(S, Σ) is a finite covering of orbifolds.

Proof. Since Mod(S, Σ) acts properly discontinuously on Q̃(S, Σ), by
Lemma 15 and equivariance Mod(π) acts properly discontinuously on

the manifold Q̃′(π). Proposition 9 implies that Q(π) is an orbifold.
The degree of P is the index of the image of H in Mod(S, Σ) which by
Lemma 16 is finite. �

Proof of Proposition 7. The map P is an orbifold fibration with finite
generic fiber. In particular the generic fiber is compact. By Proposition
13 the map P is proper. �

Proof of Proposition 6. Let R̃ : Quad(π) → Q(S̃) be the map which

sends the class of the quintuple (p, X̃, X, h̃, h) to the class of the pair

(X̃, h̃). As explained the group Diffeo(π) acts on Quad(π). The group

Diffeo(π) also acts on Quad(S̃) via the natural map from Diffeo(π)

to Diffeo(S̃). It follows that R̃ descends to a well-defined map R :

Q(π) → Q(S̃), which is continuous since R̃ factors through Q̃′(π), and
the topology on Q(π) is defined via Lemma 15.

The required maps have been constructed. The only thing that re-
mains is to discuss the G-action. In the case of the space of quadratic
differentials there is a natural action of G. We begin by describing this
action on the set of pairs (X, h). We think of a quadratic differential
as being given by a set of charts mapping open subsets of X to open
subsets of C. Then the action of g ∈ G is obtained by identifying C

with R2 and post-composing the charts with the map g : R2 → R2. The
action of Diffeo(S) is by pre-composition on the charts, hence these ac-
tions commute, and therefore we have a well-defined action of G on the
quotient space. The same reasoning implies that there is a well-defined
G-action on Q(π), and since P and R both descend from maps defined
on Quad(π), they are G-equivariant. �

Proof of Proposition 3. Let x ∈ S and let U be a small disk around
x and let y be a point of S outside U . If we are given a finite-index
subgroup Γ of π1 (S r {x}, y) we can construct a branched cover of S
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by constructing the corresponding cover of Sr{x} and then taking the
metric completion. This branched cover will have non-trivial branching
if a loop obtained by travelling from y to the boundary of U , travers-
ing the boundary of U once and then returning to y along the same
path is not in Γ. The fundamental group of S r {x} is a free group
on 2g generators. Let α1, . . . , αg, β1, . . . , βg be loops on S so that a
loop γ corresponding to the boundary of U is given by the product of
commutators α1β1α1

−1β1
−1 · · ·αgβgαg

−1βg
−1. Let Dd be the dihedral

group of order 2d generated by a and b where a2 = b2 = (ab)d = 1.
Define a homomorphism h : π1(S r {x}, y) → Dd so that h(α1) = a,
h(β1) = b and h(αj) = h(βj) = 1 for j > 1. This homomorphism has
the property that h(γ) = aba−1b−1 = (ab)2. This element is not the
identity since d > 2. Let F ⊂ Dd be the subgroup containing a and 1.
Let Γ ⊂ π1 (S r {x}, y) be h−1(F ). The group Γ has index d, hence the

covering space of S r {x} corresponding to Γ has degree d. Let S̃ be
the branched cover obtained by completing this covering space and let
π be the projection. The branching at x is nontrivial because the loop
γ corresponds to an element of π1 (S r {x}, y) which is not in Γ. �
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