FROBENIUS NUMBERS

Definition 1. Denote

$$\widehat{\mathbb{Z}}^d = \left\{ a = (a_1, \dots, a_d) \in \mathbb{Z}^d : \gcd\left(a_1, \dots, a_d\right) = 1 \right\}$$

the set of primitive lattice points in \mathbb{R}^d .

Given $a = (a_1, \ldots, a_d) \in \widehat{\mathbb{Z}}_{\geq 2}^d$, any sufficiently large integer N > 0 can be represented as $N = m \cdot a$ with $m \in \widehat{\mathbb{Z}}_{\geq 0}^d$. The largest integer which is not a **non-negative** integer combination of a_1, \ldots, a_d is the Frobenius number of a

$$F(a) = \max \mathbb{Z} \setminus \left\{ m \cdot a > 0 : m \in \mathbb{Z}_{\geq 0}^{d} \right\}.$$

We also define

$$f(a) = F(a) + a_1 + \dots + a_d$$

the largest integer which is not a **positive** integer combination of a_1, \ldots, a_d .

Theorem 1. (Sylvester) For d = 2

$$F(a_1, a_2) = a_1 a_2 - a_1 - a_2.$$

For $d \geq 3$ no explicit formula is known.

Results

Definition 2. Let *L* be a lattice in \mathbb{R}^{d-1} and let

$$\Delta = \left\{ x \in \mathbb{R}_{\geq 0}^{d-1} : \sum_{i=1}^{d-1} x_i \le 1 \right\}$$

be the d-1-dimensional simplex . The covering radius of Δ with respect to L is

$$Q_0(L) = Q(\Delta, L) = \inf \{ t \in \mathbb{R}^+ : L + t\Delta_{d-1} = \mathbb{R}^{d-1} \}.$$

Notation. Let $G_0 = \operatorname{SL}_{d-1}(\mathbb{R})$ and $\Gamma_0 = \operatorname{SL}_{d-1}(\mathbb{Z})$, then $\Omega_0 = G_0/\Gamma_0$ is the space of unimodular lattices in \mathbb{R}^{d-1} . Let μ_0 be a left G_0 invariant probability measure on Ω_0 .

Theorem 2. (Marklof 2010) Let $d \ge 3$.

(1) There exists a continuous non-increasing function $\Psi_d(R) : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ with $\Psi_d(0) = 1$, such that for any bounded set $\mathcal{D} \subset \mathbb{R}^d_{\geq 0}$ with boundary of Lebesgue measure zero, and any $R \geq 0$,

$$\lim_{T \to \infty} \frac{1}{T^d} \# \left\{ a \in \widehat{\mathbb{Z}}_{\geq 2}^d \cap T\mathcal{D} : \frac{f(a)}{\left(a_1 \cdots a_d\right)^{1/(d-1)}} \le R \right\} = \frac{\operatorname{vol}\mathcal{D}}{\zeta(d)} \left(1 - \Psi_d(R)\right)$$

 $In \ fact$

$$1 - \Psi_d(R) = \mu_0(\{L \in \Omega_0 : Q_0(L) \le R\})$$

- (2) Q_0 is a continuous function on Ω_0 .
- (3) $\mu_0 (\{L \in \Omega_0 : Q_0(L) \le R\})$ is continuous in R, that is $\mu_0 (\{L \in \Omega_0 : Q_0(L) = R\}) = 0$ for any R > 0.

Steps in the proof of (1):

• For $a \in \widehat{\mathbb{Z}}_{\geq 2}^d$ there exists $L_a \in \Omega_0$ such that

$$\frac{f(a)}{(a_1 \cdots a_d)^{1/(d-1)}} = Q_0(L_a).$$

• For every bounded connected non-empty open subset $\mathcal{D} \subset \{x \in \mathbb{R}^d : 0 < x_i < x_d < 1\}$ with boundary of Lebesgue measure zero

$$\left|T\mathcal{D}\cap\widehat{\mathbb{Z}}^{d}\right|\sim\frac{T^{d}\mathrm{vol}\mathcal{D}}{\zeta\left(d\right)}.$$

