

Some implications of effective results in homogeneous dynamics for Diophantine approximation

January 4, 2026

Dirichlet Theorem: (1842) For all $y \in \mathbb{R}$ and for all $T > 1$ there exists $q \in \mathbb{N}, p \in \mathbb{Z}$ such that $|qy - p| < 1/T$ and $q \leq T$.

Higher dimensions

Let $m, n \in \mathbb{N}$. We say $\vec{t} \in \mathbb{R}^{m+n}$ is a weight (for $m+n$) if $t_i \geq 0$ for all coordinates and $\sum_{i=1}^m t_i = \sum_{j=1}^n t_{m+j}$.

Weighted Dirichlet theorem for matrices: For all $Y \in M_{m,n}(\mathbb{R})$ and for every weight vector \vec{t} there exists $0 \neq \vec{q} \in \mathbb{Z}^n, \vec{p} \in \mathbb{Z}^m$ such that

- $|Y_i \vec{q} - p_i| \leq e^{-t_i} \quad i \in \{1, \dots, m\}$
- $|q_j| \leq e^{t_{m+j}} \quad j \in \{1, \dots, n\}$.

Proof: Define

$$\mathbf{u}_Y = \begin{pmatrix} I_m & Y \\ 0 & I_n \end{pmatrix} \in SL_{m+n}(\mathbb{R})$$

and define the unimodular lattice

$$\Lambda_Y := u_Y \mathbb{Z}^{m+n}.$$

$$\text{In particular, } \Lambda_Y := \left\{ \begin{pmatrix} Y \vec{q} - \vec{p} \\ \vec{q} \end{pmatrix} \mid \vec{q} \in \mathbb{Z}^n, \vec{p} \in \mathbb{Z}^m \right\}.$$

Define a centrally symmetric convex body

$$\Pi_{\vec{t}} := \left\{ (\vec{a}, \vec{b}) \in \mathbb{R}^m \times \mathbb{R}^n \mid |a_i| \leq e^{-t_i}, |b_i| \leq e^{t_{m+j}} \right\}.$$

So $\text{vol}(\Pi_{\vec{t}}) = 2^m e^{-t_1} \dots e^{-t_m} 2^n e^{t_{m+1}} \dots e^{t_{m+n}} = 2^{m+n}$. So by Minkowski's convex body theorem $\Lambda_Y \cap \Pi_{\vec{t}} \neq \{\vec{0}\}$. Any point in this intersection cannot have $\vec{q} = \vec{0}$ hence satisfies the theorem.

Can we improve Dirichlet theorem?

Given $\vec{t} \in \mathbb{R}^{m+n}$ a weight define the floor of \vec{t} to be

$$[\vec{t}] := \min_{i=1, \dots, m+n} t_i.$$

Given τ a collection of weights, we say τ is unbounded if for any $T_0 \in \mathbb{R}$ there exists $\vec{t} \in \tau$ such that $[\vec{t}] \geq T_0$.

For $Y \in M_{m,n}(\mathbb{R})$ and τ a collection of unbounded weights, we say Y is weighted Dirichlet improvable along τ if there exists $\varepsilon < 1$ and there exists T_0 such that for any weight $\vec{t} \in \tau$ with $[\vec{t}] \geq T_0$ there exists $0 \neq \vec{q} \in \mathbb{Z}^n, \vec{p} \in \mathbb{Z}^m$ such that

- $|Y_i \vec{q} - p_i| \leq \varepsilon e^{-t_i} \quad i \in \{1, \dots, m\}$
- $|q_j| \leq \varepsilon e^{t_{m+j}} \quad j \in \{1, \dots, n\}.$

We will proof the following:

Theorem 1 (KW 2006, KM 2009). *Let τ be an unbounded collection of weights. Then Lebesgue almost every $Y \in M_{m,n}(\mathbb{R})$ is not weighted Dirichlet improvable.*

- Was first proven by a non-effective theorem by Kleinbock-Weiss on 2006.
- We will prove it using an effective extension of KW.
- For the private case of the standard weights $\tau := \{(\frac{t}{m}, \dots, \frac{t}{m}, \frac{t}{n}, \dots, \frac{t}{n}) \mid t > 0\}$ – proved by Davenport and Schmidt on 1970. No dynamics involved.

In order to state the effective theorem by KM we need some defintions.

- $k = m + n$
- $G = SL_k(\mathbb{R}), \Gamma = SL_k(\mathbb{Z})$
- $X = G/\Gamma$. Particularely, for $Y \in M_{m,n}(\mathbb{R})$ we have that $u_Y \in G$ and $\Lambda_Y \in X$.
- Define $H := \{u_Y \mid Y \in M_{m,n}(\mathbb{R})\} \subset G$.
- Given $\vec{t} \in \mathbb{R}^k$ a weight, define

$$g_{\vec{t}} := \text{diag}(e^{t_1}, \dots, e^{t_m}, e^{-t_{m+1}}, \dots, e^{-t_{m+n}}).$$

Particularly $g_{\vec{t}} \in G$ for any weight.

