
LEAFWISES MEASURES

TAU SEMINAR ON HOMOGENEOUS DYNAMICS AND APPLICATIONS

1. Conditional measures of a probability measure

In this section, we review the notion of conditional measures. We will only state
definitions and properties that are going to be used and refer the readers to Chapter
5 in the book [EW11] for proofs.

We say a σ-algebra A on a set X is countably generated, if it is generated as a
σ-algebra by a countable subset A0 ⊂ A. Let A be countably generated σ-algebra
on X and A0 a generating subset. The atom of a point x ∈ X is the smallest
element of A containing x, that is

[x]A =
⋂

A∈A:x∈A
A =

⋂
A∈A0:x∈A

A.

A measurable space (X,B) is a called a (standard) Borel space if X can be
equipped with a locally compact second countable topology such that B is the
corresponding Borel σ-algebra.

For a measurable space (X,B), L∞(X,B) denote the space of bounded measur-
able functions on X.

For a measured space (X,B, µ), let L1(X,B, µ) denote the space of B-measurable
µ-integrable functions on X. Let L1(X,B, µ) denote the usual Banach space ob-
tained as the space of equivalence classes in L1(X,B, µ) for the relation ”being
equal µ-almost everywhere”. Most of the time, we can safely identify a function in
L1(X,B, µ) and its equivalence class as an element in L1(X,B, µ). (An execption
being in the definition of conditional measures, a few lines below.)

Now let (X,B, µ) be a probability space. Let A be a sub-σ-algebra of B. Let
f ∈ L1(X,B, µ). The conditional expectation of f knowing A is the unique function
E(φ | A) ∈ L1(X,A, µ) satisfying the following property. For any A ∈ A,∫

A

E(f | A) dµ =

∫
A

f dµ.

The conditional measure of µ knowing A is a collection of probability measures
(µAx )x∈X on the measured space (X,B) satisfying for all f ∈ L1(X,B, µ), for almost
all x ∈ X,

E(f | A)(x) =

∫
X

f dµAx .

The collection (µAx )x∈X is unique up to a null set. Note that for any f ∈ L∞(X,B),
for any A ∈ A, ∫

A

f dµ =

∫
A

∫
f dµAx dµ(x).

Hence, by the monotone convergence theorem, the same holds for B-measurable
non-negative function f : X → R+. In particular with A = X, we write

µ =

∫
X

µAx dµ(x).
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In the case where A is countably generated, then for µ-almost all x ∈ X,
µAx ([x]A) = 1. The uniqueness can be reformulated as follows. Let (νx)x∈X be
a collection of probability measures on (X,B). Assume

(1) For any f ∈ L∞(X,B), the function x 7→
∫
f dνx is B-measurable.

(2) For µ-almost all x and x′, If [x]A = [x′]A then νx = νx′ .
(3) For µ-almost all x, νx([x]A) = 1.
(4) For any f ∈ L∞(X,B),

∫
f dµ =

∫
X

∫
f dνx dµ(x).

Then for µ-almost all x, νx = µAx .
A special situation is the following. Let (Y, C) be a Borel space and let π : X → Y

be a measurable map. Let η = π∗µ be the pushforword of µ on Y . Consider
A = π−1(C), which is countably generated since C is. Atoms in A are fibers of the
map π, that is, for all x ∈ X, [x]A = π−1({π(x)}). For almost all x, x′ ∈ X, if they
have the same atom, i.e. π(x) = π(x′), then µAx = µAx′ . If this is the case we define
µππ(x) = µAx . Thus µπy is defined for η-almost all y ∈ Y (we can complete arbitrarily

to make (µπy ) a collection indexed by Y ). We have

(1) For any f ∈ L∞(X,B), the function y 7→
∫
f dµπy is C-measurable.

(2) For η-almost all y, µπy (π−1{y}) = 1.

(3) For any f ∈ L∞(X,B),
∫
f dµ =

∫
Y

∫
f dµπy dη(y).

The collection (µπy )y∈Y is characterized up to a ν-null set by these properties.

2. Conditional measures of a σ-finite measure

Now assume no longer µ is a probability measure. Instead only assume that µ
is σ-finite.

