Ratner's theorems for dynamics on homogeneous spaces, exercises

Tel Aviv University, Spring 2014

Let $G_{1}=G_{2}=\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R}), G_{3}=\mathrm{SL}_{3}(\mathbb{R}), \Gamma_{1}=\mathrm{SL}_{2}(\mathbb{Z}) \times \mathrm{SL}_{2}(\mathbb{Z}), \Gamma_{3}=$ $\mathrm{SL}_{3}(\mathbb{Z})$, and define $\Gamma_{2} \subset G_{2}$ as follows. Let $k=\mathbb{Q}(\sqrt{2}),(a+b \sqrt{2})^{\prime}=a-b \sqrt{2}$ (where $a, b \in \mathbb{Q}$), for a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d \in k$, let $A^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ and let

$$
\Gamma_{2}=\left\{\left(A, A^{\prime}\right): A \in \mathrm{SL}_{2}(k)\right\}
$$

1. Prove that Γ_{i} is a lattice in G_{i} for $i=1,2,3$.

Hint: In the first semester we outlined a proof for $i=3$, using nondivergence of unipotent flows. Explain this proof and adapt this proof for cases $i=1,2$.
2. Let Id be the identity element (of any group). Define

$$
u(t)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right), g(t)=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})
$$

and
$u_{1}(t)=(u(t), u(t)), g_{1}(t)=(g(t), g(t)), u_{2}(t)=(u(t), \mathrm{Id}), g_{2}(t)=(g(t), \mathrm{Id})$.
Also let

$$
u_{3}(t)=\left(\begin{array}{ccc}
1 & 0 & t \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right), g_{3}(t)=\left(\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{-2 t}
\end{array}\right) .
$$

Using Ratner's orbit-closure theorem, identify all possible orbit-closures for the action of $\left\{u_{i}(t)\right\}$ on G_{i} / Γ_{i}.
4. Let $\pi: G_{i} \rightarrow G_{i} / \Gamma_{i}$ be the natural projection. Give a diophantine condition that is equivalent to the statement that $\left\{g_{1}(t) \pi(u(x), u(y)): t \geq\right.$ $0\}$ is divergent in G_{1} / Γ_{1}. State this in terms of the continued fraction expansions of x and y. Show that there are uncountably many pairs (x, y) such that $\left\{g_{1}(t) \pi(u(x), u(y)): t \geq 0\right\}$ is divergent.
5. A trajectory $\left\{g_{i}(t) \pi(x): t \geq 0\right\}$ in G_{i} / Γ_{i} is obvious if there is a representation $\rho: G \rightarrow \mathrm{GL}(V)$ defined over \mathbb{Q}, and $v \in V(\mathbb{Q})$ such that $\rho\left(g_{i}(t) x\right) v \rightarrow_{t \rightarrow \infty} 0$ in V (the rationality conditions mean that we can fix a basis of V such that with respect to this basis, v has rational coefficients, and that for the map $g \mapsto \rho(g) \in \operatorname{AUT}(V)$, the matrix coefficients of $\rho(g)$ can be expressed by polynomials in the coefficients of g with rational coefficients). Show that obvious trajectories are divergent. Explain what the obvious trajectories are in G_{1} / Γ_{1}, and show that in both $G_{1} / \Gamma_{1}, G_{3} / \Gamma_{3}$ there are uncountably many non-obvious divergent trajectories.
6. Show that in G_{2} / Γ_{2} all divergent trajectories are obvious.
7. Write down the steps of proof of the Ratner measure classification result completely in one of the three cases $i=1,2,3$. Explain which of the cases treated in class can be avoided in this case.

