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To set the stage for today’s discussion, we recall the following

Fact 1. [Corollary to Dirichlet’s approximation theorem] For any real number x there
are infinitely many pairs of integers (p, q) such that∣∣∣∣x− p

q

∣∣∣∣ < 1

q2

Attempts and subsequent struggles to strengthen these results (e.g. increasing the expo-
nent of q or replacing 1 with a smaller constant) lead us to the definition

Definition 2. A number x ∈ R is called badly approximable if there exists a constant
c > 0 such that for all pairs of integers (p, q) we have∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q2

Similiarly, in higher dimensions we have

Definition 3. A vector x ∈ Rn is called badly approximable if there exists a constant
c > 0 such that for all p ∈ Zn, q ∈ N we have∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q
n+1
n

where the vertical bars denote, for instance, the standard Euclidean norm. (We note that
by setting n = 1 we recover the previous definition).

The set of badly approximable numbers/vectors is denoted BA. Our goal today is to
prove the existence of (many) elements of BA in Rn, for any n. We will see this both in
general and even when restricting ourselves to vectors which lie on nice enough fractals
(and even more than that). To formalize what we mean by ‘many’ we recall the definition
of an (α, β)-Schmidt game from last week: two players, Alice and Bob, are equipped with
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parameters 0 < α, β < 1 and take turns choosing balls in some complete metric space,
Bob begins by choosing a ball B0 = B (y0, r) of arbitrary positive radius, Alice then
chooses a ball A0 = B (x0, αr) ⊂ B0, play continues with the players alternately choosing
balls Bi and Ai such that

B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ · · ·

and for each i, the radius of Ai is α times the radius of Bi, while the radius of Bi+1 is β
times the radius of Ai.

Definition 4. A given target set S in the space is called (α, β)-winning if Alice has a
strategy that forces the intersection of the balls to lie in S, regardless of Bob’s choices. If
some S is (α, β)-winning for a specific α and all 0 < β < 1 we say the set S is α-winning.
If S is α-winning for some 0 < α < 1 we say S is winning.

We like winning sets because they are ‘large’ sets, for example:

Theorem 5. A winning set is uncountable.

Theorem 6. A countable intersection of α-winning sets S1, S2, . . . is also α-winning.

These properties are analogous to the properties of sets which are large in other senses
such as measure or Baire category.

We will begin by showing that BA is a winning set in R1 (no fractals yet, let’s start slow).

Theorem 7. For 0 < α < 1
3
and any 0 < β < 1, BA in R is an (α, β)-winning set.

Remark 8. Idea of the proof: Alice’s goal is to direct the intersection of the intervals
to a point x that satisifies

∣∣∣x− p
q

∣∣∣ ≥ c
q2

for some c > 0 and all rationals p
q
. Alice will

successivly ‘get away from’ rationals of larger and larger denominators, each time dealing
with denominators in an exponentially growing chunk

Rk−1 ≤ q < Rk

for a careful choice of R.

Proof. Alice’s strategy begins with arbitrary play until Bob chooses some interval of
radius r ≤ αβ

4
. We ‘reset’ the move counter by denoting Bob’s most recent interval as B0

and describe Alice’s strategy from this point on. We choose c = 1
3
r and R = 1√

αβ
. We

will show inductively that Alice can choose her intervals such that for all x in the interval
Bn and all 0 < q < Rn we have

∣∣∣x− p
q

∣∣∣ ≥ c
q2

for all integers p.

Base case: For n = 0 the required condition holds since there are no 0 < q < 1 = R0.