Theorem 2.1. Let (X,B) and (Y, C) be a Borel spaces. Let π : X → Y be a
measurable map. Let µ be a σ-finite measure on (X,B). Then there is a finite
measure η on (Y, C) and a collection (µπx)y∈Y of nonzero σ-finite measures on (X,B)
such that

(1) For any B-measuralbe function f : X → R+, the function y 7→
∫
f dµπy is

C-measurable.
(2) For η-almost all y, µπy (X \ π−1{y}) = 0.
(3) For any B-measuralbe function f : X → R+,∫

f dµ =

∫
Y

∫
f dµπy dη(y).

Moreover, these properties characterizes the collection (µπx)y∈Y up to proportionality
and up to an η-null set. That is, if η′ is a finite measure on (Y, C) and (νy)y∈Y is
a collection of σ-finite measures on (X,B) satisfying

(1) For any B-measuralbe function f : X → R+, the function y 7→
∫
f dνy is

C-measurable.
(2) For η-almost all y, νy(X \ π−1{y}) = 0.
(3) For any B-measuralbe function f : X → R+,∫

f dµ =

∫
Y

∫
f dνy dη′(y).

Then for η-almost all y ∈ Y , there exists c(y) ∈ (0,+∞) such that νy = c(y)µπy .

Proof. Since µ is sigma finite, there is an increasing sequence of measurable sets
Kn ∈ B, n ≥ 1 such that

∀n ≥ 1, µ(Kn) < +∞, and X =
⋃
n≥1

Kn.
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Set

f0 =
∑
n≥1

1Kn

2nµ(Kn)

so that f0µ is a probability measure on (X,B) equivalent to µ. Let η = π∗(f0µ)
and let (f0µ)πy , y ∈ Y be the conditional measures of f0µ with respect to the sub-

σ-algebra π−1(C), constructed above. It is then straightforward to check that the
collection µπy := f−1

0 (f0µ)πy , y ∈ Y satisfies the required properties. This proves the
existence.

To prove the uniqueness, assume η′ and (νy)y∈Y are as in the statement. First
observe that from the second point, it follows that, for any or any B-measuralbe
function f : X → R+, any B ∈ C and η′-almost all y,∫

π−1(B)

f dνy = 1B(y)

∫
f dνy.

By the Lebesgue decomposition theorem and the Radon-Nikodym theorem there
exists a function f1 : Y → R+ and a measure η′′ singular to η such that

η′ = f1η + η′′.

Let E ∈ C be such that η′′(E) = 0 and η(Y \ E) = 0. On the one hand, by the
third point, the observation above and the choice of B,∫

π−1(E)

f dµ =

∫
Y

∫
π−1(E)

f dνy dη′(y)

=

∫
E

∫
f dνy dη′(y)

=

∫
E

(∫
f dνy

)
f1(y) dη(y) +

∫
E

∫
f dνy dη′′(y)

=

∫
Y

f1(y)

∫
f dνy dη(y).

One the other hand, for the same reason∫
π−1(E)

f dµ =

∫
Y

∫
f dµπy dη(y) =

∫
f dµ.

Therefore, for all B-measurable f : X → R+,∫
f dµ =

∫
Y

f1(y)

∫
f dνy dη(y).

In particular, for all B-measurable f : X → R+,

(2.1)

∫
ff0 dµ =

∫
Y

f1(y)

∫
ff0 dνy dη(y).

In particular, for any B ∈ C, using again the observation,

η(B) =

∫
π−1(B)

f0 dµ =

∫
Y

∫
π−1(B)

f0 d
(
f1(y)νy

)
dη(y)

=

∫
B

f1(y)

∫
f0 dνy dη(y).

This implies that for η-almost all y ∈ Y , the measure f1(y)f0νy is a probability
measure. Morevoer it gives full measure to π−1{y} by the second point and re-
member (2.1). Thus, by the uniqueness of conditional measures in the probability
case applied to f0µ, we obtain, for η-almost all y ∈ Y ,

f1(y)f0νy = (f0µ)πy = f0µ
π
y
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and hence f1(y)νy = µπy . To conclude, remark that f1(y) > 0 for η-almost all y ∈ Y
simply because f1(y)f0νy is a probability measure. �

Below is a technical lemma about measurability.

