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A PROOF OF OSELEDEC’S
MULTIPLICATIVE ERGODIC THEOREM

BY
M.S. RAGHUNATHAN

ABSTRACT
A new proof of a multiplicate ergodic theorem of Oseledec is presented in this
paper.

§1. Introduction

Let (X, 8, m) be a probability space and T: X — X a measure-preserving
transformation (i.e.for EE S, T"(E)E S and m(T (E))=m(E)). Let K be a
local field and u: Z X X — M(r, K) be a measurable map such that for integers p,
q =0 we have

(*) w(p, T*(x)). u(g, x)=u(p + ¢, x).

For a matrix A € M(r,K), we define its norm |A| as follows: if K is
archimedean (resp. non-archimedean) A = {S,= ;=] a; [} (resp. supiss ;=] a; |)
where a;, 1 = i,j = r are the entries of A. As usual for a real-valued function f on
X, f* is defined by f*(x) = max (0, f(x)). With this notation we will establish the
following.

THEOREM. Assume that log*||u(1,.)]|€ L'(X,m). Let B ={(x,v) E X X K" |
the sequence 1/nlog|u(n,x)(v)| tends to a finite limit or to —}. Let X'=
xeX , (x,v)E B for all v € K'}. Then X' contains a S-measurable subset X"
such that m(X")= 1. Further there exist real valued non-negative measurable
functions f,=f,< -+ = f,, possibly taking the value — o, with the following
properties. Let I = {1 = i,<iy---i, <i,. = r+1} be any (p + 1)-tuple of integers
and X"(I)={x € X”lﬁ(x) =fi(x) fori, =i,j <igs and f, (x)<f,,(x) for all q
with 1< q <p}. Then for x € X"(I), 1= q =p,
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E(Lq)(x)={v € K" |Lt1/n log|lu(n,x) (v) | = f,(x)}

is a vector subspace of K" (of dimension i,.,—1). Furthermore, if we put
E(L0)= {0}, Lt 1/nlog|lu(n, x)(v)||= f,(x) if v € E(I,q)(x)~ E(I,g = 1)(x).
The map x — E(l,q) (x) is a measurable map of X(I) into the Grassman
manifold. If K is archimedean the sequence A(n,x)= (u(n, x)*u(n, x))"** con-
verges for x € X" to a limit A(x)€ M(r,k). The orthogonal complement of
E(Lq)(x) in E(I,q+1)(x), x € X(I), is precisely the eigen-space of A(x)
corresponding to the eigen-value expf, . (x).

If T is ergodic, detu(l,x)=1 and Lt fx 1/n.log| u(n, x)|dm >0, then f, <0
and 1<i=r

This result is a slight generalisation of the theorem referred to in the title
(Oseledec [1]): Oseledec proves the result under the additional assumption that
T and u(1,.) are invertible. The proof given in the present paper, I believe, is
somewhat more transparent. The Oseledec theorem is deduced here from a
weaker result due to Furstenberg and Kesten [2].

I would like to record my thanks to D. Ruelle and J. Tits for their interest in
the work: the present version has some modifications suggested by Tits after
reading an earlier manuscript; Ruelle pointed out that the proof contained in the
earlier version in which T and u(1,.) were assumed invertible goes over to the
more general case with minor changes. I should also like to add that I came to
know the Oseledec theorem through the beautiful application made of it by G.
A. Margulis to solve the question of arithmeticity of discrete uniform subgroups
in semisimple Lie groups.

§2. Proof of the theorem

By a standard argument we may assume that T is ergodic. We make this
assumption in the sequel.

The following result is the Furstenberg-Kesten theorem referred to in the
Introduction.

ProrosiTiON.  Let (X,S,m), T and u be as in the statement of the main
theorem. Let

Y ={y € X | the sequence 1/n log|u(n, x)| tends to — = or a finite limit}.
Then m(X - Y)=0.

