Exercise sheet - Random walks on homogeneous spaces. Tel Aviv University, Spring 2016

1. Let Γ be the semigroup generated by the two matrices

$$
\left(\begin{array}{cc}
1 & 10 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
10 & 1
\end{array}\right) .
$$

Prove that for any $\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2} \backslash \mathbb{Q}^{2}$, the trajectory Γx is dense in \mathbb{T}^{2}.
2. Let X be a second countable topological space, let \mathcal{B} be the Borel σ-algebra, let μ be a measure on \mathcal{B} and suppose that for any non-empty open set $\mathcal{O}, \mu(\mathcal{O})>0$. Let $T: X \rightarrow X$ be an ergodic measure-class preserving transformation (not necessarily invertible, not necessarily measure preserving). Suppose T is conservative, i.e., for any $A \in \mathcal{B}$ with $\mu(A)>0$, there is a positive integer n such that $\mu\left(A \cap T^{-n}(A)\right)>0$. Prove that for μ-a.e. x, the orbit $\left\{T^{n} x: n=1,2, \ldots\right\}$ is dense in X.
3. Let $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$, and let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$. Let $T(x)=x+\alpha$ and $\phi_{t}(x)=x+t \alpha$ (addition on \mathbb{T}^{d}). Let m be Haar measure on \mathbb{T}^{d}.
a) Prove that $\left(\mathbb{T}^{d}, T\right)$ is uniquely ergodic, with invariant measure m, if and only if $1, \alpha_{1}, \ldots, \alpha_{d}$ are linearly independent over \mathbb{Q}.
b) Prove that the \mathbb{R}-action $(t, x) \mapsto \phi_{t}(x)$ is uniquely ergodic, with invariant measure m, if and only if $\alpha_{1}, \ldots, \alpha_{d}$ are linearly independent over \mathbb{Q}.
4. Some things we left out of the proof of the pointwise ergodic theorem (you may assume what was proved in class): Let (X, \mathcal{B}, μ, T) be a probability-preserving system and suppose T is invertible. Prove that for μ-a.e. $\quad x \in X$, the two limits $f^{*}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} f\left(T^{i} x\right)$ and $f^{* *}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} f\left(T^{-i} x\right)$ exist, coincide, and we have $f^{*} \in$ $L^{1}(\mu)$ with $\int_{X} f d \mu=\int_{X} f^{*} d \mu$. Conclude that for μ-a.e. $x, f^{*}(x)=$ $\mathbb{E}(f \mid \mathcal{A})(x)$, where $\mathcal{A}=\left\{B \in \mathcal{B}: T^{-1}(B)=B\right\}$.
5. a. Let G be a countable group which is the increasing union of finite groups G_{n}, that is $G=\bigcup G_{n}$, each G_{n} is a finite subgroup of G, and $G_{1} \subset G_{2} \subset \cdots$. Let (X, \mathcal{B}, μ) be a probability space with a G-action, so that G preserves the measure μ (that is $g_{*} \mu=\mu$ for each $g \in G$) and the action is ergodic (if $A \in \mathcal{B}$ with $g A=A$ for all $g \in G$, then $\mu(A) \in\{0,1\})$. Prove that for all $f \in L^{1}(\mu)$, for μ-a.e. $x \in X$,

$$
\frac{1}{\# G_{n}} \sum_{g \in G_{n}} f(g x) \rightarrow_{n \rightarrow \infty} \int_{X} f d \mu .
$$

b. State and prove a pointwise ergodic theorem for the additive group of \mathbb{Q}_{p}.
6. Let $\alpha \notin \mathbb{Q}$ and define $T: \mathbb{T} \rightarrow \mathbb{T}$ by $T(x)=x+\alpha$ (addition mod 1). Let A be the projection of the interval $[0,1 / 2]$ to \mathbb{T}. Prove that

$$
\left\{x \in \mathbb{T}: \forall n \in \mathbb{N}, \#\left\{i \leqslant n: T^{i} x \in A\right\}>\#\left\{i \leqslant n: T^{i} x \notin A\right\}\right\}
$$

has Haar measure 0 .
7. In the following examples, μ is a probability measure on $G=$ $\mathrm{SL}_{2}(\mathbb{R})$ supported on two matrices a, b, where G acts on $V=\mathbb{R}^{2}$ by matrix multiplication. In each example, determine whether or not μ irreducible, strongly irreducible, proximal.
(a) a, b are the two matrices in question 1 .
(b) $a=\left(\begin{array}{cc}5 & 0 \\ 0 & 1 / 5\end{array}\right), b=\left(\begin{array}{cc}5 & 1 \\ 0 & 1 / 5\end{array}\right)$.
(c) $a=\left(\begin{array}{cc}5 & 0 \\ 0 & 1 / 5\end{array}\right), b=\left(\begin{array}{cc}0 & 5 \\ -1 / 5 & 0\end{array}\right)$.
(d) $a=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), b=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
8. Let G act on a vector space V, let μ be a compactly supported measure on V which is irreducible (i.e. for any proper $W \subset V$, $\mu(\{g \in G: g(W)=W\})<1)$, and let Γ be the semigroup generated by supp μ. Prove that there is a direct sum decomposition $V=V_{1} \oplus \cdots \oplus V_{r}$ such that $\left\{V_{1}, \ldots, V_{r}\right\}$ are permuted by the action of μ-a.e. g, and for each i, there is no proper $V_{i}^{\prime} \subset V_{i}$ such that $\left\{g V_{i}^{\prime}: g \in \Gamma\right\}$ is finite.
9. Let G be an lcsc group and $\Gamma \subset G$ a closed semigroup. Suppose that Γ is compact, and prove that Γ is a subgroup. Show by example that Γ might not be a group if one does not assume it is compact.
10. Suppose G is lcsc, μ is a probability measure on μ, Γ_{u} is the closure of the semigroup generated by $\operatorname{supp} \mu, X$ is a compact G space and ν is a μ-stationary Borel probability measure on X. Prove that:
(a) If G is abelian then ν is Γ_{μ}-invariant.
(b) If X if finite then ν is Γ_{μ}-invariant.

