Notes on Simmons-Weiss Chapter 3

1 Preliminaries

Almost all of this is directly plagiarized from [SW]. We are keeping all the notation and theorem numbers unchanged.

Let G be a unimodular noncompact Lie group with finitely many connected components, $E \subset G$ compact, and μ a probability measure supported on E. We write $e \mapsto g_e$ for the inclusion $E \hookrightarrow G$, so in this context E is used as an indexing set for elements of g.

We denote $B = E^{\mathbb{N}}$ with Bernoulli measure $\beta = \mu^{\otimes \mathbb{N}}$ and left-shift map $T : B \to B$. If $b = (b_1, b_2, \ldots) \in B$, let $b_1^n = (b_1, \ldots, b_n) \in E^n$, and $g_{b_1^n} = g_{b_n} \cdots g_{b_1}$. For each $n \ge 1$, denote by μ^{*n} the pushforward to G of the product measure μ^n on E^n under the map $b_1^n \mapsto g_{b_1^n}$, i.e. for any integrable function f on G,

$$\int_G f(g) \, d\mu^{*n}(g) = \int_{E^n} f(g_{b_1^n}) \, d\mu^n(b_1^n).$$

Let $V = \mathfrak{g}$ be the Lie algebra of G, and $\operatorname{Ad} : G \to \operatorname{SL}(V)$ the adjoint representation $\operatorname{Ad}(g) = (D\Psi_g)|_{g=e}$, where $\Psi_g(x) = gxg^{-1}$.

Theorem (Oseledec). There exist real numbers $\chi_1 > \cdots > \chi_k$ and for β -almost every $b \in B$ a descending chain of proper subspaces

$$V = V_0 \supset V_1 \supset \cdots \supset V_{k-1} \supset V_k = 0$$

depending measurably on b, such that for all $v \in V_{i-1} \setminus V_i$,

$$\lim_{n \to \infty} \frac{1}{n} \log \|\rho(g_{b_1^n})v\| = \chi_i,$$

and the convergence is uniform as v ranges over any compact subset of $V_{i-1} \setminus V_i$. Each χ_i is called a Lyapunov exponent, with multiplicity $d_i = \dim V_{i-1} - \dim V_i$. Furthermore, we have

$$\sum_{i=1}^{k} d_i \chi_i = \int_G \log |\det \rho(g)| \, d\mu(g),$$

and for each i,

$$V_i(T(b)) = \rho(g_{b_1})V_i(b).$$

We set $V_1(b) = V_b^{<\max}$, which we call the Oseledec space of non-maximal expansion, and $V_{j_0}(b) = V_b^{\leq 0}$ where $j_0 = \max\{j : \chi_j > 0\}$ is called the Oseledec space of subexponential expansion.

For each $d = 1, \ldots, \dim G - 1$, let $V^{\wedge d}$ be the *d*th exterior power of *V*. Then Ad induces a representation $\rho_d : G \to \operatorname{SL}(V^{\wedge d})$. Assume that for each *d* there is a nontrivial proper subspace $W^{\wedge d} \subset V^{\wedge d}$ such that

- (I) For every $g \in E$, $W^{\wedge d}$ is $\rho_d(g)$ -invariant. For β -almost every $b \in B$, if d = 1 then $W^{\wedge d}$ is complementary to $V_b^{<\max}$ and if d > 1 then $V_b^{\leq 0} \cap W^{\wedge d} = 0$.
- (II) For every $g \in E$, $\operatorname{Ad}(g)$ acts on $W = W^{\wedge 1}$ as a similarity map, and

$$\int_G \log \|\operatorname{Ad}(g)|_W \| \, d\mu(g) > 0.$$

(III) For any d, if a linear subspace $L \subset V^{\wedge d}$ has a finite orbit under the semigroup generated by E, then $L \cap W^{\wedge d} \neq 0$.

Fix an inner product on $V^{\wedge d}$ inducing a metric and an operator norm on $\operatorname{GL}(V^{\wedge d})$. Let $\mathbb{P}(V^{\wedge d})$ be the projective space of lines in $V^{\wedge d}$. If $x \in V^{\wedge d} \setminus \{0\}$, we write [x] for its image under the quotient map. Similarly, if $W \subset V^{\wedge d}$ is a nonzero subspace, its image is [W]. The distance between a vector $v \in V^{\wedge d}$ and a subspace $W \subset V^{\wedge d}$ will be denoted dist(v, W), and the distances between their projectivizations will also be denoted dist([v], [W]).

