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The setup

G = SL(3,R).

Γ < G a discrete subgroup.

X = G/Γ.

m the Haar measure on X .

A < G the full diagonal group.

µ an A-invariant and A-ergodic probability measure on X .

For any t, s ∈ R denote

a(t, s) :=

 t
s

t−1s−1

 .
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The Einsiedler–Katok 2003 measure rigidity theorem

Theorem

If t, s ∈ R satisfy

hµ (a(t, s)) >
1

2

(∣∣log
∣∣ts−1

∣∣∣∣+
∣∣log

∣∣t2s
∣∣∣∣+

∣∣log
∣∣ts2

∣∣∣∣) .
then µ ∝ m.
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Ideas from the proof

Show that µ is invariant under upper and lower triangular matrices.

Work with leaf-wise measures along stable subgroups of a.

The entropy assumption implies that a has enough stable subgroups
with nontrivial leaf-wise measure.

The product formula implies invariance of the leaf-wise measures
along commutators of such groups.

Every one-parameter triangular subgroup of G is the commutator of
two other one-dimensional triangular directions.
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One-dimensional groups of triangular matrices

Define the groups

G [1] =

 1 ∗
1

1

 , G [2] =

 1 ∗
1

1

 , G [3] =

 1
1 ∗

1

 ,

and

G [−1] =

 1
∗ 1

1

 , G [−2] =

 1
1

∗ 1

 , G [−3] =

 1
1
∗ 1

 .
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The one-dimensional groups of triangular matrices

Figure: The commutator of any two groups which are separated by exactly one
group is that group in the middle
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The (standard) Heisenberg group

G− :=

 1 ∗ ∗
1 ∗

1


[
G [1],G [3]

]
= G [2].

 1 x
1

1

 1
1 z

1

 1 −x
1

1

 1
1 −z

1

 =

 1 x xz
1 z

1

 1 −x xz
1 −z

1

 =

 1 2xz
1

1

 .
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Proof of the Einsiedler–Katok Theorem

The proof splits into two cases:

The singular case: two eigenvalues are equal in absolute value.

The regular case: three eigenvalues with different absolute values.
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The singular case

The stable horospherical group of a, G−a , is a product of two
commuting one-dimensional triangular subgroups.

WLOG 0 < |t| = |s| < 1 and G−a = G [2]G [3].

For every integer i with 1 ≤ |i | ≤ 3 denote µ
[i ]
x := µG

[i ]

x .
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The product structure of leaf-wise measures

Corollary 8.8

If a′ ∈ A, U < G−a′ normalised by a′, T < G 0
a′ normalises U and H = TU,

then µ-∀x ∈ X satisfies

µHx ∝ ι
(
µTx × µUx

)
,

where

ι : T × U → H

(t, u) 7→ tu .
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Applying Lemma 8.8

Take e.g. a′ =

 2
1/4

2

 .

T := G [2] < G 0
a′ .

U := G [3] < G−a′ .

H := G [2]G [3] = G−a .

a′ normalises U.

H is commutative, and in particular T normalises U.

Then µ-∀x ∈ X satisfies µG
−
a

x ∝ ι
(
µ
[2]
x × µ[3]x

)
.
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The entropy contribution of stable subgroups normalised
by a

Theorem 7.6

Assume a ∈ G, µ an a-invariant probability measure on X and U < G−a is
normalised by a.

i The entropy contribution of U at x

Dµ (a,U) (x) := lim
n→∞

logµUx
(
a−nBU

1 an
)

n

is well defined.

ii For µ-∀x
Dµ (a,U) (x) ≤ hµEx (a)

with equality if U = G−a . Here E is the σ-algebra of a-invariant sets.

iii For µ-∀x ∈ X , Dµ (a,U) (x) = 0 iff µUx is finite iff µUx is trivial.
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The entropy contribution of stable subgroups normalised
by a (cntd.)

Definition

The entropy contribution of U is

hµ (a,U) :=

∫
Dµ (a,U) dµ .
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Applying Theorem 7.6(i)

G [2] and G [3] are subgroups of G−a and are normalised by a.

