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Definition 1. Denote

Ẑd =
{
a = (a1, . . . , ad) ∈ Zd : gcd (a1, . . . , ad) = 1

}
the set of primitive lattice points in Rd.

Given a = (a1, . . . , ad) ∈ Ẑd≥2, any sufficiently large integer N > 0 can be represented as N = m · a

with m ∈ Ẑd≥0. The largest integer which is not a non-negative integer combination of a1, . . . , ad is the

Frobenius number of a

F (a) = maxZ\
{
m · a > 0 : m ∈ Zd≥0

}
.

We also define

f (a) = F (a) + a1 + · · ·+ ad,

the largest integer which is not a positive integer combination of a1, . . . , ad.

Theorem 1. (Sylvester) For d = 2

F (a1, a2) = a1a2 − a1 − a2.

For d ≥ 3 no explicit formula is known.

Results

Definition 2. Let L be a lattice in Rd−1 and let

∆ =
{
x ∈ Rd−1

≥0 :
d−1∑
i=1

xi ≤ 1
}

be the d− 1-dimensional simplex . The covering radius of ∆ with respect to L is

Q0 (L) = Q (∆, L) = inf
{
t ∈ R+ : L+ t∆d−1 = Rd−1} .

Notation. Let G0 = SLd−1 (R) and Γ0 = SLd−1 (Z), then Ω0 = G0/Γ0 is the space of unimodular

lattices in Rd−1. Let µ0 be a left G0 invariant probability measure on Ω0.
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Theorem 2. (Marklof 2010) Let d ≥ 3.

(1) There exists a continuous non-increasing function Ψd (R) : R≥0 → R≥0 with Ψd (0) = 1, such

that for any bounded set D ⊂ Rd>0 with boundary of Lebesgue measure zero, and any R ≥ 0,

lim
T→∞

1
T d

#
{
a ∈ Ẑd≥2 ∩ TD : f (a)

(a1 · · · ad)1/(d−1) ≤ R

}
= volD
ζ (d) (1−Ψd (R))

In fact

1−Ψd (R) = µ0 ({L ∈ Ω0 : Q0 (L) ≤ R}) .

(2) Q0 is a continuous function on Ω0.

(3) µ0 ({L ∈ Ω0 : Q0 (L) ≤ R}) is continuous in R, that is µ0 ({L ∈ Ω0 : Q0 (L) = R}) = 0 for any

R > 0.

Steps in the proof of (1):

• For a ∈ Ẑd≥2 there exists La ∈ Ω0 such that

f (a)
(a1 · · · ad)1/(d−1) = Q0 (La) .

• For every bounded connected non-empty open subset D ⊂
{
x ∈ Rd : 0 < xi < xd < 1

}
with

boundary of Lebesgue measure zero

∣∣∣TD ∩ Ẑd
∣∣∣ ∼ T dvolD

ζ (d) .

• The set of lattices
{
La : a ∈ TD ∩ Ẑd

}
becomes equidistributed in Ω0 as T → ∞, that is, for

any bounded continuous function φ on Ω0

lim
T→∞

1
T d

∑
a∈TD∩Ẑd

φ (La) = volD
ζ (d)

∫
Ω0

φdµ0.

• Since E≤R {L ∈ Ω0 : Q0 (L) ≤ R} has boundary of measure zero we can apply the above to

φ = χE≤R
.

Theorem 3. (Sylvester): Ψ2 (R) =


1 R < 1

0 R ≥ 1
.

Indeed here ∆ = [0, 1] and the covering radius with respect to the lattice Z, which is the unique element

in the space of one-dimensional lattices of unit covolume, and so

µ0 ({L ∈ Ω0 : Q0 (L) > R}) =


1 R < 1

0 R ≥ 1
= Ψ2 (R) .
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Theorem 4. (Strombergsson 2012) : For d ≥ 3, Ψd (R) = d
2ζ(d−1)R

−(d−1) +Od

(
R−d−

1
d−2

)
, as R→∞.

For d = 3 there is an explicit formula for Ψ3 (R) by Shur, Sinai and Ustinov (2009).

Theorem 5. (Han Li 2014) There exists k > 0 such that for any R > 0, any non-empty connected open

subset D ⊂
{
x ∈ Rd : 0 < xd < 1, 0 < xi < d

}
which has thin boundary (boundary contained in a union

of finitely many connected smooth submanifolds, each with dimension < d) , there exists CR,Dsuch that

for every T ≥ 1∣∣∣∣∣ 1
T d

#
{
a ∈ Ẑd≥2 ∩ TD : f (a)

(a1 · · · ad)1/(d−1) ≤ R

}
− volD
ζ (d) (1−Ψd (R))

∣∣∣∣∣ < CR,D
T k

.

