
Leafwise Measures

1 Reminder � Conditional measures

Theorem 1.1. Let (X,B, µ) be a probability space, with (X,B) being a lcsc metric space,

and let A ⊆ B a sub-σ-algebra. Then there exists an A-measurable X ′ ⊆ X with µ (X \X ′) =

0, and a system
{
µA
x : x ∈ X ′} of probability measures on X, referred to as conditional

measures, such that:

∀f ∈ L1 (X,B, µ) E (f |A) (x) =

∫
f (y) dµA

x (y) for µ-a.e x

and µA
x is uniquely determined for µ-a.e x ∈ X. In other words, for any f ∈ L1 (X,B, µ)

the map x 7→
∫
f (y) dµA

x (y) is A-measurable, and for all A ∈ A∫
A

∫
f (y) dµA

x (y) dµ (x) =

∫
A
fdµ

De�nition 1.2. Let A be a σ-algebra of subsets of X. The atom of x ∈ X is de�ned by:

[x]A =
∩

x∈A∈A
A

Note that for countably generated σ-algebra, all atoms are measurable.

Claim 1.3. Under the same assumptions as in the theorem, if A is countably generated,

then:

1. ∀x ∈ X ′ µA
x ([x]A) = 1.

2. For every x, y ∈ X ′ with [x]A = [y]A we have µA
x = µA

y .

2 Leafwise Measures

2.1 Assumptions

• G is a locally compact, second countable group, equipped with a right-invariant metric

such that any ball of �nite radius has compact closure.
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• X is a lcsc metric space, G acts continuously on X.

• µ is locally �nite measure on X, meaning that µ (K) < ∞ for any compact K ⊂ X.

• H < G is a closed subgroup, such that for µ-a.e x ∈ X the map h ∈ H 7→ h.x is

injective.

Notation: For two measures µ, ν on X, denote µ ≃ ν if µ, ν are proportional, i.e if there

exists some c > 0 s.t µ = cν.

2.2 De�nition of Leafwise Measures

Theorem 2.1. Under these assumptions, there exists a H-invariant set X ′ ⊆ X with

µ (X \X ′) = 0, and a system
{
µH
x

}
x∈X′ of locally-�nite measures on H, called the leaf-

wise measures, which are determined uniquely, up to proportionality and outside a set of

measure zero, by the following properties:

1. For every f ∈ Cc (H), the map x 7→
∫
fdµH

x is Borel measurable.

2. �µH
x describes µ along the H-orbit of x�: Suppose Y ⊂ X is measurable with µ (Y ) <

∞ and that there exists a countably generated σ-algebra A on Y that is H-subordinate,

meaning that for µ-a.e y ∈ Y the atom has the form [y]A = Vy.y, for some bounded

neighborhood Vy ⊂ H of the identity in H (referred to as the shape of the atom). Then

for µ-a.e y ∈ Y

µA
y ≃

(
µH
y |Vy

)
.y

i.e. we restrict the leafwise measure to the shape of the atom, push the restriction

forward under the orbit map h ∈ H 7→ h.y and obtain the proportionality class of the

conditional measure.

3. Compatibility Formula: For every x ∈ X ′ and h ∈ H, if h.x ∈ X ′ then

µH
x ≃ (Th)∗ µ

H
h.x

where (Th)∗ µ
H
h.x is the push-forward of µH

h.x by the right translation Th : H → H,

g 7→ gh (Also denoted
(
µH
h.x

)
h).

Proposition 2.2. Let H < G. If µG
x is left H-invariant for µ-a.e x ∈ X then µ is H-

invariant.

2.3 Example

Let X = T2 = R2/Z2, and G = R acts on X by r.x = x+ rv⃗ mod Z2, for some irrational

vector v⃗. If µ = λ is the Lebesgue measure on T2, then we can take µG
x = λR to be Lebesgue

measure on R.
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Note that:

• Even though the space X is compact, none of the leaf-wise measures are �nite.

• The naive approach to constructing these measures would be to look at conditional

measures for the sub-σ-algebra A of G-invariant Borel sets. Unfortunately, this σ-

algebra is not countably generated, and is equivalent to the trivial σ-algebra. Instead,

we de�ne the leaf-wise measures on small pieces of G-orbits and then glue them

together.

