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Abstract. We show that in high dimensions the set of stable lattices
is almost of full measure in the space of unimodular lattices.

Let G
def
= SLn(R), Γ

def
= SLn(Z), and let A ⊂ G denote the subgroup of

diagonal matrices with positive entries. The quotient space Ln
def
= G/Γ is

naturally identified with the space of unimodular lattices in Rn, and the
group G (and any of it subgroups) acts via left translations, or equivalently,
by acting on lattices via its linear action on Rn. A lattice Λ is called stable
if for any subgroup ∆ ⊂ Λ, one has vol (∆⊗ R/∆) ≥ 1 (in the literature
the term semi-stable is also used), and we denote the set of stable lattices

by S(n).
A central problem is to understand the orbits of the A-action on Ln.

In [SW] we proved that for any lattice Λ ∈ Ln, the orbit-closure AΛ con-
tains a stable lattice. This result reduces the proof of Minkowski’s conjec-
ture on the product of inhomogeneous linear forms to that of estimating the
Euclidean covering radius of stable lattices (see [SW] for details). Under-
standing stable lattices is therefore a natural problem due to its connection
both with well-studied problems in the geometry of numbers, and with dy-
namics of the A-action. Although S(n) is compact (while Ln is not), in this

note we show that S(n) has almost full measure with respect to the natural
probability measure on Ln, for large n. Moreover the convergence to full
measure is very fast. This answers a question we were asked by G. Harder,
and can be viewed as a manifestation of the concentration of mass along the
equator in high dimensional Euclidean balls.

We will prove the following.

Theorem 1. Let m denote the G-invariant probability measure on Ln de-
rived from Haar measure on G, and let S(n) denote the subset of stable
lattices in Ln. Then there is a constant C > 0 such that for all sufficiently
large n,

m
(
Ln r S(n)

)
≤
(
C

n

)n−1
2

.

In particular m
(
S(n)

)
−→ 1 as n→∞.

1



2 URI SHAPIRA AND BARAK WEISS

For Λ ∈ Ln and a subgroup ∆ ⊂ Λ, we denote by r(∆) its rank and by
|∆| its covolume in the Euclidean subspace ∆⊗R ⊂ Rn. For k = 1, . . . , n−1

let us denote Vk(Λ)
def
=
{
|∆|1/k : ∆ ⊂ Λ, r(∆) = k

}
and αk(Λ) = minVk(Λ)

so that Λ is stable if and only if αk(Λ) ≥ 1 for k = 1, . . . , n− 1. Let

S(n)
k (t)

def
= {x ∈ Ln : αk(x) ≥ t} , S(n)

k
def
= S(n)

k (1).

With this notation S(n) =
⋂n−1
k=1 S

(n)
k . We will show:

Proposition 2. There is C > 0 such that for all sufficiently large n, and
all k ∈ {1, . . . , n− 1},

m
(
Ln r S(n)

k

)
≤ 1

n

(
C

n

) k(n−k)
2

. (1)

Proof of Theorem 1. For n > C, the largest value of
(
C
n

) k(n−k)
2 is attained

when k = 1 and k = n− 1. Therefore (1) implies

m
(
Ln r S(n)

)
= m

(
Ln r

n−1⋂
k=1

S(n)
k

)
= m

(
n−1⋃
k=1

Ln r S(n)
k

)

≤ n− 2

n

(
C

n

)n−1
2

≤
(
C

n

)n−1
2

.

�

We will also show:

Proposition 3. There is C1 > 0 such that if we set

tk = t(n, k)
def
=

(
n

C1

)n−k
2n

, (2)

then

max
k=1,...,n−1

m
(
Ln r S(n)

k (tk)
)

= o

(
1

n

)
.

In particular, m
(⋂n−1

k=1 S
(n)
k (tk)

)
→n→∞ 1.

Remarks. 1. Let us define ᾱn,k
def
= sup {αk(Λ) : Λ ∈ Ln}. These quantities

are powers of the so-called Rankin constants or generalized Hermite constants
usually denoted by γn,k (see [Thu98]), namely they are related by

ᾱ2k
n,k = γn,k. (3)

The origin of this exponent 2k is the 1/k in the definition of Vk, which
we have imposed so that the functions αk behave nicely with respect to
homothety. This normalization has the additional advantage that the growth
rate of the different ᾱn,k (as a function of n) becomes the same for all k.

