
Notes on Simmons-Weiss Chapter 3

1 Preliminaries
Almost all of this is directly plagiarized from [SW]. We are keeping all the notation and theorem
numbers unchanged.

Let G be a unimodular noncompact Lie group with finitely many connected components, E ⊂ G
compact, and µ a probability measure supported on E. We write e 7→ ge for the inclusion E ↪→ G, so
in this context E is used as an indexing set for elements of g.

We denote B = EN with Bernoulli measure β = µ⊗N and left-shift map T : B → B. If b =
(b1, b2, . . .) ∈ B, let bn1 = (b1, . . . , bn) ∈ En, and gbn

1
= gbn · · · gb1 . For each n ≥ 1, denote by µ∗n the

pushforward to G of the product measure µn on En under the map bn1 7→ gbn
1
, i.e. for any integrable

function f on G, ∫
G

f(g) dµ∗n(g) =
∫
En

f(gbn
1
) dµn(bn1 ).

Let V = g be the Lie algebra of G, and Ad : G → SL(V ) the adjoint representation Ad(g) =
(DΨg)|g=e, where Ψg(x) = gxg−1.

Theorem (Oseledec). There exist real numbers χ1 > · · · > χk and for β-almost every b ∈ B a
descending chain of proper subspaces

V = V0 ⊃ V1 ⊃ · · · ⊃ Vk−1 ⊃ Vk = 0

depending measurably on b, such that for all v ∈ Vi−1 \ Vi,

lim
n→∞

1
n

log ‖ρ(gbn
1
)v‖ = χi,

and the convergence is uniform as v ranges over any compact subset of Vi−1 \ Vi. Each χi is called a
Lyapunov exponent, with multiplicity di = dimVi−1 − dimVi. Furthermore, we have

k∑
i=1

diχi =
∫
G

log |det ρ(g)| dµ(g),

and for each i,
Vi(T (b)) = ρ(gb1)Vi(b).

We set V1(b) = V <max
b , which we call the Oseledec space of non-maximal expansion, and Vj0(b) =

V ≤0
b where j0 = max{j : χj > 0} is called the Oseledec space of subexponential expansion.

For each d = 1, . . . ,dimG − 1, let V ∧d be the dth exterior power of V . Then Ad induces a
representation ρd : G → SL(V ∧d). Assume that for each d there is a nontrivial proper subspace
W∧d ⊂ V ∧d such that
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(I) For every g ∈ E, W∧d is ρd(g)-invariant. For β-almost every b ∈ B, if d = 1 then W∧d is
complementary to V <max

b and if d > 1 then V ≤0
b ∩W∧d = 0.

(II) For every g ∈ E, Ad(g) acts on W = W∧1 as a similarity map, and∫
G

log ‖Ad(g)|W ‖ dµ(g) > 0.

(III) For any d, if a linear subspace L ⊂ V ∧d has a finite orbit under the semigroup generated by E,
then L ∩W∧d 6= 0.

Fix an inner product on V ∧d inducing a metric and an operator norm on GL(V ∧d). Let P(V ∧d) be
the projective space of lines in V ∧d. If x ∈ V ∧d\{0}, we write [x] for its image under the quotient map.
Similarly, if W ⊂ V ∧d is a nonzero subspace, its image is [W ]. The distance between a vector v ∈ V ∧d
and a subspace W ⊂ V ∧d will be denoted dist(v,W ), and the distances between their projectivizations
will also be denoted dist([v], [W ]).

2 Preparatory lemmas
Proposition 3.5. Under assumptions (I) and (II), for β-almost every b ∈ B, for any compact
C ⊂ V \ V <max

b there exists c > 0 such that for all v ∈ C and n ≥ 1,

‖Ad(gbn
1
)v‖ ≥ c‖Ad(gbn

1
)‖.

The proof uses the following notation: A �x B if there exists c = c(x) with c−1 ≤ A
B ≤ c.

