THE KLEINBOCK-LINDENSTRAUSS-WEISS NONDIVERGENCE OF FRACTALS

1. QUANTITATIVE NONDIVERGENCE

Let X be a metric space.

Definition 1. X is called *Besicovitch* if there exists an integer N > 0 such that for any bounded set $A \subseteq X$ and every collection of balls \mathcal{B} such that every point in A is a center of some ball in \mathcal{B} , there exists a subcollection $\Omega \subseteq \mathcal{B}$ which satisfies

$$A \subseteq \bigcup_{B \in \Omega} B,$$
$$\max_{x \in X} \# \{ B \in \Omega \, : \, x \in B \} \le N.$$

Example 2. \mathbb{R}^n is Besicovitch, hence, every $X \subseteq \mathbb{R}^n$ is Besicovitch.

Let μ be a Borel measure on X. For any measurable function $f: X \to \mathbb{R}$ and any measurable set $B \subseteq X$ denote the essentail supremum of f on B with respect to μ by

$$||f||_{\mu,B} = \sup \left\{ c \, : \, \mu \left(\left\{ x \in B \, : \, |f(x)| > c \right\} \right) > 0 \right\}.$$

If f is continuous then

$$||f||_{\mu,B} = \sup_{x \in B \cap \operatorname{supp} \mu} |f(x)|.$$

Definition 3. For $C, \alpha > 0, f : X \to \mathbb{R}$ and $U \subseteq X, f$ is (C, α) -good on U with respect to μ if any $z \in \operatorname{supp} \mu, r, \varepsilon > 0$ and B = B(z, r) satisfy

$$\mu\left(\left\{x \in B : |f(x)| < \varepsilon\right\}\right) \le C\left(\frac{\varepsilon}{\|f\|_{\mu,B}}\right)^{\alpha} \mu(B).$$

Definition 4. For $U \subseteq X$ open and D > 0 say that μ is *D*-Federer on U if every $x \in \operatorname{supp} \mu \cap U$ and every r > 0 for which $B(x, 3r) \subseteq U$ satisfy

$$\frac{\mu\left(B(x,3r)\right)}{\mu\left(B(x,r)\right)} \le D.$$

Example 5. The Lebesgue measure on \mathbb{R}^n . The Cantor-Lebesgue measure on the middle third Cantor set, as well as any pushforward of it to \mathbb{R}^n by a bi-Lipschitz function.

Theorem 6. Let X be a Besicovitch space. Given $C, D, \alpha > 0$ there exists C' > 0 with the following property. Suppose $U \subseteq X$ is open, μ is D-Federer on U, $h: X \to SL_{n+1}(\mathbb{R})$ is continuous, $0 < \rho \leq 1$, $z \in \operatorname{supp} \mu \cap U$, $r_0 > 0$, $B = B(z, r_0)$ satisfies $3^n B = B(z, 3^n r_0) \subseteq U$, and every $0 \leq j \leq n$ and every $0 \neq \mathbf{v} = \mathbf{v}_1 \land \ldots \land \mathbf{v}_j \in \bigwedge^j \mathbb{Z}^{n+1}$ satisfy

- (1) $||h(x)\mathbf{v}||$ is (C, α) -good on $3^n B$ with respect to μ ,
- (2) $||h(x)\mathbf{v}||_B \ge \rho.$

Then any $0 < \varepsilon \leq \rho$ satisfies

$$\mu\left(\left\{x \in B : \exists 0 \neq \mathbf{v} \in \mathbb{Z}^{n+1} \text{ such that } \|h(x)\mathbf{v}\| < \varepsilon\right\}\right) \le C'\left(\frac{\varepsilon}{\rho}\right)^{\alpha}\mu(B).$$

Theorem 6 follows by induction from a more general statement about rational flags in \mathbb{R}^{n+1} . However, the induction argument requires passing to a possibly bigger set.

Let \mathcal{W} be the set of nonzero rational subspaces of \mathbb{R}^{n+1} . A flag \mathcal{F} is a chain of rational subspaces (not necessarily maximal)

$$\{0\} =: V_0 < V_1 < V_2 < \dots V_m < \mathbf{v}_{m+1} := R^{n+1}$$

with $V_i \in \mathcal{W}$ for every $1 \leq i \leq m$. In this case the *length* of \mathcal{F} is m.

If \mathcal{F} and \mathcal{F}' are flags and $V \leq V'$ for all nonzero proper subspaces $\mathbf{v} \in \mathcal{F}$ and $\mathbf{v}' \in \mathcal{F}'$ denote $\mathcal{F} \leq \mathcal{F}'$, say that \mathcal{F} and \mathcal{F}' subordinate and set $\mathcal{F} + \mathcal{F}'$ to be the chain made by combining all the subspaces of \mathcal{F} and \mathcal{F}' .