2 Preparatory lemmas

Proposition 3.5. Under assumptions (I) and (II), for β -almost every $b \in B$, for any compact $C \subset V \setminus V_b^{<\max}$ there exists c > 0 such that for all $v \in C$ and $n \ge 1$,

$$\|\operatorname{Ad}(g_{b_1^n})v\| \ge c \|\operatorname{Ad}(g_{b_1^n})\|.$$

The proof uses the following notation: $A \asymp_x B$ if there exists c = c(x) with $c^{-1} \leq \frac{A}{B} \leq c$.

Proof. By Assumption (I) with d = 1, we can write $v = \pi_1(v) + \pi_W(v)$ with $\pi_1(v) \in V_b^{<\max}$ and $\pi_W(v) \in W \setminus 0$. By Oseledec's theorem,

$$\frac{\|\operatorname{Ad}(g_{b_1^n})\pi_1(v)\|}{\|\operatorname{Ad}(g_{b_1^n})\pi_W(v)\|} \to 0$$

as $n \to \infty$, so $\|\operatorname{Ad}(g_{b_1^n})v\| \simeq_{b,v} \|\operatorname{Ad}(g_{b_1^n})\pi_W(v)\|$, using the triangle inequality. By this and Assumption (II),

 $\|\operatorname{Ad}(g_{b_1^n})v\| \asymp_{b,v} \|\operatorname{Ad}(g_{b_1^n})\pi_W(v)\| \asymp_{b,v} \|\operatorname{Ad}(g_{b_1^n})|_W\|$

By choosing a basis of V consisting of vectors that do not belong to $V_{h}^{<\max}$, we have

$$\|\operatorname{Ad}(g_{b_1^n})|_W\| \asymp_b \|\operatorname{Ad}(g_{b_1^n})\|.$$

By Oseledec's theorem, we can take the constant independent of v in a compact subset.

Proposition 3.6. Under assumptions (I) and (II), for β -almost every $b \in B$ and for all $v \in V \setminus V_b^{<\max}$, we have

$$\frac{\operatorname{dist}(\operatorname{Ad}(g_{b_1^n})v, W)}{\|\operatorname{Ad}(g_{b_1^n})\|} \to 0$$

as $n \to \infty$, and hence

$$\operatorname{dist}([\operatorname{Ad}(g_{b_1^n})v], [W]) \to 0.$$

For fixed b the convergence is uniform for v in a compact subset of $V \setminus V_b^{<\max}$.

Proof. By Assumption (I), choose $w \in W$ such that $v - w \in V_b^{<\max}$. Again by (I) we have $\operatorname{Ad}(g_{b_1^n})w \in W$ for all n. Then

$$dist(Ad(g_{b_1^n})v, W) = \inf_{w \in W} ||Ad(g_{b_1^n})v - w||$$

$$\leq ||Ad(g_{b_1^n})v - Ad(g_{b_1^n})w||$$

$$= ||Ad(g_{b_1^n})(v - w)||$$

$$\sim e^{n\chi_2} = o(||Ad(g_{b_1^n})||),$$

which demonstrates the first statement. For the second statement, because $[v] = \frac{v}{\|v\|}$ up to a sign, we use Proposition 3.5.

Proposition 3.7. Assume that (I) and (III) hold. Fix $d \in \{1, \ldots, \dim G - 1\}$ and $v \in V^{\wedge d}$. Then we have $v \notin V_b^{\leq 0}$ for β -almost every $b \in B$, and if d = 1 then $v \notin V_b^{\leq \max}$.

Proof. We will prove it for d = 1. The proof for d > 1 follows by substituting $V_b^{\leq 0}$ for $V_b^{<\max}$ and ρ_d for Ad.