Frobenius numbers and covering radius

Lemma 1. (Kannan 1992) Let a ∈ Ẑd. Then

F := F (a1, . . . , ad) = max
l∈{1,...,ad−1}

tl − ad

where tl ∈ N smallest integer ≡ l mod ad which is a non-negative integer combination of a1, . . . , ad−1.

Proof. Let N ∈ N. If N ≡ 0 mod ad then N = 0 · a1 + . . .+ 0 · ad−1 + k · ad and so F ≥ N .

Claim. Assume N ≡ l mod ad. N is a non-negative integer combination of a1, . . . , ad ⇐⇒ N ≥ tl.

Proof of claim.(⇐) N = tl + k · ad. (⇒) Definition of tl.

So tl−ad is the largest integer congruent to l mod ad which is not a non-negative integer combination. �

Definition 3. Let a ∈ Ẑd.

Ma =
{
x ∈ Zd−1 :

d−1∑
i=1

aixi ≡ 0 mod ad

}
, Sa =

{
x ∈ Rd−1

≥0 :
d−1∑
i=1

aixi ≤ 1
}

note that for α > 0 we have αSa =
{
x ∈ Rd−1

≥0 :
∑d−1
i=1 aixi ≤ α

}
, and that

diag (a1, . . . , ad−1) · Sa = ∆.

Theorem 6. (Kannan) Let a ∈ Ẑd and M,S as above. Then f (a) = Q (S,L).

Proof. Set M := Ma, S := Sa, f := f (a) and Q := Q (S,M).

(≤) Let y ∈ Zd−1 such that
d−1∑
i=1

aixi ≡ l mod ad. By definition of tl there exist x1, . . . , xd ∈ Z≥0 such

that
d−1∑
i=1

aixi = tl = l + xd · ad.
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Denote x′ = (x1, . . . , xd−1), then y−x′ ∈M . Since x′ ∈ tlS then (y − x′)+ tlS contains y = (y − x′)+x′.

Since tl ≤ F + ad then

Zd−1 ⊂ (F + ad)S +M.

Let z ∈ Rd−1, then bzc ∈ Zd−1 and z − bzc ∈ Id−1. Since Id−1 ⊂ αS ⇐⇒ α ≥
∑
ai · 1, then

z − bzc ∈ (a1 + · · ·+ ad−1)S

and so

Rd−1 ⊂ Zd−1 + (a1 + · · ·+ ad−1)S ⊂ (a1 + · · ·+ ad + F )S +M = fS +M

therefore Q ≤ f .

(≥) We begin with the following claim:

Claim. F + ad is the smallest t such that Zd−1 ⊂ tS +M .

Proof of claim. Let t′ < F + ad and assume Zd−1 ⊂ t′S + M . Let l ∈ {1, . . . , ad − 1} and y ∈ Zd−1

so that
∑
aiyi ≡ l mod ad. There exists x ∈ M such that y ∈ t′S + x, and so y − x ∈ t′S. Therefore

y − x ∈ Rd−1
≥0 and

∑
ai (yi − xi) ≤ t′. Since

∑
ai (yi − xi) ≡ l mod ad we get tl ≤ t′. since this is true

for all l we have by the previous theorem and our assumption

F ≤ t′ − ad < F

which is a contradiction. We have seen in the first part of the proof that Zd−1 ⊂ (F + ad)S +M and so

F + ad = min
{
t > 0 : Zd−1 ⊂ tS + L

}
.

Back to the proof: There exists y ∈ Zd−1 such that for every x ∈M with y − x ∈ Rd−1
≥0

∑
ai (yi − xi) ≥ F + ad

because otherwise we contradict the minimality proved above. Let 0 < ε < 1 and define p = (p1, . . . , pd−1) ∈

Rd−1 by pi = yi + (1− ε). Suppose q ∈M such that p− q ∈ Rd−1
≥0 . Since q ∈ Zd−1 then y − q ∈ Zd−1

≥0 .

∑
ai (pi − qi) =

∑
ai (pi − yi) +

∑
ai (yi − qi) ≥ (1− ε)

∑
ai + (F + ad)

This is true for every ε and so if p ∈ QS +M then

Q ≥
∑

ai (pi − qi) ≥ F + (a1 + · · ·+ ad) = f

�
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Dynamics and lattices

Definition 4. For T > 0, x ∈ Rd−1 and y ∈ Rd−1 with yi 6= 0, define

D (T ) =

 T−1/d−1Id−1 0

0 T

 n (x) =

 Id−1 0

xT 1

 m (y) =

 m′ (y) 0

0 1


where m′ (y) = (y1 · · · yd−1)−

1
d−1 diag (y1, . . . , yd−1). Clearly D (T ) , n (x) , m (y) ∈ G = SLd (R).

