Exercise sheet – Random walks on homogeneous spaces. Tel Aviv University, Spring 2016

1. Let Γ be the semigroup generated by the two matrices

$$\begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 10 & 1 \end{pmatrix}$$

Prove that for any $(x_1, x_2) \in \mathbb{T}^2 \setminus \mathbb{Q}^2$, the trajectory Γx is dense in \mathbb{T}^2 .

2. Let X be a second countable topological space, let \mathcal{B} be the Borel σ -algebra, let μ be a measure on \mathcal{B} and suppose that for any non-empty open set \mathcal{O} , $\mu(\mathcal{O}) > 0$. Let $T : X \to X$ be an ergodic measure-class preserving transformation (not necessarily invertible, not necessarily measure preserving). Suppose T is *conservative*, i.e., for any $A \in \mathcal{B}$ with $\mu(A) > 0$, there is a positive integer n such that $\mu(A \cap T^{-n}(A)) > 0$. Prove that for μ -a.e. x, the orbit $\{T^n x : n = 1, 2, \ldots\}$ is dense in X.

3. Let $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, and let $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d$. Let $T(x) = x + \alpha$ and $\phi_t(x) = x + t\alpha$ (addition on \mathbb{T}^d). Let *m* be Haar measure on \mathbb{T}^d .

- a) Prove that (\mathbb{T}^d, T) is uniquely ergodic, with invariant measure m, if and only if $1, \alpha_1, \ldots, \alpha_d$ are linearly independent over \mathbb{Q} .
- b) Prove that the \mathbb{R} -action $(t, x) \mapsto \phi_t(x)$ is uniquely ergodic, with invariant measure m, if and only if $\alpha_1, \ldots, \alpha_d$ are linearly independent over \mathbb{Q} .

4. Some things we left out of the proof of the pointwise ergodic theorem (you may assume what was proved in class): Let (X, \mathcal{B}, μ, T) be a probability-preserving system and suppose T is invertible. Prove that for μ -a.e. $x \in X$, the two limits $f^* = \lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} f(T^i x)$ and $f^{**} = \lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} f(T^{-i}x)$ exist, coincide, and we have $f^* \in$ $L^1(\mu)$ with $\int_X f d\mu = \int_X f^* d\mu$. Conclude that for μ -a.e. $x, f^*(x) =$ $\mathbb{E}(f|\mathcal{A})(x)$, where $\mathcal{A} = \{B \in \mathcal{B} : T^{-1}(B) = B\}$.

5. a. Let G be a countable group which is the increasing union of finite groups G_n , that is $G = \bigcup G_n$, each G_n is a finite subgroup of G, and $G_1 \subset G_2 \subset \cdots$. Let (X, \mathcal{B}, μ) be a probability space with a G-action, so that G preserves the measure μ (that is $g_*\mu = \mu$ for each $g \in G$) and the action is ergodic (if $A \in \mathcal{B}$ with gA = A for all $g \in G$, then $\mu(A) \in \{0, 1\}$). Prove that for all $f \in L^1(\mu)$, for μ -a.e. $x \in X$,

$$\frac{1}{\#G_n}\sum_{g\in G_n}f(gx)\to_{n\to\infty}\int_Xfd\mu.$$

b. State and prove a pointwise ergodic theorem for the additive group of \mathbb{Q}_p .

6. Let $\alpha \notin \mathbb{Q}$ and define $T : \mathbb{T} \to \mathbb{T}$ by $T(x) = x + \alpha$ (addition mod 1). Let A be the projection of the interval [0, 1/2] to \mathbb{T} . Prove that

 $\{x \in \mathbb{T} : \forall n \in \mathbb{N}, \#\{i \leq n : T^i x \in A\} > \#\{i \leq n : T^i x \notin A\}\}$

has Haar measure 0.

7. In the following examples, μ is a probability measure on $G = SL_2(\mathbb{R})$ supported on two matrices a, b, where G acts on $V = \mathbb{R}^2$ by matrix multiplication. In each example, determine whether or not μ irreducible, strongly irreducible, proximal.

(a) a, b are the two matrices in question 1.

(b)
$$a = \begin{pmatrix} 5 & 0 \\ 0 & 1/5 \end{pmatrix}, b = \begin{pmatrix} 5 & 1 \\ 0 & 1/5 \end{pmatrix}.$$

(c) $a = \begin{pmatrix} 5 & 0 \\ 0 & 1/5 \end{pmatrix}, b = \begin{pmatrix} 0 & 5 \\ -1/5 & 0 \end{pmatrix}.$
(d) $a = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

8. Let G act on a vector space V, let μ be a compactly supported measure on V which is irreducible (i.e. for any proper $W \subset V$, $\mu(\{g \in G : g(W) = W\}) < 1$), and let Γ be the semigroup generated by supp μ . Prove that there is a direct sum decomposition $V = V_1 \oplus \cdots \oplus V_r$ such that $\{V_1, \ldots, V_r\}$ are permuted by the action of μ -a.e. g, and for each i, there is no proper $V'_i \subset V_i$ such that $\{gV'_i : g \in \Gamma\}$ is finite.