Proof. By Assumption (I) with d = 1, we can write v = π1(v) + πW (v) with π1(v) ∈ V <max
b and

πW (v) ∈W \ 0. By Oseledec’s theorem,

‖Ad(gbn
1
)π1(v)‖

‖Ad(gbn
1
)πW (v)‖ → 0

as n→∞, so ‖Ad(gbn
1
)v‖ �b,v ‖Ad(gbn

1
)πW (v)‖, using the triangle inequality. By this and Assumption

(II),
‖Ad(gbn

1
)v‖ �b,v ‖Ad(gbn

1
)πW (v)‖ �b,v ‖Ad(gbn

1
)|W ‖

By choosing a basis of V consisting of vectors that do not belong to V <max
b , we have

‖Ad(gbn
1
)|W ‖ �b ‖Ad(gbn

1
)‖.

By Oseledec’s theorem, we can take the constant independent of v in a compact subset.

Proposition 3.6. Under assumptions (I) and (II), for β-almost every b ∈ B and for all v ∈ V \V <max
b ,

we have
dist(Ad(gbn

1
)v,W )

‖Ad(gbn
1
)‖ → 0

as n→∞, and hence
dist([Ad(gbn

1
)v], [W ])→ 0.

For fixed b the convergence is uniform for v in a compact subset of V \ V <max
b .
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Proof. By Assumption (I), choose w ∈W such that v−w ∈ V <max
b . Again by (I) we have Ad(gbn

1
)w ∈

W for all n. Then

dist(Ad(gbn
1
)v,W ) = inf

w∈W
‖Ad(gbn

1
)v − w‖

≤ ‖Ad(gbn
1
)v −Ad(gbn

1
)w‖

= ‖Ad(gbn
1
)(v − w)‖

∼ enχ2 = o(‖Ad(gbn
1
)‖),

which demonstrates the first statement. For the second statement, because [v] = v
‖v‖ up to a sign, we

use Proposition 3.5.

Proposition 3.7. Assume that (I) and (III) hold. Fix d ∈ {1, . . . ,dimG − 1} and v ∈ V ∧d. Then
we have v /∈ V ≤0

b for β-almost every b ∈ B, and if d = 1 then v /∈ V <max
b .

Proof. We will prove it for d = 1. The proof for d > 1 follows by substituting V ≤0
b for V <max

b and ρd
for Ad.

Let µ∗i ∗ δ[v] be the pushforward of µ∗i ⊗ δ[v] under the map (g, [v]) 7→ [Ad(g)v]; note that this is
consistent with the usual convolution notation

µ ∗ ν(f) =
∫
f(gx) dµ(g) dν(x).

Using the shift-equivariance property from Oseledec’s theorem and Fubini’s theorem,∫
B

µ ∗ δ[v]
(
[V <max
b ]

)
dβ(b) =

∫
B

µ⊗ δ[v]
(
{(b1, v) : Ad(gb1)v ∈ V <max

b }
)
dβ(b)

=
∫
B

µ⊗ δ[v]({(b1, v) : v ∈ V <max
b1b

}) dβ(b)

=
∫
B

(∫
E

µ⊗ δ[v]({(b1, v) : v ∈ V <max
b1b

}) dµ(b1)
)
dβ(b)

=
∫
B

δ[v]([V <max
b ]) dβ(b).

By induction on i, we then have∫
B

µ∗i ∗ δ[v]
(
[V <max
b ]

)
dβ(b) =

∫
B

δ[v]([V <max
b ]) dβ(b)

for each i ≥ 0. For each n ≥ 1 define

νn = 1
n

n−1∑
i=0

µ∗i ∗ δ[v],

a probability measure on the compact space P(V ). Then by the above computation,

β
(
{b ∈ B : v ∈ V <max

b }
)

=
∫
B

δ[v]([V <max
b ]) dβ(b) =

∫
B

νn([V <max
b ]) dβ(b)

for all n ≥ 1. Thus it remains to show that the right-hand integral → 0 as n→∞. By the Lebesgue
dominated convergence theorem, it suffices to show that for β-almost every b ∈ B, νn([V <max

b ]) → 0
as n→∞.
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Suppose by contradiction there exists ε > 0 and a set B0 of positive β measure such that for
all b ∈ B0, there exists a subsequence nk → ∞ with νnk

([V <max
b ]) ≥ ε. Let V ′ = V <max

b0
for some

b0 ∈ B0, and let ν∞ be a weak-∗ limit point of νnk
. Because µ ∗ νnk

− νnk
→ 0 by telescoping, ν∞ is

µ-stationary and satisfies ν∞([V ′]) ≥ ε.
Some terminology: a stationary measure ν is said to be µ-ergodic if it cannot be written as a

proper convex combination of two different µ-stationary Borel probability measures. Then by the
Krein-Milman theorem we can decompose any µ-stationary measure into a convex combination of
µ-ergodic measures called ergodic components of ν.

