
THE KLEINBOCK�LINDENSTRAUSS�WEISS

NONDIVERGENCE OF FRACTALS

1. Quantitative nondivergence

Let X be a metric space.

De�nition 1. X is called Besicovitch if there exists an integer N > 0 such
that for any bounded set A ⊆ X and every collection of balls B such that every
point in A is a center of some ball in B, there exists a subcollection Ω ⊆ B
which satis�es

A ⊆
⋃
B∈Ω

B,

max
x∈X

# {B ∈ Ω : x ∈ B} ≤ N.

Example 2. Rn is Besicovitch, hence, every X ⊆ Rn is Besicovitch.

Let µ be a Borel measure on X. For any measurable function f : X → R
and any measurable set B ⊆ X denote the essentail supremum of f on B with

respect to µ by

‖f‖µ,B = sup {c : µ ({x ∈ B : |f(x)| > c}) > 0} .

If f is continuous then

‖f‖µ,B = sup
x∈B∩suppµ

|f(x)|.

De�nition 3. For C, α > 0, f : X → R and U ⊆ X, f is (C, α)-good on U
with respect to µ if any z ∈ suppµ, r, ε > 0 and B = B(z, r) satisfy

µ ({x ∈ B : |f(x)| < ε}) ≤ C

(
ε

‖f‖µ,B

)α
µ(B).

De�nition 4. For U ⊆ X open and D > 0 say that µ is D-Federer on U if
every x ∈ suppµ ∩ U and every r > 0 for which B(x, 3r) ⊆ U satisfy

µ (B(x, 3r))

µ (B(x, r))
≤ D.

Example 5. The Lebesgue measure on Rn. The Cantor�Lebesgue measure

on the middle third Cantor set, as well as any pushforward of it to Rn by a

bi-Lipschitz function.
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Theorem 6. Let X be a Besicovitch space. Given C,D, α > 0 there exists

C ′ > 0 with the following property. Suppose U ⊆ X is open, µ is D-Federer

on U , h : X → SLn+1 (R) is continuous, 0 < ρ ≤ 1, z ∈ suppµ ∩ U , r0 > 0,
B = B(z, r0) satis�es 3nB = B (z, 3nr0) ⊆ U , and every 0 ≤ j ≤ n and every

0 6= v = v1 ∧ . . . ∧ vj ∈
∧j Zn+1 satisfy

(1) ‖h(x)v‖ is (C, α)-good on 3nB with respect to µ,
(2) ‖h(x)v‖B ≥ ρ.

Then any 0 < ε ≤ ρ satis�es

µ
({
x ∈ B : ∃0 6= v ∈ Zn+1 such that ‖h(x)v‖ < ε

})
≤ C ′

(
ε

ρ

)α
µ(B).

Theorem 6 follows by induction from a more general statement about ra-
tional �ags in Rn+1. However, the induction argument requires passing to a
possibly bigger set.

LetW be the set of nonzero rational subspaces of Rn+1. A �ag F is a chain
of rational subspaces (not necessarily maximal)

{0} =: V0 < V1 < V2 < . . . Vm < vm+1 := Rn+1

with Vi ∈ W for every 1 ≤ i ≤ m. In this case the length of F is m.

If F and F ′ are �ags and V ≶ V ′ for all nonzero proper subspaces v ∈ F
and v′ ∈ F ′ denote F ≶ F ′, say that F and F ′ subordinate and set F +F ′ to
be the chain made by combining all the subspaces of F and F ′.
Recall that if V ∈ W and v1, . . . ,vk ∈ Zn+1 are linearily independent and

satisfy

V ∩ Zn+1 = spanZ {v1, . . . ,vk}
then

covol
(
V/V ∩ Zn+1

)
= ‖v1 ∧ . . . ∧ vk‖.

For any g ∈ SLn+1 (R) and any V ∈ W de�ne `V (g) = covol(gV ) to be the
covolume.

We will pass freely between rational subspaces and the wedge product of a
generating set of it.

De�nition 7. Let F ≶ F ′ be �ags and assume 0 < ε ≤ ρ ≤ 1. A point x ∈ X
is marked by F relative to F ′ if it satis�es the following:

(i) If 0 6= V ∈ F then ε ≤ `V (h(x)) < ρ.
(ii) If F ′′ ≶ F ′ satis�es `V (h(x)) < ρ for every V ∈ F ′′ then |F ′′| ≤ |F|.

Let F0 = {{0},Rn+1}. For a �ag F say that x is marked by F if it is marked
by F relative to F0. Say that x is marked if x is marked by some �ag.

Exercise 8. What does it mean to be marked by F0 ?

Lemma 9. If x is marked then h(x) ∈ Kε.

Proof. Denote g = h(x). Assume that 0 6= v ∈ Zn+1 satis�es ‖h(x)v‖ <
ε. Let F be any �ag. Let 0 ≤ i ≤ m be such that v ∈ Vi+1 \ Vi. Let
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V = spanR {Vi,v}. Let v1, . . . ,vk be linearily independent vectors such that
Vi ∩ Zn+1 = spanZ {v1, . . . ,vk−1} and V ∩ Zn+1 = spanZ {v1, . . . ,vk}. Then

`V (g) = ‖gv1 ∧ . . . ∧ gvk‖ ≤ ‖gv1 ∧ . . . ∧ gvk−1‖ · ‖gvk‖ < ρε ≤ ε.