Inductive step: Assume B0, . . . , Bk−1 are already such that for x ∈ Bi and 0 < q < Ri

we have
∣∣∣x− p

q

∣∣∣ ≥ c
q2

for all integers p. In her next move Alice has to worry only about
fractions p

q
where Rk−1 ≤ q < Rk. The surprising and important fact is that Alice

has to worry over at most one such fraction: assume, for the sake of contradiction, that
there are two fractions p

q
6= p′

q′
with Rk−1 ≤ q, q′ < Rk that are close to points x, x′ in Bk−1,
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respectively. Our contradiction will come from the fact that on one hand, these fractions
must be close to each other, since the intervals are very small and the denomintors are not
too small, and on the other hand the fractions must be far apart, since their denominators
are not too large either.

Formally, if we have
∣∣∣x− p

q

∣∣∣ < c
q2
,
∣∣∣x′ − p′

q′

∣∣∣ < c
q′2
, then from the triangle inequality we get∣∣∣∣pq − p′

q′

∣∣∣∣ ≤ c

q2
+ 2 (αβ)k−1 r︸ ︷︷ ︸

length of Bk−1

+
c

q′2

≤ 2cR2−2k + 2 (αβ)k−1 r

= 2cR2−2k + 2R2−2kr

= 2 (c+ r)R2−2k

< 4rR2−2k

≤ αβR2−2k

= R−2k

while on the other hand, ∣∣∣∣pq − p′

q′

∣∣∣∣ =

∣∣∣∣pq′ − p′qqq′

∣∣∣∣
≥ 1

qq′

> R−2k

And so, in the case that such a problematic p
q
exists, Alice only needs to make sure

subsequent intervals do not intersect a subinterval I of Bk−1 of length at most 2 · c
q2
≤

2cR2−2k centered at p
q
. If I has its center to the left of or on the center b of Bk−1, then I

is contained in the halfline

x ≤ b+
c

q2

≤ b+ cR2−2k

= b+ c (αβ)k−1

Alice will then choose her next interval to be as far right as possible:

Ak−1 =
(
b+ (αβ)k−1 r − 2α (αβ)k−1 r, b+ (αβ)k−1 r

)
The leftmost end of this interval is

b+ (αβ)k−1 r − 2α (αβ)k−1 r = b+ (αβ)k−1 r (1− 2α)

but

r (1− 2α) >
r

3

3



= c

so Alice’s choice and all subsequent intervals will not intersect I. If I has its center to
the right of b, Alice will similarly choose her next interval to be as far left as possible and
evade intersection.

A key idea in the previous proof is that a given interval contained at most one problematic
rational point, in other words - all problemtic points were contained in a 0-dimensional
affine hyperplane of R. It turns out that this phrasing is the one that allows for useful
generalization to higher dimensions. We have the following result in Rn:

Lemma 9. [Simplex lemma] For θ ∈ (0, 1) let R = θ−
n

n+1 . Let

Uk =

{
p

q
: q ∈ N, p ∈ Zn and Rk−1 ≤ q < Rk

}

Denote by Vn the (Lebesgue) volume of the n-dimensional unit ball. Then for every r > 0
such that

rn <
θn

n!Vn

and for every x ∈ Rn there exists an affine hyperplane L such that Uk∩B
(
x, θk−1r

)
⊂ L.

Proof. Assuming for the sake of contradiction that there exist n+ 1 affinely independent
vectors {vi}ni=0 in Uk ∩ B

(
x, θk−1r

)
, denote their coordinates as vi =

(
vji
)n
j=1

. Let ∆ be
the n-dimensional simplex that they define. We have

0 < Voln (∆) =
1

n!
det

v
1
1 − v10 · · · vn1 − vn0
... . . . ...

v1n − v10 · · · vnn − vn0



=
1

n!
det


1 v10 · · · vn0
0 v11 − v10 · · · vn1 − vn0
...

... . . . ...
0 v1n − v10 · · · vnn − vn0



=
1

n!
det


1 v10 · · · vn0
1 v11 · · · vn1
...

... . . . ...
1 v1n · · · vnn


And since vi ∈ Uk, for appropriate choices of integers pi,j,qi we get

=
1

n!
det

1 p0,1
q0
· · · p0,n

q0
...

