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ABSTRACT. A translation of the famous paper of Benoist and
Quint. Caution: I translated most of the paper and all the ar-
guments, but the original text contained more references to other
papers and more background material. Translated by Barak Weiss.

The original abstract in English:

Stationary measures and closed invariant subsets of ho-
mogeneous spaces. Let G be a real simple Lie group, A be a
lattice of G and I" be a Zariski dense subsemigroup of G. We prove
that every infinite I-invariant subset in the quotient X = G/A is
dense. Let u be a probability measure on G whose support is com-
pact and spans a Zariski dense subgroup of G. We prove that every
atom free p-stationary probability measure on X is G-invariant.
We also prove similar results for the torus X = T%.

1. INTRODUCTION

The goal of this text is to introduce a new technique in the study of
stationary measures on homogeneous spaces, which we call the ‘expo-
nential drift.’

1.1. Motivation and principal results. We will use it to prove:

Theorem 1.1. Let G be a connected almost simple real Lie group,
A a lattice in G, X = G/A and p a probability measure on G with
compact support, such that supp p generates a Zariski-dense subgroup
of G. Then any non-atomic p-stationary Borel probability measure on
X is the Haar measure on X.

We now explain some of the (well-known) terminology used in the
statement above. A real Lie group is almost simple if its Lie algebra is
simple. A probability measure v on X is called p-stationaryif v = p=v.
It is called non-atomic if v({x}) = 0 for any z € X. In case G is not a
linear group, when we say that I' is Zariski dense we mean that Ad(I") is
Zariski dense in the linear group Ad(G) (where Ad : G — GL(g) is the
adjoint representation). By Haar measure on X we mean the unique
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G-invariant probability measure on X induced by the Haar measure of
G.

This theorem verifies a condition of stiffness of group actions intro-
duced by Furstenberg [9] .

Ratner’s theorems describe the measures on homogeneous spaces in-
variant and ergodic under a connected group generated by unipotents,
as well as the orbit-closures. Shah and Margulis raised the question of
extending these results to disconnected groups. We deduce an exten-
sion of Ratner’s results for Zariski dense subgroups I', namely:

Corollary 1.2. Let G, A, X,T" be as in Theorem 1.1. Then:

a) Any I-invariant non-atomic measure v is the Haar measure on
X.

b) Any closed T'-invariant infinite set F < X is equal to X.

c) Any sequence of distinct finite T'-orbits X,, < X is equidis-
tributed with respect to the Haar measure on X.

A closed subset F' < X is I'-invariant if for any v € I', vF < F. Point
¢) means that the sequence of measures v, := ﬁ D zex, Oz cONverges
to the Haar measure on X with respect to the weak-* topology. The
simplest example in which one can apply the above results is for G =
SLa(R), A = SLy(Z), d = 2, with p = $(d,, + dy,) where the semigroup
I' generated by ¢, g2 is Zariski-dense. The space X is then the space
of unimodular lattices in R?. Part c) generalizes previous results on
equidistribution of Hecke orbits, obtained by Clozel-Oh-Ullmo.

Our method can be adapted to handle a larger class of homogeneous
spaces. For instance, it makes it possible generalize a result of Bour-
gain, Furman, Lindenstrauss on Mozes as follows (in [2] the existence
of proximal elements was assumed):

Theorem 1.3. Let I be a sub-semigroup of SLy(Z) acting on R strongly
irreducibly. Let u be a measure on SLy(Z) whose finite support gen-
erates I'. Then any non-atomic p-stationary probability measure on

X =T is the Haar measure of X.

Recall that the action of I' on R? is called strongly irreducible if any
finite index subgroup of the group generated by I', acts irreducibly on
R?. Note that in case a p-stationary measure v is atomic, it can be
separated into a non-atomic and purely atomic part, and both measures
in this decomposition are also p-stationary. Thus applying Theorem
1.1 or Theorem 1.3 we see that the non-atomic part is Haar. Regarding
the purely atomic part of v, we will see (see Lemma 8.3) that it is a
sum of a family of finitely supported p-stationary measures.
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Corollary 1.4. Let T be a subsemigroup of SL4(Z) acting strongly
irreducibly on RY. Then:

a) The only non-atomic I'-invariant probability measure on X is
the Haar measure.

b) The only closed T'-invariant infinite subset F' < X is equal to
X.

c) Any sequence of distinct finite I'-invariant sets X, becomes
equidistributed in X with respect to Haar measure.

Assertion b) in Corollary 1.4 is due to Muchnik and to Guivarc’h-
Starkov.

The approach of [2] is based on a delicate study of the Fourier coef-
ficients of v. Our approach is purely ergodic-theoretic. For that reason
it can be readily generalized to the case of homogeneous spaces. For
example, Theorem 1.1 and Corollary 1.2 can be extended, with no
significant change to the proof, to p-adic Lie groups G.

1.2. Strategy. Our approach is based on the study of the random
walk on X = G/A (resp. X = T9) induced by the random walk
with law g on the group G (resp., on SL4(Z)). In order to study the
random walk we introduce a non-invertible dynamical system which

we denote ( B™X, B™X p7X T Z’X . Without entering into too many

details, we note that this dynamical system is fibered , with fiber X,
over a suspension (BT, B7, 7, T7) of a Bernoulli shift associated to p,
and thus the space B™¥ is the product B x X. The idea of using such
a suspension was inspired by a paper of Lalley [13].

This dynamical system has two properties. Firstly, very simple
formulas express the conditional expectation ¢, := ]E(g0|Qz’X) of a
bounded B™*-measurable function ¢ on B™X relative to the o-algebra

-1
X = <TZ ’X> B™X of events after a time £. Secondly, one has good

control of the norm of products of elements of GG associated with words
appearing in these formulas of conditional expectation. In order to
construct this dynamical system, one uses various classical theorems
about random walks due in large part to Furstenberg: positivity of the
first Lyapunov exponent, proximality of the walk induced on the flag
variety, existence of limit probabilities v, for the probabilities obtained
as the image of the stationary measure v under a random word b.
Our main argument, which we call the exponential drift, is reminis-
cent of Ratner’s idea to use the Birkhoff ergodic theorem, replacing
that theorem with Doob’s martingale convergence theorem. Its use
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was inspired by a paper of Bufetov [3]. This theorem allows us to as-
sert that the sequence p., converges, for 37*-a.e. (c,z) in B™, to

Yo(c, ) where ¢, = E <cp|QZ{>X> is the conditional expectation of ¢

with respect to the tail o-algebra Qnr = ﬂ£>0 Q;’X. The idea is to
compare @y(c,z) and @,(c,y) for two points x,y which are very close
to each other and carefully chosen for the time /.

In order to start the drift argument, it is necessary to show that one
may choose, when v is non-atomic, two points (¢,z) and (¢,y) which
are not on the same stable leaf relative to the factor B™* — B™. This
is a crucial point in our argument. It shows, roughly speaking, that the
relative entropy of the fibered system is nonzero. In order to demon-
strate this we exhibit a recurrence phenomenon for the random walk
on X, analogous to the work of Eskin and Margulis [6], and combine
this phenomenon with the ergodic theorem of Chacon-Ornstein.

In order to develop our exponential drift argument, it is necessary
to obtain good control of norms of products of random matrices with
law 1, in the vector space V = Lie(G) (resp. V = R%). The existence,
due to Furstenberg, of an attracting limit subspace V,, is very useful.

When applying our drift argument, work remains. Contrary to Rat-
ner’s argument, our argument only yields very patchy invariance prop-
erties for the stationary measures. For this reason we introduce a func-
tion which associates to each point (¢, x), a conditional measure o(c, x)
of the limit probability v. along the foliation given by some limit sub-
space V.. We identify all the spaces V, thus constructed with the action
of a unique vector space Vj, an action which we call the horocyclic flow
and denote by ®,. This point is important because it makes it possible
to consider, as in [5], the function ¢ as a map taking values in a fixed
vector space, the space of Radon measures on V) up to normalization.
It is this map ¢ to which we apply our drift argument. A crucial point
is that the map o is Q&X—measurable. This results in commutation
relations between @, and TZ’X, relations analogous to those existing in
the hyperbolic plane between the geodesic and horocyclic flow.

The drift argument implies that the connected component J(c, x) of
the stabilizer of o(c,z) in Vj is almost surely nontrivial. This makes
it possible to view the probability v., and hence v, as an average of
probabilities v, , which are invariant under a nontrivial subspace J(c, z)
of V.

In the case of the torus, one then deduces that the probabilities
Veq, and hence v, are averages of probability measures supported on
nontrivial subtori. Since the support of p acts strongly irreducibly on
R?, v is necessarily the Haar measure on T¢.
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In the case of a homogeneous space, an application of Ratner’s the-
orems makes it possible to express 1., as an average of probability
measures supported on orbits of nontrivial closed connected subgroups
H of G. The G-invariance of v is deduced, thanks to a phenomenon
of non-existence of p-stationary measures on the homogeneous space
G/H with unimodular non-discrete stabilizer.

It is remarkable that our drift argument works even without it being
necessary to explicitly describe the tail o-algebra Q7X. However, we
will describe this tail g-algebra in a forthcoming work and employ to
this end the works of Blanchard, Conze, Guivarc’h, Raugi and Rohlin.

1.3. Structure of the paper. Chapters 2-5 collect the constructions
and the properties of the dynamical systems associated with random
walks that we will need.

Chapters 6-8 are devoted to the study of stationary measures on
the spaces X = G/A and X = T? These two cases will be treated
simultaneously. We suggest to the reader to focus primarily on the
case that X is the torus T2. Almost all of the arguments we shall
develop are indispensable even for this case.

The goal of chapter 2 is formulas for the conditional expectation of
fibrations and suspensions over non-invertible dynamical systems, in-
cluding the remarkable ‘law of the last jump.” Chapter 3 deals with
some properties of stationary measures on Borel spaces equipped with
a Borel action: existence of limit measures and the very useful phe-
nomenon of recurrence off the diagonal. In chapter 4 we recall the
construction of conditional measures along the orbits of a Borel ac-
tion with discrete stabilizers. In chapter 5 we study linear strongly
irreducible random walks. We recall the results of Furstenberg and
introduce the dynamical system (B7,B7, 87,T") which is a suspension
over a Bernoulli shift.

In chapter 6 we introduce the fibered dynamical system (B™X, B~ g T™X)
associated to the random walk on X = G/A or X = T¢. We check that
this random walk satisfies not only the properties of recurrence off the
diagonal which we will need in order to initiate the drift, but also the
recurrence outside finite orbits which we will need in order to obtain
topological consequences. We will also show non-existence of station-
ary measures on certain homogeneous spaces of semi-simple Lie groups,
which we will require at the end of our study, for the space X = G/A.
At the end of the chapter we will introduce the horocyclic flow &,
on B™X and the conditional horocyclic map o, and check that o is
Q% -measurable.
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In chapter 7 we will present our general drift argument, and apply
it to the map (c,z) — o(c,x). In section 8 we exploit the invariance
properties of stationary measures, which follow from the drift argu-
ment, enabling us to conclude the proofs of Theorems 1.1 and 1.3. We
then easily deduce Corollaries 1.2 and 1.4.

1.4. Acknowledgements.

2. SUSPENSIONS AND EXTENSIONS

The goal of this chapter is to obtain formulas for the conditional
expectations with respect to the tail o-algebras in suspensions and fi-

brations over non-invertible dynamical systems (Proposition 2.3 and
Lemma 2.5).

2.1. Cohomologous functions. The following lemma makes it possi-
ble to restrict our attention to suspensions with positive roof functions.

Lemma 2.1. Let (B,B,3) be a Lebesque probability space, equipped
with an ergodic measure preserving transformation T'. Let 6 : B — R
be an integrable function (that is §, |0|dS < o) with §,0d5 > 0. Then
there is a positive function @ which is almost surely finite, and a positive
integrable function T, such that

0—poT +p=r.

The function T can be chosen to be bounded below by a constant ey > 0.
The function T can be chosen to be bounded if 0 is bounded.

In other words, the function 6 is cohomologous to 7 via .
Proof. For p > 1, denote 6, =0 + 0o T + --- + 0o TP~ ! and let
Y = 1I>l£ 6,, T =max(1,0), ¢ = —min(e,0).
p=

By the Birkhoff ergodic theorem, for f-a.e. b in B, 6,(b) —,_o .
This implies that for almost all b, the inf in the definition of ¥ (b) is a
min and ¢(b) is finite. Since ¥ < 6, we find 7 < max(6,0) and hence 7
is integrable. Finally, by definition,

T—p=1¢=min(0,0 +¢oT)=60+min(0,oT)=60—poT.