Lemma 2.2. Let π(X,B)→ (Y, C) be a measurable map between Borel spaces. Let
(Z,D) be another Borel space. Let (νy)y∈Y be a collection of measures on (X,B)
satisfying the first point in Theorem 2.1. Then for any non-negative measurable
function f on X × Z, the map Y × Z → R

(y, z)→
∫
X

f(x, z) dνy(x)

is measurable.

Proof. Let A be the set of all measurable subsets A ⊂ X × Z such that (y, z) →∫
X
1A(x, z) dνy(x) is measurable. It is a monotone class, by linearity and the

monotone convergence theorem. It contains all subsets of the form B × D with
B ∈ B and D ∈ D, because

(y, z) 7→
∫
X

1B×C(x, z) dνy(x) = 1C(z)νy(B)

is the product of two measurable functions, using the assumption. By the monotone
class theorem, A is equal to the product σ-algebra B ×D.

By linearity, for any simple function f on X × Z, (y, z) →
∫
X
f(x, z) dνy(x) is

measurable. Writing any non-negative measurable function as the increasing limit
of non-negative simple functions, we conclude the proof of the lemme with the
monotone convergence theorem. �

3. Leafwise measures

Here we present the approach in [BQ11, Section 4], with more details.

3.1. Construction. Let R be a locally compact group acting measurably on a
Borel space Z. Let λ be a Borel probability measure on Z.

Example 3.1. Let G be a Lie group and Γ a lattice in G. Let R be a subgroup of
G. Then R acts on Z = G/Γ.

A measurable subset Σ ⊂ Z is called a discrete section for the action of R if for
every z ∈ Σ, there exists a neighbourhood U ⊂ R of the identity 1R in R such that
for r ∈ U , r.z ∈ Σ if and only if r = 1R. Note that this is equivalent to require that
for any z ∈ Z, the set { r ∈ R | r.z ∈ Σ } is discrete and closed in R. A discrete
section is always equipped with the trace σ-algebra from Z. A discrete section is
said to be complete if moreover R.Σ = Z

From now on assume that the stabiliser StabR(z) of each point z ∈ Z is discrete
in R. By a result of Kechris [Ke92], complete discrete sections exist.

Example 3.2. In the setting of Example 3.1, for any gΓ ∈ Z, StabR(gΓ) = R∩gΓg−1

is discrete. One can construct easily discrete sections using a linear complement of
the Lie algebra of R in the Lie algebra of G.

For a discrete section Σ, let a : R× Σ→ Z denote the map

a(r, z) = r.z.

Define a∗λ to be the measure on R × Σ satisfying for any measurable function
f : R× Σ→ R+,

(3.1)

∫
f da∗λ =

∫
Z

( ∑
(r,w)∈a−1{z}

f(r, w)

)
dλ(z).



LEAFWISES MEASURES 5

First remark that a∗λ is σ-finite. Indeed, let (Um)m≥1 be a countable basis of
neighbourhoods of 1R in R. Consider the subsets

(3.2) Lm = { z ∈ Σ | ∀r ∈ Um, r.z ∈ Σ⇒ r = 1R }.
These sets are measurable, by the assumption that Σ is a discrete section and a
general fact from descriptive set theory [Ke95, Lemma 18.12]. Using again the
assumption that Σ is a discrete section, we obtain

Σ =
⋃
m≥1

Lm.

Take (Kn)n≥1 to be a sequence of compact sets in R such that the interiors of
Kn, n ≥ 1 cover R. Then for n,m ≥ 1 and any z ∈ Z, the intersection (Kn×Lm)∩
a−1{z} is finite and with cardinality bounded independently of z. (More precisely
the cardinality is less than the maximal cardinality of Um-separated subsets in Kn.)
It follows that a∗λ(Kn×Lm) is finite. Since

⋃
n,m≥1Kn×Lm = R×Σ, this shows

[WH] by Um-separated I

mean for r, r′ in the subset
r ∈ Umr

′ implies r = r′.
that a∗λ is σ-finite.