2.4 Fubini-construction of Leafwise measures

Consider the product space X ×H and de�ne the σ-algebra:

CH = Ψ−1
H BX

where ΨH : X ×H → X is the map de�ned by ΨH (x0, h0) = h−1
0 .x0 for (x0, h0) ∈ X ×H,

and BX is the Borel σ-algebra of X. Since BX is countably generated, the σ-algebra CH is

a countably generated algebra of Borel subsets of X ×H.

De�ne ∆H := {(h, h) |h ∈ H} ∼= H, and let ∆H act on X ×H by setting

∀x0 ∈ X, h0, h ∈ H (h, h) . (x0, h0) = (h.x0, hh0)

Also, for h ∈ H, let ∆(h) = (h, h) ∈ ∆H .

Let us calculate the atoms in CH . By de�nition of CH ,

[(x0, h0)]CH = {(x1, h1) ∈ X ×H |ΨH (x1, h1) = ΨH (x0, h0)}

=
{
(x1, h1) ∈ X ×H |h−1

1 .x1 = h−1
0 .x0

}
Any (x1, h1) in this atom belongs to ∆H . (x0, h0): Indeed, set h := h1h

−1
0 , then h1 = hh0

and

x1 = e.x1 = hh−1.x1 = hh0h
−1
1 .x1 = hh0

(
h−1
1 .x1

)
= hh0h

−1
0 .x0 = h.x0

So

∆(h) . (x0, h0) = (h.x0, hh0) = (x1, h1)

And we get [(x0, h0)]CH ⊆ ∆H . (x0, h0). The other direction is also true: for all h ∈ H we

have

ΨH (∆ (h) . (x0, h0)) = ΨH (h.x0, hh0) = (hh0)
−1 h.x0 = h−1

0 .x0 = ΨH (x0, h0)

Thus [(x0, h0)]CH = ∆H . (x0, h0). In other words the σ-algebra countably generated CH on

X ×H has atoms that consist of orbits of the group ∆H .
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2.4.1 Fibre measures

We now de�ne �bre measures � a generalization of conditional measures (which are de�ned

for probability measures) to locally �nite measures.

Suppose that ν is a locally �nite measure on a σ-compact locally compact metric space Y

and that C is a countably generated σ-algebra. We can choose a strictly positive continuous

integrable function f0 in Y with
∫
f0dν = 1 (Exercise: how?), and set νprob := f0ν. Notice

that νprob, ν are absolutely continuous to each other, meaning that they have the same

null-sets. νprob is a probability measure, so there are conditional measures (νprob)
C
y for νprob

with respect to C for a.e y ∈ Y .

De�nition 2.3. (Fibre measures) νCy = 1
f0

(νprob)
C
y for a.e y ∈ Y .

From this de�nition we see that νCy1 = νCy2 whenever [y1]C = [y2]C , and each νCy is a locally

�nite measure on Y .

A di�erent choice f ′
0 of such a strictly positive continuous function instead f0 will give a

new system of �ber measures ν ′y that a.e. are in the same proportionality class as the the

original system of �ber measures. Since we will mostly care only about the proportionality

class, we keep the dependence of νCy on the choice of f0 implicit.

Properties of �bre measures:

1. If [y1]C = [y2]C then νCy1 = νCy2 .

2. Each νCy is a locally �nite measure on Y .

3. If K ⊆ Y is a subset of �nite ν-measure, then the conditional measure of ν|K with

respect to C can be obtained by taking the normalized restriction of the �bre measures,

i.e.

(ν|K)Cy ≃ νCy |K for a.e y ∈ K

4. If T : Y → Y is preserving ν, or more generally if T∗ν ≃ ν, then

T∗ν
T−1C
y ≃ νCTy for a.e y

Proposition 2.4. If C ⊆ C̃ are two countably generated σ-algebras, then for ν-a.e y ∈ Y

and for νCy -a.e z it holds that
(
νCy

)C̃
z
≃ ν C̃z . In particular, if C̃ satis�es that the C-atoms are

countable unions of C̃-atoms, then the �bre measures ν C̃y can be obtained by restricting the

�bre measures νCy to the atoms for C̃.

2.4.2 Back to our product space

Assume µ is a probability measure on X (we can replace locally-�nite µ by µ′ = f1µ, where

f1 is such that
∫
X f1dµ = 1, and µ, µ′ have exactly the same null-sets). Choose Y = X×H,
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ν = µ × mH (where mH is the right Haar measure on H), we obtain the �bre measures

(µ×mH)CH(x0,h0)
for (µ×mH)-a.e (x0, h0) ∈ X ×H.