In order to obtain 7 which is bounded below by g¢, apply the previous
reasoning to the function 6 —ey. This is possible whenever gy < § 5 0dp.
The function 7 given in the construction is bounded when @ is. O
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2.2. Suspension of a non-invertible system. We define in this sec-
tion the suspension of a dynamical system where the roof function has
a factor taking values in a compact group.

Let (B,B, ) be a Lebesgue probability space, equipped with an
ergodic measure preserving transformation 7. Let M be a compact
metrizable topological group and

T=(mR,7Tm): B—>Rx M

a measurable map such that 7z : B — R is a positive integrable func-
tion. For any p > 0, and for S-a.e. b in B, denote

TRy = TR(TP'0) + - + Tr(D)
and
Tap(b) = Tar(TP7h) - - - s (B).
Define the suspension (B7,B7, 57, T7) as follows. The space B” is
BT ={c=(b,k,m)e BxRx M :0<k<7(b)},

the measure 7 is obtained by normalizing the restriction to B™ of
the product measure of § and the Haar measure of R x M, the o-
algebra BT is the product o-algebra, and for almost every ¢ € R, and

c=(bk,m)e B,
TET(C) = (Tpe(C)l% k+0— TR,P@(C)(b)’ TM,pe(C)m)

where
pe(c) =max{pe N:k+{—1g,(b) = 0}.

The flow T} is then defined for all positive times.

Lemma 2.2. The semigroup (T]) of transformations of B™ preserves
the measure 37.

Proof. The simplest approach is to avoid all calculations and consider
(B™,B™,57,T7) as a factor of the suspension <§T,Z§T,BT,7~”) of the

natural extension (E,g, B, f) of (B,B,3,T) and reduce to the case

when 7' is invertible.

When T is invertible, one can identify the suspended dynamical sys-
tem as the quotient of the product B x R x M by the transformation
S :(byk,m) — (Tb,k — r(b), Tas(b)m). The flow T} is induced by the
flow YN”[ preserving the product measure on B x R x M. Therefore T}
preserves 7. O
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We remark finally, that it follows from the Birkhoff ergodic theorem,
that for f7-almost every c € BT,

1 1 1
phi& ETR’p(b) = JB TRAS, elggo Zpg(c) = SBTTM' (2.1)
2.3. The law of the last jump. We now establish the law of the last
Jgump which plays a crucial role in controlling the drift, in §7.1. This
law is an explicit formula for the conditional expectation of an event in
B™ relative to (T])~'(B™) when the base system is a Bernoulli shift.

Let (A, A, a) be a Lebesgue probability space and (B, B, 3,T') a one-
sided Bernoulli shift on the alphabet (A, A, «), that is B = AN, 3 =
a®N, Bis the product o-algebra A®N and T is the right shift which sends
b= (bg,b1,...) € BtoTh = (by,bs,...). Let M be a metrizable compact
topological group, let 7 = (1g, 7as) : B — R x M be a measurable map
such that 7 : B — R is positive and integrable, and let (B™, B™, 57,T7)
be the suspension defined in §2.2.

We will require notation to parameterize the branches of the inverses
of T/. For ¢ = 0 and a,b € B, we denote by alg]| the beginning of
the word @ written from right to left as alq] = (a,—1,...,a1,a0) and
a[q]b € B the concatenated word

(l[q]b = (aq_l, . ,al,(lo,bo,bl, .. .,bp, .. )

For ¢ = (b,k,m) e B™ and ¢ in Ry, let ¢o.: B— Nand hy.: B — B”
the maps given, for a € B, by

Qe =Gqre and hg. = hyw, where ¢ =T](c)

and
Qoe(a) =min{g e N: k — ¢ + 1 4,(a[q]b) = 0},

?Lg’c(&) = (alg]b, k — € + TR 4(a[q]b), Tarq(alg]b) 'm) with ¢ = Gp.(a).
By Birkhoft’s theorem applied to the two-sided shift, for 5 a.e. a € B,
and 87 a.e. c € B7, one has the equality

lim 17'R,q(a[q]b) = J m=df > 0.
B

q—0 ¢
Hence the function ¢y, is almost surely finite and the image of the

map %g,c is the fiber (T7)7*(c). The function g is thus also almost
surely finite. In addition, for pg-a.e. a € B, for every ¢ > 1, the
function b — 7 4(a[q]b) is f-integrable. Therefore by Birkhoft’s ergodic
theorem, for f7-a.e. ¢ € B, one has
1
lim —7g 4(alq]T?b) = 0

p—%0 P
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and hence, by (2.1), we have
lim ¢y .(a) = 0. (2.2)
£—00

Finally, the image of the map hy. is the fiber of 7] passing through
c:
(e BT T} () = T7 (o)),
that is the atom of ¢ in the partition associated with the o-algebra
(7)1 (B7).

Proposition 2.3. The conditional expectation with respect to the o-
algebra (T])~Y(B7) is given, for any positive measurable function ¢ on
B7 and for f7-a.e. ¢ = (b,k,m) € BT, by

E (¢l(T7) " (5) () = | olhec(a)asia).

In other words, if we regard every element of the fiber of 7] over a
point ¢ = (', k',m') = T (c) in B", when completing the infinite word
b’ by the finite word a[q] written from right to left, the law of the finite
word is obtained by randomly printing the letters a;, independently
with law « in the alphabet A, where printing stops at time gy .(a).

In particular, if 7 is bounded and if ¢ > sup g, the law of the last
jump ag is a. More generally, if £ > gsup g the law of the last ¢ jumps
(ag—1,.-.,a0) is a®1,

Proof. To simplify the notation used in the proof, we assume that M
is trivial and thus 7 = 7g. The general case of the proof is the same.

Introduce the function po(c) = §, ¢(hec(a))dB(a). In order to show
that the function ¢y o 7] is the sought-after conditional expectation,
it suffices to show that, for any positive B"-measurable function v, we
have the equality

V(T )p(e)df™(¢) = | (T c)po(T7c)db™(c).  (2.3)

BT BT
To this end, we note that the left-hand side G is equal to

a0
G=> f 1, (0)=py 0 (TP, k + € — 7, (n)) (b, k)dB () dk.
p=0"B"
Introduce the variable ¢ = (V. k) = (T?b,k+{—1,(b)) € B and a € B
such that a[p] = (bo, - .., by—1). One finds, when writing B(¢/,p) = {a €
B : G (a) = p}, that

= vy JB( o(alp]b))dB(a)dBb )k,
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and hence that

G= | 0t | ¢ (hota)) db(@is () = | o)l (@)
Now (2.3) follows from the fact that 7] preserves the measure 57. O

2.4. Conditional expectation for the fibered system. We con-
clude this chapter with a general abstract lemma which constructs an
mvariant probability measure for the fibered dynamical system and by
calculating its conditional expectation.

Let (B, B) be a standard Borel space, i.e. isomorphic to a separable
complete metric space with its Borel o-algebra, and let § be a Borel
probability measure on B and T an endomorphism of B preserving /5.
Let (X, X) be a standard Borel space, 7 : B x X — B the projection
onto the first factor, and 7" a measurable transformation of B x X such
that 7 o7 = T o 7. Below we will write, for (b,x) e B x X,

T(b,x) = (Th, p(b)zx).

The space P(X) of probability measures on (X, X) has itself the nat-
ural structure of a Borel space: this is the structure generated by the
maps P(X) — R, v {, pdv, where ¢ : X — R is a bounded Borel
function. If one realizes X as a compact metric space endowed with
its Borel o-algebra, this structure is generated by the maps P(X) —
R, v — SX wdr where ¢ : X — R is a continuous function. In par-
ticular, with respect to this Borel structure, the space P(X) is also a
standard Borel space.

Consider a B-measurable collection B — P(X), b 1, of probabil-
ity measures on X such that for g-a.e. b e B, we have

Uty = p(b)*Vb (24)

We will denote by A the Borel probability measure on (B x X, B® X)
defined by setting, for each positive Borel function ¢ : B x X — R,

M) = j f (b, 2)duy (2)AB(b).

b's
We will abbreviate this by writing

N R (2.5)
JB
Lemma 2.4. a) The measure \ is T-invariant and satisfies T\ =

B.

b) Conversely, if T is invertible, then any T-invariant probability
measure on B x X such that ma\ = (3 is given by (2.5) for some
measurable family of probabilities b — vy, satisfying (2.4).
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Proof. a) The T-invariance of A can be seen by a simple computation.
For a (B ® &')-measurable function ¢ : B x X — R, one has

LXX P(T (b, 2)A(b, ) = JB L P(Th, p(b)x)dy(z)dp (D)
@9 L L @(Tb, z)dvry(z)dB(b)
1= JB L (b, )duvy(x)dB(D)

= JB . o(b, 2)dA(b, ).

In case ¢ does not depend on the variable x, since the measures v, are
probabilities, one has

|| stmares = | | corm@as
- | etz

This implies T, A = 5.

b) The probability measures v, are the conditional probabilities of A
along the fibers of . Since T is invertible, condition (2.4) follows from
the T-invariance of A\ and uniqueness of conditional probabilities. [

We quickly recall the theorem of Rohlin [16] about disintegration of
measures, which we will use below, and its relationship with conditional
expectations.

Let n be a probability measure on a standard Borel space (Y,)).
For any o-algebra Y’ = p~Y(Z) < Y corresponding to a Borel factor
p: (Y,Y) = (Z,Z), we denote by y — n) € P(Y) the disintegration
of n relative to Y'. This is a Y'-measurable map such that, for n-a.e.
yeyY, ng/ is supported on p~1(p(y)) and one has

n:Lﬁmw. (2.6)

This map y — 7)2" s unique up to a set of n-measure zero.
In addition, for any Y-measurable positive function ¢ : Y — R, for
n a.e. yeY, one has

Ewwww—jﬂmmmw

B
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The following lemma asserts that the disintegration of A with respect
to the factor 7' : B x X — B x X can be easily derived from the
distintegration of g with respect to the factor T: B — B.

Lemma 2.5. Assume that for $-a.e. be B, the map p(b) : X — X is
bijective. Then for every (B® X)-measurable and A-integrable function
¢: B x X — C and for M-a.e. (b,z) € B x X, we have

B (AT (B@2)) () = | oW plt) plie)ds] "W). 27

Proof. As explained above, for A-a.e. (b,x) € B x X, one has the
equality

E(gp]T*l(B@X)) (b,x)szXX v,z )d)\ B®X)(b,:v’).

Thus it remains to identify the measures )\ |(B8)

We note first that, since p(b) is bijective, for A-a.e. (b,r) e Bx X, the
projection 7 induces a bijection of the fiber T-(T'(b, z)) with T~ (Tb)
where the inverse is given by ¥ — (¥, p(') ' p(b)x). Denote by fip)
the measure on B x X given by the right hand side in the sought-for
equality (2.7):

L ol o ¥ ) - jBso(b',p(b'rlp(b)x)dﬁf‘l@w').

We want to show that for M-a.e. (b,x) € B x X, we have

T-1(BRX)
)\(b,x) = H(bx)-

To this end, first note that the map (b,z) — p@pe) is T-Y(B® X)-
measurable and that the measure p . is supported on T-YT (b, z)).
Secondly we we will compute the following integral I for every -
integrable function ¢ : B x X — C:

For p-a.e. b we apply Fubini’s theorem in the space (B x X,B ®
X, BB ® 1), and obtain

= || ot o) pieryinterdsy o waso)
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Using (2.4) one finds
= || ooty tapdunaasS0)as
- | L o1, o))y (2)dBT B () dB(D).

Finally, applying once more (2.4) and (2.6), one obtains

. f j f 2)dvy (2)dBT B () dB ()

_ f J o (b, x)dvy(x)dB(b) = Lxxso(b,m)dk(bw)'
B@X)

By uniqueness of the disintegration, we have the equality >\ =
Lb,z), for A-a.e. (b,x) e B x X. O

3. RANDOM WALKS ON (G-SPACES

In this chapter we collect some fundamental properties of stationary
measures which are valid in a very general context.

3.1. Stationary measures and Furstenberg measure. To each
stationary probability measure v we associate a probabilistic dynami-
cal system (BX, BX, X, TX).

Let G be a metrizable locally compact group, G its Borel o-algebra,
p a Borel probability measure on G and (B,B,3,T) the one-sided
Bernoulli shift on the alphabet (G, G, u).

Let (X, X) be a standard Borel space equipped with a Borel action
of G. Let v be a Borel probability measure on X which is u-stationary,
lLe. p*v =v.

We denote by T the transformation on BX = B x X given by, for
(b,x) € BX,

TX(b,x) = (Th,by'x). (3.1)
We denote, for n > 0, by B,, the sub-c-algebra of B generated by the
coordinate functions b;, i = 0,1,...,n, and denote by 7 : BX — B the

projection onto the first factor.