Theorem 7.6(i) implies that the entropy contributions hµ
(
a,G [2]

)
and

hµ
(
a,G [3]

)
are defined.

a contracts G−a , therefore µ-∀x satisfies

lim
n→∞

logµG
−
a

x

(
a−nBG−a

1 an
)

n
= lim

n→∞

logµG
−
a

x

(
a−n

(
BG [2]

1 BG [3]

1

)
an
)

n

= lim
n→∞

logµG
[2]

x

(
a−nBG [2]

1 an
)

n
+

lim
n→∞

logµG
[3]

x

(
a−nBG [3]

1 an
)

n
.

The definition of the entropy contribution implies that

hµ
(
a,G−a

)
= hµ

(
a,G [2]

)
+ hµ

(
a,G [3]

)
.
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Applying Theorem 7.6(ii)

On the other hand, Theorem 7.6(ii) with U = G−a implies that

hµ
(
a,G−a

)
=

∫
hµEx (a)dµ(x) .

Section 5.14 “The ergodic decomposition revisited” implies that

hµ
(
a,G−a

)
= hµ (a) .
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Using the entropy assumption

The entropy assumption is

hµ (a(t, s)) >
1

2

(∣∣log
∣∣ts−1

∣∣∣∣+
∣∣log

∣∣t2s
∣∣∣∣+

∣∣log
∣∣ts2

∣∣∣∣) .
Recall that 0 < |t| = |s| < 1.

Conclude that

hµ
(

a,G [2]
)

+ hµ
(

a,G [3]
)
> −3 log |t| .
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An upper bound on the entropy

Theorem 7.9

Assume a ∈ G, µ an a-invariant probability measure on X and U < G−a is
normalised by a. Then

hµ (a,U) ≤ − log |det Ada |u|

and equality holds if and only if µ is U-invariant. Here u is the Lie algebra
of U.
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Applying Theorem 7.9 and Theorem 7.6(iii)

Both U = G [2] and U = G [3] satisfy Ada |u = t3.

Theorem 7.9 implies that

hµ
(

a,G [2]
)
, hµ

(
a,G [3]

)
≤ −3 log |t|.

Conclude that
hµ
(

a,G [2]
)
, hµ

(
a,G [3]

)
6= 0 .

Theorem 7.6(iii) implies that µG
[2]

x and µG
[3]

x are nontrivial on a set of
positive measure.

In fact, µG
[2]

x and µG
[3]

x are nontrivial on a set of full measure.
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Invariance properties of leaf-wise measures

Theorem 6.3(iii)

For every s ∈ U, µ-∀x ∈ X satisfies,

µUsx ∝ (Rs)∗
(
µUx
)
.

Lemma 7.16 (part 5 in Weikun’s talk)

Assume U < G is normalised by a and let µ be an a-invariant probabilty
measure on X . Denote by ia the conjugation by a. Then µ-∀x ∈ X satisfies

µUax ∝ (ia)∗ µ
U
x .
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Applying Lemma 7.16

G [2] and G [3] are normalised by A.

Theorem 7.16 implies that{
x ∈ X : µ

[i ]
x = δe

}
is A-invariant µ-∀x ∈ X for i ∈ {2, 3}.
The ergodicity of the A action implies that µ

[i ]
x are nontrivial

µ-∀x ∈ X .
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Using the backwards direction

Repeat the same argument with a replaced with a−1.

Since hµ
(
a−1
)

= hµ (a) the assumptions hold.

Conclude that µ
[i ]
x is nontrivial µ-∀x ∈ X for i ∈ {1, 3}.
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Getting invariance

Note that
[
G [−3],G [2]

]
= G [1].

The group generated by G [−3], G [1] and G [2] is 1 ∗ ∗
1
∗ 1

 .

This equals to G−a′ for a′ =

 1/2
2

1


We’ll now show that this implies that µ is G [1] invariant.
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Getting invariance in the commutator direction

The theorem of Section 9.11

Let µ be an A-invariant measure on X and assume that µ
[1]
x and µ

[3]
x are

nontrivial µ-∀x ∈ X . Then µ is G [2] invariant.
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The commutator argument

If gi ∈ G [i ] for 1 ≤ i ≤ 3 then

g3g2g1 = g2g3g1 = (g2 [g3, g1]) g1g3 = g1 (g2 [g3, g1]) g3

We’ll first show that this implies that for µ-∀x ∈ X , µ
[1]
x -∀g1 ∈ G1

and µ
[1]
x -∀g3 ∈ G3 satisfy

µ
[2]
x ∝

(
R[g3,g1]

−1

)
∗
µ
[2]
x .
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Applying Corollary 8.8 again

Apply Corollary 8.8 with a′ =

 1/2
1/2

4

 ,

T = G [1] < G 0
a′ .

