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step 1: equid of

(
disp (θ⃗, v⃗k),

[
πv⃗k
Rd(Zn)

])
and of

(
disp (θ⃗, w⃗k),

[
πw⃗k

Rd (Zn)
])

.

Seperate between the Lebesgue a.e beaviour [case 1 (Alon)] θ with special algebraic proper-
ties [case 2 (Vika)].

step 2: extend to triples

(
disp (θ⃗, v⃗k),

[
πv⃗k
Rd(Zn)

]
, v⃗k

)
and

(
disp (θ⃗, w⃗k),

[
πw⃗k

Rd (Zn)
]
, w⃗k

)
[Rishi].

Get in total 8 cases.

PICTURE

In this talk

• define Sr0 – it is µ-cross section for any {at}-inv measure

• reasonable for mXn
the Haar measure

Chapter 8.

Given W ⊂ Rn and k ≥ 1 denote

Xn(W,k) := {Λ ∈ Xn |#(Λprim ∩W ) ≥ k }

Xn(W ) := Xn(W, 1).

X#
n (W ) := {Λ ∈ Xn |#(Λprim ∩W ) = 1 }.

So we have X#
n (W ) ⊂ Xn(W ).

Theorem (Lemma 8.1). Let W ⊂ Rn compact set, V ⊂ W open in W and k ≥ 1.

1. The set Xn(W,k) is closed in Xn.

2. The set X#
n (W ) ∩ Xn(V ) is open in Xn(W ).

3. The map v : X#
n (W ) → W defined by v(Λ) = Λprim ∩W is continuous.
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proof of 1: Let (Λi)
∞
i=1 ⊂ Xn(W,k) with Λi −→ Λ.

Choose gi ∈ SLn(R) and h ∈ SLn(R) such that giZn = Λi , hZn = Λ and gi −→ h.

(gi) is converging and W is compact, so there exists M compact such that g−1
i W ⊂ M for

all i.

Since giZn ∈ Xn(W,k) we have for all i that

#(g−1
i (W ) ∩ Zn

prim) ≥ k.

So, after passing to a subsequence (which we omit from indices), there exists v1, ..., vk ∈
Zn
prim such that givj ∈ W for all i and all 1 ≤ j ≤ k.

W is compact, and givj −→ hvj , so hvj ∈ W for all 1 ≤ j ≤ k with hv1, ... hvk primitive in
hZn = Λ.

So we get #(Λ ∩W ) ≥ k, hence Λ ∈ Xn(W,k).

Theorem (Lemma 8.2). If W ⊂ Rn is open then for any k ≥ 1, Xn(W,k) is open in Xn.

The Cross section Sr0

Cylinder(r, s) = Cr(s) := {x⃗ ∈ Rn | ∥πRd(x⃗)∥ ≤ r |xn| ≤ s }

Cr := Cr(1)

where for x⃗ = (x1, ..., xd, xd+1) ∈ Rn we have πRd(x⃗) = (x1, ..., xd).

norm dependent

Choose r0 such that vol(Cr0) ≥ 2n. So by Minkowski’s thm, we have Xn(Cr0) = Xn.

For r > 0 define
Dr := {x⃗ ∈ Rn | ∥πRd(x⃗)∥ ≤ r |xn| = 1 }

Sr := Xn(Dr).

Theorem (Lemma 8.4). Let µ be any {at}-invariant probability measure on Xn. Then
Sr0 is a µ-cross-section for (Xn, µ, {at}). Furthermore, the cross-section measure satisfies

µSr0
(Xn(Dr0 , 2)) = 0.

(notice Xn(Dr0 , k) ⊆ Xn(Dr0 , 2) for any k ≥ 2. So particularly µSr0
(Xn(Dr0 , k)) = 0 for

any k ≥ 2.)

proof: First we show Sr0 is a µ-cross section. So we need to show

• Sr0 is Borel (which holds by Lemma 8.1)
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• there exists an {at}-invariant X0 ⊂ Xn such that

– µ(Xn \X0) = 0

– Sr0 is a Borel cross section for X0:

1. For any Λ ∈ X0 the set of visit times of Λ in Sr0 is discrete and totally
unbounded.

2. The return time function τSr0
is measurable.

——————————————————————————————-

Define
X0 := {Λ ∈ Xn |Λ ∩

(
πRd(Rn) ∪ span{e⃗n}

)
= 0⃗ }.

Notice if Λ /∈ X0 then Λ has a point in πRd(Rn) or in span(e⃗n), hence Λ diverges by Mahler
compactness criterion. So by Poincare recurrence, µ(Xn \X0) = 0.

(almost every point is recurrent, i.e. returns to any nbd of the point infinitely many times).

—————————————

Let Λ ∈ X0. We show that {t ∈ R | atΛ ∈ Sr0} is discrete and unbounded from below and
from above.

First note that atΛ ∈ Sr0 if and only if Λprim contains a vector in a−t(Dr0).

Discreteness – (atΛ)prim is a discrete set in Rn, and how at acts (cannot change a vector in
parallel to the horizontal space).

Suppose by contradiction that there is T > 0 such that for all s ≥ T , asΛ /∈ Sr0 . I.e. for all
s large enough, (asΛ)prim ∩Dr0 = ∅.

The set aTΛ ∩ Cr0 is finite, and since Λ ∈ X0, all vectors in aTΛ ∩ Cr0 have non-zero
horizontal component. It follows that for all large enough t > T we have

at(Λ ∩ a−TCr0) ∩ Cr0 = atΛ ∩ at−TCr0 ∩ Cr0 = ∅. (1)

Fix t with T < t large enough s.t the above holds.