• The set of lattices $\{L_a : a \in T\mathcal{D} \cap \widehat{\mathbb{Z}}^d\}$ becomes equidistributed in Ω_0 as $T \to \infty$, that is, for any bounded continuous function ϕ on Ω_0

$$\lim_{T \to \infty} \frac{1}{T^d} \sum_{a \in T \mathcal{D} \cap \widehat{\mathbb{Z}}^d} \phi(L_a) = \frac{\operatorname{vol}\mathcal{D}}{\zeta(d)} \int_{\Omega_0} \phi d\mu_0.$$

• Since $E_{\leq R} \{ L \in \Omega_0 : Q_0(L) \leq R \}$ has boundary of measure zero we can apply the above to $\phi = \chi_{E_{\leq R}}.$

Theorem 3. (Sylvester): $\Psi_2(R) = \begin{cases} 1 & R < 1 \\ 0 & R \ge 1 \end{cases}$.

Indeed here $\Delta = [0, 1]$ and the covering radius with respect to the lattice \mathbb{Z} , which is the unique element in the space of one-dimensional lattices of unit covolume, and so

$$\mu_0\left(\{L \in \Omega_0 : Q_0(L) > R\}\right) = \begin{cases} 1 & R < 1 \\ 0 & R \ge 1 \end{cases} = \Psi_2(R).$$

Theorem 4. (Strombergsson 2012) : For $d \ge 3$, $\Psi_d(R) = \frac{d}{2\zeta(d-1)}R^{-(d-1)} + O_d\left(R^{-d-\frac{1}{d-2}}\right)$, as $R \to \infty$.

For d = 3 there is an explicit formula for $\Psi_3(R)$ by Shur, Sinai and Ustinov (2009).

Theorem 5. (Han Li 2014) There exists k > 0 such that for any R > 0, any non-empty connected open subset $\mathcal{D} \subset \{x \in \mathbb{R}^d : 0 < x_d < 1, 0 < x_i < d\}$ which has thin boundary (boundary contained in a union of finitely many connected smooth submanifolds, each with dimension < d), there exists $C_{R,\mathcal{D}}$ such that for every $T \ge 1$

$$\left|\frac{1}{T^{d}}\#\left\{a\in\widehat{\mathbb{Z}}_{\geq 2}^{d}\cap T\mathcal{D}: \frac{f\left(a\right)}{\left(a_{1}\cdots a_{d}\right)^{1/\left(d-1\right)}}\leq R\right\}-\frac{\operatorname{vol}\mathcal{D}}{\zeta\left(d\right)}\left(1-\Psi_{d}\left(R\right)\right)\right|<\frac{C_{R,\mathcal{D}}}{T^{k}}.$$

FROBENIUS NUMBERS AND COVERING RADIUS

Lemma 1. (Kannan 1992) Let $a \in \widehat{\mathbb{Z}}^d$. Then

$$F := F(a_1, \dots, a_d) = \max_{l \in \{1, \dots, a_d - 1\}} t_l - a_d$$

where $t_l \in \mathbb{N}$ smallest integer $\equiv l \mod a_d$ which is a non-negative integer combination of a_1, \ldots, a_{d-1} .

Proof. Let $N \in \mathbb{N}$. If $N \equiv 0 \mod a_d$ then $N = 0 \cdot a_1 + \ldots + 0 \cdot a_{d-1} + k \cdot a_d$ and so $F \geq N$.

Claim. Assume $N \equiv l \mod a_d$. N is a non-negative integer combination of $a_1, \ldots, a_d \iff N \geq t_l$.

Proof of claim.(\Leftarrow) $N = t_l + k \cdot a_d$. (\Rightarrow) Definition of t_l .

So $t_l - a_d$ is the largest integer congruent to $l \mod a_d$ which is not a non-negative integer combination. \Box

Definition 3. Let $a \in \widehat{\mathbb{Z}}^d$.

$$M_a = \left\{ x \in \mathbb{Z}^{d-1} : \sum_{i=1}^{d-1} a_i x_i \equiv 0 \mod a_d \right\}, \ S_a = \left\{ x \in \mathbb{R}^{d-1}_{\ge 0} : \sum_{i=1}^{d-1} a_i x_i \le 1 \right\}$$

note that for $\alpha > 0$ we have $\alpha S_a = \left\{ x \in \mathbb{R}^{d-1}_{\geq 0} : \sum_{i=1}^{d-1} a_i x_i \leq \alpha \right\}$, and that

diag
$$(a_1,\ldots,a_{d-1})\cdot S_a = \Delta$$
.

