THE KLEINBOCK-LINDENSTRAUSS-WEISS
NONDIVERGENCE OF FRACTALS

1. QUANTITATIVE NONDIVERGENCE

Let X be a metric space.

Definition 1. X is called Besicovitch if there exists an integer N > 0 such
that for any bounded set A C X and every collection of balls B such that every
point in A is a center of some ball in B, there exists a subcollection 2 C B

which satisfies
Ac B

max#{B€Q :ze B} <N.

rzeX

Example 2. R" is Besicovitch, hence, every X C R"™ is Besicouvitch.

Let i be a Borel measure on X. For any measurable function f : X — R
and any measurable set B C X denote the essentail supremum of f on B with
respect to p by

[fllnz = sup{c - p({z € B : [f(x)] > c}) > 0}

If f is continuous then

[flles =" sup |f(z)].

€ BNsupp

Definition 3. For C,;a >0, f : X - Rand U C X, f is (C,a)-good on U
with respect to p if any z € supp u, r,e > 0 and B = B(z,r) satisfy

w({e€B : [f(@)] << gc(||fﬁw)au<3>.

Definition 4. For U C X open and D > 0 say that p is D-Federer on U if
every = € supp 4 N U and every r > 0 for which B(z,3r) C U satisfy

p(B(z,3r))
p(B(z,r))
Example 5. The Lebesque measure on R™. The Cantor-Lebesgue measure

on the middle third Cantor set, as well as any pushforward of it to R™ by a
bi-Lipschitz function.

<D.
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Theorem 6. Let X be a Besicovitch space. Given C,D,a > 0 there exists
C" > 0 with the following property. Suppose U C X is open, i is D-Federer
onU, h: X — SL,11(R) is continuous, 0 < p <1, z € suppuNU, rg > 0,
B = B(z,ry) satisfies 3"B = B (z,3"ryg) C U, and every 0 < j < n and every
0#FvVv=viA...AvV; € /\JAZ”Jrl satisfy

(1) [[h(x)v]] is (C, «)-good on 3™ B with respect to pu,

2) [[h(x)v]s = p.
Then any 0 < € < p satisfies

p({z € B :30#veZ"™ such that ||h(z)v] <e}) < (%) wu(B).

Theorem [0] follows by induction from a more general statement about ra-
tional flags in R"*!. However, the induction argument requires passing to a
possibly bigger set.

Let W be the set of nonzero rational subspaces of R"*!. A flag F is a chain
of rational subspaces (not necessarily maximal)

{0y = Vo< Vi< Va<...Vy < Vi :i= R

with V; € W for every 1 <7 < m. In this case the length of F is m.

If 7 and F’ are flags and V' < V' for all nonzero proper subspaces v € F
and v € F' denote F < F', say that F and F’ subordinate and set F + F' to
be the chain made by combining all the subspaces of F and F’.

Recall that if V € W and vy,...,v, € Z""! are linearily independent and
satisfy
V NZ" = spang {vi,..., v}
then
covol (V/VNZ"™) = ||vi A Avg.
For any g € SL,. 41 (R) and any V € W define ¢y (g) = covol(gV') to be the
covolume.

We will pass freely between rational subspaces and the wedge product of a
generating set of it.

Definition 7. Let 7 < F’ be flags and assume 0 < ¢ < p < 1. A point x € X
is marked by F relative to F' if it satisfies the following:

(i) If 0 £V € F then € < ly(h(x)) < p.
(i) If F” < F' satisfies £y (h(x)) < p for every V € F” then |F"| < |F|.

Let Fo = {{0},R"™}. For a flag F say that x is marked by F if it is marked
by F relative to Fy. Say that z is marked if x is marked by some flag.

Exercise 8. What does it mean to be marked by Fy ¢
Lemma 9. If x is marked then h(x) € K..

Proof. Denote g = h(z). Assume that 0 # v € Z"™ satisfies ||h(z)v] <
e. Let F be any flag. Let 0 < ¢ < m be such that v € Vj,; \ V;. Let
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V' = spang {V;,v}. Let vy,..., vy be linearily independent vectors such that
V; N Z" = spang {vi,...,vi_1} and V N Z""! = spany, {vy,...,vi}. Then

Cy(g) = |lgvi Ao Agvil < lgvi Ao Agvial - llgvell < pe <e.