Recall that if $V \in \mathcal{W}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{Z}^{n+1}$ are linearly independent and satisfy

$$V \cap \mathbb{Z}^{n+1} = \operatorname{span}_{\mathbb{Z}} \{ \mathbf{v}_1, \dots, \mathbf{v}_k \}$$

then

$$\operatorname{covol}\left(V/V \cap \mathbb{Z}^{n+1}\right) = \|\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_k\|.$$

For any $g \in \mathrm{SL}_{n+1}(\mathbb{R})$ and any $V \in \mathcal{W}$ define $\ell_V(g) = \mathrm{covol}(gV)$ to be the covolume.

We will pass freely between rational subspaces and the wedge product of a generating set of it.

Definition 7. Let $\mathcal{F} \leq \mathcal{F}'$ be flags and assume $0 < \varepsilon \leq \rho \leq 1$. A point $x \in X$ is marked by \mathcal{F} relative to \mathcal{F}' if it satisfies the following:

- (i) If $0 \neq V \in \mathcal{F}$ then $\varepsilon \leq \ell_V(h(x)) < \rho$.
- (ii) If $\mathcal{F}'' \leq \mathcal{F}'$ satisfies $\ell_V(h(x)) < \rho$ for every $V \in \mathcal{F}''$ then $|\mathcal{F}''| \leq |\mathcal{F}|$.

Let $\mathcal{F}_0 = \{\{0\}, \mathbb{R}^{n+1}\}$. For a flag \mathcal{F} say that x is marked by \mathcal{F} if it is marked by \mathcal{F} relative to \mathcal{F}_0 . Say that x is marked if x is marked by some flag.

Exercise 8. What does it mean to be marked by \mathcal{F}_0 ?

Lemma 9. If x is marked then $h(x) \in K_{\varepsilon}$.

Proof. Denote g = h(x). Assume that $0 \neq \mathbf{v} \in \mathbb{Z}^{n+1}$ satisfies $||h(x)\mathbf{v}|| < \varepsilon$. Let \mathcal{F} be any flag. Let $0 \leq i \leq m$ be such that $\mathbf{v} \in V_{i+1} \setminus V_i$. Let

 $V = \operatorname{span}_{\mathbb{R}} \{V_i, \mathbf{v}\}$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearily independent vectors such that $V_i \cap \mathbb{Z}^{n+1} = \operatorname{span}_{\mathbb{Z}} \{\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}\}$ and $V \cap \mathbb{Z}^{n+1} = \operatorname{span}_{\mathbb{Z}} \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$. Then

$$\ell_V(g) = \|g\mathbf{v}_1 \wedge \ldots \wedge g\mathbf{v}_k\| \le \|g\mathbf{v}_1 \wedge \ldots \wedge g\mathbf{v}_{k-1}\| \cdot \|g\mathbf{v}_k\| < \rho \varepsilon \le \varepsilon.$$

In particular, $\ell_V(g) \leq \rho$. Since V is comparable to \mathcal{F} this implies by definition of x being marked that $V = V_{i+1}$. But $\ell_V(g) \geq \varepsilon$, which is a contradiction. \Box

Say that x is marked relative to \mathcal{F}' if there exists $\mathcal{F} \leq \mathcal{F}'$ such that x is marked by \mathcal{F} relative to \mathcal{F}' .

Theorem 10. Let X be a Besicovitch space. Given $C, D, \alpha > 0$ and $0 \le m \le n$ there exists C' > 0 with the following property: For $U \subseteq X$ open, μ D-Federer on U, $h: X \to SL_{n+1}(\mathbb{R})$ continuous, $0 < \rho \le 1$, $z \in \text{supp } \mu \cap U$, $r_0 > 0$, $B = B(z, r_0)$, if \mathcal{F} a flag of length m such that $3^{n-m}B \subseteq U$ and every $V \in \mathcal{W}$ satisfies

(1') $\ell_V \circ h$ is (C, α) -good on $3^{n-m}B$ with respect to μ , (2') If $V \leq \mathcal{F}$ then $\|\ell_V \circ h\|_B \geq \rho$,

then every $0 < \varepsilon \leq \rho$ satisfies

$$\mu(\{x \in B : x \text{ is not marked relative to } \mathcal{F}\}) \leq C'\left(\frac{\varepsilon}{\rho}\right)^{\alpha}\mu(B).$$

This theorem with $\mathcal{F} = \mathcal{F}_0$ implies Theorem 6.

Proof. By induction. For m = n the conclusion is trivial since there are no subspaces that are comparable to a complete flag. Assume the theorem hold for $1 \leq m+1 \leq n$, and let \mathcal{F} be any flag of length m such that $3^{n-m}B \subseteq U$ and (1') and (2') are satisfies. For any $x \in B$ that is not marked relative to \mathcal{F} , define

(1)
$$r_x = \max_{V \leq \mathcal{F}} \sup \left\{ r : \left\| \ell_V(h(x)) \right\|_{B(x,r)} < \rho \right\},$$

This is well defined. Indeed, \mathcal{W} is discrete and the set $\{V \in \mathcal{W} : \ell_V(h(x)) < \rho\}$ is bounded, and if $\ell_V(h(x)) \ge \rho$ for all $V \le \mathcal{F}$ then x is marked by \mathcal{F}_0 relative to \mathcal{F} , which is a contradiction to the assumption that x is not marked by \mathcal{F} . Also, r_x is positive since h is continuous. Let $V_0(x) \le \mathcal{F}$ be any subspace that attaines the maximum in (1). By (2'), B(x,r) does not contain B for any $r < r_x$, therefore

