Notes on Simmons-Weiss Chapter 3

1 Preliminaries

Almost all of this is directly plagiarized from [SW]. We are keeping all the notation and theorem
numbers unchanged.

Let G be a unimodular noncompact Lie group with finitely many connected components, £ C G
compact, and p a probability measure supported on E. We write e — g, for the inclusion £ — G, so
in this context F is used as an indexing set for elements of g.

We denote B = EN with Bernoulli measure 8 = u®Y and left-shift map T : B — B. If b =
(b1,b2,...) € B, let b7 = (by,...,b,) € E", and gyn = gp,, -~ g, For each n > 1, denote by p*" the
pushforward to G of the product measure y™ on E™ under the map b} + gpr, i.e. for any integrable
function f on G,

/ F(g) du™™(g) = / Fgne) du” (B7).
G B

Let V = g be the Lie algebra of G, and Ad : G — SL(V) the adjoint representation Ad(g) =
DU )| =, where U, (z) = grg~!.
g)lg g

Theorem (Oseledec). There exist real numbers x1 > -+ > xx and for B-almost every b € B a
descending chain of proper subspaces

V=VyoViD---DVe1 DV =0

depending measurably on b, such that for allv € V;_1\ 'V},

1
Jim —log lp(gu ol = X,

and the convergence is uniform as v ranges over any compact subset of V;_1 \ V;. Each x; is called a
Lyapunov exponent, with multiplicity d; = dim V;_1 — dim V;. Furthermore, we have

k
S iy = /G log | det p(g)] du(g),
=1

and for each i,
Vi(T'(b)) = p(ge, ) Vi (D).

We set V3 (b) = V,~™**, which we call the Oseledec space of non-mazimal expansion, and Vj,(b) =
ngo where jo = max{j : x; > 0} is called the Oseledec space of subexponential expansion.

For each d = 1,...,dimG — 1, let V"% be the dth exterior power of V. Then Ad induces a
representation pg : G — SL(V/\9). Assume that for each d there is a nontrivial proper subspace
WAe c VA guch that



(I) For every g € E, W% is py(g)-invariant. For -almost every b € B, if d = 1 then W% is
complementary to V,<™** and if d > 1 then VbSO NWhd = 0.

(IT) For every g € E, Ad(g) acts on W = W”! as a similarity map, and
| o l14d(a)lw | di(s) > 0.

(III) For any d, if a linear subspace L C V"% has a finite orbit under the semigroup generated by F,
then LN WA £ 0.

Fix an inner product on V% inducing a metric and an operator norm on GL(V/?). Let P(V"?) be
the projective space of lines in V9. If z € V/9\ {0}, we write [] for its image under the quotient map.
Similarly, if W C V4 is a nonzero subspace, its image is [IW]. The distance between a vector v € V/\4
and a subspace W C V" will be denoted dist(v, W), and the distances between their projectivizations
will also be denoted dist([v], [W]).

2 Preparatory lemmas

Proposition 3.5. Under assumptions (I) and (II), for B-almost every b € B, for any compact
C C V\ VS there exists ¢ > 0 such that for allv e C andn > 1,

[Ad(gep )0l = cl|Ad(gep)]I-
The proof uses the following notation: A <, B if there exists ¢ = ¢(x) with ¢7! <

Proof. By Assumption (I) with d = 1, we can write v = m(v) + 7w (v) with 71 (v)
mw(v) € W\ 0. By Oseledec’s theorem,

[Ad(gsy )m1 (V)
[Ad(gsy )mw (v)]]

—0

asn — 00, 50 [|Ad(gyn )v|| <p0 [|Ad(ger )7w (v)||, using the triangle inequality. By this and Assumption
(ID),
[Ad(gep Jvll <b,0 [[Ad(gep )mw (V)] =b,0 [[Ad(gey)

By choosing a basis of V' consisting of vectors that do not belong to V,~™**, we have

|Ad(gpr ) Iw || <o [[Ad(gor )|

wll

By Oseledec’s theorem, we can take the constant independent of v in a compact subset. O]

Proposition 3.6. Under assumptions (I) and (II), for B-almost every b € B and for allv € V\V, =™,

we have
dist(Ad(gpr )v, W)

[Ad(gey )|

as n — 0o, and hence
dist([Ad(gpn )v], [W]) — 0.

