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1 Spectral Gap

In the study of dynamical systems and representation theory, we are often interested in how
“efficiently” a group action mixes vectors in a Hilbert space. The concept of a spectral gap
quantifies this efficiency.

Let G be a locally compact group (e.g., a Lie group like SLn(R)) and let (π,H) be a unitary
representation of G. We denote the subspace of G-invariant vectors by:

HG = {v ∈ H | π(g)v = v for all g ∈ G}.

1.1 Definitions

We begin by quantifying how close a vector is to being invariant over a specific subset of the
group.

Definition 1.1 ((Q, ε)-invariant vectors). Let Q ⊆ G be a compact subset and let ε > 0. A
unit vector v ∈ H is called (Q, ε)-invariant if

sup
g∈Q

∥π(g)v − v∥ < ε.

Using this local definition, we can characterize representations that behave like the trivial rep-
resentation asymptotically.

Definition 1.2 (Almost Invariant Vectors). The representation π is said to have almost in-
variant vectors if for every compact subset Q ⊆ G and every ε > 0, the representation admits
a (Q, ε)-invariant vector.

Definition 1.3 (Spectral Gap). A unitary representation (π,H) has a spectral gap if the
restriction of π to the orthogonal complement of the invariant vectors, denoted π|H0 where
H0 = (HG)⊥, does not have almost invariant vectors.

Definition 1.4 (Uniform Spectral Gap). A collection of representations (or a single represen-
tation) has a uniform spectral gap if there exist a specific compact set Q ⊂ G and a constant
ε > 0 such that no representation in the collection possesses a (Q, ε)-invariant vector in H0.

1.2 Equivalence of Characterizations

It is often useful to characterize the spectral gap not just by vectors, but by the norm of averaging
operators. To do this, we first define the action of L1(G) on the Hilbert space.
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Definition 1.5 (Convolution / Smeared Representation). Let f ∈ L1(G). We define the oper-
ator π∗(f) : H → H by the Bochner integral:

π∗(f) =

∫
G
f(g)π(g) dg.

With dg being the left Haar measure. For a vector v ∈ H, this means π∗(f)v =
∫
G f(g)(π(g)v) dg.

The operator norm satisfies ∥π∗(f)∥op ≤ ∥f∥L1 .

Proposition 1.6. Let (π,H0) be a unitary representation without non-zero invariant vectors.
The following are equivalent:

1. π has a spectral gap (i.e., does not admit almost invariant vectors).

2. (Indicator Mean) There exists a compact set Q ⊂ G with positive Haar measure such
that the averaging operator π∗(1Q) =

∫
Q π(g) dg satisfies

∥π∗(1Q)∥op < vol(Q).

3. (Continuous Mean) There exists a continuous probability density f ∈ Cc(G) (non-
negative, compactly supported,

∫
f = 1) such that

∥π∗(f)∥op < 1.

Sketch of Proof. (1 =⇒ 2): If π has no almost invariant vectors, then by contradiction, assume
for all Q, ∥π∗(1Q)∥ = vol(Q). This would imply the existence of a sequence of vectors vn such
that ⟨π∗(1Q)vn, vn⟩ → vol(Q), which forces π(g)vn ≈ vn for g ∈ Q. This constructs almost
invariant vectors.

(2 =⇒ 3): Take Q from (2). By Urysohn’s lemma and approximation, we can find a continuous
function f sufficiently close to 1

vol(Q)1Q in the L1 norm such that ∥π∗(f)∥ remains strictly less
than 1.

(3 =⇒ 1): If ∥π∗(f)∥ = 1 − δ for some δ > 0, then for any unit vector v, ∥π∗(f)v∥ =
∥
∫
f(g)π(g)v∥ ≤ 1 − δ. This creates a strict geometric barrier preventing vectors from staying

arbitrarily close to v for all g in the support of f .

Remark 1.7 (Relation of Constants). The constants in the definitions above are quantitatively
related.

• If ∥π∗(1Q)∥op ≤ vol(Q)(1 − δ), then for any unit vector v, there exists some g ∈ Q such
that ∥π(g)v − v∥ ≥

√
2δ.