U = G [2]G [3] = G−a′ .

G− = TU the group of upper triangular matrices.

T normalises U.

Conclude that µ-∀x ∈ X satisfies µG
−

x ∝ ι
(
µ
[1]
x × µG

[2]G [3]

x

)
.

We already saw that µ-∀x ∈ X satisfies

µG
[2]G [3]

x ∝ ι
(
µ
[2]
x × µ[3]x

)
.

Therefore, µ-∀x ∈ X satisfies

µG
−

x ∝ ι
(
µ
[1]
x × µ[2]x × µ[3]x

)
.
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Applying Corollary 8.8 again (cntd.)

Similarly, apply Corollary 8.8 again, this time with

a′ =

 1/4
2

2

 ,

This gives that µ-∀x ∈ X satisfies

µG
−

x ∝ ι
(
µ
[3]
x × µ[2]x × µ[1]x

)
.
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Using the commutator argument

Any f ∈ Cc (G−a ) satisfies µ-∀x ∈ X∫
f (g)dµG

−
a

x =

∫
f (g1g2g3) dµ

[1]
x dµ

[2]
x dµ

[3]
x

=

∫
f (g1 (g2 [g3, g1]) g3) dµ

[1]
x dµ

[2]
x dµ

[3]
x .

For any g1, g3 and any f2 ∈ Cc

(
G [2]

)
denote

Ff2 (g1, g3) :=

∫
f2 (g2 [g3, g1])− f2 (g2) dµ

[2]
x .

Use the equality above with a compactly supported continuous
approximation of the function f = f2Ff2 to deduce that

Ff2 (g1, g3) = 0 µ
[1]
x -∀g1 ∈ G1 and µ

[3]
x -∀g3 ∈ G3.

Therefore, µ-∀x ∈ X satisfies

µ
[2]
x ∝

(
R[g3,g1]

−1

)
∗
µ
[2]
x .

In fact, proportionality may be upgraded to equality:
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An upper bound on the growth rate of the measures of
balls

Theorem 6.30

Fix any sequence rn ↗∞. Then µ-∀x ∈ X satisfies

lim
n→∞

µ
[2]
x

(
BG [2]

rn

)
n2m

(
BG [2]

rn+5

) = 0 .

Remark

In the notes published on Elon’s webpage (which are linked to in the
seminar webpage) this is Theorem 6.29. Compared to the official lecture
notes published by the Clay Mathematics Institute, all subsections in
section 6 after section 6.7 are shifted by one, since Problem 6.8 about
existence of r -cross sections in the homogeneous setup appears in the
official version but not in the version that’s on Elon’s webpage.
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Applying Theorem 6.30 to get a strict invariance

Assume [g3, g1] =

 1 r
1

1

 with r 6= 0.

Let c > 1 be such that µ
[2]
x = c

(
R[g3,g1]

−1

)
∗
µ
[2]
x .

Then for every n ∈ N,

µ
[2]
x = cn

(
R[g3,g1]

−1

)
∗
µ
[2]
x .

On the other hand, for any r0, [g3, g1]n Br0 ⊆ Br0+nr .

This implies that

µ
[2]
x (Br0+nr ) ≥ cnµ

[2]
x (Br0) .

This contradicts Theorem 6.30.
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Proof of the Theorem of Section 9.11 (cntd.)

The stabiliser
{

g2 ∈ G [2] : g2µ
[2]
x = µ

[2]
x

}
is a closed group.

Conclude that µ
[2]
x is invariant under

[
suppµ

[1]
x , suppµ

[3]
x

]
.

Claim: suppµ
[i ]
x contains arbitrarily small elements for i ∈ {1, 3}.
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Proving that suppµ
[i ]
x contains arbitrarily small elements

By assumption, µ
[i ]
x 6= {e} µ-∀x ∈ X , so the µ measure of

Y =
{

x ∈ X : suppµ
[i ]
x ∩ BG [i ]

R 6= {e}
}

approaches to 1 as R gets larger.

By Poincare reccurence, for µ-∀x ∈ Y there exists arbitrarily large
n ∈ Z for which anx ∈ Y .