Theorem 6. (Kannan) Let $a \in \widehat{\mathbb{Z}}^d$ and M, S as above. Then f(a) = Q(S, L).

Proof. Set $M := M_a$, $S := S_a$, f := f(a) and Q := Q(S, M). (\leq) Let $y \in \mathbb{Z}^{d-1}$ such that $\sum_{i=1}^{d-1} a_i x_i \equiv l \mod a_d$. By definition of t_l there exist $x_1, \ldots, x_d \in \mathbb{Z}_{\geq 0}$ such that

$$\sum_{i=1}^{d-1} a_i x_i = t_l = l + x_d \cdot a_d.$$

Denote $x' = (x_1, \dots, x_{d-1})$, then $y - x' \in M$. Since $x' \in t_l S$ then $(y - x') + t_l S$ contains y = (y - x') + x'. Since $t_l \leq F + a_d$ then

$$\mathbb{Z}^{d-1} \subset (F+a_d)\,S+M.$$

Let $z \in \mathbb{R}^{d-1}$, then $\lfloor z \rfloor \in \mathbb{Z}^{d-1}$ and $z - \lfloor z \rfloor \in I^{d-1}$. Since $I^{d-1} \subset \alpha S \iff \alpha \ge \sum a_i \cdot 1$, then

$$|z - |z| \in (a_1 + \dots + a_{d-1}) S$$

and so

$$\mathbb{R}^{d-1} \subset \mathbb{Z}^{d-1} + (a_1 + \dots + a_{d-1}) S \subset (a_1 + \dots + a_d + F) S + M = fS + M$$

therefore $Q \leq f$.

 (\geq) We begin with the following claim:

Claim. $F + a_d$ is the smallest t such that $\mathbb{Z}^{d-1} \subset tS + M$.

Proof of claim. Let $t' < F + a_d$ and assume $\mathbb{Z}^{d-1} \subset t'S + M$. Let $l \in \{1, \ldots, a_d - 1\}$ and $y \in \mathbb{Z}^{d-1}$ so that $\sum a_i y_i \equiv l \mod a_d$. There exists $x \in M$ such that $y \in t'S + x$, and so $y - x \in t'S$. Therefore $y - x \in \mathbb{R}^{d-1}_{\geq 0}$ and $\sum a_i (y_i - x_i) \leq t'$. Since $\sum a_i (y_i - x_i) \equiv l \mod a_d$ we get $t_l \leq t'$. since this is true for all l we have by the previous theorem and our assumption

$$F \le t' - a_d < F$$

which is a contradiction. We have seen in the first part of the proof that $\mathbb{Z}^{d-1} \subset (F+a_d)S + M$ and so

$$F + a_d = \min\{t > 0 : \mathbb{Z}^{d-1} \subset tS + L\}.$$

Back to the proof: There exists $y \in \mathbb{Z}^{d-1}$ such that for every $x \in M$ with $y - x \in \mathbb{R}^{d-1}_{\geq 0}$

$$\sum a_i \left(y_i - x_i \right) \ge F + a_d$$

because otherwise we contradict the minimality proved above. Let $0 < \varepsilon < 1$ and define $p = (p_1, \ldots, p_{d-1}) \in \mathbb{R}^{d-1}$ by $p_i = y_i + (1 - \varepsilon)$. Suppose $q \in M$ such that $p - q \in \mathbb{R}^{d-1}_{\geq 0}$. Since $q \in \mathbb{Z}^{d-1}$ then $y - q \in \mathbb{Z}^{d-1}_{\geq 0}$.

$$\sum a_i (p_i - q_i) = \sum a_i (p_i - y_i) + \sum a_i (y_i - q_i) \ge (1 - \varepsilon) \sum a_i + (F + a_d)$$