• Conversely, if a representation has a uniform spectral gap such that supg∈Q ∥π(g)v−v∥ ≥ ε
for all unit vectors v, then the averaging operator satisfies:∥∥∥∥ 1

vol(Q)
π∗(1Q)

∥∥∥∥
op

≤ 1− ε2

2
.

This shows that a “small” spectral gap ε leads to a “slow” operator decay ε2/2, but the existence
of one implies the other.
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2 Property (T)

Property (T), introduced by Kazhdan, is a rigidity property of the group itself.

Definition 2.1 (Kazhdan’s Property (T)). A locally compact group G has Property (T)
if every unitary representation (π,H) that possesses almost invariant vectors also possesses a
non-zero invariant vector.

In the language of Section 1: G has Property (T) if every representation without invariant
vectors has a spectral gap. In fact, Property (T) implies uniform spectral gap.

2.1 Implications of Property (T)

Proposition 2.2.

1. Amenability: If G is amenable and has Property (T), then G is compact.

2. Compact Generation: If G has Property (T), then G is compactly generated.

3. Homomorphisms: If G has Property (T) and ϕ : G → H is a continuous surjective
homomorphism, then H has Property (T).

4. Lattices: Let Γ ≤ G be a lattice. Then G has Property (T) ⇐⇒ Γ has property (T).

Corollary 2.3. Let G be a group with Property (T).

1. The abelianization G/[G,G] is compact.

2. G is unimodular (i.e., the modular function ∆G ≡ 1).

Proof. 1. The abelianization A = G/[G,G] is an abelian group. As a quotient of a Property
(T) group, A has Property (T). Abelian groups are amenable. By Prop 2.3(1), an amenable
Property (T) group is compact.

2. The modular function ∆G : G → R+ is a homomorphism into the abelian group R+. The
image must have Property (T). The only Property (T) subgroup of R+ is the trivial group {1}.
Thus ∆G ≡ 1.

Remark 2.4. The notation (T) comes the isolation of the trivial representation π(·) = Id in Fell’s
topology.

3 Effective Proof that SL3(R) has Property (T)

We now seek a concrete, “effective” proof that relates these abstract properties to specific esti-
mates on matrix coefficients for G = SL3(R).

3.1 Smooth Vectors in SL3(R)

To discuss effective decay rates, we need to handle the issue that vectors in H can be arbitrarily
“rough.” We introduce smooth vectors to control this.
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Definition 3.1 (Smooth Vectors). A vector v ∈ H is called Cr smooth if the maps g 7→
⟨π(g)v, u⟩ from G to C are Cr-smooth for all u ∈ H. The space of smooth vectors is denoted Hr.
Note that if v is smooth and since H∗ = H X 7→ dπ(X)v is a well defined linear transformation
from g to H.

Fact 3.2. The space of smooth vectors Hr is dense in H, and vectors may be approximated by
π∗ (f) v for f ∈ C∞

c (G) s.t. fmG is a probability measure approximating δe, which is smooth by
differentiating under the integral sign.

Definition 3.3 (Sobolev Norm). Fix a basis X1, . . . , Xd of the Lie algebra g of G. We view
elements of g as differential operators on H∞. For an integer k ≥ 1, the Sobolev norm of order
k is defined as:

∥v∥Sk
=

 ∑
ord(D)≤k

∥dπ(D)v∥2
1/2

where D ranges over monomials in Xi of degree at most k.

Remark 3.4 (Lie Algebra Action). It is important to understand how X ∈ g acts as an operator.
For v ∈ H∞, the action is the differentiation of the group action:

dπ(X)v =
d

dt

∣∣∣∣
t=0

π(exp(tX))v.

Since π is unitary, dπ(X) acts as a skew-symmetric operator (essentially i times a self-adjoint
operator).

3.2 Unitary Representations of Abelian Groups

To prove Property (T) for SL3(R), we utilize the representation theory of its abelian subgroups
(specifically copies of R2). We will begin by defining the generalized Fourier transform for general
abelian groups. Let A be a locally compact Hausdorff abelian group.

Definition 3.5 (Fourier Transform for measures). Let µ be a probability measure on Â. Define
its Fourier transform µ̂ : A → C as:

µ̂(a) =

∫
Â
χ(a) dµ(χ).

