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step 1: equid of (disp (0, 7), [wﬂgg(Z")D and of <di5p (0, ), [m2 (Zn)}).

Seperate between the Lebesgue a.e beaviour [case 1 (Alon)] 6 with special algebraic proper-
ties [case 2 (Vika)].

step 2: extend to triples (disp 0,7, [wng’fi (z™)], ﬁk> and (disp (0, 1), [wﬂlgj (z™)], QEk)
[Rishi].

Get in total 8 cases.
PICTURE

In this talk
e define S,, — it is p-cross section for any {a;}-inv measure

e reasonable for my,_ the Haar measure

Chapter 8.
Given W C R™ and k > 1 denote

KW, k) = {A € X | #(Aprim N W) > &}
X (W) := X, (W, 1).

XF(W) :={A € X | #(Mprim "NW) =1},

So we have X7 (W) C &, (W).

Theorem (Lemma 8.1). Let W C R"™ compact set, V.C W open in W and k > 1.
1. The set X, (W, k) is closed in X,.
2. The set X7 (W) N X, (V) is open in X, (W).
3. The map v : XJF (W) — W defined by v(A) = Aprim NW is continuous.



proof of 1: Let (A;)2, C X, (W, k) with A; — A.
Choose g; € SL,(R) and h € SL,(R) such that ¢;Z" = A;, hZ" = A and g; — h.

(gs) is converging and W is compact, so there exists M compact such that g;° "W c M for
all 7.

Since g;Z™ € X, (W, k) we have for all ¢ that

#(g7tW)YnZ ) > k.

i prim

So, after passing to a subsequence (which we omit from indices), there exists vy, ...,v; €
YK such that g;v; € W for all ¢ and all 1 < j < k.

'prim

W is compact, and g;v; — hv;, so hv; € W for all 1 < j < k with hwvy, ... hvy, primitive in
hZ™ = A.

So we get #(ANW) >k, hence A € X, (W, k).

Theorem (Lemma 8.2). If W C R"™ is open then for any k > 1, X, (W, k) is open in X,.

The Cross section S,

Cylinder(r,s) = Cr(s) :={Z € R"| ||rga(Z)|| <7 |zp] < s}
Cr:=C.(1)

where for ¥ = (21, ..., 4, Z4+1) € R™ we have mga(Z) = (21, ..., Zq).

norm dependent

Choose rg such that vol(Cy,) > 2™. So by Minkowski’s thm, we have X,,(C.,) = &,.

For r > 0 define
D, i= {7 € R | (@) <7 [ea] = 1)

Sy = X, (D).

Theorem (Lemma 8.4). Let p be any {a;}-invariant probability measure on X,,. Then
Sy @8 a p-cross-section for (X, p,{ar}). Furthermore, the cross-section measure satisfies

15, (Xn(Dry,2)) = 0.

(notice X, (Dyy, k) C X (Dyy,2) for any k > 2. So particularly ps, (X,(Dyy,k)) =0 for
any k > 2.)

proof: First we show S, is a p-cross section. So we need to show

e S, is Borel (which holds by Lemma 8.1)



e there exists an {a; }-invariant X C A&, such that

- M(Xn \ XO) =0
— Sy, is a Borel cross section for Xj:

1. For any A € Xj the set of visit times of A in S,, is discrete and totally
unbounded.

2. The return time function 7g, ~is measurable.

Define .
Xo :={A € X, | AN (ma(R™) U span{é,}) =0}.

Notice if A ¢ X then A has a point in 7pe (R™) or in span(é,), hence A diverges by Mahler
compactness criterion. So by Poincare recurrence, pu(X, \ Xo) = 0.

(almost every point is recurrent, i.e. returns to any nbd of the point infinitely many times).

Let A € Xy. We show that {t € R|a;A € S, } is discrete and unbounded from below and
from above.

First note that a;A € S, if and only if A, contains a vector in a_y (D).

Discreteness — (a;A)prim is a discrete set in R”, and how a, acts (cannot change a vector in
parallel to the horizontal space).

Suppose by contradiction that there is T' > 0 such that for all s > T, asA ¢ S,,. Le. for all
s large enough, (asA)prim N Dy, = 2.