A simple proof of this result can be found in {3]. For an element A € M(r, K)
we denote by E?(A), the natural extension of A to the pth exterior power of K.
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Evidently for each p, E”(u) again satisfy equations similar to (*) so that we have
the following

CoroLLARY.  The notation is as in the proposition. Then if Y is the set of x € X
for which the sequences 1/n. log || E* (u(n, x))|| converge for all p to — = or a finite
limit, m(X - Y)=0.

The following result is well known.

Lemma 1. Let M ={A € M(r,K)|| Av||=|v| forallv € K'}, and D the set
of all diagonal matrices in M(r, K) with the diagonal entries in non-decreasing
order of absolute values. Then there exist measurable maps M*: M(r, K)— M,
M'™*: M(r,K)—> M and D*: M(r, K)— D such that for g € M(r,K), we have
g =M*(g) D*(g) M*(g).

Let M =M*ou, M'=M'ou and D = D*-u. We denote by d;(n, x) the ith
diagonal entry of D(n,x). Then we have evidently |u(n, x)||=|D(n, x)|=
|d.(n, x)|. More generally | E”(u(n, x))| = II,-,<i=|d: (n, x)|. From the Corollary
above we know that each of the sequences 1/n =, log| di(n, x)| converge to
a finite limit or tend to — for x € Y as in the corollary. Since | d;(n.x)| =
|d..\(n,x)|, we conclude that each sequence 1/n. log|di(n,x)|, 1=i=r, con-
verges to a finite limit or tends to — ®. Let Lt,_...1/n log|d:(n, x)| = d:(x). Since
we have assumed that T is ergodic the limits in question being T-invariant are
constants almost everywhere (w.r.t. m). Thus we have a T-stable subset of X of
measure 1 on which di(x)=d; is independent of x. We then have a unique
partition I =(1=1i,<i i, <i,.y=r+1) such that d, = d,, -, <d,,, In the
sequel we take X itself to be the T-stable subset described above. Let E(I, q, n)
be the measurable map of X into the Grassman manifold which associates to
each x € X, the K-linear space M(n, x)'(Zisi<;,, K e:) where {e; [1=i=r}is
the standard basis of K.

ig+1®

Cramm 1. E(I,q, n) converges to a limit function E(I,q) almost everywhere
(w.r.t. m). Moreover if v € E(I,q) (x)- E(I,q—1) (x),

Lt 1/nlogllu(nx)v|=d,

We will need

LEmMA 2. Let B CGL (r,K) be a compact subset. Then there is a constant
C > 0 with the following property. Let b = (b;; ):s:j=.€ B be any element such that

[ by | < aplangy  for 1(i) < I(j)
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where 0= a, < a,<a, ' <a,are real numbers and 1(q), 1 = q = r is defined by
the inequality i) =< q < lyq+1. Then if ¢ = (c;) is the inverse of B

‘ C; I < Cal(.-)/az(,) fOT l(l) < I(])

Proor. Let s be a permutation of (1,2,- -, r) such that s(j) = i. Then if we
write s as a product of disjoint cycles, one of the cycles takes the form
(i, s(i), -+, s7(i) = j) and we have for a suitable M = M(B)z 1,

=1
H bls(l)< M'_q‘t[O lbs"(i)-v““(i)l

1]

-1
=M h (@i Qs 1)

u=0
= M'a,(.-)/a,(,-).

Let D >0 be such that |detb ' < D for all b € B. Then we have

C; = (det b)_lz + I;[ b(,(])
s j

and the required inequality follows if we set C = r! M’".D. Hence the lemma.

LemMma 3.  There exists a S-measurable subset Z with m(Z) =1 such that for
allx € Z, the sequence S, (x) = 1/nZos,<. log*|u(1, T?(x)| converges to a limit L
(independent of x € Z).

This is just the pointwise ergodic theorem. As an immediate corollary we have

CoRrOLLARY. Given x € Z and 1> ¢ >0, there exists N = N(e,x) such that
for all n >N
fu(l, T"x) || < exp ne.

Proor. Let S, = S.(x), x € Z. Choose N'(g, x) such that |S,... — S, | < & and
|S.—L|j<e for m 20 and n = N'(e, x). Then we have

log*|u(1, T"x) || = (n + 1)S,., - nS,
=n(Su1— S)+ (Sei~ L)+ L
<(n+1)e+L.