... . . . ...
1 pn,1

qn
· · · pn,n

qn
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=
1

q0 · · · qn · n!
det

q0 p0,1 · · · p0,n
...

... . . . ...
qn pn,1 · · · pn,n


︸ ︷︷ ︸

Positive integer, and so ≥ 1

So we have

Voln (∆) ≥ 1

q0 · · · qn · n!

>
1

Rk(n+1) · n!

=
θkn

n!
> Vnθ

(k−1)nrn

= Vn
(
θk−1r

)n
= Voln

(
B
(
x, θk−1r

))
contradicting ∆ ⊂ B

(
x, θk−1r

)
.

We will use this lemma to follow a similiar strategy to the one dimensional case - at each
step Alice will get away from a hyperplane instead of getting away from a point.

The strategy will be suitable not only for the case of a game played on Rn but also on a
game where the choices of centers for both players are restricted to lie on certain fractals,
such as the Cantor ternary set, the Sierpinski triangle and the Koch curve:

Usually when we tell somebody about these sets for the first time we describe them as
starting with, for example, a line segment or a solid triangle, repeatedly deleting their
‘centers’ and finally taking the intersection of all the intermediate steps.

I remember taking a real analysis course and working on some homework problem about
the Sierpinski triangle, I had a hard time visualizing all its intricacies and so I opened
up MS Paint on my computer, as you do, and tried to follow the procedure: I drew a
big triangle and then I tried to delete smaller and smaller triangles inside it. This turned
out to be both very time consuming and inaccurate, and so eventually I found a better
way - I again started from my initial triangle, but instead of deleting pieces, I shrunk it
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down and made 3 copies of the result, selected the whole thing and again shrunk it down
and made 3 copies. After a few iterations I could no longer see any difference and was
satisfied. Let’s formalize this process:

Definition 10. An affine map φ : Rn → Rn is a similiarity map if it can be written
as φ (x) = αBx + c with α ∈ R, B ∈ Matn (R), c ∈ Rn and B is orthogonal . It is
contracting if, in addition, 0 < |α| < 1.

It is known that for any finite family of contracting similiarity maps φ1, . . . , φm there
exists a unique non-empty compact set K called the attractor of the family, such that

K =
m⋃
i=1

φi (K)

(this follows from the Banach fixed-point theorem on the space of non-empty compact
subsets of Rn equipped with the Hausdorff distance).

Example 11. The Cantor ternary set is the attractor for the family φ1, φ2:

φ1 (x) =
1

3
x

φ2 (x) =
1

3
x+

2

3

Example 12. Closed cubes in Rn are attractors for a family of 2n maps of scaling factor
1
2
, and so if we describe a strategy that shows BA is winning on these kinds of fractals,

we are also proving as a special case that BA is winning in Rn, since after the first step
of the Schmidt game on Rn, we can assume we are inside such a cube.

These attractors can, in general, still be too wild to work with conveniently, so we impose
further restrictions:

Definition 13. A family φ1, . . . , φm as above is said to satisfy the open set condition if
there is an open set U such that for any i, φi (U) ⊂ U and for any i 6= j, φi (U)∩φj (U) =
∅.

Lastly, since we will want all our bad points to be contained in a hyperplane, and sub-
sequently wish to get away from that hyperplane, we impose the additional condition:

Definition 14. A family {φi} is irreducible if there is no finite collection of proper affine
subspaces which is invariant under each φi.

The previous examples are all attractors of irreducible families that satisfy the open set
condition.

Definition 15. The support suppµ of a measure µ is the set of points x such that all
balls centered at x have positive measure.