Also, we can make a choice of f0 in the construction of �bre measures: Take f0 to be a

strictly positive continuous integrable function on H, and implicitly identify it with the

corresponding function on X ×H depending only on the second coordinate.

De�ne right action of H on X ×H by

Rh (x0, h0) =
(
x0, h0h

−1
)

for every (x0, h0) ∈ X ×H and h ∈ H. Then Rh : X ×H → X ×H is measure-preserving,

and commutes with the the left action of ∆H . Moreover, for all h ∈ H we have

ΨH (Rh (x0, h0)) = ΨH

(
x0, h0h

−1
)
= hh−1

0 .x0 = h.ΨH (x0, h0)

for all (x0, h0) ∈ X ×H, which implies R−1
h CH = CH , so we get

(Rh)∗ (µ×mH)CH(x0,h0)
≃ (µ×mH)CH

(x0,h0h−1)
(2.1)

for any �xed h ∈ H and (µ×mH)-a.e (x0, h0), where the null set may depend on h.

We also denote by Rh the right action on H: Rh (h0) = h0h
−1.

Note that when identifying a function f on H with functions on X ×H depending only on

the second coordinate, both possible interpretations of f ◦Rh coincide.

A cleaner version of the �bre measures. Recall that by construction∫
f0d (µ×mH)CH(x0,h0)

= 1 a.e

De�ne

fH (h) = inf
h′∈BH

1

f0
(
hh′

)
Since the metric on G is proper (any ball has a compact closure) and by the assumptions

on f0 it follows that fH is also a strictly positive integrable and continuous function on H:

fH (h) = inf
h′∈BH

1

f0
(
hh′

)
≥ inf

h′∈BH
1

f0
(
hh′

)
= min

h′∈BH
1

f0
(
hh′

)
> 0

Let p : X ×H → H be the projection p (x, h) = h for (x, h) ∈ X ×H, and de�ne

µ(x0,h0) = (Rh0 ◦ p)∗ (µ×mH)CH(x0,h0)

Since p is a homeomorphism when restricted to the ∆H -orbit, the measure µ(x0,h0) is a
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locally �nite measure on H. Moreover, for all (x0, h0) ∈ X×H and (x1, h1) ∈ ∆H . (x0, h0):

∆(Rh0 ◦ p (x1, h1)) . (x0, h0) = ∆
(
h1h

−1
0

)
. (x0, h0) = (x1, h1)

So the push-forward of µ(x0,h0) under h ∈ H 7→ ∆(h) . (x0, h0) is again (µ×mH)CH(x0,h0)
.

Also note that p ◦ Rh = Rh ◦ p for h ∈ H. Thus, applying Rh0h−1 ◦ p to both measures in

(2.1) we get:

(
p ◦Rh0h−1

)
∗ (Rh)∗ (µ×mH)CH(x0,h0)

≃
(
Rh0h−1 ◦ p

)
∗ (µ×mH)CH

(x0,h0h−1)

Thus

µ(x0,h0) ≃ µ(x0,h0h−1) (2.2)

for any �xed h ∈ H and (µ×mH)-a.e (x0, h0) ∈ X ×H.

Lemma 2.5. There exists a measurable conull set X ′ ⊆ X and a choice of the �bre measures

(µ×mH)CH(x0,h0)
on X ′ ×H so that:

1. Equations (2.1) ,(2.2) hold for all x0 ∈ X ′ and all h0, h ∈ H.

2.
∫
H fHdµ(x0,h0) < ∞ for all x0 ∈ X ′ and h0 ∈ H.

Proposition 2.6. Let H < G,X, CH and µ as above. Let X ′ ⊆ X and µ(x,h) for (x, h) ∈
X ′ ×H be as in the lemma. Then the measures de�ned by

µH
x := µ(x,e)

for all x ∈ X ′ satisfy the characterising properties of leaf-wise measures.

Proof. [of Proposition2.6] First, let us show that the compatibility formula holds. If

x, h.x ∈ X ′ then (x, e) and (h, h) . (x, e) = (h.x, h) are in the same ∆H -orbit, meaning that

they are in the same atom of CH , so (µ×mH)CH(x,e) ≃ (µ×mH)CH(h.x,h). Applying the push

forward under p to this �bre measure we then obtain:

µH
h.x

def
= µ(h.x,e)

(2.2)
≃ µ(h.x,h)

def
= (Rh ◦ p)∗ (µ×mH)CH(h.x,h) ≃ (Rh ◦ p)∗ (µ×mH)CH(x,e)

≃ (Rh)∗ µ(x,e)
def
= µ(x,e)h

−1 def
= µH

x h−1

then µH
h.x ≃ µH

x h−1.