This is true for every ε and so if $p \in QS + M$ then

$$Q \ge \sum a_i (p_i - q_i) \ge F + (a_1 + \dots + a_d) = f$$

FROBENIUS NUMBERS

Dynamics and lattices

Definition 4. For T > 0, $x \in \mathbb{R}^{d-1}$ and $y \in \mathbb{R}^{d-1}$ with $y_i \neq 0$, define

$$D(T) = \begin{pmatrix} T^{-1/d-1}I_{d-1} & 0\\ 0 & T \end{pmatrix} \quad n(x) = \begin{pmatrix} I_{d-1} & 0\\ x^T & 1 \end{pmatrix} \quad m(y) = \begin{pmatrix} m'(y) & 0\\ 0 & 1 \end{pmatrix}$$

where $m'(y) = (y_1 \cdots y_{d-1})^{-\frac{1}{d-1}} \operatorname{diag}(y_1, \dots, y_{d-1})$. Clearly $D(T), n(x), m(y) \in G = \operatorname{SL}_d(\mathbb{R})$.

Definition 5. Let $a \in \mathbb{Z}^d$ with $a_d \neq 0$, then

$$\widehat{a} = \left(\frac{a_1}{a_d}, \dots, \frac{a_{d-1}}{a_d}\right)^T \in \mathbb{R}^{d-1}.$$

Theorem 7. (Han Li) Let $a \in \widehat{\mathbb{Z}}^d$, then

$$\frac{f\left(a\right)}{\left(a_{1}\cdots a_{d}\right)^{\frac{1}{d-1}}} = Q_{0}\left(m\left(\widehat{a}\right)D\left(a_{d}\right)n\left(\widehat{a}\right)\mathbb{Z}^{d}\cap e_{d}^{\perp}\right)$$

Proof. Notice that

$$m(\hat{a}) D(a_d) n(\hat{a}) = \begin{pmatrix} m'(\hat{a}) a_d^{-\frac{1}{d-1}} & 0\\ 0 & a_d \end{pmatrix} n(\hat{a}) = \begin{pmatrix} m'(\hat{a}) a_d^{-\frac{1}{d-1}} & 0\\ a_1 \cdots a_{d-1} & a_d \end{pmatrix}.$$

We identify $e_d^\perp \cap \mathbb{R}^d$ with $\mathbb{R}^{d-1}\text{in}$ the natural way, and so

$$m(\hat{a}) D(a_d) n(\hat{a}) \mathbb{Z}^d \cap e_d^{\perp} = \left\{ \begin{pmatrix} m'(\hat{a}) a_d^{-\frac{1}{d-1}} & 0\\ a_1 \cdots a_{d-1} & a_d \end{pmatrix} z | z \in \mathbb{Z}^d, \text{ last entry of } m(\hat{a}) D(a_d) n(\hat{a}) z \text{ is zero} \right\}.$$
$$= m'(\hat{a}) a_d^{-\frac{1}{d-1}} \left\{ x \in \mathbb{Z}^{d-1} | \sum_{i=1}^{d-1} x_i a_i \equiv 0 \mod a_d \right\} = m'(\hat{a}) a_d^{-\frac{1}{d-1}} M_a$$
$$= \frac{1}{(a_1 \cdots a_d)^{\frac{1}{d-1}}} \operatorname{diag}(a_1, \dots, a_d) M_a$$

and so

$$Q_{0}(m(\hat{a}) D(a_{d}) n(\hat{a}) \mathbb{Z}^{d} \cap e_{d}^{\perp}) = Q_{0}\left(\frac{1}{(a_{1} \cdots a_{d})^{\frac{1}{d-1}}} \operatorname{diag}(a_{1}, \dots, a_{d-1}) M_{a}\right)$$
$$= \frac{1}{(a_{1} \cdots a_{d})^{\frac{1}{d-1}}} Q_{0}(\operatorname{diag}(a_{1}, \dots, a_{d-1}) M_{a})$$

But we have proved

$$f(a) = Q\left(\left(\operatorname{diag}\left(a_{1}, \dots, a_{d-1}\right)\right)^{-1} \Delta, M_{a}\right)$$
$$= Q\left(\Delta, \operatorname{diag}\left(a_{1}, \dots, a_{d-1}\right) M_{a}\right) = Q_{0}\left(\operatorname{diag}\left(a_{1}, \dots, a_{d-1}\right) M_{a}\right)$$

finishing the proof.