Then, apply Theorem 2.1 to the coordinate projection πΣ : R × Σ → Σ. We
obtain a finite measure η on Σ and conditional measures (a∗λ)πΣ

z , z ∈ Σ. Note
that (a∗λ)πΣ

z is null outside R×{z}. Thus we can identify it with a Borel measure
written σz on R in the obvious way. Thus we have, for any non-negative measurable
function f on R× Σ,

(3.3)

∫
f da∗λ =

∫
Σ

∫
R

f(r, z) dσz(r) dη(z).

In particular, using the notation from the previous paragraph,

a∗λ(Kn × Lm) =

∫
Lm

σz(Kn) dη(z),

which, by the above, is finite for any n,m ≥ 1. If follows that for η-almost all
z ∈ Σ, σz is a Radon measure on R. By modifying σz for z in a η-null set, we may
safely assume that σz is a nonzero Radon measure for all z ∈ Σ.

The following observation is going to be useful,

Lemma 3.3. Let N be measurable subset of Σ. If η(N) = 0, then λ(R.N) = 0.

Here R.N = a(R×N) = { r.z | r ∈ R, z ∈ N }. Since the map a : R× Σ→ Z is
countable-to-1, by [Ke95, Exercise 18.14], R.N is indeed measurable.

Proof. This follows from (3.1) and (3.3),

λ(R.N) ≤ (a∗λ)(R×N) =

∫
N

σz(R) dη(z) = 0. �

The next step is to extend the definition of σz from Σ to the whole Z. For r ∈ R,
let τr : R→ R denote the right translation t 7→ t.r. Note that

∀r, r′ ∈ R, τr ◦ τr′ = τr′r.

For two measures σ and σ′ on R, we write σ ∝ σ′ if there exists c > 0 such that
σ′ = cσ.

Lemma 3.4. For η-almost all z ∈ Σ and for all r ∈ R such that r.z ∈ Σ, we have

σz ∝ τr∗σr.z.

Proof. Because Σ is a discrete section, we can find measurable subsets Σi ⊂ Σ and
measuralbe maps ri : Σi → R, indexed by i ∈ N such that

{ (r, z) ∈ R× Σ | r.z ∈ Σ } =
⋃
i∈N
{ (ri(z), z) | z ∈ Σi }.
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It is possible to do so such that for each i ∈ N, the map φi : Σi → Σ defined by

φi(z) = ri(z).z

is injective and the inverse map φ−1
i : φi(Σi) → Σi is measurable. For each i ∈ N,

let η′i be the image measure of the restriction of η to φi(Σi) by φ−1
i .

We claim that for any non-negative measurable function f on R× Σi,∫
R×Σi

f da∗λ =

∫
Σi

∫
R

f(r, z) d(τri(z)∗σri(z).z)(r) dη′(z).

Here, we can use Lemma 2.2 to see that z 7→
∫
R
f(r, z) d(τri(z)∗σri(z).z)(r) is mea-

surable on Σi. Then, an application of the uniqueness statment of Theorem 2.1 to
the restriction of a∗λ to R× Σi yields

for η-almost all z ∈ Σi, σz ∝ τri(z)∗σri(z).z,

which will finish the proof of the lemma.
The proof of the claim is straightforward:∫

Σi

∫
R

f(r, z) d(τri(z)∗σri(z).z)(r) dη′(z)

=

∫
Σi

∫
R

f(rri(z), z) dσφi(z)(r) d((φ−1
i )∗η)(z)

=

∫
φi(Σi)

∫
R

f
(
rri(φ

−1
i (w)), φ−1

i (w)
)

dσw(r) dη(w)

=

∫
Z

( ∑
(r,w′)∈R×φi(Σi):r.w′=z

f
(
rri(φ

−1
i (w′)), φ−1

i (w′)
))

dλ(z)

=

∫
Z

( ∑
(r,z′)∈R×Σi:r.φi(z′)=z

f
(
rri(z

′), z′
))

dλ(z)

=

∫
Z

( ∑
(s,z′)∈R×Σi:s.z′=z

f
(
s, z′

))
dλ(z)

=

∫
R×Σi

f da∗λ.