Lemma 3.1. Let v be a p-stationary probability measure on X.

a) There is a unique probability measure 3% on (BX,B® X) such
that, for anyn = 0 and any B,®X -measurable bounded function

¥,
[ etois e = [ et bomdsoit).  62)
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b) The probability measure 3~ is T™ -invariant and satisfies 7,3~ =

3.

Proof. a). For n = 0 we introduce the probability measure on B, ® X
defined by 6 = {50, ® (bo-..bu—1)xrdB(D). Since v is p-stationary,
for every n > 0, the measure 3.X; coincides with 58X on the o-algebra
B, ® X. By the theorem of Caratheodory, it follows that there is a
unique probability measure 4% on B® X which coincides with 3 on
B, ® X for every n > 0.

b). For any n > 0, one has (T%)"Y(B, ® X) < (B,;1 ® X) and, for
any bounded B,, ® X-measurable function ¢, by definition,

JBX SO(TX(b7 x))dﬁr{%l(b? :L‘) = f SO(Tbv 5515051 e bny)dﬁ(b)d’/(y)

BX
= JBX 90(b7 w)dﬁi((ba l’)

It follows that T:X3% = B¥. In addition, equation (3.2) with n = 0
gives the equality 7,.3% = 3. O

We denote by BX the completion of the o-algebra B®X with respect
to the measure 3X.

3.2. Martingales and conditional probabilities. In this section,
we associate with each stationary probability measure v on X a mea-
surable and T-equivariant family (vy)eep of probability measures on X .

The disintegration of 3% along the factor map 7, proves the equis-
tence of a B-measurable map B — P(X), b — 1, such that

Bx = JB 0 ® vpdB(D). (3.3)

In other words, for any bounded B*-measurable function ¢ on B, one

has
55 (p) = jB L (b, y)diy(y)dB(D). (3.4)

Also one has the following equality for 3¥-a.e. (b,x) € BX

E (¢lr~'B) (b, ) :J (b, y)dve(y), (3.5)
b's
where the conditional expectation is taken relative to the probability
measure ¥,

The following lemma interprets the conditional probabilities v, as
limit probabilities.
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Lemma 3.2. Let v be a p-stationary probability measure on X and
let b — vy be the B-measurable family of probability measures on X
constructed above.

a) For any bounded Borel function f on X, for B-a.e. b€ B, we
have

vp(f) = Hm (boy - - - bpsv/) (f). (3.6)

p—0

b) For 3-a.e. b€ B, we have
vy = bO*VTb- (37)
c) We have

v = JB vpdf(b). (3.8)

d) The map b — v, is the unique B-measurable map B — P(X)
for which (3.7) and (3.8) hold.

e) Conversely, for any B-measurable family b — v, € P(X) satis-
fying (3.7), the measure v given by (3.8) is u-stationary.

Proof. a). For f-a.e. b e B, we denote by v, the probability measure
Upp = bos - - by € P(X). The proof is based on an explicit formula
for the conditional expectation: for each p > 0, for any bounded X-
measurable function f, which we will consider as a function on B, for
pX-a.e. (b,z) € BX, one has

B(f'8,) (ha) = | ftu-baa)io@). 39

In fact, the right hand side of this equation is 7' B,-measurable, and
for each 7 !B8,-measurable function v, one has by (3.2),

f fdpX =f ¢(b0,...,b,,_1)f f(bo---b,_12")dv(2')dB(b),
BX B X

and (3.9) follows. The result is thus an immediate consequence of the
martingale convergence theorem, since, by definition, for S-a.e. b e B,
w(f) = E (f]7'B) ().

b) This equality follows from a) applied to a countable collection of
functions f which generate the Borel o-algebra X.

¢) It follows from (3.2) and (3.3) that for any bounded Borel function
fon X, one has v(f) =, f(x)dB¥(b,2) = §,vu(f)dB(b).

d) Let b — v} be a B-measurable collection of probability measures
on X satisfying the conditions. We will define the probability measure
A= {50, ®14dB(b) on BX and prove that A = $X. To this end, we
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compute, for any positive B,, ® X-measurable function ¢ on BX, using
the two properties (3.7) and (3.8) for the family v; and using (3.2),

o) = | j (b, 2) v} () dB(D)

J

_ j f byl by by )i (y)dB(Y)AB(D)
- L (b, bo -+ b 1) dBDB)AV(y) = X ().

J

This implies A = 6X since, by the uniqueness of disintegration, for
Bae b, one has v, = v,

) One has

[k = f J gsudB(b)du(g) = fBbo*udeﬁ(b)=vabd6(b)=
0

Remark 3.3. Whenever X s a metrizable separable locally compact
space and the action of G on X is continuous (this will always be the
case in our applications), one then has

vy = lim by - - - bpsr. (3.10)

p—0

This is the original introduction of the object by Furstenberg [8].

Remark 3.4. One easily shows that the probability measure v is p-
ergodic if and only if the probability measure BX is TX -ergodic.

We indicate a nice application of these constructions.

Corollary 3.5. Let pu be a probability measure on G, let v and V' be
two p-stationary measures on two standard Borel spaces (X, X) and
(X', X"), endowed with a Borel action of G. Then, the probability mea-
sure V" = {1, @ vydB(b) is a p-stationary Borel probability measure
on the product space X x X'.

Proof. In fact, the B-measurable family b — v} = v, ® v, of probability
measures on X x X' satisfies, for f-a.e. b e B, the equality bo.v7, =
vy O

3.3. Fibered systems over a suspension. The dynamical system
which we will need for our problem is a fibered product over a suspen-
SLOM.

Let M be a compact metrizable topological group and let 7 =
(TR, Tar) @ B x Ry x M a B-measurable map with 7z # 0. We de-
note by (B7,B7,57,T") the semi-flow obtained by the suspension of
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(B,B,5,T) using 7, defined in §2.2. We will now construct a fibered
semi-flow B™* over B".

For ¢ > 0 and for f™-a.e. ¢ = (b,k,m) € B™, we introduce the map
pe(c) of X given by, for any x € X,

pe(c)r = b;el(b,k;)_1 byt

and denote v, = 1,. We then have the following equivariance property
for the probability measures on X:

Lemma 3.6. For f7-a.e. ¢ = (b,k,m) € B™ and for every { > 0, one
has

VTZC = PK(C)*Vc-

Proof. Because of Lemma 3.2(b) and the equality Vrye = VTre(b k)b, WE
have also v = (bo - bp, (b.k) 1)« V17 c- O]

We define the semi-flow (BT’X, BTX, g7, TT’X) fibered over (B7, B, 57,TT)

as follows. We set B™X = B™ x X and

BrX = 6, ®@v.dB7(b).

BT

We denote by B™¥ the completion of the product o-algebra B™ @ X
with respect to the probability measure 37% and, for (c,z) € B™X and
¢ =0, we set

Tt;r’X(Ca ZE) = (TZ—C, pg(C)Qf) :

Lemma 3.7. For all ¢ = 0, the transformation TZ’X of B™X preserves
the measure B~

Proof. This follows from Lemmas 2.4 and 3.6. U

-1

Denote Q)% = <TZ ’X> (B™X) and denote by Q7* the tail o-
algebra of (BT’X ,BTX prX X ), that is the decreasing intersection
of sub-o-algebras oY = ﬂz;o QZ’X. Similarly, denote by Q, the de-
creasing family of o-algebras Q, = (77)~'(B") and by ¢ — S the
conditional measure of 37 relative to Q,.

We can conclude the preceding discussion with the following corollary
which is at the heart of our drift argument.

Corollary 3.8. For any 7 -integrable function ¢ : B™* — R, for
every { = 0, for 7% -a.e. (c,x) € B™X, one has

B (oY) o) = | olcnle) Tpdeladsle). @)

Proof. This follows from Lemma 2.5. U
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3.4. Measure of relative stable leaves. In order to be able to apply
our drift argument, we will need to know that the probability measures v,
give no mass to the relative stable leaves of the factor map B™* — BT.
Proposition 3.9 below will give us a useful criterion which will enable
us to prove this.

We will assume from now on that X is a locally compact metrizable
topological space and that the action of G on X is continuous. We
denote by d a metric on X inducing the topology. For (b,z) in B x X,
we denote by

Wile) = {2’ € X« lim d(py (D), py(0)2") = 0}

the stable leaf relative to (b,x). This leaf does not depend on the
choice of the metric d whenever X is compact, but may depend on d
in general. However, in all cases, one has the following proposition.
Recall that a continuous map is called proper if the inverse image of
any compact subset is compact. Denote by A, the averaging operator

on X x X given by, for any positive function v on X x X and any (z,y)
in X xX,

Au(v)(z,y) = Lv(g:v,gy)du(g)-

This operator is thus the convolution operator of the image i of the
measure 4 under inversion g — ¢g~*. We denote by Ay the diagonal in
X x X.

Proposition 3.9. Suppose the following hypothesis (HC):

There exists a function v : (X x X) N A — [0,0) such that, for any
compact subset K < X, the restriction of v to K x K ~ A s proper
and there are constants a € (0,1) and C > 0 such that A,(v) < av+ C.

Let v be a p-stationary non-atomic Borel probability measure on X.
Then for 3%-a.e. (b,x) € B x X, one has

I/b(Wb(JJ)) = (.

Hypothesis (HC) signifies that on average,  contracts the function
v at a fixed rate.

The proof of this fact follows three steps. The first step is the most
delicate, and is contained in the following lemma.

Lemma 3.10. Assume hypothesis (HC), and let v be a p-stationary
Borel probability measure such that, for B-a.e. b € B, the probability
measure vy, 1s a Dirac mass. Then v is a Dirac mass.

Proof. Let k : B — X denote the B-measurable map such that, for
[f-a.e. be B, one has
Vo = Op(p)- (3.12)
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The strategy will consist of studying the corresponding random walk
on X x X. Roughly speaking, the existence of x and the Chacon-
Ornstein ergodic theorem will ensure that this random walk approaches
the diagonal A x while the existence of v pushes the random walk away
from the diagonal. Here are the details.

For g€ G and b = (b, by,...) € B, let gb = (g, by, b1, ...). By Lemma
3.2(b) we have, for p-a.e. g € G and f-a.e. be B,

r(gb) = gr(b).
By Lemma 3.2(c), we also have the equality

V= Ky[3.

Endow B = G with the product topology. By Lusin’s theorem, for
every ¢ > 0, there is a compact subset Ky ¢ B such that (Ky) > 1—¢
and the restriction of k to Kj is uniformly continuous. Denote by K
the compact image K = k(Kp). Since the restriction of v to K x K\ A
is proper, one has

VM > 0,3ny; > 0,Yn = ny, V0,0 € B,
Vg1, ..., 9, € G such that g; - g,b € Ko and gy - - 9,0’ € Ko, (3.13)
we have v(k(gy -+ gnb),k(g1- - gnb")) = M.

We now introduce the transfer operator L, on B given by, for each
o € L'(B, B), for B-a.e. be B,

(Lipo) (b) = L eo(gb)dp(g).

Since it is the adjoint of the shift 7', L, is an ergodic operator. The
theorem of Chacon-Ornstein [4], applied to the function ¢y = 1g,,
ensures that for b outside a subset N < B of zero measure, we have
the equality

lin > ¥ (L)) = A(Kn) = 1-= (314
0<n<p

By possibly increasing the set N, we may also assume that for any
be B~ N, for any integer n > 0, and for u®"-a.e. (g1,...,9,) € G",
one has k(g1 -+ - gnb) = g1+ - gnk(b).

Suppose by contradiction that v is not a Dirac mass. Then the set

E = {(b,t) e B x B:k(b) # r(t))}

is of zero measure with respect to S ® (3. Therefore we can find points
by and bf, outside of N such that

k(bo) # k(). (3.15)
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We now use condition (HC). It implies that for all n > 0, one has
n n n—1
Alv<av+ (14 +a")C.
For every x # 2’ € X, we deduce the upper bound

1 1
- AM)(z,2") € ———
poggf p)(e, o) < Sr—s

We will now apply this upper bound to the points x = k(by) and
' = k(by). Fix M > 0. Note that, thanks to (3.14), there exists an
integer pg = nys such that for all p > po,

1 1
= > (Lplg)(bo) = 1—2eand = > (LNl,)(by) > 1 — 2.

p 0<n<p p 0<n<p

p 1

As a consequence,

! Z (Ajv)(k(bo), r(bp)) = <1 — 4e — @) M.

p 0<n<p p
Taking a limit as p — o0 and using (3.16) we obtain
(1—4e)M < C/(1 —a).

Since M was arbitrary, we get a contradiction as soon as ¢ < 1/4.
Therefore v is a Dirac mass. 0

The second step is the following lemma:

Lemma 3.11. Under assumption (HC), let v be a non-atomic pu-
stationary probability measure on X. Then for B-a.e. b € B, the
probability measure v, s non-atomic.