Definition 6. Let $\mathcal{D}_0 = \{x \in \mathbb{R}^d : 0 < x_d < 1, 0 < x_i < x_d\}$ and denote

$$\mathcal{M}_{\mathcal{D}_0} = \{ (\boldsymbol{x}, y, z) : (\boldsymbol{x}, y) \in \mathcal{D}_0, \, z \in \Omega_0 \}$$

and the product measure $d_{\mathcal{D}_{0}} = d\boldsymbol{x} dy d\mu_{0}(z)$.

Theorem 8. (Han Li) There exists $\alpha > 0$ so that for C a relatively compact, open subset of Ω_0 , and C' a compact subset of C, for any $\psi \in C^{\infty}(\mathcal{M}_{\mathcal{D}_0})$ with supp $(\psi) \subset \{(x, y, z) \in \mathcal{M}_{\mathcal{D}_0} : z \in C'\}$, and any T > 1

$$\left|\frac{1}{T^{d}}\sum_{a\in T\mathcal{D}_{0}\cap\widehat{\mathbb{Z}}^{d}}\psi\left(\frac{a}{T},m\left(\widehat{a}\right)D\left(a_{d}\right)n\left(\widehat{a}\right)\Gamma\cap e_{d}^{\perp}\right)-\frac{1}{\zeta\left(d\right)}\int_{\mathcal{M}\mathcal{D}_{0}}\psi\left(x,y,z\right)d_{\mathcal{D}_{0}}\right|\ll\left|\mathcal{C}\right|^{d}\|\psi\|_{C^{1}}T^{-\alpha},$$

Corollary 1. For any bounded continuous function ϕ on Ω_0

$$\lim_{T \to \infty} \frac{1}{T^d} \sum_{a \in T\mathcal{D} \cap \widehat{\mathbb{Z}}^d} \phi\left(L_a\right) = \frac{\text{vol}\mathcal{D}}{\zeta\left(d\right)} \int_{\Omega_0} \phi d\mu_0.$$

Proof. Let ϕ_0 be the function on $\mathcal{M}_{\mathcal{D}_0}$ defined by $\phi_0(x, y, z) := \chi_{\mathcal{D}}(x, y) \phi(z)$. Recall $L_a = m(\widehat{a}) D(a_d) n(\widehat{a}) \Gamma \cap e_d^{\perp}$, then

$$\frac{1}{T^d} \sum_{a \in T\mathcal{D} \cap \widehat{\mathbb{Z}}^d} \phi(L_a) - \frac{\operatorname{vol}\mathcal{D}}{\zeta(d)} \int_{\Omega_0} \phi d\mu_0 = \frac{1}{T^d} \sum_{a \in T\mathcal{D} \cap \widehat{\mathbb{Z}}^d} \phi_0\left(\frac{a}{T}, L_a\right) - \frac{1}{\zeta(d)} \int_{\mathcal{M}_{\mathcal{D}_0}} \phi_0 d_{\mathcal{D}_0}$$

We can take $\mathcal{D} \subset \mathcal{D}_0$ and \mathcal{D} has boundary of Lebesgue measure zero and so ϕ_0 can be approximated by smooth functions and the result follows from the theorem. \Box

Remark 1. The constants in the theorem are defined as follows: for a smooth function f on $\mathcal{M}_{\mathcal{D}_0}$

$$\|f\|_{C^{1}} := \|f\|_{L^{\infty}} + \sum_{i=1}^{d-1} \left\|\frac{\partial}{\partial x_{i}}f\right\|_{L^{\infty}} + \left\|\frac{\partial}{\partial y}f\right\|_{L^{\infty}} + \sum_{X} \|\partial X(f)\|_{L^{\infty}}, X \in \mathcal{X} \cap \operatorname{Lie}\left(G_{0}\right),$$

where $\mathcal{X} \cap \text{Lie}(G_0)$ is a basis of $\text{Lie}(G_0)$. Let $\pi : G \to \Omega$ be the natural projection given by $\pi(g) = g\Gamma$. For $g \in G$ and $x \in \Omega$ we set

$$|g|_{\infty} := \max \{ |a_{ij}| : g = (a_{ij}) \}, |x|_{\infty} := \inf \{ |g|_{\infty} : \pi(g) = x \}.$$

For $\mathcal{C} \subset \Omega$ a Borel subset, we define

$$|\mathcal{C}| := \max\left(1, \sup\left\{\left|x\right|_{\infty} \colon x \in \mathcal{C}\right\}\right).$$