Leafwise Measures

1 Reminder — Conditional measures

Theorem 1.1. Let (X, B, u) be a probability space, with (X, B) being a lcsc metric space,
and let A C B a sub-o-algebra. Then there exists an A-measurable X' C X with (X \ X') =
0, and a system {,u;é‘ tx € X’} of probability measures on X, referred to as conditional

measures, such that:

Vi L (X.Bg) B @) = [ f)dit () forpaca

and ,uﬁ is uniquely determined for p-a.e x € X. In other words, for any f € L' (X, B, 1)
the map = — [ f(y) du (y) is A-measurable, and for all A € A

[ @ at waue = [ san

Definition 1.2. Let A be a o-algebra of subsets of X. The atom of z € X is defined by:

M 4

z€eAc A

Note that for countably generated o-algebra, all atoms are measurable.

Claim 1.3. Under the same assumptions as in the theorem, if A is countably generated,
then:

1. Vo e X' pt(z],) =1.

2. For every z,y € X' with [z] 4 = [y] 4 we have puzt = pi7'.

2 Leafwise Measures

2.1 Assumptions

e (G is alocally compact, second countable group, equipped with a right-invariant metric

such that any ball of finite radius has compact closure.



e X is a lcsc metric space, G acts continuously on X.
e 4 is locally finite measure on X, meaning that u (K) < oo for any compact K C X.

e H < (G is a closed subgroup, such that for py-a.e x € X the map h € H — h.x is

injective.

Notation: For two measures p, v on X, denote u ~ v if u, v are proportional, i.e if there

exists some ¢ > 0 s.t p = cv.

2.2 Definition of Leafwise Measures

Theorem 2.1. Under these assumptions, there exists a H-invariant set X' C X with
pw(X\X') =0, and a system {uf}xeX, of locally-finite measures on H, called the leaf-
wise measures, which are determined uniquely, up to proportionality and outside a set of

measure zero, by the following properties:

1. For every f € C.(H), the map x — [ fdull is Borel measurable.

2. “ull describes p along the H-orbit of x”: Suppose Y C X is measurable with p (Y) <

oo and that there ezists a countably generated o-algebra A on'Y that is H -subordinate,
meaning that for p-a.e y €Y the atom has the form [y] 4 = V,.y, for some bounded
neighborhood Vyy C H of the identity in H (referred to as the shape of the atom). Then
for p-a.eyeyY

== ()
i.e. we restrict the leafwise measure to the shape of the atom, push the restriction

forward under the orbit map h € H — h.y and obtain the proportionality class of the

conditional measure.

3. Compatibility Formula: For every v € X' and h € H, if h.x € X' then

where (Th)*/ﬁgw 1s the push-forward of ,ugz by the right translation Ty, : H — H,
g — gh (Also denoted (,uth) h).

Proposition 2.2. Let H < G. If uS is left H-invariant for p-a.e © € X then u is H-

tnvariant.

2.3 Example

Let X = T? = R?/Z? and G =R acts on X by r.z = 2 + r# mod Z?, for some irrational
vector ¥. If g = X is the Lebesgue measure on T?, then we can take u$ = Ag to be Lebesgue

measure on R.



Note that:

e Even though the space X is compact, none of the leaf-wise measures are finite.

e The naive approach to constructing these measures would be to look at conditional
measures for the sub-o-algebra A of G-invariant Borel sets. Unfortunately, this o-
algebra is not countably generated, and is equivalent to the trivial o-algebra. Instead,
we define the leaf-wise measures on small pieces of G-orbits and then glue them

together.

2.4 Fubini-construction of Leafwise measures
Consider the product space X x H and define the o-algebra:
Cy = \I’I}llgx

where Uy : X x H — X is the map defined by Wy (29, ho) = hgl.azo for (zg, ho) € X x H,
and By is the Borel g-algebra of X. Since By is countably generated, the o-algebra Cg is
a countably generated algebra of Borel subsets of X x H.

Define Ay == {(h,h) |h € H} = H, and let Ay act on X x H by setting
Vxg € X, hop,h e H (h, h) . (ﬂ?o, ho) = (h.ZL‘Q, hho)

Also, for h € H, let A (h) = (h,h) € Ag.
Let us calculate the atoms in Cg. By definition of Cp,

(w0, ho)le,, = {(z1,M) € X x H | ¥y (z1,h1) = ¥y (z0, ho)}
{.’El,hl GXXH’h $12h61.$0}

Any (x1,h1) in this atom belongs to Ag. (zg, ho): Indeed, set h = hlhal, then hy = hhg
and
Tr] = €.xr1 = hh X1 = hhoh X1 = hho (h :Ul) = hhoho Xy = h. Wiy}

So
A (h) . (xg, h()) = (h.l’o, hho) = (.iL’l, hl)

And we get [(zo, ho)l¢,, € An- (%o, ho). The other direction is also true: for all h € H we

have
g (A (h). (20, ho)) = Og (h.xo, hho) = (hho) ™! hxg = hgt.z0 = U (20, ho)

Thus [(xo, ho)l¢,, = An- (0, ho). In other words the o-algebra countably generated Cy on
X x H has atoms that consist of orbits of the group Ap.