Proof. The strategy consists, after several reductions involving the er-
godicity of 3, in constructing a stationary probability measure on a
space Y on which one can apply Lemma 3.10.

Suppose by contradiction that the set D = {b € B : 1, has atoms} is
of positive measure. Since v, = b7y, the set D is T-invariant. Since
B is T-ergodic, this means that 5(D) = 1. The same argument also
shows that the maximal mass M, of an atom of 1 is a S-almost surely
constant function and that the number N, of atoms whose v, measure
is my, is also a.e. constant. We denote this mass by m( and this number
of atoms by Ny. Denote by v, the probability measure with Ny atoms
of v, each of mass mg. We also have the equality v, = bg.v/,. By
Lemma 3.2(e), the probability measure v/ = {,14dB(b) on X is also
p-stationary and one can write v as the sum of mgr/ and a stationary
measure of mass (1 —mg). By assumption, ¢/ is also non-atomic, and
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by Lemma 3.2(d), the measures v are the limit measures of v/, and
thus we can henceforth assume that v = /.

Let Sy, denote the group of permutations of {1,..., Ny} and let YV’
denote the quotient X0 /Sy, and p : XM — Y the projection. The
group G acts naturally on Y. We check that Y satisfies hypothesis
(HC). Let v denote the function and let a,C denote the constants
which appear in hypothesis (HC) for X and introduce the map w : Y x
Y N A — [0,00) given, for y = p(x1,...,25,) and 3 = p(z],. .., 2,)
with z;, 2} € X, by

w(y,y') = min v (g, 1))

1<i<Ng
O'ESNO

This map w is certainly continuous and proper on K x K ~ A for any
compact subset K < Y. It also satisfies an upper bound

Ay (w) < aw + CNyl.

Introduce the family b +— vy = p,(2N°) of probability measures on Y.

We also have the equality ] = bo.1/7,. By Lemma 3.2(e), the proba-
bility measure v = |, p,(v2"°)dB(b) is p-stationary. By construction,
for f-a.e. b € B the measure v} is a Dirac mass. Lemma 3.10 then
shows that v is also a Dirac mass d,,. Therefore, for S-a.e. b e B,

vy = 6,, and hence v is of finite support, a contradiction. O
The last step does not use assumption (HC).

Lemma 3.12. Let v be a p-stationary probability measure on X such
that, for B-a.e. b e B, the measure v, is non-atomic. Then for BX-a.e.

(b,x) € B x X, vp(Wy(z)) = 0.

Proof. Consider the transformation on Bx X x X given by, for (b, z,2’) €
BxXxX,

R(b,x,2') = (Th,by 'z, by'a).
Lemma 3.1 and Corollary 3.5 show that R preserves the probability
measure

A= J (Sb®l/b®ybdﬁ<b).
B
Denote
Z ={(byz,2") € Bx X x X : lim d(p,(b)x, p,(b)x") = 0}
p—o0
and, for (b,x,2') € B x X x X, write ¢(b,x,2") = d(z,2’). By
assumption, for [-a.e. b, the measure v}, is non-atomic, and hence

vy, ® 1 gives no mass to the diagonal X x X. Therefore the func-
tion ¢ is A-a.e. nonzero. By construction, for A-a.e. z € Z, one has
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lim, ,, ¢(RP(z)) = 0 and thus, by the Poincaré recurrence theorem,
A(Z) = 0, as required. O

Proof of Proposition 3.9. Follows from Lemma 3.11 and 3.12. U

4. CONDITIONAL MEASURES

In this chapter we collect certain properties of conditional measures
of a probability measure for a Borel action of a locally compact group.

4.1. Conditional measures. We recall the construction of conditional
measures.

Let R be a locally compact separable metrizable group and (Z, Z)
a standard Borel space with a Borel action of R. Let A be a Borel
probability measure on Z. Suppose that the stabilizer subgroups for
the action of R on Z are discrete. We will now explain how the action
of R on Z makes it possible to ‘disintegrate the measure A along R-
orbits’, to obtain measures on R which are unique up to normalization.
More precisely:

Let M(R) denote the space of positive nonzero Radon measures on
R and let M;(R) = M(R)/ ~ be the space of such measures up to
scaling: two Radon measures oy, 09 are called equal up to scaling, and
we write 01 >~ 09, if there is ¢ > 0 such that o5 = coy. We can choose a
representative of each equivalence class: we fix an increasing sequence
of compact subsets (K,) of R which cover R and choose o so that
o(K,) = 1, where n is the smallest m for which o(K,) > 0.

We say that a Borel subset ¥ ¢ Z is a discrete section of the action
of R if, for any z € Z, the set of visit times {r € R : rz € X} is discrete
and closed in R. The main theorem of [12] shows that there is a discrete
section X for the action of R such that R = Z.

We choose a discrete section X for the action of Z on R and denote
a:RxX — Z (r,z) — rz. The measure a*\ on R x X defined, for
any positive Borel function f on R x ¥, by

() = f S 1) ), (41)

z (r,z")ea=1(z)

is a o-finite Borel measure on R x . This follows from the fact that
for any compact subset C' = R, and any z € Z, the set (C' x X)) na™!(z)
is finite.

We denote 7y, : R x ¥ — ¥ the projection on the second factor, and
by Ay the image under 7y, of a finite measure on R x ¥ equivalent to
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a*X. We therefore have, for any positive Borel function on R x Z,

GA(f) = L L Fr, 2)dos (2)(F)dAs (2). (4.2)

Note that the conditional measures ox(z) are also Radon measures on

R. This results once more from the finiteness of the sets (C' x X) n
-1

a '(2).

We denote by t, the right-translation by an element r € R.

Lemma 4.1. Let ¥ be a discrete section for the action of R on Z. For
As-a.e. z € X, for all r € R such that rz € 3, we have

05(z) > tros(rz).

Proof. The difficulty comes from the fact that one wants this condition
to be satisfied for an uncountable family of elements r € R. To deal
with this difficulty, it suffices to remark that there is a countable family,
indexed by ¢ € N, of Borel sets ¥; < ¥, and Borel maps r; : ¥; — R,
such that

{(z,r)eXx R:rze X} = U{(z,rz(z)) cz € X,
1€eN
and such that, for Ay-a.e. z € 3;, 0x(2) = t,,2)x0n(ri(2) 2). O

Proposition 4.2. Consider a Borel action with discrete stabilizers of a
locally compact separable metrizable group R on a standard Borel space
(Z,Z).

Then there is a Borel map o : Z — M;(R) and a Borel subset E < Z
such that N\(Z ~\ E) = 0 and such that, for any discrete section ¥ < Z
for the action of R, for As-a.e. zy € X, for every r € R such that
rzZp € E,

0(20) ~ trx05(r2p).
This map o is unique up to a set of A-measure zero.
For every r € R and every z € E such that rz € E, we have

0(2) ~ ty(o(rz)). (4.3)

The measure o(z) is called the conditional measure of z along the
action of R.

Proof. We choose a discrete section ¥y such that Ry = Z. By Lemma
4.1, for M-a.e. z € Z, if one writes z = rzy with r € R and zy € Xy, the
measure o(z) = t,los,(20) € M;(R) does not depend on choices, i.e.
different choices of zy only affect it by rescaling.

This defines the map o. The asserted property of o follows from the
Lemma applied to 3 U Xy which is also a discrete section. Assertion
(4.3) follows. Uniqueness of o is clear. O
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The use of conditional measures in geometric ergodic theory is based,
among others, on the work of Ledrappier-Young. Its use in problems of
measure classification on homogeneous spaces has appeared in [3] and
earlier in work of Katok and Spatzier.

4.2. Disintegration along stabilizers. In this section we explain
how to exploit the invariance properties under translation, of condi-
tional measures along an action.

Denote by Gr(R?) the Grassmannian variety of R%. The following
proposition asserts that the disintegration of A to conditional mea-
sures along the stabilizer gives probability measures invariant under
the stabilizer. In a topological group S, we denote by Sy the connected
component of the identity.

Proposition 4.3. Let (Z, Z) be a standard Borel space endowed with
a Borel action of R? with discrete stabilizers, and let X be a Borel
probability measure on Z. For A-a.e. z € Z, we denote by o(z) the
conditional measure of z for the action of R?, and

V,={re RY trx0(2) = 0(2)}o,
and by
)= J A dA(z)
z

the distintegration of \ along the map Z — Gr(R?), z — V.. Then for
A-a.e. z € Z, the probability measure X\, is V,-invariant.

This proposition is a consequence of the following three lemmas. The
first one uses notation which are different from those used in Proposi-
tion 4.3.

Lemma 4.4. Let (Z, Z,\) be a Lebesgue space, (Y,Y) a standard Borel
space equipped with a Borel action of R, f : Z — Y a measurable map
and I : Z — Gr(R?Y) a measurable map such that for \-a.e. z € Z, 1(z)
stabilizes f(z).

Denote by A = §, A\.d\(2) the disintegration of A along I.

Then for A-a.e. z € Z, for \,-a.e. z' € Z, the element f(2') is
I(2)-invariant.

Proof. In fact, for M-a.e. z € Z, for A\,-a.e. 2/ € Z, we have from the
definition of conditional measures, that I(z) = I(z’) and hence, by
assumption, f(2’) is I(z')-invariant. O

The second lemma uses once more the notation of Proposition 4.3.
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Lemma 4.5. Let (Z, Z) be a standard Borel space equipped with a Borel
action of R? with discrete stabilizers, and let X\ be a Borel probability
measure on Z. Let (Yo, Vo) be a standard Borel space and let p : Z — Y,
be a measurable map for which there exists a subset E < Z such that
MZ N E) =0 and for every z € E and r € R? with rz € E, we have
©(2) = ¢(rz). Denote z — o(z) € M(R?) the conditional measure at z
of X along the R%-orbits, and denote A = §, A:dX\(2) the disintegration
of X\ along ¢. Then, for M\-a.e. z € Z, for \,-a.e. 2/ € Z, o(2') is also
the conditional measure of 2 of \. along the action of RY.

Proof. We adapt the argument of transitivity of the disintegration of
measures in this context.

Recall the gist of the argument in the classical context: we are given a
Lebesgue space (A, A, «), and two standard Borel spaces (B, B), (C,C)
along with measurable maps f : A — B and g : B — C. Then
almost surely, the conditional measures of o along f coincide with the
conditionals along f of the conditionals of o along go f. More precisely,
denote o = {, apdav(a) and a = §, awdf,(a’), the disintegrations of
respectively along f and along g o f. We then have, for a-a.e. a, the
equality 8, = {, axdB.(a’) which gives the disintegration of j3, along
f. O

Lemma 4.6. Let (Z,Z) be a standard Borel space, equipped with a
Borel action of RY with discrete stabilizers, W a linear subspace of
R?, X a probability measure on (Z,Z), and z — o(z) € M(R?) the
conditional measures at z of X along the action of R%. Suppose that for
A-a.e. z € Z, o(z) is invariant under translations by W. Then X is
also invariant under the action of W.

Proof. As in §4.1, denote by ¥ a discrete section for the action of R?
such that RYY = Z and let a be the map a : R x ¥ — Z, (r,2) — rz.
By assumption the measure a*\ is W-invariant, and hence so is the
measure \. U

Proof of Proposition 4.3. Applying Lemma 4.4 with Y = M(R?), f =
o and I(z) = V., and then Lemma 4.5 with Yy = Gr(R?) and p(z) = V..
We find that, for M-a.e. z € Z, for \, a.e. 2’ € Z, the conditional
measure o,(2') of A\, for the action of RY on Z is V,-invariant and
hence, by Lemma 4.6, that the measure A, is V,-invariant. O

5. RANDOM WALKS ON LIE GROUPS

In this chapter we introduce, for a strongly irreducible random walk, a
dynamical system (BT, B7, BT, T7) which is a suspension of the Bernoulli
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system (B, B, 3,T). We then study the asymptotic behavior of the ran-
dom walk in order to be able to control the drift in §7.1.

5.1. Stationary measures on the flag variety. Let G be a real
semisimple virtually connected Lie group, that is it has a finite number
of connected components.

Definition 5.1. We say that a Borel probability measure on G is
Zariski dense if the semigroup I, generated by the support of v has
a Zariski dense image in the adjoint group Ad(G) < GL(g).

Let p be a Zariski dense probability measure on GG with compact
support. We also denote by (B, B, 3,T) the two-sided Bernoulli shift
on the alphabet (G, G, i), where G denotes the Borel o-algebra of G.

Let P < G be a minimal parabolic subgroup. Write P = ZU, where
U is the unipotent radical of P and Z is a maximal reductive subgroup
of P. Denote by A the Cartan subgroup of Z and by A" the Weyl
chamber of A associated with an order corresponding to the choice
of P. Choose a Cartan involution of G which leaves Z invariant and
denote by K the maximal compact subgroup of GG consisting of points
fixed by this Cartan involution.