.

Fact 3.6. • The Fourier Transform can be extended to any complex-valued measure Hahn’s
decomposition.

• Also, if µ is Borel, the Fourier transform may be extended to L1 (µ) by f̂ = f̂dµ.

• In particular - the Plancherel equality holds for f ∈ L1 (µ) ∩ L2: (µ): ∥f∥2 = ∥f̂∥2.

Remark 3.7. This is a clear generalization to the famous cases of Fourier Series (A = S1, Â = Z)
and Fourier Transform A = Â = Rn.

Definition 3.8 (Positive Type Functions). A function ϕ : A → C is of positive type if for any
n ∈ N and any a1, . . . , an ∈ A, and complex numbers c1, . . . , cn,

n∑
i,j=1

cicjϕ(a
−1
j ai) ≥ 0.

For any vector v ∈ H, the matrix coefficient ϕv(a) = ⟨π(a)v, v⟩ is a function of positive type.
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Fact 3.9 (Bochner’s Theorem). A continuous function ϕ : A → C is of positive type with
ϕ(e) = 1 if and only if it is the Fourier transform of a unique finite Borel measure µ on the dual
group Â, That is:

ϕ(a) =

∫
Â
χ(a) dµ(χ).

Definition 3.10 (Projection-Valued Measure). Let (X,B) be a measurable space, where X is
a set and B is a σ-algebra of subsets of X. Let H be a separable complex Hilbert space, and let
L(H) denote the algebra of bounded linear operators on H.

A projection-valued measure (PVM) is a mapping E : B → L(H) satisfying the following
properties:

1. Projection Property: For every A ∈ B, E(A) is an orthogonal projection, i.e., E(A)2 =
E(A) and E(A)∗ = E(A).

2. Normalization: E(∅) = 0 (the zero operator) and E(X) = I (the identity operator).

3. Additivity: If A,B ∈ B are disjoint, then E(A ∪ B) = E(A) + E(B). Furthermore,
E(A)E(B) = 0 (orthogonality).

4. σ-Additivity: If {An}∞n=1 is a countable collection of pairwise disjoint sets in B, then

E

( ∞⋃
n=1

An

)
=

∞∑
n=1

E(An),

where the series converges in the strong operator topology (i.e., for every v ∈ H, limN→∞

∥∥∥E (∪∞
n=1An) v −

∑N
n=1E(An)v

∥∥∥ =

0).

Theorem 3.11 (Stone-Naimark-Ambrose-Godement Theorem). Let (π,H) be a unitary repre-
sentation of A. There exists a unique projection-valued measure P on Â such that

π(a) =

∫
Â
χ(a) dE(χ)

In particular, for any v ∈ H, the measure µv,v associated to the positive type function ⟨π(a)v, v⟩
satisfies

⟨π(a)v, v⟩ =
∫
Â
χ(a) dµv,v(χ)

where µv,v(E) = ⟨P (E)v, v⟩.

Proof. We construct P (E) by lifting the uniqueness of the Fourier transform from measures to
operators.

1. Construction of scalar measures: Let v ∈ H. The function ϕv(a) = ⟨π(a)v, v⟩ is of
positive type with ϕv(e) = ∥v∥2. By Bochner’s Theorem, there is a unique finite measure µv,v

on Â such that ⟨π(a)v, v⟩ = µ̂v,v(a). By polarization, for any v, w ∈ H, we define the complex
measure µv,w such that ⟨π(a)v, w⟩ =

∫
χ(a)dµv,w.

2. Construction of operators P (E): Fix a Borel set E ⊂ Â. Consider the map BE :
H ×H → C given by BE(v, w) = µv,w(E). This is a bounded sesquilinear form. By the Riesz
Representation Theorem for operators, there exists a unique bounded operator P (E) such that
⟨P (E)v, w⟩ = µv,w(E).

3. Verifying P (E) is a Projection: We must show P (E)2 = P (E) and P (E)∗ = P (E).
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1. Self-adjointness: µw,v = µv,w (uniqueness of Fourier transform of ⟨π(a)v, w⟩ = ⟨π(a−1)w, v⟩).
Thus ⟨P (E)w, v⟩ = ⟨P (E)v, w⟩, implying P (E)∗ = P (E).

