FROBENIUS NUMBERS

Definition 1. Denote
7% = {a=(ai,...,aq) € Z%: ged (ay,...,aq) = 1}

the set of primitive lattice points in R?.

Given a = (a1,...,aq) € Z‘éw any sufficiently large integer N > 0 can be represented as N = m - a
with m € Z%o' The largest integer which is not a non-negative integer combination of ay, ..., aq is the
Frobenius number of a

F(a) =maxZ\{m-a>0: mGZ‘éO}.

We also define

fla)=F(a)+ar+-+ag,

the largest integer which is not a positive integer combination of aq,...,aq4.

Theorem 1. (Sylvester) For d =2
F ((11,(12) = a1a2 —a; —ag.

For d > 3 no explicit formula is known.

RESuULTS

Definition 2. Let L be a lattice in R%~! and let

d—1
A:{xER‘éBl: Zmigl}

i=1
be the d — 1-dimensional simplex . The covering radius of A with respect to L is

Qo(L)=Q(A,L)=inf {t eR" : L+tA4_; =R},

Notation. Let Gy = SL4_1 (R) and I'g = SLg_1 (Z), then Q¢ = Go/T'y is the space of unimodular

lattices in R?~1. Let pg be a left G invariant probability measure on €.
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Theorem 2. (Marklof 2010) Let d > 3.

(1) There exists a continuous non-increasing function ¥4 (R) : R>o — R>o with ¥4(0) = 1, such

that for any bounded set D C Rio with boundary of Lebesgue measure zero, and any R > 0,

. 1 = ' f(a) _ volD

In fact
I—Td(R)ZILLQ({LEQo: Qo(L) SR})
(2) Qo is a continuous function on Q.
(3) wo ({L € Qo : Qo (L) < R}) is continuous in R, that is uo ({L € Qo : Qo (L) = R}) = 0 for any
R >0.

Steps in the proof of (1):

e Fora e Ziz there exists L, € Qg such that

(ay - .fai?/(d—n = Qo (La) -

e For every bounded connected non-empty open subset D C {x ERY: 0 < my < g < 1} with
boundary of Lebesgue measure zero

TvolD
¢(d)

’TDﬁZd‘ ~

e The set of lattices {La ca€TD mid} becomes equidistributed in Qg as T — oo, that is, for

any bounded continuous function ¢ on {2

. 1 volD
Jim oz Y o) =g [ e
Qo

a€TDNZA
e Since E<rp{L € Qy: Qo (L) < R} has boundary of measure zero we can apply the above to

¢ = XEBcp-

1 R<1
Theorem 3. (Sylvester): Uy (R) =

0 R>1
Indeed here A = [0, 1] and the covering radius with respect to the lattice Z, which is the unique element
in the space of one-dimensional lattices of unit covolume, and so

1 R<1

MO({LGQO Qo(L)>R}): —\IIQ(R)

0 R>1
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Theorem 4. (Strombergsson 2012) : Ford >3, ¥4(R) = W‘QHR’(‘FI) + 0Oy (Rfd*ﬁ), as R — oo.
For d = 3 there is an explicit formula for ¥3 (R) by Shur, Sinai and Ustinov (2009).

Theorem 5. (Han Li 201/4) There exists k > 0 such that for any R > 0, any non-empty connected open
subset D C {x ERY: 0<ag<1,0<2; < d} which has thin boundary (boundary contained in a union
of finitely many connected smooth submanifolds, each with dimension < d) , there exists Cr psuch that

for every T > 1

1 = f (a) volD CR D
—#ac2lnNTD: —— <Ry ———(1-V4(R)| < .
Td >2 (ag - ad)1/(d71) ¢ (d) Tk
FROBENIUS NUMBERS AND COVERING RADIUS
Lemma 1. (Kannan 1992) Let a € Z%. Then
F.=F e = t —
(a1, ,aq) le{f.r,l.?;iq} 1 — ad

where t; € N smallest integer =1 mod aq which is a non-negative integer combination of ai,...,aq_1.

Proof. Let N e N.If N=0 mod agthen N=0-a;+...+0-a4-1+k-aqg and so FF > N.
Claim. Assume N =1 mod agq. N is a non-negative integer combination of ay,...,aq <= N >1;.

Proof of claim.(<=) N =1, + k - aq. (=) Definition of #;.

So t;—aq is the largest integer congruent to! mod a4 which is not a non-negative integer combination. [

Definition 3. Let a € 74

d—1 d—1
M, = {x SVAREE Zaixi =0 mod ad}, Se = {x € chl : Zaixi < 1}

i=1 i=1

note that for > 0 we have a.S, = {x S Rigl : Z?;ll a;x; < a}, and that
diag (al, ceey ad_l) : Sa =A.
Theorem 6. (Kannan) Let a € Z% and M, S as above. Then f (a) = Q (S, L).