Let V' be a real representation of G of dimension d which is strongly
irreducible, that is, its restriction to the connected component of the
identity in G is also irreducible. Fix once and for all a K-invariant
Euclidean norm | - || on V' such that the elements of A act on V in a
symmetric fashion.

Denote by x the largest weight for A in V, let V; = V, be the
corresponding weight space in V', so that PV < Vf, and let dy =
dim Vj. Denote by V{ the subspace of V' which is the sum of the other
weight-subspaces, so that V' = 1, @ Vj.

The following proposition is essentially due to Furstenberg and Kesten
[10]. Denote by Grg, (V) the Grassmannian variety of dy-planes in V.

Proposition 5.2. There are B-measurable maps B — Grgq,(V), b — V,
and B — Grg_q,(V), b — V}/, such that:

a) For f-a.e. b € B, any accumulation point m of the sequence

(ﬁ) , has its image Im(m) = Vj, and is an isometry on

ker(m)*t.
b) For B-a.e. b € B, any accumulation point m' of the sequence

<ﬁ> , has ker(m') =V and is an isometry on ker(m’)*.

c) For any hyperplane W < V', we have f({be B : V;, c W}) = 0.
d) For any nonzero v eV, we have B({be B :ve V)}) = 0.
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e) For any W e Grg,(V'), we have f({be B: W nV] #0}) = 0.
f) For B-a.e. b€ B, the limit Ay = lim, o, ~1og |by - - - by,| exists
and s positive.

Proof. For a), ¢), and f) see [8] and [1]. The fact that the accumulation
points m are of rank dy = dim V) is due to Goldsheid and Margulis
[11]. It can also be deduced from the existence of loxodromic elements
in I',. The fact that the restriction of m to the orthocomplement of its
kernel is a similarity is valid for any matrix 7 of rank dy in the closure
R.G < End(V) . One easily verifies this assertion thanks to the Cartan
decomposition G = KATK.

Assertions b) and d) are deduced from assertions a) and c¢) by passing
to the dual representation.

Assertion e) is deduced from d) by passing to an irreducible sub-
representation of the representation of G on /\d0 V' generated by the
line of highest weight A® V. O

When applying Proposition 5.2(a) to a suitable representation, one
shows that there is a unique B-measurable map £ : B — G/P such
that, for f-a.e. be B,

£(b) = bo&(T).
The image measure &, is therefore the unique p-stationary measure

on G/P.

Remark 5.3. Certainly the spaces Vi, and V} of Proposztzon 5.2 depend
on the boundary map &. For b € B, we denote by b the element b =
(bt b7h,...) of B. For B-a.e. be B, we have Vi, = £(b)Vy and V) =
E(b)VY. We also have Vi, = byViry and V; = boVih,.

5.2. The dynamical system B". We want to construct an R x M-
suspension (BT, T7) of the Bernoulli shift associated to p which enables
us to estimate the asymptotic behavior of the induced random walk in
an irreducible representation of G. We initially construct a function
0:B— Z.

Let s : G/P — G/U be a Borel section to the projection G/U —
G/P. In practice, for constructing such a section, one can utilize Iwa-
sawa decomposition or Bruhat decomposition. An explicit formula for s
is not very important for us, because our constructions will not depend
on the choice of the section s. However, for simplicity, suppose that the
section is constructed with the aid of Iwasawa decomposition. More
precisely, write M = Z n K. The Iwasawa decomposition G = KP
makes it possible to choose a section s such that, for every k € K,

s(kP) = km(k)U with m(k) € M. (5.1)
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We will say from now on that the function s has values in K mod M.
The group Z acts by right multiplication on G/U.

We denote by o : G x G/P — Z the Borel cocycle given by, for every
ge G and x € G/P,

gs(x) = s(gr)o(g,x).

We denote by 6 : B — Z the B-measurable map given by, for p-a.e.
be B,

0(b) = a(bo,&(TD)).

We introduce the bounded function fg : B — R given, for S-a.e. b e B,
by

Or(b) = log [x(6(b))]- (5.2)
We will use the Furstenberg formula for the first Lyapunov exponent
S RACED (53)
B

(see [8], see also [7, Thm. 1.8]), and the positivity of the first Lya-
punov exponent (Proposition 5.2(f)). We then have, by Lemma 2.1,
two bounded B-measurable functions 7 : B — R% and ¢ : B — R
such that

(QR:TR—FQOOT—QO. (54)
Denote by 0,,(b) the M-component of 8(b), and 75;(b) = 05,(b)~! and
7= (TR, 7m) : B — R x M. (5.5)

It is the suspension B7 associated with this function 7 which we will
use below.

This suspension allows us to control the norm of the words which
appear in the formulas for the conditional measures, thanks to the
following lemma.

Lemma 5.4. For [-a.e. b€ B, for every w € V,, we have
b 'w| = e~ %O |y, (5.6)
Proof. By the definition of 6, for $-a.e. b € B, we have
bos(£(Th)) = s(£(b))0(b)-

Since w is in Vj, we can write w = s(£(b))v with v € V5. We note that
this expression makes sense because U acts trivially on V. Since the
norm is K-invariant, we have

|66 "w]| = oo s(€(®))v]| = 16() vl = e v = e~ uw].

l
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5.3. Behavior of random walks. We continue our study of the as-
ymptotic behavior of the random walk on G.

We will use Proposition 5.2 to control the drift in Lemma 7.3, in the
form of the following Corollary.

Corollary 5.5. a) For any a > 0, there are ro = 1, qo = 1, such
that for any v eV ~\ {0}, we have

1
ﬁ{ac—: B:Vq > ao, lag - ago] > ;O|aq~--ao|||v|} >1-a.

b) For every a > 0 and n > 0, there exists qo = 1, such that, for
every v € V ~ {0}, and every W € Gry,(V'), we have

plae B :Vq=q, dRay---agv,a,---aW) <n} =1-—a.

In order to prove the corollary, we will need the following lemma in
linear algebra. Denote

O4, (V) = {m € End(V) : rank(m) = dy and 7|(er )+ is an isometry}.
This is a compact subset of End(V).

Lemma 5.6. a) For anye > 0, there are rqg = 1, € > 0 such that,
for any g € GL(V) and m € Og, (V) with |g — || < &, for any
v eV ~ {0} with d(Rv,kerm) = ¢ we have |gv| = %HUH
b) For any e > 0 and n > 0, there is € > 0 such that, for every
g € GL(V) and m € Oy (V) with |g — 7| < € we have, for
all v e V~A0} and W e Gry(V), if dRv,kerm) = ¢ and
inf ew (0} d(Rw, ker ) > €, then d(Rgv, gW) <.

Proof. a). Otherwise, we can find sequences 7, in Og4,(V), g, € GL(V)
and v, € V with |v,| = 1, such that ||g, — m,|| — 0, d(Rv,, kerm,) >
e and |gnv,|| — 0. By compactness, we can assume by passing to
subsequences that the 7, converge to m € Og, (V') and v,, converge to
veV, |v| = 1. Our assertions imply that v is simultaneously in ker 7
and is of distance at least € from ker 7, a contradiction.

b). The argument is similar to the one used for proving a). O

Proof of Corollary 5.5. a) By Proposition 5.2(d), for any « > 0, there
is € > 0 such that for any v € V' ~ {0},

plae B:d(Rv,V])=ze} =1—a/2.

On the other hand, by Proposition 5.2(b), for any ¢ > 0, there is
go = 1 such that

a--.ao

5{aeB:Vq>qo,d< 1

lag---aol”

OdO(V)> < 5’} >1-—a/2.
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It now suffices to apply Lemma 5.6(a).
b) By Proposition 5.2(e), for any « > 0, there is € > 0 such that for
W e Grg,(V),

B{aeB: inf d(Rw,V}) 26} >1—a/2.

weW~{0}

It suffices to apply, as above, Proposition 5.2(b) and Lemma 5.6(b). O

6. HOMOGENEOUS SPACES OF SEMI-SIMPLE GROUPS

This chapter collects diverse ergodic properties of the random walk on
homogeneous spaces. These properties will enable us in §7 to develop
the exponential drift argument.

6.1. Notations. For the proofs of Theorem 1.1 and 1.3 we will use the
same method, and common notation.

WE KEEP THE FOLLOWING NOTATION FOR THE REST OF
THE PAPER.

In the first case, i.e. the case of Theorem 1.1, G is a connected
quasi-simple Lie group and A is a lattice in G. We denote by X the
quotient G/A and by R the Adjoint representation of G on V' = g, the
Lie algebra of G.

In the second case, i.e. the case of Theorem 1.1, G is the Zariski
closure of I', in SL4(R). We denote by X the torus T? and by R the
representation of G on V = R?, that is, the natural action by matrix
multiplication, which we can think of as the Lie algebra of T¢.

In both cases, G is a semisimple Lie group (we will give more details
about this in Lemma 8.5), the representation R of G on V is strongly
irreducible, p is a compactly supported probability measure such that
the subsemigroup I' = I',, generated by supp p is Zariski dense in G, v
is a non-atomic p-stationary Borel probability measure on X and 7 is
the map given by (5.5). We also suppose that G is not compact (the
very easy case in which G is compact is discussed in Lemma 8.4).

The proof, which we will give from here to the end of the paper,
relies on the properties of the dynamical systems

(BX,BX,BX,TX) and (BT7X’BT7X’/BT,X,T’T,X)

which we introduced in sections §3.1 and §3.3, for these values of

G, V,X,1,....

6.2. Recurrence off the diagonal. We now verify condition (HC)
of §3.4, which will allow us to apply Proposition 3.9.



TRANSLATION OF PAPER OF BENOIST-QUINT 31

For any x € X, denote by r, the radius of injectivity at x, that is the
upper bound of » > 0 such that the map V — X, w — e"x is injective
on the ball B(0,r).

Proposition 6.1. In the two cases of §6.1, the averaging operator A,
on X x X satisfies condition (HC).

The proof of this proposition uses ideas of Eskin and Margulis [6]. We
note the contrast between Proposition 6.1 and Theorem 1 of LePage
in [14], who shows that on the flag variety, a positive power of the
distance is contracted under convolution. We will need the following
two lemmas. We will denote by the same notation A, all the averaging
operators of ;i on every space on which I', acts. The first lemma,
due to Eskin and Margulis, exhibits a function on which A, acts by
contraction.

Lemma 6.2 ([6]). Let V = R? and let G be a semi-simple Lie subgroup
of GL(V) such that, for any nonzero G-invariant subspace V' < V,
the image of G in GL(V') is not compact. Denote by ¢ the function
0V~ A{0} - R* v |v|7t. Then thereisag <1, 6 > 0 andng > 1,
such that

AZ(SO§) < ale®, for any & < & and n = ny. (6.1)

Proof. This is Lemma 4.2 of [6]. It is proved by developing the second
order term of e~?1°8(lgvl/I*l) and using the theorem of Furstenberg and
Kesten on the positivity of the first Lyapunov exponent \;. O

Whenever X is noncompact, we will need a variant of a Lemma of
Eskin and Margulis which shows the existence of a proper map on X
which is contracted, with a fixed constant, by the averaging operator.

Lemma 6.3. Let G be a real semisimple connected Lie group without
compact factors, let A be a lattice in G, let X = G/A, and let 1 be a
compactly supported probability measure on G whose support generates
a Zariski-dense semigroup. Then there is a proper function u : X —
[0,00) and constants a < 1,C' > 0 and k > 0, such that

Ay(u) <au+C (6.2)

and, for every r € X,
u(z) =r " (6.3)

T

Proof. Since the center of G intersects A in a finite-index subgroup,
we may assume with no loss of generality that G is adjoint and hence
linear. In §3.2 of [6], a proper function u satisfying (6.2) is constructed
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explicitly. Due to this construction, if we regard G as a group of ma-
trices, there exist constants Cy > 0 and kg > 0 such that, for every
x = g\ € X, we have the lower bound

u(z) = Comin |gv[™. (6.4)
yeA

Therefore it suffices to note that there exist constants C; > 0 and
k1 > 0 such that, for every z = gA € X, we have the lower bound

e
ry = C} (min |g7|) : (6.5)
yeA

In fact, if h = e is a nontrivial element of G with hx = z, then for
any ye A, § = v g thgy is in A and we have

[h— el =0 —e| [Ad(gy) "]~

Thus, when denoting Co = mingep- (e} |6 — €|, we have

-1
min |h—e| = Cy (min HAd(Q’Y)l‘D :
yeA

hx=x,h#e
The lower bound (6.5) follows. O

Proof of Proposition 6.1. First we remark that if the condition (HC)
is satisfied for some power p*", then it is satisfied for pu. We choose
ag < 1,6 € (0,1) and nyg = 1 as in Lemma 6.2. By replacing p with
1*™ ) we can assume that ng = 1. Let § < .