Namely [Thu98, Cor. 2] and (3) show that log ᾱn,k = 1
2 log n+O(1) (where

the implicit constant depends on k).
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2. It seems plausible that most lattices come close to realizing the Rankin
constants, that is, for any ε > 0,

lim
n→∞

m ({Λ ∈ Ln : ∀k, αk(Λ) > αn,k − ε}) = 1.

Combined with the result of Thunder mentioned above, Proposition 3 may
be viewed as supporting evidence for such a conjecture.

3. We take this opportunity to formulate an analogous question regarding
the covering radius; that is, is it true that for any ε > 0,

lim
n→∞

m

{
Λ ∈ Ln : covrad(Λ) < inf

Λ′∈Ln
covrad(Λ′) + ε

}
= 1,

where
covrad(Λ) = inf {r > 0 : Rn = Λ +B(0, r)}

and B(0, r) is the Euclidean ball of radius r around the origin.

The proof of Propositions 2 and 3 relies on Thunder’s work and on a
variant of Siegel’s formula [Sie45] which relates the Lebesgue measure on Rn
and the measure m on Ln. We now review Siegel’s method and Thunder’s
results.

In the sequel we consider n ≥ 2 and k ∈ {1, . . . , n− 1} as fixed and omit,
unless there is risk of confusion, the symbols n and k from the notation.

Consider the (set valued) map Φ = Φ
(n)
k that assigns to each lattice Λ ∈ Ln

the following subset of the exterior power of
∧k Rn:

Φ(Λ)
def
= {±w∆ : ∆ ⊂ Λ a primitive subgroup with r(∆) = k} ,

where w∆
def
= v1 ∧ · · · ∧ vk and {vi}ki=1 is a basis for ∆ (note that w∆ is

well-defined up to sign, and Φ(Λ) contains both possible choices). Let

V = V
(n)
k

def
= {v1 ∧ · · · ∧ vk : vi ∈ Rn}r {0}

be the variety of pure tensors in
∧k Rn. For any compactly supported

bounded Riemann integrable1 function f on V set

f̂ : Ln → R, f̂(Λ)
def
=

∑
w∈Φ(Λ)

f(w). (4)

Then it is known (see [Wei82, Lemma 2.4.2]) that the (finite) sum (4) defines

a function in L1(Ln,m). This allows us to define a Radon measure θ = θ
(n)
k

on V by the formula∫
V
fdθ

def
=

∫
Ln
f̂ dm, for f ∈ Cc(V ). (5)

Write G = Gn
def
= SLn(R). There is a natural transitive action of Gn on V

and the stabilizer of e1 ∧ · · · ∧ ek is the subgroup

H = H
(n)
k

def
=
{(

A B
0 D

)
∈ G : A ∈ Gk, D ∈ Gn−k

}
.

1i.e. the measure of points at which f is not continuous is zero.
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We therefore obtain an identification V ' G/H and view θ as a measure on
G/H. It is well-known (see e.g. [Wei82]) that up to a proportionality con-
stant there exists a unique G-invariant measure mG/H on G/H; moreover,
given Haar measures mG,mH on G and H respectively, there is a unique
normalization of mG/H such that for any f ∈ L1(G,mG)∫

G
f dmG =

∫
G/H

∫
H
f(gh)dmH(h)dmG/H(gH). (6)

We choose the Haar measure mG so that it descends to our probability
measure m on Ln; similarly, we choose the Haar measure mH so that the
periodic orbit HZn ⊂ Ln has volume 1. These choices of Haar measures
determine our measure mG/H unequivocally. It is clear from the defining
formula (5) that θ is G-invariant and therefore the two measures mG/H , θ
are proportional. In fact (see [Sie45] for the case k = 1 and [Wei82, Lemma
2.4.2] for the general case),

mG/H = θ. (7)

For t > 0, let χ = χt : V → R be the restriction to V of the characteristic

function of the ball of radius t around the origin, in
∧k Rn, with respect to

the natural inner product obtained from the Euclidean inner product on Rn.

