AN OVERVIEW OF THE PROOF OF THE VARIATIONAL PRINCIPLE, AND REDUCTION - HANDOUT -

TEMPLATES

 $d = m + n, d_+ = m, d_- = n.$

Definition. A $m \times n$ -template is a continuous piecewise linear function $\mathbf{f} : [0, \infty) \to \mathbf{f}$ \mathbb{R}^d with the following properties:

- (I) $f_1 \leq f_2 \leq \ldots \leq f_d$ (II) $-\frac{1}{n} \leq f'_i \leq \frac{1}{m}$ for all i(III) For all $j = 0, \ldots, d$ and for every interval I such that $f_j < f_{j+1}$ on I, the function

$$F_j = \sum_{i=1}^j f_i$$

is convex (convexity condition) and piecewise linear on I with slopes in

$$Z(j) = \{\frac{L_+}{m} - \frac{L_-}{n} : L_{\pm} \in \{1, \dots, d_{\pm}\}, L_+ + L_- = j\}$$

(quantized slope condition). Here $f_0 = -\infty$, $f_{d+1} = \infty$.

For a template ${\bf f}$

$$\Delta(\mathbf{f}, T) := \frac{1}{T} \int_0^T \delta(\mathbf{f}, t) \, \mathrm{d}t, \quad \delta(\mathbf{f}, t) = \delta(\mathbf{f}, I) = \#\{(i_+, i_-) \in S_+ \times S_- : i_+ < i_-\}$$

for $t \in I$ where $f|_I$ is linear and

$$S_{+} := \bigcup_{(p,q]_{\mathbb{Z}}} (p, p + M_{+}(p,q)]_{\mathbb{Z}}, \quad S_{-} := \bigcup_{(p,q]_{\mathbb{Z}}} (p + M_{+}(p,q),q]_{\mathbb{Z}}$$

where $(p,q]_{\mathbb{Z}}$ runs over intervals of equality and $M_{\pm} = M_{\pm}(p,q)$ are determined by

$$M_{+} + M_{-} = q - p, \quad f'_{p+1} + \ldots + f'_{q} = \frac{M_{+}}{m} - \frac{M_{-}}{n}$$

Moreover,

$$\overline{\delta}(f) = \limsup_{T \to \infty} \Delta(\mathbf{f}, T), \quad \underline{\delta}(f) = \liminf_{T \to \infty} \Delta(\mathbf{f}, T)$$

Definition. A function $\mathbf{f}: [0, \infty) \to \mathbb{R}^d$ is a *pseudo-template* (local notation!) if

- (I) $f_1 \leq f_2 \leq \ldots \leq f_d$ (II) $-\frac{1}{n} \leq \frac{f_j(t_2) f_j(t_1)}{t_2 t_1} \leq \frac{1}{m}$ for all j and all $t_1 \neq t_2$ (III) For every interval I such that $f_j < f_{j+1}$ on I, there exists a convex, piecewiselinear function $F_{j,I}$ on I with slopes in Z(j) so that with

$$F_j = \sum_{i=1}^J f_i \asymp_+ F_{j,I}$$

Date: March 24, 2022.

VARIA

 $\beta \in (0,1)$ small, $\gamma = -\frac{mn}{m+n} \log(\beta)$. If $(X_k)_{k \ge 1}$ are the outcomes of a Hausdorff game with parameters β, δ , set

$$\Lambda_{k+1} = g_{-k\gamma-c} u_{X_k} \mathbb{Z}^d$$

where c is some constant determined by the initial separation parameter ρ_0 .

Definition. Let **g** be a γ -integral template. A lattice Λ is a *C*-match for time $t \in \gamma \mathbb{N}$ if

- (1) $||h(\Lambda) \mathbf{g}(t)|| \le C$
- (2) There is a family of Λ -nested subspaces $(V_q)_{q \in Q(t)}$ where $Q(t) = \{q : g_q(t) < g_{q+1}(t)\}$ such that $\dim(V_q) = q$, for all i

 $\left|\log(\lambda_i(\Lambda \cap V_q)) - h_i(\Lambda)\right| \le C$

and $\dim(V_q \cap (\{0\} \times \mathbb{R}^n)) \ge L_-(\mathbf{g}, I, q)$ where I is an interval of linearity for \mathbf{g} whose left endpoint is t.