For any x # 2’ in X, we denote by r, ,» = %min(m, Twr ),

Y

do(z, 2') — |w| if 2" = e¥x with w e V, ||w| < ryu
’ To otherwise
vo(x, 2') = do(x,2')~°.
Whenever X is compact, the function v = vy can be used. In the
general case, we introduce the function u and constant a < 1,C' > 0

and k£ > 0 given by Lemma 6.3. We may suppose that a = ag. We
set Ry = SUPgequpp, max (|R(g) |, [R(g)~"[) . If one chooses § <  and

é
Co = %, then the function v, given for any = # 2’ in X by

v(z,2') = vo(x, 2') + Co(u(z) + u(z)), (6.6)

satisfies condition (HC).
In fact, if do(x,2') = Ry 'r, then by (6.3),

(A, v0)(z,2) < Rﬁ%;‘}

< 2R§5(r;6 + 7’;,5) < 2R35(u(1‘) + u(z")).
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On the other hand, if do(z,2") < Ry 744, then, when writing 2’ — %z
with w e V| ||w| < r,., we have, for any g € G of norm at most Ry,
(g, ga’) = [gw| ™,
and hence, by (6.1),
(Avo)(,2") < aolw|~* = agvo(w, a').
In both cases, we have therefore the upper bound
(Auvo)(z,2') < aguo(w, o) + RE (u(x) + u(z)).
Inequality (6.2) and the definition (6.6) of v thus give the upper bound
(A)(z,2") < aguo(z, 2') + (RE + agCy) (u(z) + u(z')) + 2CC,

1
< zaov(x, z') + 2CCy,

which yields property (HC). O

6.3. Recurrence off of finite orbits. In this section we exhibit the
phenomenon of recurrence away from finite orbits for random walks on
X, analogous to the phenomenon of recurrence to compact subsets in

6].

Proposition 6.4. In the two cases of §6.1, let F' be a finite I'-invariant
set. Then for any € > 0, there is a compact subset K. of F° such that
for any x € X \\ F, there is a constant M = M,, which can be chosen
to be uniform for x in a compact subset of X ~\ F, such that for all
n=M,

AZ(le) = 1-— E.

We will need the following two lemmas.
The first translates the phenomenon of recurrence to compact sub-
sets, due to Foster, and utilized in this context by Eskin and Margulis.

Lemma 6.5 ([6]). Let H be a locally compact group acting continuously
on a locally compact space Y, and let p be a Borel probability measure
on H.

Suppose that there is a proper map f :Y — [0,0), and constants
a<1,b>0 such that A,(f) <af +b.

Then for any € > 0 there is a compact K <Y such that for every
yeY, there is a constant M,, which can be chosen to be uniform in y
fory in a compact subset of Y, such that for alln > M,

AZ(lK) = 1-— E.

We recall the short proof of this lemma.
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Proof. By hypothesis, we have for each n > 1,

A”(f) a"f+b(1+ -a" ") <a"f+ B,

where B = . Since f is proper, we can choose as our compact subset

2B
K = {zeY:f(z)é—}

€

which impies that 1% < 5% f. Therefore we have the upper bounds

ea" €
Al (1gce —A” < — = < ¢,
whenever n is sufficiently large so that f(y) < Z. O

The second Lemma is a variant of Proposition 6.1.

Lemma 6.6. In the two cases of §6.1, let F < X be a finite I'-invariant
subset. Then there is a proper map up : X N\ F — [0,00) and constants
a<1,C >0 such that

Ay(up) < aup + C. (6.7)

Proof. We proceed as in the proof of Proposition 6.1. We choose a¢ < 1,
d > 0 and ny > 1 as in Lemma 6.2. By replacing p with p*m if
necessary, we may assume that ng = 1. Let § < ;.

Let 7o > 0 be a real number such that for every zy € F, there

is 7o < irs, such that for every pair zg,2{ of distinct points of F,
ro < %d (zg, ). For any x € X, we denote
do(z) = |w] if z = €Yz with g € F and |w| < r
0 o otherwise
and

uo(x) = do(x)~°
Whenever X is compact, the function urp = ug satisfies the require-
ments. In the general case, the function up = ug + v as in Lemma 6.3
satisfies the requirement. The presence of u is needed only to assure
the property of upr. To check that up satisfies the requirements, we set

Ry = sup max (|R(g)|, |R(9)™"])-

gesupp p
On one hand, if do(z) = Ry'r then we have

(A#UO) R05 76.

On the other hand, if dy(z) < Ry'ro then, when writing 2 = e¥z with
xo € F', we have for every g € G of norm at least Ry,

do(gz) < ||lgq] ~°,
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and thus, by (6.1),

(Ayuo)(x) < [w]|™ = aguo(w).
In all cases, we have the upper bound

(Auuo)(z) < aguo(z) + R3°ry°.

This inequality and that of Lemma 6.3 provide the sought-for inequality
concerning ug. U

Proof of Proposition 6.4. This follows from Lemma 6.5 applied to Y =
X N\ F and to the function f = ur of Lemma 6.6. U

6.4. Stationary probability measures on G/H. In order to exploit
the drift argument, we will need, in the first case of §6.1, the following
proposition which is of independent interest.

Proposition 6.7. Let G be a connected semi-simple real Lie group
without compact factors, p a compactly supported probability measure
whose support generates a Zariski dense subsemigroup in G, and H <
G a unimodular subgroup. If there exists a p-stationary probability
measure on the homogeneous space G/H, then the Lie algebra of H is
an ideal in the Lie algebra of G.

For the proof, we will use the following lemma.

Lemma 6.8. Let V = R, let G be a semi-simple subgroup of GL(V)
with no compact factors, and let p be a compactly supported Borel prob-
ability measure on G generating a Zariski dense subsemigroup. Then

any p-stationary probability measure v on V' is supported on the sub-
space VE of G-fized points in V.

Proof. Suppose by contradiction that there is a p-stationary probability
measure v on V which is not supported on V¢. Then there is an
irreducible sub-representation W < V of dimension at least 2 such
that the projection of v on W is not a Dirac mass at 0. This projection
is also p-stationary. Thus we may assume that V is irreducible and G
is not compact.

We will use again the Bernoulli system (B, B, 5,T) with alphabet
(G, i) and the fibered dynamical system B xV equipped with the trans-
formation R : (b,v) — (Tb, byv) which leaves the probability measure
[ ® v invariant.

The theorem of Furstenberg and Kesten about the positivity of the
first Lyapunov exponent ([10], see also [7], chapter 1) ensures that
for f-a.e. b € B, there is a subspace W, & V such that, for any
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v € V.~ W,, the norm |b,---byv| converges (exponentially fast) to
infinity. We introduce the R-invariant set

Z ={(bv)e BxV :v¢ Wy}
and the function ¢ on Z given by
(b, v) = |lv].

Since v is p-stationary, and since p is Zariski dense in G' and the action
of G on V is irreducible, v does not give positive mass to any proper
subspaces of V. We therefore have (8 ® v)(Z) = 1. By construction,
for f®v-a.e. z € Z, we have

lim ¢(R"z) = oo,

n—o0

which contradicts the Poincaré recurrence theorem. O

Proof of Proposition 6.7. We denote by v a pu-stationary probability
measure on G/H, denote by g the Lie algebra of G, by b that of H,
set r = dimb, V = S?(/\"g) and let v be a nonzero point of the line
SN B V.

Since H is unimodular, H is contained in the stabilizer N of the point
v. Therefore the orbit Gv =~ G/N also admits a stationary measure:
the image v/ of v under the projection G/H — G/N. By Lemma 6.8,
V' is supported on the subspace V& of G-fixed vectors. Thus N = G.
Since N normalizes b, b is an ideal of g. O

6.5. Horocycle flows. The goal of this section is to construct an ac-
tion of Vo which plays a role analogous to the one played by the horocy-
cle flow on compact hyperbolic surfaces, in the sense that the orbits of
this action are contained in the stable leaves relative to the factor map
B™X — BT and they are uniformly dilated by the semi-flow T7.

We keep the notations of §6.1.

Definition 6.9. The horocycle flow is the action ® of Vi on B™X given
by, for any v e Vy and f7-a.e. ¢ = (b,k,m) € B™ and every x € X,

O, (c,z) = (c,exp(D.(v))x), (6.8)
where D.(v) is the element of V. given by
D.(v) = "= ?®s(£(b))mu. (6.9)

Recall that s, &, ¢ were defined in §5.1 and §5.2. Geometrically, the
flow @ ‘translates every point (¢, x) in the direction of V.". We note that
at this stage in the argument, we do not know that this flow preserves
the probability measure 57X: we will know this after having proved
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Theorem 1.1. This difficulty is certainly a source of complications which
are the heart of the matter.

The fundamental property of the horocycle flow is its relationship
with the flow (77 )0 on BT,

Lemma 6.10. In the two cases of §6.1, for any v e Vi and any ¢ = 0,
we have, for f7-a.e. c€ B and any v € X,

7% 0 dy(c, ) = Bpmey 0 T (¢, 7). (6.10)
Proof. Denote by S the transformation of B x R x M x X given by
S(b, k,m,x) = (Tb, k — 1=(b), Tar(b)m, by ).

We note that B™ is the set of points in B x R, x M x X for which
S preserves this product.
Introduce the flow TZ’X defined on B x R x M x X by

TZ’X(b,k,m,x) = (b,k+ {,m,x).
The flow TZ’X is given, for ¢ > 0 and (b, k,m,x) € BT by
7% (b, kym, ) = (8P o TP ) (b, kym, x)

where p > 0 is the unique integer for which this expression is in B™¥.
We then define an action ® of 1 on B x R x M x X by the formula:

~

O, (b, k,m,x) = (b, k,m,exp(Dpkm)(v))T)

where
Dy (v) = 7¢O s(£(b))ymu. (6.11)

Before continuing we prove the following equality: for S-a.e. b € B,
every (k,m) € R x M, and every v € V), we have

bg " Dioykm) (V) = Disgojem) (v) (6.12)
where
S(b,k,m) = (Th, k — 1r(b), Tar(b)m). (6.13)
To this end, we compute as in Lemma 5.4,
by Dipeamy (v) = € 72005 5(€(b))mv
— F PO g (£(TD))A(b) " Lmu
= O O5(¢(T0))0as (),
and hence, using (5.4),
by " Do jemy(v) = eF 0= g (£(Th))70s (b)mw
= Ds(,k.m)(v)-
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We deduce, thanks to (6.12), the following two equalities

Sod,=d,08 (6.14)

and
T7* o ®y = vy 0T,F (6.15)
which proves that the flow ®, satisfies (6.10). O

6.6. Horocyclic conditional probabilities. In this section we intro-
duce the ‘horocyclic conditional function’ and prove that this function
1s measurable for the tail o-algebra.

We keep the notations of §6.1 and also denote by t, the translation
of Vo by an element v € Vy. We write o : B™* — M;(Vp) the map
given by ‘conditional measures of the probability measure $7% with
respect to the horocyclic action of V.

Lemma 6.11. In the two cases of §6.1, there is a Borel subset E
B™X such that f7%(E¢) = 0 and such that, for any v e Vy and (c,x) €
E for which ®,(c,x) € E, we have

o0 (Py(c, 7)) ~ o(c, ). (6.16)
Proof. This follows from Proposition 4.2. U
Recall that the symbol ~ refers to equality after a normalization by

a scalar.

Geometrically, for f7*-a.e. (c¢,x) € B™X, o(c,z) is the conditional
measure of §, ® v, for the action of V; on {c} x X.

Lemma 6.12. In the two cases of §6.1, for any ¢ = 0, for 37~ -a.e.
(c,x) € B™, we have

(17 (e,2)) = ()0 (e, ).
In this equality, e~¢ denotes the homothety by a factor of e~¢ of V4.

Proof. This is a result of the uniqueness of o, equality (6.10) and the
fact that for p-a.e. b € B, for any p € N, the action of b;_ll byt in-

duces an isomorphism between the measure spaces (X, v3,) and (X, vr»p).
U

Corollary 6.13. In the two cases of §6.1, the map o : B~ — M (Vp)
is O~ -measurable.

Proof. Tt suffices to show that for any ¢ > 0, it is QE’X—measurable.

This results from the equality, for S7*-a.e. (c,x) € B™*, o(c,z) ~
7, X

(€)u(a(T7 (e, 2))). O
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6.7. Approach outside the W-leaves. In order to start the drift
argument, we need to ensure, in any compact subset of positive BT -
measure, that a.e. point x is approached by points which are not in the
same leaf as x for a certain subfoliation of the relative stable leaf.