The second equality is a change of variable w = φi(z). The third equality is (3.3)
and (3.1). The fourth equality is a change of vaiable w′ = φi(z

′). The fifth equality
is a change of variable s = rri(z

′). �

With Lemma 3.4 at hand, we can extend the domain of definition of σz to Z.
Assume the section is complete (i.e. R.Σ = Z). Then we can choose (by the
Lusin-Novikov uniformization theorem [Ke95, Theorem 18.10]) a measurable map
r : Z → R such that t(z) = 1R if z ∈ Σ and that for all z ∈ Z, t(z).z ∈ Σ. Now
define for every z ∈ Z,

σz = τt(z)∗σt(z).z.

The measurability of z 7→ σz is going to be useful, when combined with Egorov’s
theorem or Lusin’s theorem.

[WH] One might also give
a topological/measurable
structure to the set of
Radon measures on R
and say that z 7→ σz is
measurable.

Lemma 3.5. For any non-negative measurable function f on R, the map

Z → [0,+∞], z 7→
∫
R

f dσz

is measurable.
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Proof. This map is the composition of the measurable map

Z → R× Σ, z 7→ (t(z), t(z).z)

and the map

R× Σ→ R ∪ {+∞}, (s, z)→
∫
R

f(rs) dσz(r)

which is also measurable thanks to Lemma 2.2. �

At this stage, note that in the construction of (σz) we made the following 3
choices:

(1) the complete discrete section Σ,
(2) the conditional measures of the σ-finite measure a∗λ,
(3) and the measurable map t making the map z 7→ t(z).z a measurable retract

from Z to Σ.

The next lemma shows that the proportionality class of σz up a null set is indepen-
dent of these choices.

Lemma 3.6. Let (σ′z)z∈Z be a family of leafwise measures constructed in the same
way but subject to the choice of another discrete section Σ′, the choice the condi-
tional measures, and the choice of measurable map t′. Then

for λ-almost all z ∈ Z, σ′z ∝ σz.

Proof. Observe that Σ ∪ Σ′ is also a discrete section. This allows us to reduce to
the case where Σ′ ⊂ Σ.

Write
D = { z ∈ Z | σ′z 6∝ σz }.

and
N = { z ∈ Σ | ∃r ∈ R, r.z ∈ Σ but σz 6∝ τr∗σr.z }.

By Lemma 3.4, η(N) = 0. Hence λ(R.N) = 0 by Lemma 3.3. Write also

N ′ = { z ∈ Σ′ | σ′z 6∝ σz }.
Let η′ denote the finite measure on Σ′ in the construction of (σ′z). Using (3.1) and
(3.3) each twice, we have for any non-negative measurable function f on R× Σ,∫

R×Σ′
f d(a∗λ) =

∫
Σ

∫
R

f(r, z) dσz(r) dη(z) =

∫
Σ′

∫
R

f(r, z) dσ′z(r) dη′(z)

By the uniquness in Theorem 2.1 applied to the restriction of a∗λ to R× Σ′,

η′(N ′) = 0.

By Lemma 3.3 again, λ(R.N ′) = 0.
For any z ∈ Z, on the one hand,

σz = τt(z)∗σt(z).z ∝ τt(z)∗τt′(z)t(z)−1∗σt′(z).z = τt′(z)∗σt′(z).z

unless t′(z).z ∈ N . On the other hand,

σ′z = τt′(z)∗σ
′
t′(z).z ∝ τt′(z)∗σt′(z).z

unless t′(z).z ∈ N ′. We have shown D ⊂ R.N ∪R.N ′. Hence λ(D) = 0. �

A consequence of (the proof of) the previous lemma is the following statement
which summarises the above construction.

Theorem 3.7. Given a measurable action of a locally compact second countable
group R on a Borel space Z with discrete stabilisers, given a Borel probability mea-
sure λ on Z, there is a collection (σz)z∈Z of nonzero Radon measures on R satis-
fying the following properties.
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(1) For any non-negative measurable function f on R, the map

Z → [0,+∞], z 7→
∫
R

f dσz

is measurable.
(2) For any discrete section Σ ⊂ Z for the action of R, there exists a finite

measure η on Σ such that for any non-negative measurable function f on
R× Σ,

(3.4)

∫
Z

( ∑
(r,w)∈R×Σ:r.w=z

f(r, w)

)
dλ(z) =

∫
Σ

∫
R

f(r, z) dσz(r) dη(z).