Note that χ̂(x) = 0 if and only if x ∈ S(n)
k

(
t1/k

)
and furthermore, χ̂(x) ≥ 1

if x ∈ Ln r S(n)
k

(
t1/k

)
. It follows that

m
(
Ln r S(n)

k (t)
)
≤
∫
Ln

(̂χtk)dm =

∫
V
χtkdθ. (8)

Let Vj denote the volume of the Euclidean unit ball in Rj and let ζ
denote the Riemann zeta function. We will use an unconventional convention
ζ(1) = 1, which will make our formulae simpler. For j ≥ 1, define

R(j)
def
=
j2Vj
ζ(j)

and B(n, k)
def
=

∏n
j=1R(j)∏k

j=1R(j)
∏n−k
j=1 R(j)

.

The following is [Thu98, Lemma 5]:

Theorem 4 (Thunder). For t > 0, we have
∫
V χt dmG/H = B(n, k) t

n

n .

(Note that in Thunder’s notation, by [Thu98, §4], c(n, k) = B(n, k)/n.)

We will need to bound B(n, k).

Lemma 5. There is C > 0 so that for all large enough n and all k =
1, . . . , n− 1,

B(n, k) ≤
(
C

n

) k(n−k)
2

. (9)
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Proof. In this proof c0, c1, . . . are constants independent of n, k, j. Because
of the symmetry B(n, k) = B(n, n−k) it is enough to prove (9) with k ≤ n

2 .

Using the formula Vj = πj/2

Γ( j
2

+1)
we obtain

B(n, k) =
k∏
j=1

R(n− k + j)

R(j)
=

k∏
j=1

ζ(j)(n− k + j)2 π(n−k+j)/2

Γ(n−k+j
2

+1)

ζ(n− k + j)j2 πj/2

Γ( j
2

+1)

=
k∏
j=1

ζ(j)

ζ(n− k + j)
·
(
n− k + j

j

)2

· π
n−k
2 ·

Γ( j2 + 1)

Γ(n−k+j
2 + 1)

.

Note that ζ(s) ≥ 1 is a decreasing function of s > 1, so (recalling our

convention ζ(1) = 1) ζ(j)
ζ(n−k+j) ≤ c0

def
= ζ(2). It follows that for all large

enough n and for any 1 ≤ j ≤ k,
ζ(j)

ζ(n− k + j)
·
(
n− k + j

j

)2

· π
n−k
2 ≤ c0n

2π
n−k
2 ≤ 4

n−k
2 . (10)

According to Stirling’s formula, there are positive constants c1, c2 such that
for all x ≥ 2,

c1

√
2π

x

(x
e

)x
≤ Γ(x) ≤ c2

√
2π

x

(x
e

)x
.

We set u
def
= j

2 + 1 and v
def
= n−k

2 , so that u+ v ≥ n−1
4 , and obtain

Γ( j2 + 1)

Γ(n−k+j
2 + 1)

=
Γ(u)

Γ(u+ v)
≤ c2

c1

√
u+ v

u

uu

(u+ v)u+v

eu+v

eu

≤ c3e
v uu−1/2

(u+ v)u+v−1/2
= c3

(
e

u+ v

)v 1(
1 + v

u

)u−1/2
,

≤ c3

(
4e

n− 1

)n−k
2

.

(11)

Using (10) and (11) we obtain

B(n, k) ≤

[
c34

n−k
2

(
4e

n− 1

)n−k
2

]k
=

[
c3

(
16e

n− 1

)n−k
2

]k
.

So taking C > 16c3e we obtain (9) for all large enough n. �

Proof of Propositions 2 and 3. Let C be as in Lemma 5 and let C1 > C.
For Proposition 3, using (8), (7) and Theorem 4, for all sufficiently large n
we have

m
(
Ln r S(n)

k (tk)
)
≤ B(n, k)

tknk
n

≤ 1

n

(
C

n

) k(n−k)
2

(
n

C1

) k(n−k)
2

=
1

n

(
C

C1

) k(n−k)
2

.
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Multiplying by n and taking the maximum over k we obtain

n max
k=1,...,n

m
(
Ln r S(n)

k (tk)
)
≤
(
C

C1

)n−1
2

→n→∞ 0.

The proof of Proposition 2 is identical using t = 1 instead of tk. �
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