2.4.1 Fibre measures

We now define fibre measures — a generalization of conditional measures (which are defined

for probability measures) to locally finite measures.

Suppose that v is a locally finite measure on a o-compact locally compact metric space Y
and that C is a countably generated o-algebra. We can choose a strictly positive continuous
integrable function fo in ¥ with [ fodv =1 (Exercise: how?), and set vprb = for. Notice
that vppon, v are absolutely continuous to each other, meaning that they have the same
null-sets. vprop is a probability measure, so there are conditional measures (Vprob)(y: for vpron

with respect to C for a.e y € Y.

Definition 2.3. (Fibre measures) 1/5 = % (meb)g foraeyeY.

From this definition we see that vy, = 1/52 whenever [y1], = [y2]., and each Vg is a locally

finite measure on Y.

A different choice f{) of such a strictly positive continuous function instead fo will give a
new system of fiber measures Vz’/ that a.e. are in the same proportionality class as the the
original system of fiber measures. Since we will mostly care only about the proportionality

class, we keep the dependence of Vg on the choice of fy implicit.

Properties of fibre measures:

L. If [y1]e = [y2); then 1/51 = 1/52.

2. Each 1/5 is a locally finite measure on Y.

3. If K CY is a subset of finite v-measure, then the conditional measure of v|x with
respect to C can be obtained by taking the normalized restriction of the fibre measures,
i.e.

(V\K)(yj o~ V5|K foraey e K
4. f T :Y — Y is preserving v, or more generally if Tyv ~ v, then

T*V;Fflc ~v§, foraey
Proposition 2.4. [fC C C are two countably generated o-algebras, then for v-a.e y € Y
and for l/g—a,e z it holds that (1/5)5 ~ 1/5. In particular, zf@ satisfies that the C-atoms are

countable unions of C-atoms, then the fibre measures v°

y can be obtained by restricting the

fibre measures 1/5 to the atoms for C.

2.4.2 Back to our product space

Assume p is a probability measure on X (we can replace locally-finite p by p/ = f1p, where
f11s such that fX fidp = 1, and p, i/ have exactly the same null-sets). Choose Y = X x H,
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v = p X my (where mp is the right Haar measure on H), we obtain the fibre measures

(1 mH)fH ) for (1 x mg)-a.e (zg,hp) € X x H.

z0,ho
Also, we can make a choice of fp in the construction of fibre measures: Take fy to be a
strictly positive continuous integrable function on H, and implicitly identify it with the

corresponding function on X x H depending only on the second coordinate.

Define right action of H on X x H by
Ry, (w0, ho) = (z0, hoh™)

for every (zo,hp) € X x H and h € H. Then Ry, : X x H — X x H is measure-preserving,

and commutes with the the left action of Ay. Moreover, for all h € H we have
Uy (R (zo, ho)) = ¥y (mo, hoh_l) = hhal.l‘o = h.Wy (z9, ho)

for all (xg, ho) € X x H, which implies R,:ch = Cp, so we get

(Rn),. (i mar) (2, e (o mp) (2 (2.1)

for any fixed h € H and (u x mpg)-a.e (xg, ho), where the null set may depend on h.
We also denote by Ry, the right action on H: Ry, (hg) = hoh™!.

Note that when identifying a function f on H with functions on X x H depending only on

the second coordinate, both possible interpretations of f o Ry coincide.

A cleaner version of the fibre measures. Recall that by construction

/f()d (IU/ X mH)fg]yhO) =1 a.e

Define
h) = inf hh'
Jir (h) h’eB{’fO( )
Since the metric on G is proper (any ball has a compact closure) and by the assumptions

on foy it follows that fr is also a strictly positive integrable and continuous function on H:

h) = inf hh') > inf hh') = mi hh' 0
fu (h) h/lenB{IfO( )_h/lenB?fo( ) hllflel%fo( ) >

Let p: X x H — H be the projection p (z,h) = h for (z,h) € X x H, and define

/"L(x(),h[)) = (Rho Op)* (M X mH)%{fo,ho)

Since p is a homeomorphism when restricted to the Ap-orbit, the measure fi(z, ,) is a



locally finite measure on H. Moreover, for all (xo, ho) € X x H and (z1,h1) € Ag. (xo, ho):
A (Rho op (l‘l, hl)) . (.T(), ho) =A (hlhal) . (330, ho) = (1’1, hl)

So the push-forward of pi(g n,) under h € H = A (h) . (w0, ho) is again (u x 77”L1L1)€]’;‘£J ho)-

Also note that po Ry = Ry op for h € H. Thus, applying Ry -1 o p to both measures in
(2.1) we get:

(po Rpgn-1), (Rn), (% mH)fgf;,hO) ~ (Rpop-10p), (1 % mH)%fg,hohq)

Thus
F(zo,ho) = H(zo,hoh=1) (2.2)

for any fixed h € H and (u x mpg)-a.e (zo,ho) € X x H.