For b € B, we introduce a vector subspace of V:

Wy, = {v eV :sup (eeRvP(b)Hb;l by ) < oo} (6.17)

peN
and, for ¢ = (b,k,m) € B", we set W, = W,

Lemma 6.14. In the two cases of §6.1, for 3X-a.e. (b,x) in BX, we
have vy(exp(Wp)z) = 0.

Proof. By ergodicity of the Bernoulli system (B, B, 3, T) and by Fursten-
berg’s formula (5.3), for f-a.e. b € B we have lim, . %QR,p(b) =

§50r(0)dB(b) = Ay > 0. Therefore, by Lemma 5.4, for every v € W,

we have lim,, . [[b," - by 'v| = 0. Choosing a distance function d on

X, gives a right-invariant distance on the group X , the universal cover
of X. For p-a.e. be B, every x € X, and every v € W, we have

d(b, ' - by exp(v)a, byt by 'w) =y 0.

By Proposition 6.1, the measure p satisfies property (HC), and hence,
by Proposition 3.9, for 3X-a.e. (b, z) € BX, we have v (exp(W;)x) = 0,
as required. O

Corollary 6.15. In the two cases of §6.1, let F < B™X be a B™*-
measurable subset such that 7% (F) > 0. Then, for 7" -a.e. (c,x) €
F| there is a sequence (uy) of elements of V.. W, such that u, — 0
and such that, for every n, (c,exp(u,)z) € F.

Proof. Let (U,) be a countable basis of neighborhoods of 0 in V. For
fT-a.e. c€ BT, the set F, = {x € X : (¢,x) € F} satisfies v.(F.) > 0.
For g™X-a.e. (c,z) € F, for every n > 0 we therefore have v.(F, n
exp(U,)x) > 0 and since, by Lemma 6.14, v.(exp(W,)z) = 0, we have
ve(F. n (exp(U, ~ We)z)) > 0. O

7. INVARIANCE OF STATIONARY MEASURES

The goal of this chapter is to present the exponential drift argument
and to deduce invariance properties for certain conditional measures of
stationary measures (Proposition 7.6).

To this end we collect the pieces of the puzzle which we have prepared
i previous chapters.
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7.1. The exponential drift. The heart of this paper is the following
proposition.

We keep as always the notation of §6.1. In particular, u is a proba-
bility measure on G whose support generates a Zariski-dense subsemi-
group, v is a p-stationary and p-ergodic Borel probability measure on
X, and the symbols s, &, 0,0k, @, T, Tar, 7, B™, 37, 7%, 0, R, etc., have
the same meanings as in §5 and §6.

Proposition 7.1. In the two cases of §6.1, let (Y,)) be a standard
Borel space, let f : B™ — Y be a Q%" -measurable map, and let
E < B™X be a B -measurable subset such that 37X (E¢) = 0. Then
for B™X-a.e. (c,x) € B™X, for any ¢ > 0, there exists a nonzero
element v € Vo of norm at most € and an element (¢, x') € E such that
O, (,2’) is also in E and such that

f(CI)v(c/, :C/)) = f(clax/> = f(C, :L‘) (71)

Remark 7.2. Since we do not yet know that the horocycle flow pre-
serves the measure 3% (we will show this in §8.1), it is not apriori
clear that there exists an element (¢,z’) € E and a nonzero vector
v € Vg such that ®,(c,2’) is in E. This assertion will be a nontrivial
consequence of Proposition 7.1.

Beginning of proof of Proposition 7.1. By definition, we can assume
that Y is endowed with the topology of a complete separable metric
space for which ) is the Borel o-algebra. Similarly we can choose the
topology of a compact metric space on B” so that the Borel o-algebra
coincides, up to adding subsets of measure zero, with B”, and such that
the natural projection B™ — M is continuous, and endow B” x X with
the product topology of this topology and the usual topology on X.

Let a > 0 be a small number. By Lusin’s theorem, there is a compact
subset K < E in B™* such that 7% (K¢) < o and such that all
the functions we will encounter, such as the functions f, 0, (¢,z) —
o(b), (¢,z) — V. and also (¢,x) — D. € Hom(Vp, V.), are uniformly
continuous on K.

The proof relies on the study of the function E (1 K| QZ(-;X)

On one hand, this function is bounded above by 1 and its average is
bounded below by 1 — o, because:

f E (14]Q%Y) (¢, 2)d5™ (c,0) = B-X(K) > 1—o®. (7.2)
BmX

Thus the function E <1 K|Q§O’X> is bounded below by 1 — « on a set of

measure 1 — o. Therefore there is a compact subset L — E in B™¥
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such that 87X (L¢) < a and such that, for every (¢, z) € L, we have
E (1x|Q%"%) (c,2) > 1— o (7.3)

By Lusin’s theorem, we may also suppose that f is continuous on L.
On the other hand, by the Martingale convergence theorem, for 57 -
a.e. (c,r) e B™X we have

lim E (14]Q7) (e,2) = E (1x]Q5Y) (¢, 2). (7.4)

By Corollary 3.8, we may also suppose that for every (¢, z) € L and ¢
rational, the left hand side of (7.4) is given by formula (3.11). Thanks
to the law of the last jump (Proposition 2.3), recalling the notation
heo(a), this can be rewritten as

7, X _
B (1) () = | Lhuea(@)dsa), (7.5)
where
heeo(a) = (¢, 2") with ¢ = hy.(a) and 2" = py(c') " pelc)z.

Moreover, since f is Q%" -measurable, it is QZ’X—measurable for each
¢ = 0, and hence, again by Corollary 3.8 and Proposition 2.3, we can
also assume that for every (¢, x) € K, for f-a.e. a € B, for any rational
¢ =0, we have f(hc.(a)) = f(e, ).

Egorov’s theorem ensures that, outside a subset of L of arbitrarily
small 7% -measure, the convergence in (7.4) is uniform on L. There-
fore, after removing a subset of L of small measure, there exists ¢y = 0
such that for every integer ¢ > {y, for every (¢, z) € L, we have

E (1K\Q2’X) (c,z)>1-a. (7.6)

Since the ™% -measure of L¢ is at most « and o was chosen arbitrarily
small, it suffices to prove (7.1) for f7*-a.e. (c,z) € L.

By Corollary 6.15 we may suppose that for the points (¢,x) € L,
there exists a sequence (u,) of elements of V'~ W, which converge to
0 and such that the points (¢, y,) defined by (¢, y,) = (¢, exp(u,)z) are
also in L.

We apply the two formulas (7.5) and (7.6) to the conditional ex-
pectations at the two points (¢, z) and (c,y,). For £ = {y, we then
have

flaeB:hy(a)e K} =2 1—a (7.7)
and
f{a€B:hyey,(a)e K} >1—a. (7.8)
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We will now say a few words about the strategy of proof. By construc-
tion, for y = exp(u)x with u € g, the parameterizations of the two fibers
of TZ’X passing through (¢, z) and (¢, y) are related by a drift that can
be easily computed: if (¢/,2") = hycq(a) and (¢, y") = hycy(a), then
we have

y = exp(Fr(a)u)z’ (7.9)
where the drift is given by
Fre(a)u = Re(¢') © Re(e) ™" (u), (7.10)

and where, as in §3.3, if we write ¢ = (b, k,m) and p = py(b, k) then we
have

Ry(c) = R(bg) o -+ 0 R(by—1). (7.11)

To simplify the notations, we will sometimes write by for R(by). We
will see that, for the parameterization of the two fibers of TZ’X passing
through the points (¢, z) and (¢, y,), a large proportion of the parame-
ters a € B correspond to two points (¢, ;) and (¢, y,,) which are both
in K. We will now adjust the line ¢ = ¢,, of the sequence u,, in order
to control the norm and the direction of the drift separating these two
points.

This will be possible thanks to the following lemma.

Lemma 7.3. In the two cases of §6.1, for any a > 0 and n > 0, there
1s o = 1, such that for B7-a.e. ¢ € B”, for all { sufficiently large, we
have for all u e V ~ {0},

1 | Foc(a)ul
eB:— < 7 S =loo o
B {a o egw(c)HRé(c)—lu” T «Q ( )

and
B{aeB:d(RF(a)u,P (Vi )) <n}=1-c (7.13)

Proof. Recall that by §2.3, for f7-a.e. ce B", for $-a.e. a € B, we have
limy o qo.c(a) = .

In order to obtain the upper bound (7.12), we apply Corollary 5.5(a)
with the vectors v; = Ry(c)™'u and vy € Vir() which results in the
equality

| Feela)ul _ Jlag—1-- - aoui]

[Re(c)~tu| v
for ¢ = q.(a), and, thanks to Lemma 5.4, in the equality

() lag—1- - agvs|
[lve|
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with ¢ = hy.(a). In order to obtain (7.13), we apply Corollary 5.5(b)
with the same vector v = Ry(c)'u and with W = Vpr (). For f-a.c.
c € BT, for every a,n > 0 there is thus ¢y > 0 such that for every

ue V~ {0} and ¢ = 4,
B{ae B:dRF,(a)u,P(Vi, @) <n} =>1-aq,
as required. O

End of proof of Proposition 7.1. We now explain our strategy in more
detail. We will choose the parameter ¢ = ¢, in the following manner.

Since the measure p on G is compactly supported, and since the
section s in §5.2 has a bounded image, there is Cy > 0 such that, for
p-a.e. be B, for every u € V ~\. {0}, and every p € N, we have

eaR,erl(b)Hb;_&l -by |

eeR,p(b) Hb}?l e balu”

< Cy.

Since u, is not in W, the sequence p — e%+»® b1 brtu, | is not
bounded above. For n large enough, there is therefore an integer p,

such that
—Mo e Mog

¢ < < ePRpn(® Hb;nl o balun” < (7.14)

7”000 To
where My = sup 7. We choose a rational ¢, such that p,, = pg, (¢). This
is possible since 7 is strictly positive.
Hence, since a0 < %1, we can choose an element a = a,, € B such that
it simultaneously belongs to the sets given by (7.7) and (7.8), (7.12)
and (7.13) with ¢ = ¢,,, uw = u,, and n = 1, — 0 and such that

f (e, ex(an)) = f(c, ) and f (e ey (an)) = flc,yn). (7.15)

Up to passing to a subsequence, we have
(1) The sequence (c,,,x),) = hy, c(a,) has a limit (¢, 2') € K,

(2) The sequence (c,,y,,) = h, cy,(a,) has a limit in K, and
(3) the limit of the drift vector w = lim, o Fy, .(a,)u, exists, is
nonzero, is of norm at most e~™°¢, and belongs to V.
We then deduce, by passing to a limit in (7.15), since all the limits
considered have their values in K and L, and since f is continuous on

these sets,
F(ea') = Tim f(c,,2!) = lim f(e,2) = f(e,2),
f(d,y) = lim f(c,,y,) = lim f(c,y,) and ' = exp(w)x’.

In additional, if we let v € V; be the nonzero vector v = D' (w), we
have
[vl < e and (¢, y) = u(c,2"),
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which is the sought-for conclusion. U

7.2. Stabilizers of conditional measures. We will make explicit the
information furnished by the drift argument, regarding the horocyclic
conditional measures o(c,x), for 7% -a.e. (c,z) e B™X.

We introduce the connected stabilizers of the measures o(c, z) and
their class R o(c, z) modulo normalization:

J(e,z) ={veVy:tyo(c,x) =0o(c,x)}o,
Ji(c,x) ={veVy:two(c,x) ~a(c,x)}o.

These are closed subgroups and hence vector subspaces of V.

Proposition 7.4. In the two cases of §6.1, for 37*-a.e. (c,z) € B™¥,
we have

a) Jl(c7 l’) 7 {0}7

b) J(c,z) = Ji(c,x).

Proof. a) We will show, for 3™%-a.e. (c,z) and every € > 0, the stabi-
lizer of o(c, ) modulo normalization contains a nonzero vector of norm
at most €.

By Lemma 6.11, there is a Borel subset E = B™* such that 37X (E°¢) =
0 and such that, for every v € V and (¢, 2’) € E such that ®,(c,z’) €
E, we have

toso (@, (', 2")) =~ o(d, 7). (7.16)

By Corollary 6.13, the function o is Q%" -measurable. The drift (Propo-
sition 7.1) applied to this set E and this function f = o produces, for
pr¥-a.e. (c,x) € B™ and every € > 0, a nonzero vector v € Vj of
norm at most ¢ and an element (¢, z’) of E such that ®,(c,2) is also
in E and such that

o(®y(c, ")) ~ o(d,2") ~ o(c, ).
By applying (7.16) to this element (¢, z’), we find
tos0 (P, (', 2")) =~ o(d, 2)
and hence
toso(c, ) ~ o(c, x).