9. Let G be an lcsc group and $\Gamma \subset G$ a closed semigroup. Suppose that Γ is compact, and prove that Γ is a subgroup. Show by example that Γ might not be a group if one does not assume it is compact.

10. Suppose G is lcsc, μ is a probability measure on μ , Γ_u is the closure of the semigroup generated by supp μ , X is a compact G space and ν is a μ -stationary Borel probability measure on X. Prove that:

(a) If G is abelian then ν is Γ_{μ} -invariant.

(b) If X if finite then ν is Γ_{μ} -invariant.

Prove or disprove: If ν is purely atomic (i.e., there is a sequence of points x_1, x_2, \ldots in X such that $\nu(X \setminus \bigcup_i \{x_i\}) = 0$) then ν is Γ_{μ} -invariant.

11. Let $G = \operatorname{SL}_2(\mathbb{R})$, $V = \mathfrak{g}$ be the Lie algebra of G (i.e. 2×2 real matrices with trace zero), where G acts on V by conjugation. Let W be the span of the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, and for a > 1, $b_1 \neq b_2$, let $g_i = \begin{pmatrix} a & b_i \\ 0 & 1/a \end{pmatrix}, \ i = 1, 2.$

 $\mathbf{2}$

Let $p_1, p_2 > 0$ with $p_1 + p_2 = 1$ and let $\mu = p_1 \delta_{g_1} + p_2 \delta_{g_2}$. Let $B = (\sup \mu)^{\mathbb{N}}$ and $\beta = \mu^{\otimes \mathbb{N}}$. Let dist denote the metric on the projective space, where the distance between two lines is the minimal Euclidean distance of a norm one vector in one line, from the other line. Prove:

- (i) For any $\alpha > 0$ there are $n_0 \ge 1$, $\varepsilon > 0$ such that for any $v \in V \setminus \{0\}$,
 - $\beta\left(\left\{b \in B : \forall n \ge n_0, \|b_n \cdots b_1 v\| \ge \varepsilon \|b_n \cdots b_1\| \|v\|\right\}\right) \ge 1 \alpha.$
- (ii) For any $\alpha > 0$ and $\eta > 0$ there is $n_0 \ge 1$, such that for any $v \in V \setminus \{0\}$,
 - $\beta\left(\{b \in B : \forall n \ge n_0, \operatorname{dist}(\mathbb{R}b_n \cdots b_1 v, W) \le \eta\}\right) \ge 1 \alpha.$

12. In this exercise we will carry out 'Step I' of the proof of the Benoist-Quint theorem, in the case that $X = \mathbb{R}^d/\mathbb{Z}^d$ is a torus. Here μ is a compactly supported measure on $G = \mathrm{SL}_d(\mathbb{R})$, such that the group generated by $\mathrm{supp}\,\mu$ is Zariski dense in G, ν is a non-atomic μ -stationary measure, and the goal is to prove that $\mu = m$ where m is the Haar measure on X. We assume that μ is proximal (in fact this follows from our other hypotheses but we did not prove this in class). For any $b = (b_1, b_2, \ldots) \in B = (\mathrm{supp}\,\mu)^{\mathbb{N}}$, let W_b denote the limit of the images of $\left(\frac{b_1 \cdots b_n}{\|b_1 \cdots b_n\|}\right)$ and let $\nu_b = \lim_{n \to \infty} (b_1 \cdots b_n)_* \nu$. Let $\beta = \mu^{\otimes \mathbb{N}}$ and $\beta^X = \int_B \delta_b \otimes \nu_b d\beta(b)$.

Show that: if for β -a.e. b, ν_b is W_b -invariant, then $\nu = m$.

Hints. a. Let \mathcal{F} denote the set of measures on X which are invariant and ergodic under a line in \mathbb{R}^d . Use Ex. 3 to show that \mathcal{F} is a countable union of compact sets of measures.

b. Let $\nu_{b,x}$ be the disintegration of β^X along the map $(b, x) \mapsto (b, W_b)$ (that is, into conditional measures for the σ -algebra obtained by pulling back the Borel σ -algebra on $B \times \mathbb{P}(\mathbb{R}^d)$ using this measurable map). Write the ergodic decomposition of $\nu_{b,x}$ into W_b -ergodic components as $\nu_{b,x} = \int_X \zeta(b, x') d\nu_{b,x}(x')$. Prove that $\eta = \zeta_* \beta_X$ is a μ -stationary measure on \mathcal{F} . Apply Ex. 10.

13. Suppose $\{g_n\}$ is an unbounded sequence in $\mathrm{SL}_d(\mathbb{R})$ for some $d \ge 2$, and let ν_1, ν_2 be two Borel probability measures on the projective space $\mathbb{P}(\mathbb{R}^d)$ such that $(g_n)_*\nu_1 \rightarrow_{n\to\infty} \nu_2$. Prove that there are two proper linear subspaces V_1, V_2 of \mathbb{R}^d such that ν_2 is supported on $[V_1] \cup [V_2]$, where [V] denotes the image in $\mathbb{P}(\mathbb{R}^d)$ of V.