Definition 5. Let a ∈ Zd with ad 6= 0, then

â =
(
a1

ad
, . . . ,

ad−1

ad

)T
∈ Rd−1.

Theorem 7. (Han Li) Let a ∈ Ẑd, then

f (a)
(a1 · · · ad)

1
d−1

= Q0
(
m (â)D (ad)n (â)Zd ∩ e⊥d

)
.

Proof. Notice that

m (â)D (ad)n (â) =

 m′ (â) a−
1

d−1
d 0

0 ad

n (â) =

 m′ (â) a−
1

d−1
d 0

a1 · · · ad−1 ad

 .

We identify e⊥d ∩ Rd with Rd−1in the natural way, and so

m (â)D (ad)n (â)Zd ∩ e⊥d =


 m′ (â) a−

1
d−1

d 0

a1 · · · ad−1 ad

 z| z ∈ Zd, last entry of m (â)D (ad)n (â) z is zero

 .

= m′ (â) a−
1

d−1
d

{
x ∈ Zd−1|

d−1∑
i=1

xiai ≡ 0 mod ad

}
= m′ (â) a−

1
d−1

d Ma

= 1
(a1 · · · ad)

1
d−1

diag (a1, . . . , ad)Ma

and so

Q0
(
m (â)D (ad)n (â)Zd ∩ e⊥d

)
= Q0

(
1

(a1 · · · ad)
1

d−1
diag (a1, . . . , ad−1)Ma

)

= 1
(a1 · · · ad)

1
d−1

Q0 (diag (a1, . . . , ad−1)Ma)

But we have proved

f (a) = Q
(

(diag (a1, . . . , ad−1))−1 ∆,Ma

)
= Q (∆,diag (a1, . . . , ad−1)Ma) = Q0 (diag (a1, . . . , ad−1)Ma)

finishing the proof. �
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Definition 6. Let D0 =
{
x ∈ Rd : 0 < xd < 1, 0 < xi < xd

}
and denote

MD0 = {(x, y, z) : (x, y) ∈ D0, z ∈ Ω0}

and the product measure dD0 = dxdydµ0 (z).

Theorem 8. (Han Li) There exists α > 0 so that for C a relatively compact, open subset of Ω0, and C′ a

compact subset of C, for any ψ ∈ C∞ (MD0) with supp (ψ) ⊂ {(x, y, z) ∈MD0 : z ∈ C′}, and any T > 1∣∣∣∣∣∣∣
1
T d

∑
a∈TD0∩Ẑd

ψ
( a
T
,m (â)D (ad)n (â) Γ ∩ e⊥d

)
− 1
ζ (d)

∫
MD0

ψ (x, y, z) dD0

∣∣∣∣∣∣∣� |C|d ‖ψ‖C1 T
−α,

Corollary 1. For any bounded continuous function φ on Ω0

lim
T→∞

1
T d

∑
a∈TD∩Ẑd

φ (La) = volD
ζ (d)

∫
Ω0

φdµ0.

Proof. Let φ0 be the function onMD0 defined by φ0 (x, y, z) := χD (x, y)φ (z). Recall La = m (â)D (ad)n (â) Γ∩

e⊥d , then

1
T d

∑
a∈TD∩Ẑd

φ (La)− volD
ζ (d)

∫
Ω0

φdµ0 = 1
T d

∑
a∈TD∩Ẑd

φ0

( a
T
, La

)
− 1
ζ (d)

∫
MD0

φ0dD0

We can take D ⊂ D0 and D has boundary of Lebesgue measure zero and so φ0 can be approximated by

smooth functions and the result follows from the theorem. �

Remark 1. The constants in the theorem are defined as follows: for a smooth function f onMD0

‖f‖C1 := ‖f‖L∞ +
d−1∑
i=1

∥∥∥∥ ∂

∂xi
f

∥∥∥∥
L∞

+
∥∥∥∥ ∂∂y f

∥∥∥∥
L∞

+
∑
X

‖∂X (f)‖L∞ , X ∈ X ∩ Lie (G0) ,

where X ∩ Lie (G0) is a basis of Lie (G0). Let π : G→ Ω be the natural projection given by π (g) = gΓ.

For g ∈ G and x ∈ Ω we set

|g|∞ := max {|aij | : g = (aij)} , |x|∞ := inf {|g|∞ : π (g) = x} .

For C ⊂ Ω a Borel subset, we define

|C| := max (1, sup {|x|∞ : x ∈ C}) .