Moreover, these properties characterise the measures (σz) up to proportionality class
and up to a null set.

We call the collection (σz)z∈Z the leafwise measures of λ along the action of R.
In particular, if Σ ⊂ Z is a measurable subset and U is an open neighbourhood of

1R in R such that the map a : U ×Σ, a(r, z) = r.z is injective. Then (3.4) becomes∫
U×Σ

f da−1
∗ λ|a(U×Σ) =

∫
Σ

∫
U

f(r, z) dσz(r) dη(z),

Which is saying that (σz|U )z∈Σ, up to renormalisations, is the conditional measure

of the finite measure a−1
∗ λ|a(U×Σ) on U×Σ along the projection to Σ. The approach

in [EL10, Chapter 6] to define the leafwise measures is to define σz|U in this way
and then let U grow bigger and bigger and then patch they together.

[WH] This somehow ex-
plains why the EL approach
needs the extra assumption
that r 7→ r.z is injective for
almost all z.

3.2. Further properties. Let R, Z, λ and (σz)z∈Z be as in Theorem 3.7.

Lemma 3.8. For λ-a.e. z ∈ Z, for all r ∈ R,

σz ∝ τr∗σr.z.

Proof. Let D denote the set of z ∈ Z such that there exists r ∈ R, such that
σz 6∝ τr∗σr.z. In view of Lemma 3.4 and Lemma 3.3, it suffices to prove that
D ⊂ R.N , where

N = { z ∈ Σ | ∃r ∈ R, r.z ∈ Σ but σz 6∝ τr∗σr.z }.
Indeed, if z 6∈ R.N then t(z).z 6∈ N . Hence for any r ∈ R,

σz = τt(z)∗σt(z).z = τt(z)∗τt(r.z)rt(z)−1∗σt(r.z).r.z = τr∗τt(r.z)∗σt(r.z).r.z = τr∗σr.z.

Hence z 6∈ D. �

Lemma 3.9. Let (Z ′, λ′) be another measured Borel space on which R acts mea-
surably. Let φ : (Z, λ) → (Z ′, λ′) be an isomorphism of measured spaces. Assume
that there is an automorphism α of R as topological group such that for all r ∈ R,
for all z ∈ Z,

r.(φ(z)) = φ(α(r).z).

Let (σ′z′)z′∈Z′ denote the leafwise measures of λ′ with respect to the action of R.
Then for λ-a.e. z ∈ Z,

σz ∝ α∗σ′φ(z).

Proof. The proof is straightforward. Let Σ ⊂ Z ′ be a discrete section. Then
Σ′ = φ(Σ) is a discrete section in Z ′. By the construction of σ′z′ there is a finite
measure η′ on Σ′ such that for any non-negative measurable function f on R×Σ′,∫

Z′

( ∑
(r,w′)∈R×Σ′:r.w′=z′

f(r, w′)

)
dλ′(z′) =

∫
Σ′

∫
R

f(r, z′) dσ′z′(r) dη′(z′).
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For any non-negative measurable function f on R× Σ,∫
Σ

∫
R

f(α(r), z) dσ′φ(z)(r) d(φ−1
∗ η′)(z) =

∫
Σ

∫
R

f(α(r), φ−1(z′)) dσ′z′(r) dη′(z′)

=

∫
Z′

( ∑
(r,w′)∈R×Σ′:r.w′=z′

f(α(r), φ−1(w′))

)
dλ′(z′)

=

∫
Z

( ∑
(s,w)∈R×Σ:α−1(s).φ(w)=φ(z)

f(s, w)

)
dλ(z)

In the last equality we did the changes of variables s = α(r), w′ = φ(w) and
z′ = φ(z). But α−1(s).φ(w) = φ(z) if only if s.w = z by the assumption. Hence∫

Σ

∫
R

f(α(r), z) dσ′φ(z)(r) d(φ−1
∗ η′)(z) =

∫
Z

( ∑
(s,w)∈R×Σ:s.w=z

f(s, w)

)
dz.