For the other property: Suppose Y ⊂ X is measurable and A is a countably generated

σ-algebra on Y which is H-subrodinate. We may assume without loss of generality that

the injectivity requirement h ∈ H 7→ h.y holds for all y ∈ Y . Then for all y ∈ Y the atom

has the form [y]A = Vy.y, for some bounded neighborhood Vy ⊂ H of the identity in H.

We now consider four σ-algebras of subsets of Y ×H:
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1. The restriction of CH to Y ×H, for simplicity again denoted by CH , whose atoms are

[(y, h)]CH = (∆H . (y, h)) ∩ (Y ×H)

2. A×H := {A×H : A ∈ A}, whose atoms are

[(y, h)]A×H
= [y]A ×H = (Vy.y)×H

3. A�at := A× BH (where BH is the Borel σ-algebra on H), whose atoms are

[(y, h)]A�at
= [y]A × {h} = (Vy.y)× {h}

4. AH := σ (CH ∪ A×H), whose atoms are

[(y, h)]AH
= ∆(Vy) . (y, h)

We are now going to use Proposition 2.4 in two di�erent ways in order to calculate the �bre

measures (µ×mH)AH

(y,h) on the AH -atoms for a.e (y, h) ∈ Y ×H.

• Applying on CH ⊆ AH : Recall that the group H is second countable and that for

any y ∈ Y the set Vy contains an open neighborhood of the identity. Hence each

atom of CH contains only countably many atoms of AH . By (the second statement

of) Proposition 2.4, it follows that

(µ×mH)AH

(y,h) ≃ (µ×mH)CH(y,h) |∆(Vy).(y,h) for a.e (y, h) ∈ Y ×H (2.3)

• Applying on A×H ⊆ A�at: Notice that the de�nition of �bre measures implies for

(µ×mH)-a.e (y0, h0) ∈ Y ×H that

(µ×mH)
A×H

(y0,h0)
≃ µA

y0 ×mH

Fix such a (y0, h0) ∈ Y ×H and look conditionally on its atom in A×H : [y0]A ×H =

(Vy0 .y0)×H, with respect to this �bre measure. Consider the map

ξ :
(
h′.y0, h

′h
)
= ∆

(
h′
)
. (y0, h) 7→

(
h′.y0, h

)
� ξ is a map from the atom [y0]A ×H to itself, preserving (µ×mH)

A×H

(y0,h0)
.

� On [y0]A × H, ξ maps atoms of AH precisely to atoms of A�at, equivalently:

ξ−1A�at = AH .

Also notice that

(µ×mH)A�at

(y,h) ≃ µA
y × δh
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for a.e (y, h) ∈ Y ×H, where δh denotes the delta measure at h. Thus, by Proposition

2.4, it follows that for (µ×mH)
A×H

(y0,h0)
-a.e (y, h) = (h′.y0, h) with h′ ∈ Vy0

ξ∗

(
(µ×mH)AH

(y,h)

)
≃ µA

y × δ(h′)−1h (2.4)

Now take a look at (2.3) again:

(µ×mH)AH

(y,h) ≃ (µ×mH)CH(y,h) |∆(Vy).(y,h) for a.e (y, h) ∈ Y ×H

By construction of µH
y = µ(y,·) for y ∈ X ′∩Y , the �bre measure on the right can be obtained

by restricting µH
y to Vy and pushing it forward under the map D : h1 ∈ Vy 7→ ∆(h1) . (y, h),

meaning that

(µ×mH)CH(y,h) |∆(Vy).(y,h) ≃ D∗
(
µH
y |Vy

)
which means, by (2.3), that D∗

(
µH
y |Vy

)
≃ (µ×mH)AH

(y,h). Applying the push forward by ξ,

we get by (2.4)

ξ∗D∗
(
µH
y |Vy

)
≃ µA

y × δ(h′)−1h

Finally, applying the projection to X we obtain a measure proportional to µA
y , and compos-

ing these maps we obtain that the push-forward of µH
y |Vy under the map h ∈ Vy 7→ h.y ∈

[y]A is proportionate to µA
y , meaning that

µA
y ≃

(
µH
y |Vy

)
.y

as we wished.
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