- Given $t > 0$ define

$$g_t := \text{diag}(e^{t/m}, \dots, e^{t/m}, e^{-t/n}, \dots, e^{-t/n}) \in G.$$

- m_X Haar on X .
- vol haar on H . I.e vol is Lebesgue.
- For $\varepsilon > 0$ define

$$K_\varepsilon := \left\{ x \in X \mid \|\vec{x}\|_\infty \geq \varepsilon \ \forall \vec{x} \in X \setminus \{\vec{0}\} \right\}.$$

Claim: Let τ be a collection of weights. Then the following are equivalent:

1. $Y \in M_{m,n}(\mathbb{R})$ is weighted Dirichlet improvable along τ .
2. There exists $\varepsilon < 1$ such that $g_{\vec{t}} \Lambda_Y \notin K_\varepsilon$ for all weight $\vec{t} \in \tau$ with $[\vec{t}]$ large enough.

Theorem (KM 2009 Theorem 1.3). *There exists $\tilde{\gamma} > 0$ such that for any $f \in C_{\text{comp}}^\infty(H)$, $\psi \in C_{\text{comp}}^\infty(X)$ and any compact $L \subset X$ there exists $\tilde{C} = \tilde{C}(f, \psi, L)$ such that for all $x_0 \in L$ and all \vec{t} weight we have that*

$$\left| \int_H f(h) \psi(g_{\vec{t}} h x_0) d\text{vol}(h) - \int_H f d\text{vol} \int_X \psi dm_X \right| \leq \tilde{C} e^{-\tilde{\gamma} [\vec{t}]}.$$

Proof of Theorem 1:

Let $\varepsilon < 1$. For $i \in \mathbb{N}$ define

$$B_i := \bigcap_{[\vec{t}] > i} \{u_Y \in H \mid g_{\vec{t}} \Lambda_Y \notin K_\varepsilon\}.$$

Notice that $\cup_{i \in \mathbb{N}} B_i = \{Y \in M_{m,n} \mid \exists i \text{ s.t. } g_{\vec{t}} \Lambda_Y \notin K_\varepsilon \forall \vec{t} \in \tau \text{ with } [\vec{t}] > i\}$.

Assume by contradiction that $\text{vol}(B_i) > 0$.

Then we can choose $B \subset B_i$ compact with positive measure as well.

Take $f \in C_{\text{comp}}^\infty(H)$ such that $f(h) = 1$ in B and vanishes outside of it (up to).

Take a non-negative function $\psi \in C_{\text{comp}}^\infty(X)$ which is supported on K_ε but vanishes outside of it (up to).

Choose $x_0 = \mathbb{Z}^k$.

Apply the theorem above and get there exists $\tilde{C}, \delta_1, \delta_2$ such that for any weight $\vec{t} \in \tau$ we have

$$\left| \int_B \psi(g_{\vec{t}} \Lambda_Y) d\text{vol}(Y) (1 + \delta_1) - \text{vol}(B)(1 + \delta_2) \int_X \psi dm_X \right| \leq \tilde{C} e^{-\tilde{\gamma}[\vec{t}]}.$$

Take \vec{t} so that $[\vec{t}]$ is large enough ($[\vec{t}] > i$ and RHS is small).

We get that $\int_B \psi(g_{\vec{t}} \Lambda_Y) d\text{vol}(Y) > 0$, contradicting the definition of B_i and ψ .

So $\text{vol}(\cup_{i \in \mathbb{N}} B_i) = 0$, i.e. for Lebesgue almost every Y there is an unbounded positive sequence $(t_k) \subset \mathbb{R}$ and a sequence of weights $(\vec{t}_k) \subset \tau$ such that $g_{\vec{t}_k} \Lambda_Y \in K_\varepsilon$ with $[\vec{t}_k] = t_k$.

As this hold for any $\varepsilon < 1$, Lebesgue almost every Y is not Dirichlet improvable along τ .

Proof of KM 2009

More definitions:

- dist_G is a right invariant metric on G , giving rise to dist_X similarly on X .
- For $l \in \mathbb{N}$ define $\|\cdot\|_l$ is the $(2, l)$ -Sobolev norm. I.e for $\psi : H \rightarrow \mathbb{R}$

$$\|\psi\|_l := \left(\sum_{|\alpha| \leq l} (\|D^\alpha \psi\|_{L^2})^2 \right)^{1/2}$$

where $D^\alpha \psi$ is a shorthand for the collection of all α -order partial derivatives of ψ .