For fized b the convergence is uniform for v in a compact subset of V '\ VS,



Proof. By Assumption (I), choose w € W such that v —w € V,5™**. Again by (I) we have Ad(gy»)w €
W for all n. Then

dist(Ad(gup v, W) = inf [|Ad(gsy v — w]
< |Ad(gsy ) — Ad(gsp )|
— | Ad(giy) (v — w)]
~ ™2 = of|| Ad(gip ),

which demonstrates the first statement. For the second statement, because [v] = ﬁ up to a sign, we

use Proposition 3.5. O

Proposition 3.7. Assume that (I) and (II) hold. Fizxd € {1,...,dimG — 1} and v € V4. Then
we have v ¢ ngo for B-almost every b € B, and if d =1 then v ¢ V,S™**.

Proof. We will prove it for d = 1. The proof for d > 1 follows by substituting VbSO for V,<™** and pq
for Ad.

Let p*? x dy] be the pushforward of e 0}y under the map (g, [v]) — [Ad(g)v]; note that this is
consistent with the usual convolution notation

o v(f) = / f(92) du(g) dv(z).

Using the shift-equivariance property from Oseledec’s theorem and Fubini’s theorem,
[ s (1) d80) = [ e dy (10r.0) s Adlgn o € Vi) 30
= [ w8 {01,020 € Vi) ds
= [ ([roounoso e vy aum)) as
B \JE
= [ (v dsc.
B
By induction on 4, we then have
[ (V) o) = [ d i) dace

for each 7 > 0. For each n > 1 define

a probability measure on the compact space P(V). Then by the above computation,

gl v eV = [ sV dst) = [ () dse)

for all n > 1. Thus it remains to show that the right-hand integral — 0 as n — oco. By the Lebesgue
dominated convergence theorem, it suffices to show that for S-almost every b € B, v, ([V;=™*]) — 0
as m — oo.



Suppose by contradiction there exists ¢ > 0 and a set By of positive 5 measure such that for
all b € By, there exists a subsequence nj, — 0o with v, ([V;5™*]) > e. Let V' = V=% for some
by € By, and let v be a weak-* limit point of v,,,. Because p * v, — vy, — 0 by telescoping, v is
p-stationary and satisfies voo ([V']) > €.

Some terminology: a stationary measure v is said to be p-ergodic if it cannot be written as a
proper convex combination of two different p-stationary Borel probability measures. Then by the
Krein-Milman theorem we can decompose any p-stationary measure into a convex combination of
p-ergodic measures called ergodic components of v.

Thus we may assume that vo, has an ergodic component v._ with v ([V']) > 0. Let k£ < dim V'
be minimal with respect to the property that some k-dimensional subspace has positive v/ -measure.
Then the intersection of any two distinct k-dimensional subspaces of V' has measure zero, so v/ is an
additive atomic measure on the set of all such subspaces. We have the following;:

Lemma. If p and v are probability measures on G and X respectively, G ~ X, and v is p-ergodic
(and p-stationary by definition) and atomic, then it is G-invariant and finitely supported.

Proof. Let x € X be an atom with maximal v-measure. Then the orbit Gz is G-invariant with positive
measure, hence u(Gz) = 1 by ergodicity. By stationarity,

E w(g)v(gx) <max1/ (gz) E u(g) = maxv(gx),
9
g

and since v(x) is maximal, v(x) = v(gz) for all g € G. Hence v is just the uniform measure on the
finite set Gz, and in particular it is G-invariant.

Applying the lemma to v, there exists a finite supp(p) = E-invariant collection of subspaces
{L1,..., L.} with supp(v, ) C |J L;. By Assumption (IIT), each L, "W # §. But V' is complementary
to W by Assumption (I), so L; NV’ has dimension strictly less than k, so v, ([L; N V']) = 0, so
V. ([V']) = 0, a contradiction. O