Thus we may assume that ν∞ has an ergodic component ν′∞ with ν′∞([V ′]) > 0. Let k ≤ dimV
be minimal with respect to the property that some k-dimensional subspace has positive ν′∞-measure.
Then the intersection of any two distinct k-dimensional subspaces of V has measure zero, so ν′∞ is an
additive atomic measure on the set of all such subspaces. We have the following:

Lemma. If µ and ν are probability measures on G and X respectively, G y X, and ν is µ-ergodic
(and µ-stationary by definition) and atomic, then it is G-invariant and finitely supported.

Proof. Let x ∈ X be an atom with maximal ν-measure. Then the orbit Gx is G-invariant with positive
measure, hence µ(Gx) = 1 by ergodicity. By stationarity,

ν(x) =
∑
g

µ(g)ν(gx) ≤ max
g

ν(gx)
∑
g

µ(g) = max
g

ν(gx),

and since ν(x) is maximal, ν(x) = ν(gx) for all g ∈ G. Hence ν is just the uniform measure on the
finite set Gx, and in particular it is G-invariant.

Applying the lemma to ν′∞, there exists a finite supp(µ) = E-invariant collection of subspaces
{L1, . . . , Lr} with supp(ν′∞) ⊂

⋃
Li. By Assumption (III), each Li∩W 6= ∅. But V ′ is complementary

to W by Assumption (I), so Li ∩ V ′ has dimension strictly less than k, so ν′∞([Li ∩ V ′]) = 0, so
ν′∞([V ′]) = 0, a contradiction.

3 The main theorems
Proposition 3.3. Under assumptions (I)-(III), there exists n0 ≥ 1 and ε > 0 such that for all d,
v ∈ V ∧d \ {0} and n ≥ n0,

1
n

∫
G

log ‖ρd(g)v‖
‖v‖

dµ∗n(g) > ε.

Proof. Fix α > 0 to be specified below. By Proposition 3.7, for each v′ ∈ V ∧d there exists ε0 = ε0(v′)
and B0 = B0(v′) ⊂ B such that β(B0) ≥ 1 − α and for all b ∈ B0, dist([v′], [V ≤0

b ]) ≥ ε0. If
0 < ε1 < ε0, there is a neighborhood U = U(v′) of [v′] in P(V ∧d) such that for all b ∈ B0(v′) and
[v] ∈ U , dist([v], [V ≤0

b ]) ≥ ε1. Now choose a finite cover {U1, . . . , Uk} of P(V ∧d) and a finite collection
{B1, . . . , Bk} of subsets of B such that β(Bj) ≥ 1 − α for all j, and for all b ∈ Bj and [v] ∈ Uj ,
dist([v], [V ≤0

b ]) ≥ ε1. Now let χ > 0 be strictly less than the smallest positive Lyapunov exponent of
the action on V ∧d. By the uniformity on compact subsets from Oseledec’s theorem, for each j there
exists nj such that for all n ≥ nj , [v] ∈ Uj , and b ∈ Bj we have

‖ρd(gbn
1
)v‖ ≥ enχ‖v‖.