Thus u(1, T"x) < A exp ne for some A independent of €. If we choose N"(¢, x)
such that

A =expN'(e,x). ¢
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and n = max (N’, N”) we have
[ u(l, T x)|| < exp2ne,
which proves our contention.
LemMMa 4. Given 1> ¢ >0 there exists N = N(g,x), x € Z with the following

property. Let v € E(I, g, n) be a unit vector and set

v=v’+_z bM(n+1,x)"e, v'€EE(l,q,n+1).

Then |b;|<exp{—n(di—d, —¢€)} if n=N.
Proor. Applying u(n+1,x)=u(l,T"x).u(n,x) to the L.HS. we get
(using Lemma 3) for n = N, (g, x)
[u(n+1,x)v||<expne.expn(d, +¢)
=expn(d, +2¢).
On the other hand for n = N, (g, x)
lu(n+1,x)v||z|b||D(n+1,x)e|
=|b|exp(n+1)(d —¢)
leading to the inequality
[b|<Aexp{-n(d-d, —3e)}

and A >0 is a constant independent of ¢. If we choose Ni(e, x) so large that
A =expNi(e,x). £ and take n = max (N,, N,, N;) we get

|b | <exp{-n(d —d, —4e)}

which gives us the desired result.
Combining Lemma 4 with Lemma 2, we get (in Lemma 2, take a; =
exp (di — ig))

Lemma 5. Let ve E(I,q,n + 1) be a unit vector and

v=vi+ 3 buM(nx)le, v €E(gn)

Then for € >0 there exists N = N(g,x) such that

|biy|<exp{-n(d~d,—e)} ifnzN.
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It follows from Lemma 4 that we can crstruct inductively sequences
(v)]i=i<ig..) starting with a basis (vi]1=i <i,..) of E(I,g,N) (x) with N
sufficiently large, and taking v ., to be a unit vector in E (i, g, n + 1) (x) such that

~d, —¢)}

|visi—vn|[Srexp{-n(d

'q+1

Then (v.) converge to v', 1=i <i,,, which are linearly independent. Thus
E(1, q, n) converges to a limit E(I, q) for all . Moreover given & > 0, it follows
from Lemma 5 that we have

vi—v'i=w+ > cM(nx) e
T

where w € E(L,q,n) and |w | <exp{-n(d,,,— d;, — £)} while

lei|<exp{-n(d—-d, ~e)}
It follows that
lu(r,x) o' [=llu(nx)v. ||+ u(nx) (@ - o)

and [lu(n, x)v.|l is clearly less than or equal to exp{+ n(d, + ¢)}; from the
inequalities for | w || and ¢, above we see that the second term is O (exp n(d;, +
£)). We see thus

L—tlog||u(n,x)v‘H§diq forall v, 1=i<ig.

On the other hand if v'& E(I,q — 1) (x), one sees that for n sufficiently large v’
has a projection v,* off E(I, g — 1, n) (x) with || v.*||> ¢ > 0. It follows then for
such a v/,

Ltl/nlogllu(nx)v|>d,.

This completes the proof except for the last statement.
To prove the last statement, let g(x)=log| u(1,x)|. Then

Un.logllu(n x)||=g.(x)= 1/n.0 > geT'(x).

=r=n-1

Now g, converges almost everywhere to [xgdm and [ g.dm = [gdm for all n.
The sequence f,(x)= ga.(x)—1/nlog|u(n,x)| is a sequence of non-negative
measurable functions so that applying Fatou’s lemma we have

_L_tf fadm if Ltf.dm
X X
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L—tf 1/n.logl|u(n,x)|[dm§f Lt 1/n log|lu(n, x)|ldm

=d, (=Lt1nloglu(n x)[).

If L.H.S. is positive, d, > 0. Since det u(n,x)=1,d,+ d,+---d, = 0 leading to
d,<0. Thus E(I,1)(x) is a proper subspace of K".
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