Definition 16. The d-dimensional Hausdorff measure of a set S is given by

Hd(S) := lim inf
r→0

{∑
i

rdi : there is a countable cover of S by balls with radii 0 < ri < r
}
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Definition 17. The Hausdorff dimension of a set S is

dimH(S) := inf{d ≥ 0 : Hd(S) = 0}
= sup{d ≥ 0 : Hd(S) =∞}

Fact 18. Let δ be the Hausdorff dimension of K as above and µ be the δ-dimensional
Hausdorff measure restricted to K. Hutchinson showed that µ (K) is positive and finite
and that there exist constants a, b > 0 such that for every 0 < r < 1, x ∈ supp (µ):

arδ ≤ µ (B (x, r)) ≤ brδ

such a measure is said to satisfy a power law.

Example 19. Cantor set with δ = log 2
log 3

, Sierpienski triangle with δ = log 3
log 2

, [0, 1]n with
δ = n.

Fact 20. From this result on power laws and from a result by Kleinbock, Lindenstrauss
and Weiss, one can establish that µ is a so-called ‘absolutely friendly measure’:

Definition 21. We call a measure µ absolutely friendly if there exist constants a, C,D
such that for r < 1 and every x ∈ suppµ we have:

1. For any 0 < ε < r and any hyperplane L,

µ
(
B (x, r) ∩ L(ε)

)
< C

( ε
r

)a
µ (B (x, r))

where L(ε) is the ε neighbourhood of L. (We say µ is (C, a)-decaying).

2. And
µ

(
B

(
x,

5

6
r

))
> D · µ (B (x, r))

(We say µ satisfies the Federer property).

From now on we consider a Schmidt game played on some such attractor (it is a compact
subset of Rn so it is still complete). We have the following crucial step in Alice’s strategy

Lemma 22. Let r < 1, 0 < α < 1
12

(
D
C

) 1
a and ε0 < 1

12

(
D
C

) 1
a r then for any affine

hyperplane L and x ∈ suppµ there is an x0 ∈ suppµ such that

1. B (x0, αr) ⊂ B (x, r)

2. d
(
B (x0, αr) , L

(ε0)
)
> αr

3. d (B (x0, αr) , ∂B (x, r)) > αr

The rationale here is that Alice wants to choose a permissible ball that is far from a
given hyperplane and any bad points it may contain, and also far from the exterior of
the previous ball and bad points that might be there, close to the boundary.
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Proof. [Sketch]

To interpret the seemingly mysterious conditions in the definition of an absolutely friendly
measure, picture a ‘no-entry’ road sign. The Federer property tells us the shaded region
near the boundary has small measure, and the (C, a)-decaying property tells us the shaded
region close to a hyperplane has small measure, therefore the remaining unshaded region
of ‘good choices’ for Alice’s next ball’s center intersects the support of µ in a positive-
measure set, and so Alice chooses her next center x0 in this region.

Theorem 23. Let α be as above, and 0 < β < 1. BA is (α, β)-winning on K.

Proof. [Sketch] Like in the one dimensional case Alice plays arbitrarily until Bob chooses
a ball of radius r small enough for the conditions of the Simplex lemma to be satisfied
by θ = αβ (and so R = (αβ)−

n
n+1 ). On Alice’s k’th turn, the simplex lemma tells us all

the rational vectors with denominators Rk−1 ≤ q < Rk that are inside the current ball
are contained in a hyperplane L. We (or rather Alice) use the previous lemma with a
sufficiently small c to find a next center in suppµ that is far enough from that hyperplane
and also far from any possible bad rational vectors near the boundary of the current ball,
in its exterior.

Corollary 24. BA is winning on Rn.

Proof. After the first step of the Schmidt game on Rn, we can assume it is played on a
large enough closed cube, which is an attractor for an irreducible family of contracting
affine maps that satisfy the open set condition.

Remark 25. With a small modification of the simplex lemma the same arguments show
that for any non singular affine transformation Λ, K ∩ Λ (BA) is α-winning (with α
depending only on K), and so we have our final

Corollary 26. For any countable family Λi of non singular affine transformations, the
intersection K ∩

⋂
i Λi (BA) is α-winning.
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