Let N = maxj nj , and for each v ∈ V ∧d \ {0} and n ≥ N let

S = Sn,v = {bn1 ∈ En : ‖ρd(gbn
1
)v‖ ≥ enχ‖v‖},
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so that if [v] ∈ Uj and b ∈ Bj then bn1 ∈ Sn,v for all n ≥ N . Since β(B0(v′)) ≥ 1 − α, we have
µ⊗n(S) ≥ 1− α, and thus

1
n

∫
G

log ‖ρd(g)v‖
‖v‖

dµ∗n(g) = 1
n

∫
En

log
‖ρd(gbn

1
)v‖

‖v‖
dµ⊗n(bn1 )

≥ 1
n

∫
S

log enχ dµ⊗n + 1
n

∫
En\S

log ‖ρd(gbn
1
)−1‖−1 dµ⊗n(bn1 )

≥ 1
n

(
(1− α)nχ− αn log max

g∈supp(µ)
‖φd(g)−1‖

)
≥ (1− α)χ− α log max

g∈supp(µ)
‖φd(g)−1‖.

The second inequality comes from the fact that ‖v‖ = ‖A−1Av‖ ≤ ‖A−1‖‖Av‖. To complete the
proof, choose α small enough so the last expression is positive and independent of v.

Proposition 3.1. Under assumptions (I)-(III) we have

1. For every α > 0 there exists c0 > 0, q0 ≥ 1 such that for any v ∈ V \ {0} we have

β
(
{b ∈ B : ∀q ≥ q0, ‖Ad(gbq

1
)v‖ ≥ c0‖Ad(gbq

1
)‖‖v‖}

)
≥ 1− α.

2. For every α, η > 0 there exists q0 ≥ 1 such that for any v ∈ V \ {0} we have

β
(
{b ∈ B : ∀q ≥ q0,dist([Ad(gbq

1
)v], [W ]) ≤ η}

)
≥ 1− α.

Proof. Fix α, η > 0. By Proposition 3.7 and a compactness argument similar to the one used in the
proof of Proposition 3.3, there exists ε > 0 such that for all v ∈ V \ {0},

β
(
{b ∈ B : ∀q ≥ q0,dist([v], [V <max

b ]) ≥ ε}
)
≥ 1− α/2.

For each b ∈ B, define N(b) as the smallest integer such that for all v ∈ V with dist([v], [V <max
b ]) ≥ ε

and all n ≥ N(b), we have

‖Ad(gbn
1
)v‖ ≥ 1

N(b)‖Ad(gbn
1
)‖‖v‖, and dist([Ad(gbq

1
)v], [W ]) ≤ η, (1)

so that N(b) < ∞ for β-almost every b ∈ B, by Propositions 3.5 and 3.6. Thus there exists N0 such
that

β({b ∈ B : N(b) ≤ N0}) ≥ 1− α/2.

Now fix v ∈ V \{0}. For all b ∈ B such that dist([v], [V <max
b ]) ≥ ε and N(b) ≤ N0, and for all n ≥ N0,

Equation 1 holds, and we are done.

Proposition 3.2. Under assumptions (I) and (III), for each d = 1, . . . ,dimG−1 the only µ-stationary
probability measure on V ∧d is the Dirac measure δ0 centered at 0.

Proof. Let ν be a µ-stationary measure on V ∧d which is not equal to the Dirac measure δ0, let
Z = B × V ∧d, let λ = β × ν, and let

Y = {(b, z) ∈ Z : v /∈ V ≤0
b }.
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By Proposition 3.7, λ(Y ) = 1. Now define T̂ : Z → Z by T̂ (b, v) = (Tb, φd(gb1)v). Because ν is
µ-stationary, λ is T̂ -invariant:∫

Z

f ◦ T̂ dλ =
∫
Z

f(Tb, φd(gb1)v) dβ(b) dν(v)

=
∫
Z

f((b2, b3, . . .), φd(gb1)v) dµ(b1) dβ(b2, b3, . . .) dν(v)

=
∫
Z

f((b2, b3, . . .), v) dβ(b2, b3, . . .) dν(v)

=
∫
Z

f(b, v) dβ(b) dν(v)

=
∫
Z

f dλ

Furthermore, ‖ρd(gbn
1
)v‖ → ∞ for every (b, v) ∈ Y , by definition of Y . Let t > 0 be large enough so

that λ(Y0) > 0, where
Y0 = {(b, v) ∈ Y : ‖v‖ ≤ t}.

Then for all (b, v) ∈ Y0, for all n large enough, T̂n(b, v) /∈ Y0, which contradicts Poincaré recurrence.
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