Let $\mu^{*i} * \delta_{[v]}$ be the pushforward of $\mu^{*i} \otimes \delta_{[v]}$ under the map $(g, [v]) \mapsto [\operatorname{Ad}(g)v]$; note that this is consistent with the usual convolution notation

$$\mu * \nu(f) = \int f(gx) \, d\mu(g) \, d\nu(x).$$

Using the shift-equivariance property from Oseledec's theorem and Fubini's theorem,

$$\begin{split} \int_{B} \mu * \delta_{[v]} \left([V_{b}^{<\max}] \right) \, d\beta(b) &= \int_{B} \mu \otimes \delta_{[v]} \left(\{ (b_{1}, v) : \operatorname{Ad}(g_{b_{1}}) v \in V_{b}^{<\max} \} \right) \, d\beta(b) \\ &= \int_{B} \mu \otimes \delta_{[v]} (\{ (b_{1}, v) : v \in V_{b_{1}b}^{<\max} \}) \, d\beta(b) \\ &= \int_{B} \left(\int_{E} \mu \otimes \delta_{[v]} (\{ (b_{1}, v) : v \in V_{b_{1}b}^{<\max} \}) \, d\mu(b_{1}) \right) \, d\beta(b) \\ &= \int_{B} \delta_{[v]} ([V_{b}^{<\max}]) \, d\beta(b). \end{split}$$

By induction on i, we then have

$$\int_{B} \mu^{*i} * \delta_{[v]} \left([V_{b}^{<\max}] \right) \, d\beta(b) = \int_{B} \delta_{[v]} \left([V_{b}^{<\max}] \right) \, d\beta(b)$$

for each $i \ge 0$. For each $n \ge 1$ define

$$\nu_n = \frac{1}{n} \sum_{i=0}^{n-1} \mu^{*i} * \delta_{[v]},$$

a probability measure on the compact space $\mathbb{P}(V)$. Then by the above computation,

$$\beta \left(\{ b \in B : v \in V_b^{<\max} \} \right) = \int_B \delta_{[v]}([V_b^{<\max}]) \, d\beta(b) = \int_B \nu_n([V_b^{<\max}]) \, d\beta(b)$$

for all $n \ge 1$. Thus it remains to show that the right-hand integral $\to 0$ as $n \to \infty$. By the Lebesgue dominated convergence theorem, it suffices to show that for β -almost every $b \in B$, $\nu_n([V_b^{<\max}]) \to 0$ as $n \to \infty$.

Suppose by contradiction there exists $\epsilon > 0$ and a set B_0 of positive β measure such that for all $b \in B_0$, there exists a subsequence $n_k \to \infty$ with $\nu_{n_k}([V_b^{<\max}]) \ge \epsilon$. Let $V' = V_{b_0}^{<\max}$ for some $b_0 \in B_0$, and let ν_{∞} be a weak-* limit point of ν_{n_k} . Because $\mu * \nu_{n_k} - \nu_{n_k} \to 0$ by telescoping, ν_{∞} is μ -stationary and satisfies $\nu_{\infty}([V']) \ge \epsilon$.

Some terminology: a stationary measure ν is said to be μ -ergodic if it cannot be written as a proper convex combination of two different μ -stationary Borel probability measures. Then by the Krein-Milman theorem we can decompose any μ -stationary measure into a convex combination of μ -ergodic measures called ergodic components of ν .

Thus we may assume that ν_{∞} has an ergodic component ν'_{∞} with $\nu'_{\infty}([V']) > 0$. Let $k \leq \dim V$ be minimal with respect to the property that some k-dimensional subspace has positive ν'_{∞} -measure. Then the intersection of any two distinct k-dimensional subspaces of V has measure zero, so ν'_{∞} is an additive atomic measure on the set of all such subspaces. We have the following:

Lemma. If μ and ν are probability measures on G and X respectively, $G \curvearrowright X$, and ν is μ -ergodic (and μ -stationary by definition) and atomic, then it is G-invariant and finitely supported.

Proof. Let $x \in X$ be an atom with maximal ν -measure. Then the orbit Gx is G-invariant with positive measure, hence $\mu(Gx) = 1$ by ergodicity. By stationarity,

$$\nu(x) = \sum_{g} \mu(g)\nu(gx) \le \max_{g} \nu(gx) \sum_{g} \mu(g) = \max_{g} \nu(gx),$$

and since $\nu(x)$ is maximal, $\nu(x) = \nu(gx)$ for all $g \in G$. Hence ν is just the uniform measure on the finite set Gx, and in particular it is G-invariant.