- Define $W^{2,\infty}(X) := \{\psi \in C^\infty(X) \mid \|\psi\|_l < \infty \forall l \in \mathbb{N}\}$.
- For $l \in \mathbb{N}$ define $\|\cdot\|_{C^l}$ the C^l norm. I.e. for $\psi : H \rightarrow \mathbb{R}$

$$\|\psi\|_{C^l} := \sum_{|\alpha| \leq l} \sup_{h \in H} |\partial^\alpha \psi(h)|$$

where $\partial^\alpha \psi$ is a shorthand for the collection of all α -order partial derivatives of ψ .

- $\|\psi\|_{Lip} := \sup_{h_1, h_2 \in H} \frac{|\psi(h_1) - \psi(h_2)|}{dist_H(h_1, h_2)}$ is the Lipschitz constant of ψ .
- $Lip(H) := \{\psi \mid \|\psi\|_{Lip} < \infty\}$.
- For \vec{t} a fixed weight, define an inner automorphism on H defined by

$$\Phi_{\vec{t}}(h) := g_{\vec{t}} h (g_{\vec{t}})^{-1}.$$

So we have $(\Phi_{\vec{t}})^{-1} = \Phi_{\vec{t}^{-1}}$

Proof of KM 2009 Theorem 1.3 Given $\psi \in C_{comp}^\infty(X)$ define $\psi' := \psi - \int_X \psi$. Then $\int_X \psi' = 0$ and $\psi' \in W^{2,\infty}(X) \cap Lip(X)$.

So enough to prove that there exists $\tilde{\gamma} > 0$ such that for any $f \in C_{comp}^\infty(H)$, $\psi \in W^{2,\infty}(X) \cap Lip(X)$ with $\int_X \psi = 0$ and any compact $L \subset X$ there exists \tilde{C} such that for all $x_0 \in L$ and all \vec{t} weight we have that

$$\left| \int_H f(h) \cdot \psi(g_{\vec{t}} h x_0) dvol(h) \right| \leq \tilde{C} e^{-\tilde{\gamma}[\vec{t}]} . \quad (1)$$

As $\tilde{C} = \tilde{C}(f, \psi, L)$ we can also show the above holds for \vec{t} with $[\vec{t}]$ large enough.

Given \vec{t} define

$$\begin{aligned} t &:= [\vec{t}]/2 \\ \vec{u} &= \vec{u}(\vec{t}) := \vec{t} - (t/m, \dots, t/m, t/n, \dots t/n). \end{aligned}$$

Note that we get $[\vec{u}] \geq [\vec{t}]/2$ and that $g_{\vec{t}} = g_t g_{\vec{u}}$.

We introduce a new function in the following way. Let $\theta \in C_{comp}^\infty(H)$ which satisfies the followings:

- $supp(\theta), supp(f) \subset B := B_H(r)$ for $r = e^{-\beta t}$ for β to be specified later.
- $\int_H \theta = 1 dvol$
- $\|\theta\|_l \ll r^{-(l+mn/2)}$

By Lemma 2.2(a) such a function θ exists. So we have the following:

$$\begin{aligned} \int_H f(h) \psi(g_{\vec{t}} h x_0) dvol(h) &= \int_H f(h) \psi(g_{\vec{t}} h z) dvol(h) \int_H \theta(y) dvol(y) \\ &= \int_H \int_H f(h) \psi(g_{\vec{t}} h x_0) \theta(y) dvol(y) dvol(h) \\ &\stackrel{Left-inv}{=} \int_H \int_H f(\Phi_{\vec{u}}^{-1}(y) h) \psi(g_t y g_{\vec{u}} h x_0) \theta(y) dvol(y) dvol(h) = (**). \end{aligned} \quad (2)$$

Note that $\Phi_{\vec{u}}^{-1}$ is a **contracting** automorphism of H – for any $y \in H$ we have $(\Phi_{\vec{u}}^{-1})^n(y) \rightarrow I$.