(2)
$$r_x \le r_0 + \mathbf{d}(z, x) \le 2r_0.$$

$$\mu\left(\left\{x \in B : x \text{ is not marked relative to } \mathcal{F}\right\}\right) \leq \\ \mu\left(\bigcup_{x \in \Omega} \left\{y \in B\left(x, r_{x}\right) : \ell_{V_{0}(x)}(h(y)\right) < \varepsilon\right\}\right) \\ + \mu\left(\bigcup_{x \in \Omega} \left\{y \in B\left(x, r_{x}\right) : \ell_{V_{0}(x)}(h(y)\right) \geq \varepsilon \text{ and } y \text{ is not marked relative to } \mathcal{F}\right\}\right) \leq \\ \sum_{x \in \Omega} C\left(\frac{\varepsilon}{\rho}\right)^{\alpha} \mu\left(B(x, r_{x})\right) \quad \left(\|\ell_{V_{0}(x)} \circ h\|_{B(x, r_{x})} \geq \rho + (C, \alpha)\text{-good on } U \text{ with respect to } \mu\right) \\ (3) \\ + \sum_{x \in \Omega} C'\left(\frac{\varepsilon}{\rho}\right)^{\alpha} \mu\left(B(x, r_{x})\right) \leq \qquad (\text{induction } + (1)) \\ N(C + C')\left(\frac{\varepsilon}{\rho}\right)^{\alpha} \mu(B(z, 3r_{0})) \leq \qquad ((2)) \\ ND(C + C')\left(\frac{\varepsilon}{\rho}\right)^{\alpha} \mu(B) \qquad (Federer) \end{cases}$$

The upper bound (3) is where the induction hypothesis is used (applied to a possibly larger set). Indeed, assume that $y \in B(x, r_x)$ is marked relative to $\mathcal{F}'(x) := \mathcal{F} + V_0(x)$ and satisfies $\ell_{V_0(x)}(h(y)) \geq \varepsilon$. Then there exists $\mathcal{F}'' \leq \mathcal{F}'(x)$ such that y is marked by \mathcal{F}'' relative to $\mathcal{F}'(x)$. Since $\varepsilon \leq \ell_{V_0(x)}(h(y)) \leq \rho$ we also have that y is marked by $\mathcal{F}'' + V_0(x)$ relative to $\mathcal{F}'(x)$. So, y is marked by $\mathcal{F}'(x)$. Working backwards with the negation we see that if $y \in B(x, r_x)$ is not marked relative to \mathcal{F} and satisfies $\ell_{V_0(x)}(h(y)) \geq \varepsilon$ then y is not marked relative to $\mathcal{F}'(x)$. The flag $\mathcal{F}'(x)$ has length m + 1 so we're in shape to apply the inductive hypothesis. First, as already noticed, $B(x, r_x) \subseteq B(z, 3r_0)$ so $B(x, 3^{n-(m+1)}r_x) \subseteq B(z, 3^{n-m}r_0) \subseteq U$, hence, (1') holds. Secondly, in order to verify (2') with $\mathcal{F}'(x)$, assume that $U \in \mathcal{W}$ satisfies $U \leq \mathcal{F}'(x)$. In particular, this implies that $U \leq \mathcal{F}$, and, therefore, necessarily, $\|\ell_U \circ h\|_{B(x,r_x)} \geq \rho$. Indeed, $\|\ell_U \circ h\|_{B(x,r_x)} < \rho$ would contradict the definition of r_x . This verifies the conditions of Theorem 10.

2. Applications

Let μ be a Borel measure on \mathbb{R}^n .

Definition 11. μ is *nonplanar* if $\mu(H)$ for any affine hyperplane $H \subseteq \mathbb{R}^n$.

Definition 12. For $C, \alpha > 0$, $U \subseteq \mathbb{R}^n$, μ is (C, α) -decaying if every r > 0, $z \in \operatorname{supp} \mu$, $B = B(x, r) \subseteq U$, $\varepsilon > 0$ satisfy

$$\mu(B \cap B(H,\varepsilon)) \le C\left(\frac{\varepsilon}{\|d_H\|_{\mu,B}}\right)^{\alpha} \mu(B).$$

It is (C, α) -absolutely decaying if

$$\mu(B \cap B(H,\varepsilon)) \le C\left(\frac{\varepsilon}{r}\right)^{\alpha} \mu(B).$$

Definition 13. μ is *friendly* if it is nonplanar, decaying and Federer. It is *absolutely friendly* if it is absolutely decaying and Federer.

Theorem 14 (KLW 2004). Every friendly measure μ on \mathbb{R}^n satisfies $\mu(VWA) = 0$.

Theorem 15 (KW 2005). Every absolutely friendly measure μ on \mathbb{R}^n satisfies $\operatorname{supp} \mu \cap BA \neq \emptyset$.