This concludes the proof of the lemma the in view of the uniqueness of (σz). �

Lemma 3.10. Let Σ ⊂ Z be a discrete section. Let η be a measure on Σ for which
the property (3.4) holds. Let P(σ) be a predicate on the set of proportionality class
of Radon measures on R that is invariant for the right translation, i.e. for any
Radon measures σ, σ′ on R and any r ∈ R, if σ′ ∝ τr∗σ then P(σ) ⇔ P(σ′). If
P(σz) holds for λ-almost every z ∈ Z, then it holds for η-almost every z ∈ Σ.

Proof. Assume that P(σz) holds for λ-almost every z ∈ Z. Then together with
Lemma 3.8, there is a subset E ⊂ Z of full measure such that for all z ∈ E and all
r ∈ R, P(σz) and moreover σz ∝ τr∗σr.z, hence P(σr.z). Writing

N1 = { z ∈ Σ | P(σz) is false }.
From the above, R.N1 is disjoint from E. By (3.4) applied to f = 1R×N1

, after
restricting the integral on Z to E,∫

N1

σz(R) dη(z) =

∫
E

#{(r, w) ∈ R×N1 | r.w = z }dλ(z) = 0,

Since σz(R) > 0 for all z ∈ Σ, this implies η(N1) = 0. �

Lemma 3.11. If for λ-almost every z ∈ Z, σz is left-invariant on R, then λ is
invariant under the action of R.

Proof. Let Σ ⊂ Z be a complete discrete section. Let η be a positive measure on
Σ for which the property (3.4) holds. First, observe that a right translate of a left-
invariant measure on R is also left-invariant. Thus by Lemma 3.10, for η-almost
every z ∈ Z, σz is left-invariant.

Then, the property (3.4) implies that for all s ∈ R and all non-negative measur-
able functions f on R× Σ,∫

Z

( ∑
(r,w)∈R×Σ:r.w=z

f(r, w)

)
dλ(z) =

∫
Z

( ∑
(r,w)∈R×Σ:r.w=z

f(r, w)

)
d(s∗λ)(z).

Therefore, it is enough to show that for any measurable set A ⊂ Z, there is a
measurable set B on R× Σ, such that for all z ∈ Z,

1A(z) = #{ (r, w) ∈ B | r.w = z }.
Let (Um)m≥1 be a countable basis of neighbourhoods of 1R in R and let Lm be
defined as in (3.2). Let A1 = A ∩ R.L1 and Am+1 = (A \ Am) ∩ R.Lm+1 for
m ≥ 1 so that (Am)m≥1 is a countable measurable partition of A. Thus, we may
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assume without loss of generality that A ⊂ R.Lm for some m ≥ 1. Let Vm be open
neighbourhoods of 1R in R such that V −1

m Vm ⊂ Um. Partition R into countably
many measurable subsets Xi, i ≥ 1 with the property that each Xi is contained in
a left translate of Vm. By these choices, we have that for each i ≥ 1, the map

ai,m : Xi × Lm → Z, (r, z) 7→ r.z

is injective. By [Ke95, Corollary 15.2] Xi.Lm is measurable and the map ai,m is
a Borel isomorphism from Xi × Lm to Xi.Lm. Without loss of generality we may
assume A ⊂ Xi.Lm for some i. In this case, B = a−1

i,m(A) satisfy trivially the
required property. �

We say λ is R-recurrent if for every measurable set B ⊂ Z of positive measure,
for µ-almost every z ∈ B, the set of return times { r ∈ R | r.z ∈ B } is unbounded.

Lemma 3.12. In the setting of Theorem 3.7, if the probability measure λ is R-
recurrent then σz is infinite for λ-almost every z ∈ Z. The converse is true if we
assume moreover that

[WH] I don’t know if (1) is
necessary (1) Z has a locally compact second countable topology compatible with its struc-

ture of Borel space such that the action R× Z → Z is continuous; and
(2) for λ-almost every z ∈ Z, StabR(z) = {1R} or

(2’) R does not have nontrivial compact subgroup.