Furthermore, a direct calculation shows that in fact we have

$$dist_G(I, \Phi_{\vec{u}}^{-1}(y)) \stackrel{(*)}{\ll} e^{-2[\vec{u}]} dist_G(I, y) \leq e^{-2t} dist_G(I, y)$$

Then by right invariance for the metric $dist_G$, for any \tilde{f} defined by $\tilde{f}(h) = f(\Phi_{\vec{u}}^{-1}(y)h)$ we have that

$$supp(\tilde{f}) \subset \tilde{B} = B_H(r(1 + e^{-2t})) = B_H(r + e^{-(2+\beta)t}).$$

Theorem (Corollary 3.4). *Let $L \subset X$ be compact and let B any ball in H . Then there exists $T = T(B, L)$ such that for every $0 < \varepsilon < 1$, any $x_0 \in L$ and any weight \vec{t} with $[\vec{t}] \geq T$ one has*

$$vol\left(\left\{h \in B \mid g_{\vec{t}}hx_0 \notin K_{\varepsilon}\right\}\right) \ll \varepsilon^{(mn(k-1))^{-1}} vol(B)$$

Now take t large enough so that

- $vol(\tilde{B}) \leq 2vol(B)$ (as t is larger we have $\tilde{B} \rightarrow B$).
- $t > T(\tilde{B}, L)$ as in corollary 3.4.

Define $\varepsilon := s_0 e^{-\beta t/k}$ for $s > 0$ which we explain later on, and denote

$$A := \{h \in \tilde{B} \mid g_{\vec{u}}hx_0 \notin K_{\varepsilon}\}.$$

Then for any weight \vec{u} with $[\vec{u}] \geq T$ and any $x_0 \in L$ we have by corollary 3.4 that

$$vol(A) \ll \varepsilon^{mn(k-1)^{-1}} vol(\tilde{B}).$$

Hence we have

$$\begin{aligned} \left| \int_A \int_H f(\Phi_{\vec{u}}^{-1}(y)h) \psi(g_t y g_{\vec{u}} h x_0) \theta(y) dvol(y) dvol(h) \right| &\ll (\varepsilon^{mn(k-1)^{-1}} vol(\tilde{B})) \sup|f| \sup|\psi| \int_H \theta(y) dy \\ &\stackrel{\varepsilon = s_0 e^{-\beta t/k}}{\ll} vol(B) e^{\frac{-\beta t}{mnk(k-1)}} \sup|f| \sup|\psi| \end{aligned} \tag{3}$$

So this is the estimate we have in A .

Now let $h \in \tilde{B} \setminus A$ and write for convenience

$$F_h(y) := f(\Phi_{\vec{u}}^{-1}(y)h) \theta(y).$$

We start with the following Thm:

Theorem (Theorem 2.3). *There exists r_0 such that the followings hold. Let $F \in C_{comp}^\infty(H)$, let $0 < r < r_0$ and $x_0 \in X$ such that*

- $supp(F) \subset B_H(r)$
- the map $G \rightarrow X$ defined by $g \mapsto gx_0$ is injective on $B_G(2r)$.

Then for any $\psi \in W^{2,\infty}(X) \cap Lip(X)$ with $\int_X \psi = 0$ there exists $\gamma, E > 0$ and $N, l \in \mathbb{N}$ such that for any $t \geq 0$ we have

$$\left| \int_H F(h) \psi(g_t h x_0) dvol(h) \right| \leq E \left(r \int_H |F| + r^{-(2l+N/2)} \|F\|_l e^{-\gamma t} \right).$$

So we from Lemma 2.2 we have the following:

$$\|F_h\|_l \ll \|f\|_{C^l} \|\theta\|_l \ll r^{-(l+mn/2)} \|f\|_{C^l}. \quad (4)$$

So by Thm 2.3 (for r small enough and s_0 we chose) there exists $E, \gamma > 0$ and $N, l \in \mathbb{N}$ such that

$$\begin{aligned} & \left| \int_{\tilde{B} \setminus A} \int_H f(\Phi_{\vec{u}}^{-1}(y)h) \psi(g_t y g_{\vec{u}} h x_0) \theta(y) dvol(y) dvol(h) \right| \\ & \leq \int_{\tilde{B} \setminus A} \left| \int_H F_h(y) \psi(g_t y g_{\vec{u}} h x_0) dvol(y) \right| dvol(h) \\ & \stackrel{Thm 2.3}{\leq} E \left(r \int_H |F_h| dvol(y) + r^{-(2l+N/2)} \|F_h\|_l e^{-\gamma t} \right) vol(\tilde{B}) \\ & \stackrel{equation 4}{\ll} E \left(\sup |f| e^{-\beta t} + \|f\|_{C^l} e^{-(\gamma-(2l+N/2)\beta)t} \right) vol(B) \end{aligned} \quad (5)$$

Now lets go back to $(**)$ on equation 2. So we have that

$$|(**)| \leq C_1 e^{\frac{-\beta t}{mnk(k-1)}} + C_2 e^{-\beta t} + C_3 e^{-(\gamma-(2l+N/2)\beta)t} \leq \max(C_1, C_2) e^{\frac{-\beta t}{mnk(k-1)}} + C_3 e^{-(\gamma-(2l+N/2)\beta)t}.$$

Choose β so that both exponents are equal and we are done.