The set apA N C,, is finite, and since A € Xy, all vectors in arA N C,, have non-zero
horizontal component. It follows that for all large enough ¢ > T" we have

a;(ANa_rCr,)NCry = atANas_7Cr, N Cyy = 2. (1)

Fix t with T' < t large enough s.t the above holds.
By Minkowski’s thm (and the choice of ry), there exists ¥ € (atA)prim N Cr, -

write ¥ = (v1, ..., v,). Since A € Xy, we have v, # 0, and we can assume without loss of
generality that v, > 0.

Write ¥ = a0y for Uy € Aprim.-

By definition of {a,} there is a unique s such that a,%9 € D,,, and since the vertical

component of v is at most 1, we have s < t.

To?

This means that a;A € Sy, and by choice of T (our negation assumption) we must have
s < T, so that the vertical component of artjy is at most 1. On the other hand

I 7ra(arT0) || = ||ma(ar—1 )| = € =" ||ma (T)]] < ro,



so that artip € C,. This shows that

arty € arANCp,
ar_sU € arA N 07«0
v E atA n a't—TCro

As we started with ¢ € C,, we get in total v € a;A Na;—7Cy, N C,,, contradicting 1.

The argument showing unboundedness from below is similar.

Need to show that the return time function is Borel measurable, or equivalently, that the
sub-level sets

Srgce = {A € Sy | 75,, (A) < €}
={A €S, | min(t>0|aA € S,,) <e}

are Borel.

The set

is a Borel subset of R™ hence

Sro,<e ={N € Spy | Aprim N U a-t(Dy,) # 9}
te(0,e)
= Xn(Dry) N X ( U a—1(Dr,))
te(0,e)

is also Borel.

To show ps, (X(Dry,2)) = 0, recall we showed that for any E' C S, Borel set we have
that

ps, (B) =0 iff p(E®)=0.

SO since

X (Dyy, 2)F = {asA |t € R, #(Aprim N Dyy) > 2} C X\ Xo
we get the above. O

Parameterizing S, .
Let gn - Xn(gn) = {A S Xn ‘ é'n S Aprim }
B, C R? denote the closed ball around the origin w.r.t the norm (omit |-|| from notation).

Consider the map

0 &y X Bry — Sy,
(A, T) = u(t)A



for u(v') := (Iod 11) Notice that (7,1) € (u(7)A)

this is well defined.

prim (since A € &,). So since 7 € By,
Observations:
e ( is onto.

e Furthermore, for any A € S,, we have # =1 (A) = # (Aprim N Dy ).

So far — S, is a p-cross section for any {a;}-inv probability measure on X,.

Theorem (Theorem 8.6). The cross section Sy, is mx, -reasonable. [case 1]
Recall that in order to say S,, is a mx, -reasonable cross-section, need to know/show that
(A) my, is probability on X,.

(B) ps,, is finite. Recall us, = ps, (Sr,mx,), but we omit the dependency on my, from
the notation.

(C) S, is lesc.
(D) For all sufficiently small ¢, the sets Sy, >c are ps, -JM. Le. ps, (9(Sr,>c)) = 0.
(E) There exists U an open subset of S, such that the following two conditions hold:

e the map (0,1) x U — X, (¢, z) — a;x is an open map
o mux, ((cl(S,) \U)*V) = 0.

we have (A) by properties of my, , and we have (C) from Lemma 8.1. So in order to prove
Thm 8.6 we are left with (B),(D),(E).

We only state the relevant proposotions:
Theorem (Proposition 8.7)(B). For my, We have that

1
Hs,, = m P (msn x VOL@TO)-

In particular, ps, is finite and supp (ps,) = Sr,-

Theorem (Proposition 8.9)(D). For any ¢ > 0 we have that

0, (Spo.ce) C Xn(Dyyr2) U (Xn(Dry) N X (a_cDyy)) U Xy ((Dyy \ imt(Dy)) ™)

o
Furthermore, all of the sets in the union above are pg, —null sets, hence Sy, <. are ps, -JM,
hence Sy, > are ps,, ~JM
Theorem (Proposition 8.10)(E). Let U,, := X7 (D,,) N X,(int D,,).

n

(This is just X (int D), but want to use Lemma 8.1 to say its open)

Then (E) holds for U,,.