Prove or disprove: If ν is purely atomic (i.e., there is a sequence of points x_{1}, x_{2}, \ldots in X such that $\left.\nu\left(X \backslash \bigcup_{i}\left\{x_{i}\right\}\right)=0\right)$ then ν is $\Gamma_{\mu^{-}}$ invariant.
11. Let $G=\mathrm{SL}_{2}(\mathbb{R}), V=\mathfrak{g}$ be the Lie algebra of G (i.e. 2×2 real matrices with trace zero), where G acts on V by conjugation. Let W be the span of the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, and for $a>1, b_{1} \neq b_{2}$, let

$$
g_{i}=\left(\begin{array}{cc}
a & b_{i} \\
0 & 1 / a
\end{array}\right), i=1,2 .
$$

Let $p_{1}, p_{2}>0$ with $p_{1}+p_{2}=1$ and let $\mu=p_{1} \delta_{g_{1}}+p_{2} \delta_{g_{2}}$. Let $B=$ $(\operatorname{supp} \mu)^{\mathbb{N}}$ and $\beta=\mu^{\otimes \mathbb{N}}$. Let dist denote the metric on the projective space, where the distance between two lines is the minimal Euclidean distance of a norm one vector in one line, from the other line. Prove:
(i) For any $\alpha>0$ there are $n_{0} \geqslant 1, \varepsilon>0$ such that for any $v \in V \backslash\{0\}$,

$$
\beta\left(\left\{b \in B: \forall n \geqslant n_{0},\left\|b_{n} \cdots b_{1} v\right\| \geqslant \varepsilon\left\|b_{n} \cdots b_{1}\right\|\|v\|\right\}\right) \geqslant 1-\alpha .
$$

(ii) For any $\alpha>0$ and $\eta>0$ there is $n_{0} \geqslant 1$, such that for any $v \in V \backslash\{0\}$,

$$
\beta\left(\left\{b \in B: \forall n \geqslant n_{0}, \operatorname{dist}\left(\mathbb{R} b_{n} \cdots b_{1} v, W\right) \leqslant \eta\right\}\right) \geqslant 1-\alpha
$$

12. In this exercise we will carry out 'Step I' of the proof of the Benoist-Quint theorem, in the case that $X=\mathbb{R}^{d} / \mathbb{Z}^{d}$ is a torus. Here μ is a compactly supported measure on $G=\mathrm{SL}_{d}(\mathbb{R})$, such that the group generated by $\operatorname{supp} \mu$ is Zariski dense in G, ν is a non-atomic μ-stationary measure, and the goal is to prove that $\mu=m$ where m is the Haar measure on X. We assume that μ is proximal (in fact this follows from our other hypotheses but we did not prove this in class). For any $b=\left(b_{1}, b_{2}, \ldots\right) \in B=(\operatorname{supp} \mu)^{\mathbb{N}}$, let W_{b} denote the limit of the images of $\left(\frac{b_{1} \cdots b_{n}}{\left\|b_{1} \cdots b_{n}\right\|}\right)$ and let $\nu_{b}=\lim _{n \rightarrow \infty}\left(b_{1} \cdots b_{n}\right)_{*} \nu$. Let $\beta=\mu^{\otimes \mathbb{N}}$ and $\beta^{X}=\int_{B} \delta_{b} \otimes \nu_{b} d \beta(b)$.

Show that: if for β-a.e. b, ν_{b} is W_{b}-invariant, then $\nu=m$.
Hints. a. Let \mathcal{F} denote the set of measures on X which are invariant and ergodic under a line in \mathbb{R}^{d}. Use Ex. 3 to show that \mathcal{F} is a countable union of compact sets of measures.
b. Let $\nu_{b, x}$ be the disintegration of β^{X} along the map $(b, x) \mapsto\left(b, W_{b}\right)$ (that is, into conditional measures for the σ-algebra obtained by pulling back the Borel σ-algebra on $B \times \mathbb{P}\left(\mathbb{R}^{d}\right)$ using this measurable map). Write the ergodic decomposition of $\nu_{b, x}$ into W_{b}-ergodic components as $\nu_{b, x}=\int_{X} \zeta\left(b, x^{\prime}\right) d \nu_{b, x}\left(x^{\prime}\right)$. Prove that $\eta=\zeta_{*} \beta_{X}$ is a μ-stationary measure on \mathcal{F}. Apply Ex. 10.
13. Suppose $\left\{g_{n}\right\}$ is an unbounded sequence in $\mathrm{SL}_{d}(\mathbb{R})$ for some $d \geqslant 2$, and let ν_{1}, ν_{2} be two Borel probability measures on the projective space $\mathbb{P}\left(\mathbb{R}^{d}\right)$ such that $\left(g_{n}\right)_{*} \nu_{1} \rightarrow_{n \rightarrow \infty} \nu_{2}$. Prove that there are two proper linear subspaces V_{1}, V_{2} of \mathbb{R}^{d} such that ν_{2} is supported on $\left[V_{1}\right] \cup$ [V_{2}], where [V] denotes the image in $\mathbb{P}\left(\mathbb{R}^{d}\right)$ of V.