In particular, `V (g) ≤ ρ. Since V is comparable to F this implies by de�nition
of x being marked that V = Vi+1. But `V (g) ≥ ε, which is a contradiction. �

Say that x is marked relative to F ′ if there exists F ≶ F ′ such that x is
marked by F relative to F ′.

Theorem 10. Let X be a Besicovitch space. Given C,D, α > 0 and 0 ≤ m ≤ n
there exists C ′ > 0 with the following property: For U ⊆ X open, µ D-Federer

on U , h : X → SLn+1 (R) continuous, 0 < ρ ≤ 1, z ∈ suppµ ∩ U , r0 > 0,
B = B(z, r0), if F a �ag of length m such that 3n−mB ⊆ U and every V ∈ W
satis�es

(1') `V ◦ h is (C, α)-good on 3n−mB with respect to µ,
(2') If V ≶ F then ‖`V ◦ h‖B ≥ ρ,

then every 0 < ε ≤ ρ satis�es

µ ({x ∈ B : x is not marked relative to F}) ≤ C ′
(
ε

ρ

)α
µ(B).

This theorem with F = F0 implies Theorem 6.

Proof. By induction. For m = n the conclusion is trivial since there are no
subspaces that are comparable to a complete �ag. Assume the theorem hold
for 1 ≤ m + 1 ≤ n, and let F be any �ag of length m such that 3n−mB ⊆ U
and (1') and (2') are satis�es. For any x ∈ B that is not marked relative to
F , de�ne

(1) rx = max
V ≶F

sup
{
r : ‖`V (h(x))‖B(x,r) < ρ

}
,

This is well de�ned. Indeed,W is discrete and the set {V ∈ W : `V (h(x)) < ρ}
is bounded, and if `V (h(x)) ≥ ρ for all V ≶ F then x is marked by F0 relative
to F , which is a contradiction to the assumption that x is not marked by F .
Also, rx is positive since h is continuous. Let V0(x) ≶ F be any subspace that
attaines the maximum in (1). By (2'), B(x, r) does not contain B for any
r < rx, therefore

(2) rx ≤ r0 + d(z, x) ≤ 2r0.
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µ ({x ∈ B : x is not marked relative to F}) ≤

µ

(⋃
x∈Ω

{
y ∈ B (x, rx) : `V0(x)(h(y)) < ε

})

+ µ

(⋃
x∈Ω

{
y ∈ B (x, rx) : `V0(x)(h(y)) ≥ ε and y is not marked relative to F

})
≤

∑
x∈Ω

C

(
ε

ρ

)α
µ (B(x, rx)) (‖`V0(x) ◦ h‖B(x,rx) ≥ ρ + (C, α)-good on U with respect to µ)

+
∑
x∈Ω

C ′
(
ε

ρ

)α
µ (B(x, rx)) ≤ (induction + (1))

(3)

N(C + C ′)

(
ε

ρ

)α
µ(B(z, 3r0)) ≤ ((2))

ND(C + C ′)

(
ε

ρ

)α
µ(B) (Federer)

The upper bound (3) is where the induction hypothesis is used (applied to
a possibly larger set). Indeed, assume that y ∈ B (x, rx) is marked relative to
F ′(x) := F+V0(x) and satis�es `V0(x)(h(y)) ≥ ε. Then there exists F ′′ ≶ F ′(x)
such that y is marked by F ′′ relative to F ′(x). Since ε ≤ `V0(x)(h(y)) ≤ ρ we
also have that y is marked by F ′′ + V0(x) relative to F ′(x). So, y is marked
by F ′(x). Working backwards with the negation we see that if y ∈ B (x, rx) is
not marked relative to F and satis�es `V0(x)(h(y)) ≥ ε then y is not marked
relative to F ′(x). The �ag F ′(x) has length m+ 1 so we're in shape to apply
the inductive hypothesis. First, as already noticed, B(x, rx) ⊆ B(z, 3r0) so
B
(
x, 3n−(m+1)rx

)
⊆ B (z, 3n−mr0) ⊆ U , hence, (1') holds. Secondly, in order

to verify (2') with F ′(x), assume that U ∈ W satis�es U ≶ F ′(x). In partic-
ular, this implies that U ≶ F , and, therefore, necessarily, ‖`U ◦ h‖B(x,rx) ≥ ρ.

Indeed, ‖`U ◦ h‖B(x,rx) < ρ would contradict the de�nition of rx. This veri�es
the conditions of Theorem 10. �



THE KLEINBOCK�LINDENSTRAUSS�WEISS NONDIVERGENCE OF FRACTALS 5

2. Applications

Let µ be a Borel measure on Rn.

De�nition 11. µ is nonplanar if µ(H) for any a�ne hyperplane H ⊆ Rn.

De�nition 12. For C, α > 0, U ⊆ Rn, µ is (C, α)-decaying if every r > 0,
z ∈ suppµ, B = B(x, r) ⊆ U , ε > 0 satisfy

µ(B ∩B(H, ε)) ≤ C

(
ε

‖dH‖µ,B

)α
µ(B).

It is (C, α)-absolutely decaying if

µ(B ∩B(H, ε)) ≤ C
(ε
r

)α
µ(B).

De�nition 13. µ is friendly if it is nonplanar, decaying and Federer. It is
absolutely friendly if it is absolutely decaying and Federer.

Theorem 14 (KLW 2004). Every friendly measure µ on Rn satis�es µ(VWA) =
0.

Theorem 15 (KW 2005). Every absolutely friendly measure µ on Rn satis�es

suppµ ∩BA 6= ∅.


	1. Quantitative nondivergence
	2. Applications