Proof. Set M := M,, S:=S,, f:=f(a) and @ := Q (S, M).

d—1
(<) Lety € 71 such that > a;xz; =1 mod agq. By definition of ¢; there exist 1,...,2q € Z>¢ such
i=1

that
d—1
Zaixi =t =l+4+zq-aq.

i=1
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Denote ' = (x1,...,24-1), then y—2’ € M. Since 2’ € ¢S then (y — 2’)+#,S contains y = (y — z') +2'.
Since t; < F + ag4 then

747 C (F +aq) S+ M.
Let z € R¥™! then |z] € Z9 ! and z — | 2] € I971. Since [ C aS <= a > a;-1, then
z— |zl €@+ - +ag-1)S

and so

RF'Ccz v (e ++ag1)SC(ar+-+ag+F)S+M=fS+M

therefore Q < f.

(>) We begin with the following claim:
Claim. F + aq is the smallest ¢ such that Z?~* C tS + M.

Proof of claim. Let t' < F + aq and assume Z4~1 C /S + M. Let I € {1,...,a5 — 1} and y € Z4~!
so that > a;y; =1 mod ay. There exists © € M such that y € /S + z, and so y — x € t'S. Therefore
y—z € RE and Y a; (y; — o) < t'. Since Y a; (y; — ;) =1 mod ag we get t; < t'. since this is true

for all [ we have by the previous theorem and our assumption
F<t —aq<F
which is a contradiction. We have seen in the first part of the proof that Z4~1 C (F + a4) S + M and so
F+ad=min{t>01 z41 CtS’—i—L}.
Back to the proof: There exists y € Z?~! such that for every x € M with y — x € Réf)l
Zal (yi—x;) > F +aq

because otherwise we contradict the minimality proved above. Let 0 < ¢ < 1 and define p = (p1,...,p4—1) €

RI=! by p; = y; + (1 — ). Suppose ¢ € M such that p — ¢ € R’;l. Since ¢ € Z4! theny — ¢ € Zigl.

daipi—a) =Y ailpi—v)+ > ai(yi—aq) > (1) ai+ (F+aq)

This is true for every € and so if p € QS + M then

Q=Y a;i(pi—q)>F+(a++a))=f
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DYNAMICS AND LATTICES

Definition 4. For T > 0, z € R4 ! and y € R*! with y; # 0, define

T4, 0 0 Ip1 0O m'(y) 0
D(T) = n(r) = m(y) =
0 T 2T 1 0 1

where m' (y) = (y1 -~ ya_1)” = diag (y1, .., ya_1). Clearly D (T), n(z), m(y) € G = SLq (R).

Definition 5. Let a € Z¢ with agq # 0, then

a a r

—~ 1 d—1 _

a=\(—,..., e R4,
aq aq

Theorem 7. (Han Li) Let a € Z, then

Proof. Notice that

0 aq aj - Qq—1 Qaq

m (@) D (ag)n (@) Z¢Nes = 2|z € 24, last entry of m (@) D (agq) n (@) 2 is zero

S a-l S
=m'(@)a, " {Jc c 7471 Zwiai =0 mod ad} =m'(@)a, "' M,
i=1
1 .
= ﬁdmg(al,...,ad) M,
aln.-ad L —

and so
Qo (m (@) D (aq)n (a) zZin ej) = Qo ((1)1diag (a1,y...,04-1) Ma>
ay---ag d—1
- Qo(diag(ar,..., a0 1) My)
(al coeag) T

But we have proved
fl@=0 ((diag (a1, ... ag_1)) " A,M,,,)
= Q(A,diag(ay,...,aq-1) My) = Qo (diag (a1, ...,aq-1) M)

finishing the proof. |
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Definition 6. Let Dy = {x ERY: 0<zg<1,0<z; < xd} and denote
MDO = {((I}',y,Z) : (5137y) € D07 z € QO}
and the product measure dp, = dedyd (z).

Theorem 8. (Han Li) There exists a > 0 so that for C a relatively compact, open subset of Qg, and C' a

compact subset of C, for any ¢ € C*° (Mp,) with supp (V) C {(z,y,2) € Mp, : z€C'}, and any T > 1

1 = = 1 _
=D w(;,m(a)D(ad)n(a)Fﬂej)—C(d)M/ b (2,9, ) dpy| < CI* [l T,

a€TDyNZa

Corollary 1. For any bounded continuous function ¢ on

. 1 volD
Jim oz Y o) =g [ e

a€TDNZd O

Proof. Let ¢g be the function on Mp, defined by ¢ (x,y, 2) := xp (z,y) ¢ (2). Recall L, = m (@) D (aq)n (@) TN

il
ey, then

1 volD 1 a 1
Td Z,\ (ZS(LG)_C(d)g_/d)d'uOZTd Z QSO(TaLa)—m / ¢odp,

a€TDNZA a€TDNZ4 Mo,

We can take D C Dy and D has boundary of Lebesgue measure zero and so ¢g can be approximated by

smooth functions and the result follows from the theorem. O

Remark 1. The constants in the theorem are defined as follows: for a smooth function f on Mp,

0

%f

0
prd

4

d—1
£l = Ifllp + > + 3 10X ()l » X € X NLie (Go),
=1 o X

Lee L

where X N Lie (Gy) is a basis of Lie (Gg). Let 7 : G — Q be the natural projection given by 7 (g) = gT.

For g € G and x € Q) we set
9]0 :=max{lay| : g = (ai;)}, |zl :=inf{lgl : 7(9) =x}.
For C C Q) a Borel subset, we define

IC| ;== max (1,sup{|z|: z€C}).