Applying the lemma to ν'_{∞} , there exists a finite $\operatorname{supp}(\mu) = E$ -invariant collection of subspaces $\{L_1, \ldots, L_r\}$ with $\operatorname{supp}(\nu'_{\infty}) \subset \bigcup L_i$. By Assumption (III), each $L_i \cap W \neq \emptyset$. But V' is complementary to W by Assumption (I), so $L_i \cap V'$ has dimension strictly less than k, so $\nu'_{\infty}([L_i \cap V']) = 0$, so $\nu'_{\infty}([V']) = 0$, a contradiction.

3 The main theorems

Proposition 3.3. Under assumptions (I)-(III), there exists $n_0 \ge 1$ and $\epsilon > 0$ such that for all d, $v \in V^{\wedge d} \setminus \{0\}$ and $n \ge n_0$,

$$\frac{1}{n} \int_G \log \frac{\|\rho_d(g)v\|}{\|v\|} \, d\mu^{*n}(g) > \epsilon.$$

Proof. Fix $\alpha > 0$ to be specified below. By Proposition 3.7, for each $v' \in V^{\wedge d}$ there exists $\epsilon_0 = \epsilon_0(v')$ and $B_0 = B_0(v') \subset B$ such that $\beta(B_0) \ge 1 - \alpha$ and for all $b \in B_0$, $\operatorname{dist}([v'], [V_b^{\le 0}]) \ge \epsilon_0$. If $0 < \epsilon_1 < \epsilon_0$, there is a neighborhood U = U(v') of [v'] in $\mathbb{P}(V^{\wedge d})$ such that for all $b \in B_0(v')$ and $[v] \in U$, $\operatorname{dist}([v], [V_b^{\le 0}]) \ge \epsilon_1$. Now choose a finite cover $\{U_1, \ldots, U_k\}$ of $\mathbb{P}(V^{\wedge d})$ and a finite collection $\{B_1, \ldots, B_k\}$ of subsets of B such that $\beta(B_j) \ge 1 - \alpha$ for all j, and for all $b \in B_j$ and $[v] \in U_j$, $\operatorname{dist}([v], [V_b^{\le 0}]) \ge \epsilon_1$. Now let $\chi > 0$ be strictly less than the smallest positive Lyapunov exponent of the action on $V^{\wedge d}$. By the uniformity on compact subsets from Oseledec's theorem, for each j there exists n_j such that for all $n \ge n_j$, $[v] \in U_j$, and $b \in B_j$ we have

$$\|\rho_d(g_{b_1^n})v\| \ge e^{n\chi} \|v\|.$$

Let $N = \max_{j} n_{j}$, and for each $v \in V^{\wedge d} \setminus \{0\}$ and $n \geq N$ let

$$S = S_{n,v} = \{b_1^n \in E^n : \|\rho_d(g_{b_1^n})v\| \ge e^{n\chi} \|v\|\},\$$

so that if $[v] \in U_j$ and $b \in B_j$ then $b_1^n \in S_{n,v}$ for all $n \ge N$. Since $\beta(B_0(v')) \ge 1 - \alpha$, we have $\mu^{\otimes n}(S) \ge 1 - \alpha$, and thus

$$\begin{aligned} \frac{1}{n} \int_{G} \log \frac{\|\rho_{d}(g)v\|}{\|v\|} \, d\mu^{*n}(g) &= \frac{1}{n} \int_{E^{n}} \log \frac{\|\rho_{d}(g_{b_{1}^{n}})v\|}{\|v\|} \, d\mu^{\otimes n}(b_{1}^{n}) \\ &\geq \frac{1}{n} \int_{S} \log e^{n\chi} \, d\mu^{\otimes n} + \frac{1}{n} \int_{E^{n} \setminus S} \log \|\rho_{d}(g_{b_{1}^{n}})^{-1}\|^{-1} \, d\mu^{\otimes n}(b_{1}^{n}) \\ &\geq \frac{1}{n} \big((1-\alpha)n\chi - \alpha n \log \max_{g \in \text{supp}(\mu)} \|\phi_{d}(g)^{-1}\| \big) \\ &\geq (1-\alpha)\chi - \alpha \log \max_{g \in \text{supp}(\mu)} \|\phi_{d}(g)^{-1}\|. \end{aligned}$$

The second inequality comes from the fact that $||v|| = ||A^{-1}Av|| \le ||A^{-1}|| ||Av||$. To complete the proof, choose α small enough so the last expression is positive and independent of v.