Proof. Assume for a contradiction that λ is R-recurrent but the set

Y = { z ∈ Z | σz(R) < +∞}
satisfies λ(Y ) > 0. Taking a large enough compact set K ⊂ R, we have

Y ′ = { y ∈ Y | σy(K) >
1

2
σy(R) }

also has λ(Y ′) > 0. Using Lemma 3.8 and restricting Y ′ again, we may assume
that for all y ∈ Y and all r ∈ R, σy ∝ τr∗σr.y. By the recurrence, there exists
r /∈ K−1K such that there exists y ∈ Y ′ such that r.y ∈ Y ′. Hence we have both

σy(K)

σy(R)
>

1

2
and

σy(Kr)

σy(R)
=
σr.y(K)

σr.y(R)
>

1

2

This is impossible because Kr and K are disjoint.
As for the converse, assume for a contradiction that σz is infinite for λ-almost

every z ∈ Z but λ is not R-recurrent. Note that the subset Z0 =
{
z ∈ Z |

StabR(z) 6= {1R}
}

is R-invariant. In case of (2), Z0 is a null set. In case of (2’) the
restriction of λ to Z0 is obviously R-recurrent. Thus in both cases, we may further
assume that the action is free.

Being not R-recurrent implies the existence of a measurable subset B ⊂ Z of
positive measure and of a compact set K0 ⊂ R such that

∀y ∈ B, ∀r ∈ R, r.y ∈ B ⇒ r ∈ K0.

Let Σ be a complete discrete section. Then there exists a compact subset K1 ∈ R
such that λ(B ∩K1.Σ) > 0. Shrinking B again, we may assume that B ⊂ K1.Σ.
Now apply the following lemma to K = K1K0K

−1
1 .

Lemma 3.13. Given any compact set K, there is a countable measurable cover of
Σ =

⋃
m≥1 Σm such that for each m ≥ 1, the action map K ×Σm → Z is injective.

[WH] It is in this lemma
that we use continuity and
freedom. Proof. Using the countable cover Σ by the sets (3.2), we may assume that there is

an open neighborhood U ⊂ R of 1R such that

∀r ∈ U, ∀z ∈ Σ, r.z ∈ Σ⇒ r = 1R.
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Let z ∈ Σ, we claim there is n ≥ 1 such that Σz,n = Σ∩B(z, 1
n ) satisfies K×Σz,n →

Z is injective. For otherwise, there would be sequences kn, k
′
n ∈ K and zn, z

′
n ∈ Σz,n

such that (kn, zn) 6= (k′n, z
′
n) and kn.zn = k′n.z

′
n. Since the action is free, we have

zn 6= z′n. Then k−1
n k′n.z

′
n ∈ Σ \ {z′n}, implying that k−1

n k′n ∈ K−1K \ U , which is a
compact set not containing 1R. Extracting a subsequence and using the continuity,
we find some k ∈ K−1K \ U such that k.z = z, contradicting the freedom of the
action. This proves the claim.

Because Z is second countable, we can cover Σ using countably many such sets
Σz,n. �

Pick m ≥ 1 such that λ(B∩K1.Σm) > 0 and shrink once more B to B∩K1.Σm.
Consider D = { z ∈ Σm | ∃r ∈ K1, r.z ∈ B }, which is measurable by [Ke95, Lemma
18.12]. We claim that R×D → Z is injective. Indeed, if r1.z1 = r2.z2 and t1.z1 =
b1 ∈ B and t2.z2 = b2 ∈ B for some z1, z2 ∈ Σm, r1, r2 ∈ R and t1, t2 ∈ K1, then
b2 = t2r

−1
2 r1t

−1
1 .b1, implying that t2r

−1
2 r1t

−1
1 ∈ K0, hence r−1

2 r1 ∈ K1K0K
−1
1 = K.

Then the construction of Σm and the equality r−1
2 r1.z1 = z2 forces z1 = z2 and

r1 = r2. This proves the claim.
Now let η be the finite measure on Σ given by Theorem 3.7. Applying (3.4) to

f = 1R×D, we obtain ∫
D

σz(R) dη(z) = λ(R.D) ≤ 1.

By Lemma 3.10, σz(R) is infinite for η-almost every z ∈ Σ. Therefore η(D) = 0
and

0 < λ(B) ≤ λ(R.D) =

∫
D

σz(R) dη(z) = 0,

which is absurd. �
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