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Dirichlet Theorem: (1842) For all y € R and for all T > 1 there exists ¢ € N,p € Z such
that |gy —p| < 1/T and ¢ <T.

Higher dimensions
Let m,n € N. We say ¢ € R™T" is a weight (for m + n) if t; > 0 for all coordinates and

Z;'il ti = Z;'L:l tmtj-
Weighted Dirichlet theorem for matrices: For all Y € M, ,,(R) and for every weight vector
t there exists 0 # ¢ € Z™,p € Z™ such that

i |YVZCT_pZ| Seiti (S {laam}

o |g;| < efms je{l,...,n}

Proof: Define
I, Y
Uy = (0 In> S SLm+n(R)

and define the unimodular lattice

Ay (= uy 2™,
In particular, Ay := { (qu.p)

qgeL per™ }
Define a centrally symmetric convex body
I = {(a, B) € R™ x R™ | [a;| < e [b;] < et }

So vol(Il;) = 2me t1—tm QnelmiateFlmin — 9m+n_ Qo hy Minkowski’s convex body
theorem Ay NII; # {6} Any point in this intersection cannot have ¢ = 0 hence satisfies the
theorem.

Can we improve Dirichlet theorem?
Given ¢ € R™" a weight define the floor of ¢ to be
[{] = minizl,“,7m+n ti.

Given 7 a collection of weights, we say 7 is unbounded if for any Ty € R there exists ¢ € 7
such that [t] > Tp.

For Y € M, »(R) and 7 a collection of unbounded weights, we say Y is weighted Dirichlet
improvable along 7 if there exists ¢ < 1 and there exists Ty such that for any weight ¢ € 7
with [t] > Ty there exists 0 # § € Z", j € Z™ such that



o |Yi§—pi| <ecet ie{l,..,m}

o |gj| < eetm+i jed{l,...,n}

We will proof the following:

Theorem 1 (KW 2006, KM 2009). Let 7 be an unbounded collection of weights. Then
Lebesgue almost every Y € My, »(R) is not weighted Dirichlet improvable.

e Was first proven by a non-effective theorem by Kleinbock-Weiss on 2006.

e We will prove it using an effective extension of KW.

e For the private case of the standard weights 7 := { (%n, ey %, %, .

by Dvenport and Schmidt on 1970. No dynamics involved.

L) |t >0} - proved

In order to state the effective theorem by KM we need some defintions.
e k=m+n
e G=S5LLR), I =SLy(Z)
e X = G/I'. Particularely, for Y € M,, ,,(R) we have that uy € G and Ay € X.
o Define H := {uy |Y € M,, ,(R)} C G.
e Given t € R¥ a weight, define

g7 = diag(e", ...,e'm et L e tmin),

Particularly gy € G for any weight.

e Given t > 0 define

g = diag(et/m, m’et/m’eft/n7 m’e*t/n) cq.

e myx Haar on X.
e vol haar on H. I.e vol is Lebesgue.

e For £ > 0 define
K. = {:reX ’||:E||0025V56X\{0}}.

Claim: Let 7 be a collection of weights. Then the following are equivalent:
1. Y € M, »(R) is weighted Dirichlet improvable along 7.

2. There exists ¢ < 1 such that grAy ¢ K. for all weight ¢ € 7 with [t] large enough.

Theorem (KM 2009 Theorem 1.3). There exists § > 0 such that for any f € Cgy,,,,(H),
e Cx. (X) and any compact L C X there exists C= CN'(f,w, L) such that for all xy € L

comp

and all t weight we have that

‘/ f(h)l/f(gghi?o)dvol(h)f/ fdvol | ¢dmx ‘ < Ce 0
H



Proof of Theorem 1:

Let € < 1. For ¢ € N define
Bi:= () {uy€H|gsAy ¢ K.}

[F]>i ter
Notice that UjenB; ={Y € My, | Ji sit gpAy ¢ K. V t'e T with [t_] >}
Assume by contradiction that vol(B;) > 0.
Then we can choose B C B; compact with positive measure as well.

Take f € C,. (H) such that f(h) =1 in B and vanishes outside of it (up to).

comp

Take a non-negative function ¢ € Cg5,,,(X) which is supported on K. but vanishes outside
of it (up to).

Choose g = Z*.

Apply the theorem above and get there exists C~', 81,02 such that for any weight ¢ € 7 we
have

‘/ ¢(95Ay)d001(y)(1 +61) —wol(B)(1 +52)/ b dmx ‘ < el
B X
Take £ so that [f] is large enough ([t] > i and RHS is small).

We get that [, (97 Ay) dvol(Y') > 0, contradicting the definition of B; and .

So vol (U;ey
sequence (t;) C R and a sequence of weights (tx) C T such that 97, Ay € K. with [fk] = t}.

B;) = 0, i.e. for Lebesgue almost every Y there is an unbounded positive

As this hold for any ¢ < 1, Lebesgue almost every Y is not Dirichlet improvable along 7.