2. Multiplicativity: We show P (E ∩ F ) = P (E)P (F ) using the following exercise:

Exercise 3.12. the trigonometric polynomials on Â defined as p(χ) =
∑n

i=0 ciχ(ai) for
ai ∈ A, ci ∈ C are dense in C(A). hint: Stone-Weirstrass.

Note that for all a, b ∈ A:∫
Â

χ (a)χ (b)dP (χ) = π (ab) = π (a)π (b) =

∫
Â

χ (a)dP (χ)

∫
Â

χ (b)dP (χ)

and by linearity and continuity, for any f, g ∈ C
(
Â
)
:∫

Â

fgdP =

∫
Â

fdP

∫
Â

gdP

So, approximating 1E and 1F , one obtains P (E ∩ F ) = P (E) · P (F ).

Thus P is a projection-valued measure.

Corollary 3.13. Denote by µv = µv,v for all v ∈ H. Then: µv (E) = ∥P (E)v∥2, and so: If
µv ⊥ µw, then v ⊥ w, µP (E)v(F ) = µv(E ∩ F ).

Remark 3.14. Since A is abelian, P (E) · π(a) = π(a) · P (E) for all a ∈ A,B ∈ B
(
Â
)
, meaning

that π = π ↾ImP(E) ⊕π ↾kerP (E). In particular, P ({χ}) ̸= 0 implies that there exists χ ∈ H s.t.
π (g) v = χ (g) v for all g ∈ G.

Example 3.15 (Concrete Spectral Decomposition).

1. Case A = Rn: The dual is Â ∼= Rn with pairing χξ(x) = e2πiξ·x. For any representation π
of Rn, there is a projection-valued measure P on Rn such that π(x) =

∫
Rn e

−2πi⟨ξ,x⟩dP (ξ).

2. Case A = S1 ∼= R/Z: The dual is Â ∼= Z. Any representation decomposes as a direct sum
H =

⊕
n∈ZHn where π(θ)v = e2πinθv for v ∈ Hn.

3.3 Effective Property (T) for SL3(R)

We now prove that SL3(R) has Property (T) by showing effective mixing for representations
without invariant vectors. This proof relies on the interaction between the abelian unipotent
subgroups and the diagonal subgroup.

Theorem 3.16. Let G = SL3(R). There exist C > 0 such that for any unitary representation
(π,H) without G-invariant vectors, and any C1-smooth vectors v, w ∈ H,

|⟨π(g)v, w⟩| ≤ C∥g∥−
3
8

HSS (v)S (w)

with S being the sobolev norm.
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In the proof, we shall consider the embedded subgroup

ASL2 (R) = SL2 (R)⋉R2 =

{(
g x
0 1

)
| g ∈ SL2 (R) , x ∈ R2

}
- the group of affine transformations on R2, with subgroups L = SL2 (R) (x = 0) , U = R2 (g = I)
accordingly. We will apply spectral decomposition for U and K = SO2 (R) < SL2 (R). Let P be
the spectral measure of the restriction π|U on the dual space Û ∼= R2. Denote by µv = ⟨P (v) , v⟩
v’s spectral measure. for l ∈ L denote by θl the inner automorphism induced by l: θl (x) =
(l, 0) (Id, x)

(
l−1, 0

)
= (Id, lx) ∈ U . Also:

µ̂π(l)v (x) = ⟨π (x)π (l) v, π (l) v⟩ = ⟨π (θl−1x) v, v⟩ = ⟨π
(
l−1 · x

)
v, v⟩ = µ̂v

(
l−1 · x

)
implying that∫

R2

e−2πi⟨ξ,x⟩dµπ(l)v(ξ) =

∫
R2

e−2πi⟨ξ,l−1x⟩dµv(ξ) =

∫
R2

e−2πi⟨ξ,x⟩dµv(
(
lt
)
ξ)

and so overall µπ(l)v (E) = µv(
(
lt
)
E).

Define at =

(
e

t
2

e−
t
2

)
for t ∈ R.

Finally, we will use the following result:

Exercise 3.17 (Mautner Phenomenon for SL3 (R)). if v is U -invariant then it is G-invariant.