3 The main theorems

Proposition 3.3. Under assumptions (I)-(III), there exists ng > 1 and € > 0 such that for all d,

v € VM {0} and n > ny,
1
[ ol gy
nJa o]l

Proof. Fix a > 0 to be specified below. By Proposition 3.7, for each v € V¥ there exists ¢y = €o(v')
and By = By(v') C B such that (By) > 1 — « and for all b € By, dist([v’],[VbSO]) > ¢ If
0 < €1 < €, there is a neighborhood U = U(v') of [v/] in P(V/9) such that for all b € By(v') and
[v] € U, dist([v], [V %) > €. Now choose a finite cover {Uy, ..., U} of P(V/?%) and a finite collection
{Bi1,..., By} of subsets of B such that 3(B;j) > 1 — « for all j, and for all b € B; and [v] € Uj,
dist([v], [V;)SO]) > €1. Now let x > 0 be strictly less than the smallest positive Lyapunov exponent of
the action on V¢, By the uniformity on compact subsets from Oseledec’s theorem, for each j there
exists n; such that for all n > n;, [v] € U;, and b € B; we have

lpa(gsy)oll = €™ o]
Let N = max; n;, and for each v € V 4\ {0} and n > N let

S = Sno = {01 € E" : [lpalgep vl = e™X[Jv[[},



so that if [v] € U; and b € Bj then b} € S, , for all n > N. Since 5(By(v')) > 1 — «, we have
u®(S) > 1 — a, and thus

1 vl e 1 llpa(ger vl o
*/ 1OgMd/~L (9) = */ log ———— du®"(b})
nJa o]l n Jgn [|v]

1 1 —1— n/pn
> —/logenx d,u®"+f/ longd(gby) 1|| Ldp® (o7)
nJs N JEn\s
1 -1
> —((1—a)ny —anlog max |lpa(g) ")
n g€supp(p)

> (1—a)x —alog max |pa(g)""|.
gEsupp ()

The second inequality comes from the fact that |v]| = [|[A~ Av|| < [|[A71]|||Av]|. To complete the
proof, choose « small enough so the last expression is positive and independent of v. O
Proposition 3.1. Under assumptions (I)-(III) we have

1. For every o > 0 there exists co > 0, qo > 1 such that for any v € V' \ {0} we have

B({b € B :Vq > qo. [ Ad(gyg )]l > coll Ad(gg)10]}) > 1~ .

2. For every a,n > 0 there exists qo > 1 such that for any v € V' \ {0} we have

B({b € B :¥q > qo, dist([Ad(gye)o], [W]) < m}) > 1 -«

Proof. Fix o, > 0. By Proposition 3.7 and a compactness argument similar to the one used in the
proof of Proposition 3.3, there exists € > 0 such that for all v € V'\ {0},

B({b € B :Vq > qo,dist([v], [V,5™*]) > €}) > 1 — /2.

For each b € B, define N (b) as the smallest integer such that for all v € V' with dist([v], [V,;~™*]) > €
and all n > N(b), we have

1
A n > —||A n
|| d(gbl )UH st 7‘7(6) H d(gbl)

[0l, and dist([Ad(gpg)v], [W]) < n, (1)

so that N(b) < oo for S-almost every b € B, by Propositions 3.5 and 3.6. Thus there exists Ny such
that
B({be B:N(B) < No}) > 1-a/2

Now fix v € V'\ {0}. For all b € B such that dist([v], [V,~™**]) > e and N (b) < Ny, and for all n > Np,
Equation [1| holds, and we are done. O]

Proposition 3.2. Under assumptions (I) and (III), for each d = 1,...,dim G—1 the only u-stationary
probability measure on V" is the Dirac measure &y centered at 0.

Proof. Let v be a p-stationary measure on V% which is not equal to the Dirac measure &y, let
Z=BxV" let A=/ x v, and let

Y ={(b2) € Z:v¢ V")



By Proposition 3.7, A(Y) = 1. Now define T :Z — Z by T(b,v) = (T, ¢4(gs, )v). Because v is
p-stationary, A is T-invariant:

/ fofdr= / F(Tb, dalgs,)0) dB(b) dv(v)

Z Z
= /Z f((b27 b37 .. ‘)7 ¢d(gb1)v) d,u(b1) dﬁ(bz, b3, .. ) dl/(v)
= ~/Z f((b27 b37 .. .)7’0) dﬂ(bg, bg, .. ) dV(’U)
- / £(b,v) dB(b) du(v)

:/Zfd/\

Furthermore, ||p4(gor )v|| — oo for every (b,v) € Y, by definition of Y. Let ¢ > 0 be large enough so
that A(Yp) > 0, where
Yo ={(b,v) €Y : [lo]| <t}.

Then for all (b,v) € Yp, for all n large enough, 7™ (b,v) ¢ Yy, which contradicts Poincaré recurrence.
[
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