Proof of KM 2009

More definitions:
e 'distg’ is a right invariant metric on G, giving rise to ’distx’ similarly on X.

e For | € N define |||, is the (2,[)-Sobolev norm. Le for ¢ : H =+ R

ol = (X @D wl,02)

lo| <1
where D*) is a shorthand for the collection of all a-order partial derivatives of .
e Define W2>°(X) :={y € C=(X)| |[¢||, < o VI €N}
e For | € N define ||| the C! norm. Le. for ¢ : H - R
[hllce ==Y sup |9*¢(h)]
R

where 0% is a shorthand for the collection of all a-order partial derivatives of ).



[v(h1) — P (he)|

o [¥llLip = suph, hoen distr (b1, hra) is the Lipschitz constant of 1.

o Lip(H) := {1/) | ||wHLip <00 }

e For ¢ a fixed weight, define an inner automorphism on H defined by
Oy (h) == grh (9p) ™"

So we have (®;)~! = &,

Proof of KM 2009 Theorem 1.3 Given ¢ € Cg5,,(X) define ¢’ := ¢ — [ 9. Then
Jx ¥ =0and ¢/ € W2*(X) N Lip(X).

So enough to prove that there exists 5 > 0 such that for any f € CZ5,,,(H), ¥ € W>(X)N

Lip(X) with [, ¢ y ¥ =0 and any compact L C X there exists C such that for all xo € L and
all ¢ Weight we have that

’/ f(h) - ¥(gphao) dvol(h) < Ce Il (1)

As C = C(f,1, L) we can also show the above holds for # with [£] large enough.

Given t define
t:=[t]/2

A=1u(t) :=t— (t/m,...t/m,t/n,..t/n).
Note that we get [i] > [£]/2 and that g; = g:ga.

We introduce a new function in the following way. Let 6 € Cg5,,,(H) which satisfies the
followings:

o supp(), supp(f) C B := By(r) for r = e~ P* for 3 to be specified later.
o [, 0=1dvol
o (0], < r e

By Lemma 2.2(a) such a function € exists. So we have the following:

/Hf(h) (g7 hao) dvol(h /f Y(gphz) dvol(h /9 Ydvol(y)
//f Y(gphaxo) 0(y) dvol(y)dvol(h)

Leftzin / / F(@3" W) v (gryga hvo) 0(y) dvol (y)dvol(h) = ().

Note that @51 is a contracting automorphism of H — for any y € H we have (le)n(y) — I

Furthermore, a direct calculation shows that in fact we have

() .
distc(I, 22 (y)) < e 2distg(I,y) < e *distg(I,vy)



Then by right invariance for the metric diste, for any f defined by f(h) = (@2 (y)h) we
have that N N
supp(F) € B = Bu(r(1+ ™)) = By (r + e~ 2+901),

Theorem (Corollary 3.4). Let L C X be compact and let B any ball in H. Then there
exists T = T(B, L) such that for every 0 < e < 1, any x9 € L and any weight t with [t] > T
one has

vol {h € B|grhxo ¢ KE}) < 6("’”(/“_1))711101(3)

Now take t large enough so that
e vol(B) < 2v0l(B) (as t is larger we have B — B).

e t > T(B,L) as in corollary 3.4.

Define ¢ := spe~Pt/¥ for s > 0 which we explain later on, and denote

A:={h € Blgghzy ¢ K.}

Then for any weight @ with [@] > T and any xg € L we have by corollary 3.4 that

vol(A) < sm"(kfl)_lvol(é).

Hence we have

|/A/H f(‘ﬁgl(y)h) w(gtygg hxo) 0(y) dvol(y)dvol(h)| < (em"(k_l)flvol(é)) sup| f| sup|v| /He(y)dy

5:305"3”/’“

< wol(B) em i sup|f| sup|i|

(3)
So this is the estimate we have in A.

Now let h € B \ A and write for convenience

Fu(y) = (@' (y)h) 0(y).

We start with the following Thm:

Theorem (Theorem 2.3). There exists 1o such that the followings hold. Let F' € Cg5,, (H),
let 0 <r <rg and xg € X such that

e supp(F) C By(r)

o the map G — X defined by g — gz is injective on Bg(2r).
Then for any ¢ € W*°°(X)N Lip(X) with [y ¢ = 0 there exists v, E > 0 and N,l € N such
that for any t > 0 we have

‘/ F(h)y(gihxo)dvol (h)| < E(r/ |F| + r~@N2) | L e‘”)_
" H



So we from Lemma 2.2 we have the following;:

1wl < [ fllee 1611, < r=Em 21 f (4)

So by Thm 2.3 (for r small enough and sy we chose) there exists E,v > 0 and N, € N such
that

| /E\A /Hf(%l(y)h) Y(gryga hao) 0(y) dvol (y)dvol(h)|

<),
B\A

Thm 2.3 -
< E(r/ | Fr|dvol(y) + p~ (2HN/2) | Frll, e_vt)vol(B)
H

equation 4

L B (sunlfle "+l O ol

dvol(h)

/};{Fh(i‘/)w(gtygﬁhxo) dvol(y)

(5)

Now lets go back to (x*) on equation 2. So we have that
|(#%)| < CLeT ™ G=D 1 Coe =Pt - Oye= O~ AHN/DB < 1o (O, Cy)e TG 4 (e~ (- LHN/2)B)t,

Choose f so that both exponents are equal and we are done.