Corollary 3.18.
P ({0}) = 0

.

Step 1: Treating K-eigenvectors Assume that v, w are K-eigenvector. By spectral decom-
position of K̂ = Z, we get that π (rθ) v = einθv and π (rθ)w = eimθw, meaning

µv (E) = µπ(rθ)v (E) = µv (r−θE)

, making µv invariant under rotations in Û , meaning

µv ({(r cos θ, r sin θ) | r > 0, θ ∈ A}) = mS1 (A)

The same is true for w.

Lemma 3.19. There exist C > 0 independent of π v,w K-eigenvectors and t ∈ R:

⟨π (at) v, w⟩ ≤ C · e−
|t|
4 ∥v∥∥w∥

Proof. WLOG t > 0. Take Bt = {(x1, x2) |
∣∣∣x2
x1

∣∣∣ ≤ e−
t
2 } the cone of angle e−

t
2 . Note that

µv (Bt) = mS1

(
{θ | |tan (θ)| < e−

t
2 }
)
≤ c · e−

t
2

since θ ≤ tan (θ) for small enough θ. Now take v1 = P (Bt) v and w1 = P
(
B−

t

)
w with

B−
t = {(x1, x2) |

∣∣∣x2
x1

∣∣∣ ≥ e
t
2 } and atB

−
t = {(x1, x2) |

∣∣∣x2
x1

∣∣∣ ≥ e−
t
2 }. So:

µπ(at)v1

(
B−

t

)
= µv

(
atB

−
t ∩Bt

)
= 0

So µπ(at)v1 ⊥ µw1 , implying π (at) v1 ⊥ w1. Overall:

|⟨π (at) v, w⟩| ≤ |⟨π (at) v1, w1⟩|+ |⟨π (at) v, w1⟩|+ |⟨π (at) v1, w⟩| ≤ 2
√
c · e−

t
4
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Step 2: Generalizing to smooth vectors and L Now let v, w ∈ H1 be C1-smooth vectors.

Proposition 3.20. There exists C ′ > 0 independent of the representation s.t. for l ∈ L and
B ∈ L (H) a linear operator s.t. B commutes with π (k) for all k ∈ K:

⟨π (l)Bv,w⟩ ≤ C ′ · ∥B∥op∥l∥
− 1

2
HSS (v)S (w)

Proof. First, use the cartan decomposition l = k1atk2 with k1, k2 ∈ K, t ∈ R. Since K is
compact, c2 ≤ ∥k∥HS < C2, and so c2 ≤ ∥k2v∥

∥v∥ ,
∥k−1

1 w∥
∥w∥ ≤ C2, and so up to a constant one

may assume that l = at. Recall that since π ↾K is also a unitary representation, H may be
decomposed into H =

⊕
n∈Z Hn with

π (rθ) ↾Hn= exp (inθ) IdHn

Also, v, w can both be decomposed into the sum of orthogonal vectors v =
∑

n∈Z vn with

dπ (Θ) vn = d
dt |t=0 π (rθ) v = invn, where Θ =

(
0 −1
1 0

)
, exp (tΘ) = rt. So:

|⟨π (at) v, w⟩| =

∣∣∣∣∣∣
∑

m,n∈Z
⟨π (at) vn, vm⟩

∣∣∣∣∣∣ ≤ C1e
− |t|

4

∑
n∈Z

∥vn∥
∑
m∈Z

∥wm∥

With C1 being the constant from Lemma 3.19. Now note that:∑
n∈Z

∥vn∥ = ∥v0∥+
∑

n∈Z\{0}

1

n
∥dπ (Θ) vn∥

≤ ∥v0∥+

√√√√ ∑
n∈Z\{0}

1

n2

√ ∑
n∈Z\{0}

∥dπ (Θ) vn∥2 = ∥v0∥+
π√
6
∥dπ (Θ) v∥ ≤ 3S (v)

Also, note that since B commutes with all K, it acts on any Hn, and so it multiplies the result
by at most ∥B ∥op. So overall:

⟨π (l)Bv,w⟩ ≤ 9 · C2C1 · ∥B∥op∥l∥
− 1

2
HSS (v)S (w)

Step 3: Generalizing to all of G

Proof. Let g ∈ G and let v, w be C1 smooth vectors. use the Cartan decomposition of g to get
g = k1ak2, now with k1, k2 ∈ SO3 (R) and a = diag

(
et1 , et2 , et3

)
. Since SO3 (R) is compact, one

may assume that k1 = k2 = Id and enlarge the constanct by a bit. Now, note that:

a = ba
t1+

t3
2

with b = diag
(
e

−t3
2 , e

−t3
2 , et3

)
. Note that b commutes with K, meaning π (b) commutes with

π (k) for all k ∈ K, meaning:

⟨π (g) v, w⟩ ≤ C · e−
∣∣∣ t1−t2

4

∣∣∣S (v)S (w)

By conjugating g with permutation matrices, we get that:

⟨π (g) v, w⟩ ≤ C · e−
∣∣∣ ti−tj

4

∣∣∣S (v)S (w)
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as well. WLOG t1 ≤ t2 ≤ t3, so: − |t3 − t1| = t1 − t3 ≤ −3
2 t3 and recall that ∥g∥HS = Θ

(
et3
)
,

so:
⟨π (g) v, w⟩ ≤ C · ∥g∥−

3
8

HSS (v)S (w)

Remark 3.21. In general, property (T) for semisimple Lie groups implies uniform effective mixing
for smooth vectors.
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1. Introduction & Section 1: Spectral Gap (15–20 Minutes)

Goal: Establish the intuition of mixing and the rigorous analytical definitions.

• Introduction (5–7 mins):

– Motivation: “Efficiency” of group actions mixing vectors.

– Setup: Locally compact groups, unitary representations.

• Definitions (5–7 mins):

– (Q, ε)-invariant vectors vs. Almost Invariant Vectors.

– Crucial Concept: The definition of the Spectral Gap (the absence of almost
invariant vectors in the complement of the trivial rep).

• Equivalence of Characterizations (5–7 mins):

– Defining the convolution operator π∗(f), and only stating the equivalence of defini-
tions.

2. Section 2: Property (T) (15 Minutes)

Goal: Define the rigidity property and show its immediate algebraic consequences.

• Definition (5 mins):

– Kazhdan’s Property (T) definition.

– Relation to Sec 1: “Every representation without invariant vectors has a spectral
gap.”

• Implications & Corollary (10 mins):

– List the implications: Amenability implies compactness, compact generation, lattice
inheritance, compact abelization, unimodularity.

3. Section 3: Effective Proof for SL3(R) (45–50 Minutes)

Goal: The technical core. Moving from abstract existence to concrete mixing estimates.

• 3.1 Smooth Vectors & Sobolev Norms (5–10 mins):

– Quick definition of C∞ vectors and the Sobolev norm setup.

– This should be the end of the first academic hour.

• 3.2 Unitary Reps of Abelian Groups (10 mins):

– SNAG Theorem: Skip proof and general case.

– Focus on the result and only sketch proof: projection-valued measures allow us to
decompose the representation.

• 3.3 Proof of the effective property (T) (25–30 min):

– The Setup: Introduce SL2(R)⋉R2.
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– Step 1 (The Geometric Core): This is the most critical part of the lecture.
Explain the “Cone” argument (Lemma 3.14). Draw the cone Bt and its image under
the flow to show how the measures become orthogonal.

– Step 2 & 3 (Generalization): Briefly explain how to move from K-eigenvectors to
smooth vectors (Sobolev norms appear here) and how Cartan decomposition extends
this to the whole group G.

Pacing Strategy & Shortcuts

If you only have 60 Minutes:

1. Section 1: Compress the definitions. Skip the proof of “Equivalence of Characterizations”
and just state the result.

2. Section 2: State the definition of Property (T) and list the Corollaries without proof.

3. Section 3.2: Skip the proof of the SNAG theorem entirely. State it as a “Black
Box” tool: Abelian representations decompose into integrals over the dual group.

4. Focus: Spend the majority of your time on Section 3.3, specifically the Cone Argument
(Lemma 3.14), as that is the specific mechanism that produces the decay estimate for
SL3(R).
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