Lemma 2.5. There exists a measurable conull set X' C X and a choice of the fibre measures

(1 X mH)fH on X' x H so that:

z0,ho)
1. Equations (2.1) ,(2.2) hold for all xo € X' and all ho,h € H.
2. fH JHA (20 hy) < 00 for all zo € X' and ho € H.

Proposition 2.6. Let H < G,X, Cgy and p as above. Let X' C X and ju( py for (z,h) €
X' x H be as in the lemma. Then the measures defined by

Hf = H(z,e)

for all x € X' satisfy the characterising properties of leaf-wise measures.

Proof. |of Proposition2.6] First, let us show that the compatibility formula holds. If
z,h.x € X' then (z,e) and (h,h) . (z,e) = (h.x, h) are in the same Ag-orbit, meaning that
they are in the same atom of Cp, so (u X mH)Ef,e) ~ (% mH)f}fmh) Applying the push
forward under p to this fibre measure we then obtain:

Cu

(2.2)
H def def (Rh op)* (,U % mH)?}IL{%h) ~ (Rh Op)* (:u X mH)(m,e)

Bho = H(hae) = H(hah) =

def _1 def _
= (Rh)* H(z,e) = N(m,e)h e /J'fh !

then ,uﬁx ~ pfp=t

For the other property: Suppose Y C X is measurable and A is a countably generated
o-algebra on Y which is H-subrodinate. We may assume without loss of generality that
the injectivity requirement h € H + h.y holds for all y € Y. Then for all ¥y € Y the atom
has the form [y] 4 = V,.y, for some bounded neighborhood V,, C H of the identity in H.

We now consider four o-algebras of subsets of Y x H:



1. The restriction of Cyy to Y x H, for simplicity again denoted by Cp, whose atoms are

(v We,, = (B (y,h)) N (Y x H)

[\]

. Axg ={AXx H:Ae A}, whose atoms are

(Y P4, = Wla x H=(Vyy) x H

w

. Agat = A x By (where By is the Borel o-algebra on H), whose atoms are
[(y, )] 4y, = Wla x {0} = (Vy.y) x {h}
4. Ag =0 (Cyg U Axp), whose atoms are

[y )4y = A (V) (y,h)

We are now going to use Proposition 2.4 in two different ways in order to calculate the fibre

measures (1 X mH)gb;l) on the Ag-atoms for a.e (y,h) €Y x H.

e Applying on Cy C Ag: Recall that the group H is second countable and that for
any y € Y the set V, contains an open neighborhood of the identity. Hence each
atom of Cp contains only countably many atoms of Ag. By (the second statement
of) Proposition 2.4, it follows that

(1 mH)é% ~ (pu % mH)f;:h) lAW,).(y,n) forae (y,h) €Y x H (2.3)

e Applying on Ay C Aga: Notice that the definition of fibre measures implies for
(u x mp)-a.e (Yo, ho) € Y x H that

Axo A
om0 <

Fix such a (yo, ho) € Y x H and look conditionally on its atom in A [yo] 4 x H =
(Viyo-yo) x H, with respect to this fibre measure. Consider the map

£: (h'.yo,h'h) =A (h/) - (yo, h) — (h'.yo, h)

— ¢ is a map from the atom [yo] 4 X H to itself, preserving (u x mH)é:’ZO)_

— On [yo] 4 x H, & maps atoms of Ay precisely to atoms of Ag,g, equivalently:
gilAﬂat = -AH-

Also notice that

Afa
(1 x mH)(yﬁlht) ~ M;;l X Op



for a.e (y,h) € Y x H, where d;, denotes the delta measure at h. Thus, by Proposition

At e (y,h) = (.o, h) with I/ € V,

2.4, it follows that for (u x mu) 7 |

&« ((,u X mH)é{ZO o~ ,u;f X 01, (2.4)
Now take a look at (2.3) again:

(n x mH)éf{h) ~ (X mH)ifh) |A(W).(yh) forae (y,h) €Y x H

By construction of ,uf = py,) fory € X'NY, the fibre measure on the right can be obtained
by restricting ,uf to V, and pushing it forward under the map D : hy € V, = A (h1) . (y, h),
meaning that

(1 mH)((:?fh) lay).o.0) = D (13 1v,)

which means, by (2.3), that D, (M5|Vy) ~ (u x mH)é%. Applying the push forward by &,
we get by (2.4)
A
&Du (1 Ivy,) = 1 X Sy

Finally, applying the projection to X we obtain a measure proportional to /@4, and compos-
ing these maps we obtain that the push-forward of ufh/y under the map h € V, — h.y €
[y] 4 is proportionate to ,u;j‘, meaning that

as we wished. O
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