By Minkowski’s thm (and the choice of r0), there exists v⃗ ∈ (atΛ)prim ∩ Cr0 .

write v⃗ = (v1, ..., vn). Since Λ ∈ X0, we have vn ̸= 0, and we can assume without loss of
generality that vn > 0.

Write v⃗ = atv⃗0 for v⃗0 ∈ Λprim.

By definition of {as} there is a unique s such that asv⃗0 ∈ Dr0 , and since the vertical
component of v is at most 1, we have s ≤ t.

This means that asΛ ∈ Sr0 and by choice of T (our negation assumption) we must have
s ≤ T , so that the vertical component of aT v⃗0 is at most 1. On the other hand

∥πRd(aT v⃗0)∥ = ∥πRd(aT−tv⃗)∥ = eT−t ∥πRd(v⃗)∥ ≤ r0,
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so that aT v⃗0 ∈ Cr0 . This shows that

aT v⃗0 ∈ aTΛ ∩ Cr0

aT−tv⃗ ∈ aTΛ ∩ Cr0

v⃗ ∈ atΛ ∩ at−TCr0

As we started with v⃗ ∈ Cr0 we get in total v⃗ ∈ atΛ ∩ at−TCr0 ∩ Cr0 , contradicting 1.

The argument showing unboundedness from below is similar.
————————————————————————————————————

Need to show that the return time function is Borel measurable, or equivalently, that the
sub-level sets

Sr0,<ε = {Λ ∈ Sr0 | τSr0
(Λ) < ε}

= {Λ ∈ Sr0 | min (t > 0 | atΛ ∈ Sr0) < ε}

are Borel.

The set

D(−ε,0)
r0 =

⋃
t∈(0,ε)

a−t(Dr0)

is a Borel subset of Rn hence

Sr0,<ε = {Λ ∈ Sr0 |Λprim ∩
⋃

t∈(0,ε)

a−t(Dr0) ̸= ∅ }

= Xn(Dr0) ∩ Xn(
⋃

t∈(0,ε)

a−t(Dr0))
(2)

is also Borel.

—————————————————————————————

To show µSr0
(Xn(Dr0 , 2)) = 0, recall we showed that for any E ⊂ Sr0 Borel set we have

that

µSr0
(E) = 0 iff µ(ER) = 0.

so since

Xn(Dr0 , 2)
R = {atΛ | t ∈ R , #(Λprim ∩Dr0) ≥ 2 } ⊂ Xn \X0

we get the above.

Parameterizing Sr0 .

Let En = Xn(e⃗n) = {Λ ∈ Xn | e⃗n ∈ Λprim }.

Br ⊂ Rd denote the closed ball around the origin w.r.t the norm (omit ∥·∥ from notation).

Consider the map

φ : En ×Br0 −→ Sr0

φ(Λ, v⃗ ) := u(v⃗ )Λ
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for u(v⃗ ) :=

(
Id v⃗
0 1

)
. Notice that (v⃗, 1) ∈

(
u(v⃗ ) Λ

)
prim

(since Λ ∈ En). So since v⃗ ∈ Br0

this is well defined.

Observations:

• φ is onto.

• Furthermore, for any Λ ∈ Sr0 we have #φ−1(Λ) = #(Λprim ∩Dr0).

So far – Sr0 is a µ-cross section for any {at}-inv probability measure on Xn.

Theorem (Theorem 8.6). The cross section Sr0 is mXn
-reasonable. [case 1]

Recall that in order to say Sr0 is a mXn
-reasonable cross-section, need to know/show that

(A) mXn
is probability on Xn.

(B) µSr0
is finite. Recall µSr0

= µSr0
(Sr0 ,mXn

), but we omit the dependency on mXn
from

the notation.

(C) Sr0 is lcsc.

(D) For all sufficiently small ε, the sets Sr0,≥ε are µSr0
-JM. I.e. µSr0

(
∂(Sr0,≥ε)

)
= 0.

(E) There exists U an open subset of Sr0 such that the following two conditions hold:

• the map (0, 1)× U → X, (t, x) 7→ atx is an open map

• mXn

(
(cl(Sr0) \ U)(0,1)

)
= 0.

we have (A) by properties of mXn
, and we have (C) from Lemma 8.1. So in order to prove

Thm 8.6 we are left with (B),(D),(E).

We only state the relevant proposotions:

Theorem (Proposition 8.7)(B). For mXn We have that

µSr0
=

1

ζ(n)
φ∗

(
mEn

× V OL|Br0

)
.

In particular, µSr0
is finite and supp (µSr0

) = Sr0 .

Theorem (Proposition 8.9)(D). For any ε > 0 we have that

∂Sr0
(Sr0,<ε) ⊂ Xn(Dr0 , 2) ∪

(
Xn(Dr0) ∩ Xn(a−εDr0)

)
∪ Xn

(
(Dr0 \ int(Dr0)

)[−ε,0] )
Furthermore, all of the sets in the union above are µSr0

null sets, hence Sr0,<ε are µSr0
-JM,

hence Sr0,≥ε are µSr0
-JM

Theorem (Proposition 8.10)(E). Let Ur0 := X#
n (Dr0) ∩ Xn(intDr0).

(This is just X#
n (intDr0), but want to use Lemma 8.1 to say its open)

Then (E) holds for Ur0 .
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