I.e.,
suppµ

[i ]
anx ∩ BG [i ]

R 6= {e} .

By Theorem 7.16 we know that µ
[i ]
anx ∝ anµ

[i ]
x a−n.

So suppµ
[i ]
anx = an suppµ

[i ]
x a−n.

Therefore,
suppµ

[i ]
x ∩ a−nBG [i ]

R an 6= {e} .

Erez Nesharim (HomDyn and applications) The high entropy method 11 Mar 21 31 / 44



Conclude that µ
[2]
x is G [2] invariant.

Hence, µ
[2]
x is Haar µ-∀x ∈ X .

This implies that µ itself is G [2] invariant (Problem 6.28).
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Concluding the singular case

Recall we wanted to show that µ is Haar.

Using the entropy assumption we verified that µ
[−3]
x and µ

[2]
x are

nontrivial.

The commutator argument shows that µ is G [1] invariant.

In particular, µ
[1]
x is Haar, so nontrivial.

Verify that µ is invariant under G [i ] for all 1 ≤ |i | ≤ 3, by presenting
each as a commutator of two other triangular groups for which we
already know that the leaf-wise measures are nontrivial a.e.

Finally, µ ∝ m.
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The one-dimensional groups of triangular matrices

Figure: Each group is the commutator of its adjacent groups
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The regular case

The stable horospherical group of a G−a is a product of three
commuting one-dimensional triangular subgroups.

WLOG 0 < |t| < |s| <
∣∣t−1s−1

∣∣ and G−a = G [1]G [2]G [3].
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The product structure

µG
−
a

x ∝ ι
(
µG

[1]

x × µG [2]

x × µG [3]

x

)
.
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The entropy contribution of stable subgroups noramalised
by a

The definition of the entropy contribution implies that

hµ
(
a,G−a

)
= hµ

(
a,G [1]

)
+ hµ

(
a,G [2]

)
+ hµ

(
a,G [3]

)
.

Theorem 7.6(ii) and the ergodic decomposition imply that

hµ (a) = hµ
(

a,G [1]
)

+ hµ
(

a,G [2]
)

+ hµ
(

a,G [3]
)
.
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Using the entropy assumption

The entropy assumption is

hµ (a(t, s)) >
1

2

(
log
∣∣t−1s

∣∣− log
∣∣t2s

∣∣− log
∣∣ts2

∣∣) .

Erez Nesharim (HomDyn and applications) The high entropy method 11 Mar 21 38 / 44



An upper bound on the entropy

U = G [1], U = G [2] and U = G [3] satisfy Ada |u = ts−1, Ada |u = t2s
and Ada |u = ts2 respectively.

Theorem 7.9 implies that

hµ
(

a,G [1]
)
≤ − log

∣∣ts−1
∣∣

hµ
(

a,G [2]
)
≤ − log

∣∣t2s
∣∣

hµ
(

a,G [3]
)
≤ − log

∣∣ts2
∣∣ .

Note that the second upper bound is the sum of the other two:

log
∣∣ts−1

∣∣+ log
∣∣ts2

∣∣ = log
∣∣t2s

∣∣ .
Conclude that at least two indices 1 ≤ i ≤ 3 satisfy

hµ
(

a,G [i ]
)
6= 0 .
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The invariance property of leaf-wise measures

Theorem 7.6(iii) implies that for these two indices µG
[i ]

x is nontrivial
on a set of positive measure.

Ergodicity of the A action implies that{
x ∈ X : µG

[i ]

x = δe

}
has zero measure.

I.e., µUx is nontrivial a.e. for both U = G [2] and U = G [3].

Erez Nesharim (HomDyn and applications) The high entropy method 11 Mar 21 40 / 44



Using the backwards direction

Repeat the same argument with a replaced with a−1.

Since hµ
(
a−1
)

= hµ (a) the assumptions hold.

Conclude that µUx is nontrivial a.e. for some pair of non-commuting
triangular subgroups.
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Getting invariance

Use the commutator trick to verify that the leaf-wise measure in of
the commutator subgroup is Haar.

Use this extra information and repeat with all directions.
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Problem 9.13

Theorem (Einsiedler–Katok 2003)

Suppose µ is A-invariant and all elements have positive entorpy. Then µ is
Haar.
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The proof in one picture

Figure: Every pair of adjacent directions is the stable subgroup of a singular a ∈ A
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