The vector v is indeed in the stabilizer of (¢, ) modulo normalization.
The stabilizer is non-discrete and closed. It thus contains a nonzero
linear subspace of Vj.

b) For 87*-a.e. (¢,x) € B™¥, there is a linear form a(c, z) € J;(c, z)*
such that, for any v € Ji(c, ),

toso(c, ) = eX©DWa(c 1)
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We wish to show a@ = 0. Lemma 6.12 implies, for f7*-a.e. (c,z) €
B™X | the equality J,(T;(c,z)) = Ji(c,x) and, for every £ > 0, the
equality of linear forms on Ji(c, z):

(T} (c,2)) = e‘alc, ), (7.17)
from which it follows, after applying the Poincaré recurrence theorem,
that 37*-almost surely, o = 0. O

7.3. Disintegration of v, along the stabilizers. In this section we
will disintegrate the limit measures v, along the connected components
of the stabilizers of the horocyclic conditional. We will find that the
measures vy, are tmvariant under a nontrivial unipotent group.

We will begin by translating the fact that the stabilizers of the con-
ditional horocyclic measures are not discrete into a statement which
does not involve the suspension B7.

For f-a.e. b € B, and yra.e. z € X, we denote by o3,, € M(V})
the conditional measure at x of v, for the action on X of V}, through
the group exp(V4) (see §4.1), and we denote V,, < V, the connected
component of the stabilizer of oy, in V4.

Proposition 7.5. In the two cases of §6.1, for 3%-a.e. (b,x) € B¥,
we have 0y, ~ bosxOx (b.2), Vo = bo (VTX(,,J)) and Vy, # 0.

Proof. The first equality follows from the equalities, for -a.e. b e B,
vy = (by') s and, for every z € X and v € g,

T (b, exp(v)x) = (Tb, exp(by 'v)by 'z).

The second equality follows.

The fact that V}, is nonzero follows from Proposition 7.4 and the
equality, for f7*-a.e. (¢,x) € B™X V,, = R(s(£(b))m)(J(c,z)), where
c¢=(b,k,m). O

The disintegration of 3% along the map (b,z) — (b, V},), or, what
will turn out to be the same, the disintegration for -a.e. b of v, along
the map = — V} 5, can be written as

U = f Vb, Avy (1)
X

where, for fX-a.e. (b,x) € BX, the probability measure v, on X is
supported on the fiber {2’ € X : V} v =V}, ,.}.

Proposition 7.6. In the two cases of §6.1, for 7% -a.e. (b,x) € BX,
the probability measure vy, is Vj -invariant and has the equivariance

property vy, = bO*VTb,bglz'
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Proof. The first assertion follows from Proposition 4.3.
The second assertion follows from the equality v, = bgsry, from
Proposition 7.5, and from the disintegration of measures. O

8. APPLICATIONS

In this chapter we conclude the proof of Theorems 1.1 and 1.3 and
their corollaries.

8.1. Invariance of stationary measures. We keep the notations of
§6.1 and we conclude this section with the classification of stationary
measures on X.

Proposition 8.1. In the two cases of §6.1, the probability measure v
1 the Haar measure on X.

In order to deduce this from Proposition 7.6, We will need the fol-
lowing lemma. Let a € P(X).

In the first case of §6.1, we denote by S, the connected component
of the identity in the stabilizer of a in G, with respect to the action by
translations on X = G/A.

In the second case of §6.1, we denote by S, the connected component
of the identity in the stabilizer of a in R? with respect to the translation
action on X = T

In both cases, we set

F ={aeP(X): S, # {1} and « is supported on one S,-orbit},

and endow this collection with the weak-* topology.
We note that the group G acts naturally on F. Denote by vy the
Haar measure on X. Then 14 is an element of F.

Lemma 8.2. In both cases of §6.1, the only p-stationary Borel proba-
bility meaure n on F is 0,,.

Proof. We can suppose that 7 is p-ergodic. We will distinguish the two
cases:

First case of §6.1. In this case we have X = G/A.

By [15, Thm. 1.1], the set G of G-orbits in F is countable.

The image 77 of n in G is a u-stationary ergodic probability measure,
on a countable set. By Lemma 8.3, the probability measure 7 has finite
support.

Since 7 is p-ergodic, it is supported on a unique orbit Ga = G/G,, <
F. By definition of F, the group G, is not discrete. Since GG, contains a
lattice, it is unimodular. By Proposition 6.7, G, = G. The probability
measure v is thus equal to v.
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Second case of §6.1. In this case we have X = T¢.

We denote by G the set of nontrivial tori in X and for Y € G, we
denote by Fy the set of measures which are translates of the Haar
probability measure on Y. The space F is thus a countable union of
compact subsets Fy .

The image 1 of n in G is a u-stationary ergodic probability measure
on a countable set. By Lemma 8.3, it has finite support Y;,...,Y, and
[' permutes the subspaces Vi,...,V, which are the tangent directions
of the tori Yi,...,Y,.

Since the action of I' is strongly irreducible, we necessarily have
V =V, =---=1V,, which is what we had to prove. O

We will use the following classical result.

Lemma 8.3. Let I" be a group acting on a countable space X and let p
be a probability measure on I'. Any p-stationary and p-ergodic measure
v is I'-invariant and finitely supported.

Proof of Lemma 8.3. Let Y be the set of points of X with maximal
mass (w.r.t. v). Then Y is finite. The equality v = p * v and the
maximum principle imply that for p-a.e. vy €I, v~'Y < Y and hence
v 'Y =Y. Since v(Y) > 0 and v is p-ergodic, v(Y) = 1. O

Proof of Proposition 8.1. By Proposition 7.5, the fruit of our efforts,
for f¥-a.e. (b,x) € BX, the subgroups V;, are nontrivial.

The principal interest in the set F is that it contains all of the
probability measures invariant and ergodic under a connected nontrivial
unipotent subgroup. This results from Ratner’s work [15] in the first
case and is elementary in the second case.

For X-a.e. (b,x) € B¥, the decomposition of v, into V; ,-ergodic
components can thus be written simultaneously in the form

Vo — L C(b, ') dvs (), (8.1)

where ¢ : BX — F is a BX-measurable map such that, for 5%-a.e.
(b,z) € B¥, the restriction of ¢ to the fiber {(b,2) : Vi = Vj,} is
constant along the V} ,-orbits.

The uniqueness of the ergodic decomposition, and Propositions 7.5
and 7.6, prove that, for f%-a.e. (b,z) € BX, we have

C(b, ) = (bo)«((T¥ (b, x)). (8.2)
By Lemma 3.2(e), the image probability measure n = (3% is there-
fore a p-stationary probability measure on F. By Lemma 8.2, this
probability measure is the Dirac mass on 1. In other words, ((b, ) is
BX-almost surely equal to v, so that v = 1. U
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Proof of Theorems 1.1 and 1.3. Recall that, in the second case, we have
denoted by G the Zariski closure of I, in SL(d,R). Lemma 8.5 below
shows that G is also semi-simple.

In both cases, Lemma 8.4 below makes it possible to assume that G is
a semi-simple noncompact Lie group. One can then apply Proposition
8.1 to conclude that v is G-invariant. 0

We have used above the following two easy lemmas.

Lemma 8.4. Let K be a metrizable compact group acting in Borel
fashion on a Borel space X, and let u be a Borel probability measure
on K. Then any p-stationary Borel probability measure v on X is
invariant under the group I, generated by the support of p.

Proof. By Varadarajan’s theorem [17, Prop. 2.1.19], we may space that
X is compact and that the action is continuous. We may also suppose
that v is p-ergodic. It is then supported on a unique K-orbit Kxy. We
can therefore consider v to be an H-invariant measure on K, for the
action of H on the right, where H is the stabilizer of xy. This lifted
probability measure is also p-stationary. It remains to treat the case
X =K.

Up to convolving v on the right by an approximate identity, we can
suppose that v is absolutely continuous with respect to Haar measure,
with a continuous density. We can thus think of v as an element of
L?*(K) satisfying p = v = v. But in a Hilbert space, the average of
vectors of a fixed norm has norm strictly smaller, unless the vectors
being averages are equal to each other. This proves that v is I',-
invariant. U

Lemma 8.5. Let I' be a subsemigroup of SLq(Z) which acts strongly ir-
reducibly on RY. Then its Zariski closure G in SL(d,R) is a semisimple

group.

Proof. We can suppose that G is Zariski-connected. Since the repre-
sentation of G on R? is irreducible, G is a reductive group. Since G is
made of matrices of determinant 1, its center Z is compact. We need
to show that Z is finite.

Suppose by contradiction that Z is infinite. The commutant of G
in End(Q?) is then an imaginary quadratic extension of K of Q. We
can then regard Q7 as a K-vector space. The determinant map g —
detg(g) embeds I' in the group of units Ug of K. Since U is finite,
the determinant map also embeds G in Ug. Therefore Z is finite, a
contradiction. O



TRANSLATION OF PAPER OF BENOIST-QUINT 49

8.2. Invariant measures. In order to deduce the corollaries of our
theorems, we need to conveniently choose the measure fi.

Proof of Corollaries 1.2(a) and 1.4(a). Since G is simple, any Zariski
dense subsemigroup I' contains a finitely generated subsemigroup I
which is also Zariski dense. Denote by ¢1,...,gs a set of generators of
I and let g = $(84, + -+ + d,,) € P(G).

Let v be a non-atomic probability measure on X which is invariant
under I'. Then it is p-stationary. By Theorem 1.1 it is G-invariant, as
required. 0

8.3. Closed invariant subsets. In order to prove corollaries 1.2(b)
and 1.4(b), we will need the following lemma.

Lemma 8.6. In the two cases of §6.1, the collection of finite I'-invariant
subsets of X is countable.

Proof. As before, we may suppose that I' is finitely generated. Since I'
has countably many finite-index subgroups, it suffices to show that the
points of X which are fixed by some subgroup A of I' are isolated. The
last assertion follows from the fact that in any neighborhood of a fixed
point, the linearization of the action of A is its action on V', and since
the action of I" on V is strongly irreducible, A does not have nonzero
fixed vectors in V. U

Proof of Corollaries 1.2(b) and 1.4(b). We may again suppose that I’
is finitely generated. We then denote, just as in the proof of point
(a), that p is the probability measure given by pu = §(0g, + - -+ + d,,),

where ¢1,...,g, are a set of generators of I'. Let F be an infinite
closed I'-invariant subset of X. By Lemma 8.6, we can construct an
increasing sequence Fy < F, < --- < F; < --- of finite I'-invariant

subsets (possibly empty) of X, such that every finite I-invariant subset
is contained in one of the F;. Since [ is infinite, we can choose pairwise
distinct points x1,xs, ... of F such that x; is not in F; for each 1.

By Proposition 6.4, regarding recurrence off of finite subsets, there
is a collection (K;);=o of compact subsets such that for each i, K; is
contained in F} and such that for all j > 1, there is an integer M; such
that for n > M; and i < j,

(17" + 6, )(KE) <+ (83)

Setting n; = jM;, we introduce the Birkhoff-Kakutani averages

1 .
Vj:;(lu*éifj—i_”.—’_u I 6y,). (8.4)
J
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We have, for all ¢ < j,

M.
%(Kf)g-%i-+
i

n]——%l < (8.5)
n; ]

SN )

Condition (8.5) ensures that any accumulation point of the sequence
(v;) for weak-* convergence of Borel probability measures, is a proba-
bility measure which gives no mass to the subsets Fj,i > 1. If v, is
such an accumulation point, v, is then a p-stationary Borel probability
measure satisfying v, (F) = 1 and v, is non-atomic, by Lemma 8.3.
According to Theorems 1.1 and 1.3, v, is Haar measure. This implies
the required equality F' = X. O

8.4. Equidistribution of finite orbits. The same arguments lead to
a proof of equidistribution of finite orbits.

Proof of Corollaries 1.2(c) and 1.4(c). We may again suppose that I’
is generated by the finite support of the measure . We will show that
the sequence of I'-invariant measures

1
Ui T uX Z(SI

J .TEXj

converges weak-* to the Haar probability measure on X. By point
(a), we just have to show that any weak limit v, of the sequence (v;)
is a probability measure which gives zero mass to finite orbits. The
proof relies on the phenomenon of recurrence off of finite orbits. This
is analogous to point (b) and we keep the notations F; and K.

Since the finite I'-orbits X; are distinct, we can suppose after passing
to a subsequence that for every j > i, we have v;(F;) = 0. Since v; is
[-invariant, for any n > 0, we have p*" * v; = v; and therefore, as in
(b), for any j > i, v;(K§) < % We deduce that for all i > 0, we have
v (KE) < % This implies that firstly, v, is a probability measure,
and secondly, that v, (F;) = 0 for all 4, and therefore that v,, is Haar
measure. U
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