Proposition 3.1. Under assumptions (I)-(III) we have

1. For every $\alpha > 0$ there exists $c_0 > 0$, $q_0 \ge 1$ such that for any $v \in V \setminus \{0\}$ we have

$$\beta(\{b \in B : \forall q \ge q_0, \|\mathrm{Ad}(g_{b_1^q})v\| \ge c_0\|\mathrm{Ad}(g_{b_1^q})\|\|v\|\}) \ge 1 - \alpha$$

2. For every $\alpha, \eta > 0$ there exists $q_0 \ge 1$ such that for any $v \in V \setminus \{0\}$ we have

$$\beta(\{b \in B : \forall q \ge q_0, \operatorname{dist}([\operatorname{Ad}(g_{b_1^q})v], [W]) \le \eta\}) \ge 1 - \alpha.$$

Proof. Fix $\alpha, \eta > 0$. By Proposition 3.7 and a compactness argument similar to the one used in the proof of Proposition 3.3, there exists $\epsilon > 0$ such that for all $v \in V \setminus \{0\}$,

$$\beta(\{b \in B : \forall q \ge q_0, \operatorname{dist}([v], [V_b^{<\max}]) \ge \epsilon\}) \ge 1 - \alpha/2.$$

For each $b \in B$, define N(b) as the smallest integer such that for all $v \in V$ with $dist([v], [V_b^{< max}]) \ge \epsilon$ and all $n \ge N(b)$, we have

$$\|\operatorname{Ad}(g_{b_1^n})v\| \ge \frac{1}{N(b)} \|\operatorname{Ad}(g_{b_1^n})\| \|v\|, \text{ and } \operatorname{dist}([\operatorname{Ad}(g_{b_1^q})v], [W]) \le \eta,$$
(1)

so that $N(b) < \infty$ for β -almost every $b \in B$, by Propositions 3.5 and 3.6. Thus there exists N_0 such that

$$\beta(\{b \in B : N(b) \le N_0\}) \ge 1 - \alpha/2.$$

Now fix $v \in V \setminus \{0\}$. For all $b \in B$ such that $dist([v], [V_b^{< max}]) \ge \epsilon$ and $N(b) \le N_0$, and for all $n \ge N_0$, Equation 1 holds, and we are done.

Proposition 3.2. Under assumptions (I) and (III), for each $d = 1, ..., \dim G-1$ the only μ -stationary probability measure on $V^{\wedge d}$ is the Dirac measure δ_0 centered at 0.

Proof. Let ν be a μ -stationary measure on $V^{\wedge d}$ which is not equal to the Dirac measure δ_0 , let $Z = B \times V^{\wedge d}$, let $\lambda = \beta \times \nu$, and let

$$Y = \{(b, z) \in Z : v \notin V_b^{\leq 0}\}.$$

By Proposition 3.7, $\lambda(Y) = 1$. Now define $\hat{T} : Z \to Z$ by $\hat{T}(b, v) = (Tb, \phi_d(g_{b_1})v)$. Because ν is μ -stationary, λ is \hat{T} -invariant:

$$\begin{split} \int_Z f \circ \hat{T} \, d\lambda &= \int_Z f(Tb, \phi_d(g_{b_1})v) \, d\beta(b) \, d\nu(v) \\ &= \int_Z f((b_2, b_3, \ldots), \phi_d(g_{b_1})v) \, d\mu(b_1) \, d\beta(b_2, b_3, \ldots) \, d\nu(v) \\ &= \int_Z f((b_2, b_3, \ldots), v) \, d\beta(b_2, b_3, \ldots) \, d\nu(v) \\ &= \int_Z f(b, v) \, d\beta(b) \, d\nu(v) \\ &= \int_Z f \, d\lambda \end{split}$$

Furthermore, $\|\rho_d(g_{b_1^n})v\| \to \infty$ for every $(b, v) \in Y$, by definition of Y. Let t > 0 be large enough so that $\lambda(Y_0) > 0$, where

$$Y_0 = \{(b, v) \in Y : \|v\| \le t\}.$$

Then for all $(b, v) \in Y_0$, for all *n* large enough, $\hat{T}^n(b, v) \notin Y_0$, which contradicts Poincaré recurrence.