In particular, ¢, (g) < p. Since V is comparable to F this implies by definition
of z being marked that V' = V1. But ¢y, (g) > ¢, which is a contradiction. [

Say that x is marked relative to F' if there exists F < F’ such that z is
marked by F relative to F'.

Theorem 10. Let X be a Besicovitch space. Given C,D,a >0 and0<m <n
there exists C' > 0 with the following property: For U C X open, . D-Federer
on U, h : X — SL,1 (R) continuous, 0 < p <1, z € suppu NU, ry > 0,
B = B(z,10), if F a flag of length m such that 3"~™B C U and every V€ W

satisfies

(1) by oh is (C,a)-good on 3"~™B with respect to pu,
(2) IfV < F then ||ty o hl| > p,

then every 0 < e < p satisfies
p({x € B : z is not marked relative to F}) < C' (%) u(B).

This theorem with F = F; implies Theorem []

Proof. By induction. For m = n the conclusion is trivial since there are no
subspaces that are comparable to a complete flag. Assume the theorem hold
for 1 <m+1 < n, and let F be any flag of length m such that 3"~ B C U
and (1’) and (2’) are satisfies. For any = € B that is not marked relative to
F, define

1) e = maxsup {7+ | (@)l < 0}

This is well defined. Indeed, W is discrete and the set {V € W : 4y (h(x)) < p}
is bounded, and if ¢y (h(x)) > p for all V' < F then z is marked by Fy relative
to F, which is a contradiction to the assumption that x is not marked by F.
Also, r, is positive since h is continuous. Let Vy(x) < F be any subspace that
attaines the maximum in (1. By (2’), B(z,r) does not contain B for any
r < rg, therefore

(2) re <ro+d(z,x) < 2r.
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i ({x € B : z is not marked relative to F}) <

I (U {y € B(x,72) : by (h(y)) < 8})

e

+ 1 (U {y € B(x,72) : lyy@w)(h(y)) > € and y is not marked relative to F}) <

z€Q

ZC’ (%) pw(B(x,r3)) (@) © bllBasr.) = p + (C,a)-good on U with respect to 1)

e

(3)
+ ZC! (%) p(B(z,rs)) < (induction + ({T)))

€

N(C+ O (5) WB(3r) < (@)

ND(C +C") (%) ) u(B) (Federer)

The upper bound is where the induction hypothesis is used (applied to
a possibly larger set). Indeed, assume that y € B (z,r,) is marked relative to
F'(x) := F+Vo(x) and satisfies ly; ) (h(y)) > €. Then there exists "’ < F'(x)
such that y is marked by F” relative to F'(x). Since ¢ < ly;my(h(y)) < p we
also have that y is marked by F” + Vj(z) relative to F'(z). So, y is marked
by F'(z). Working backwards with the negation we see that if y € B (z,r,) is
not marked relative to F and satisfies fy;(,)(h(y)) > € then y is not marked
relative to F'(x). The flag F'(z) has length m + 1 so we’re in shape to apply
the inductive hypothesis. First, as already noticed, B(z,r,) C B(z,3ry) so
B (z,3"(mtr,) C B(z,3""™rg) C U, hence, (1) holds. Secondly, in order
to verify (27) with F'(z), assume that U € W satisfies U < F'(z). In partic-
ular, this implies that U < F, and, therefore, necessarily, ||{y o h||B(MI) > p.
Indeed, |[¢v o hl|p, ., < p would contradict the definition of r,. This verifies
the conditions of Theorem [10l O
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2. APPLICATIONS

Let 1 be a Borel measure on R”.
Definition 11. y is nonplanar if pu(H) for any affine hyperplane H C R™.

Definition 12. For C,a > 0, U C R", p is (C, a)-decaying if every r > 0,
z €suppp, B = B(x,r) CU, € > 0 satisfy

uBnB(H.2) <0 (5 ) ()

|| 5
It is (C, a)-absolutely decaying if

u(BAB(H,) < (2) u(m).

Definition 13. p is friendly if it is nonplanar, decaying and Federer. Tt is
absolutely friendly if it is absolutely decaying and Federer.

Theorem 14 (KLW 2004). Every friendly measure pn on R™ satisfies W/(VWA) =
0.

Theorem 15 (KW 2005). Every absolutely friendly measure p on R™ satisfies
supp N BA # @.
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