GEOMETRIC AND ARITHMETIC ASPECTS OF APPROXIMATION VECTORS – introduction

December 1, 2024

 $\|\cdot\|$ arbitrary norm on \mathbb{R}^d .

 $B_r = B_r(\|\cdot\|)$ the ball around the origin with radius r w.r.t $(\|\cdot\|)$.

For $\vec{\theta} \in \mathbb{R}^d$, define the best approximation sequence ("bap") of $\vec{\theta}$ w.r.t $\|\cdot\|$ be the sequence

$$\vec{v}_k = \left(\vec{p}_k, q_k\right)_{k=0} \subset \mathbb{Z}^d \times \mathbb{N}$$

such that:

- $q_0 = 1$
- $q_k = \min \{q \in \mathbb{N} \mid \exists \vec{p} \in \mathbb{Z}^d \text{ such that } \|q\vec{v} \vec{p}\| < \|q_{k-1}\vec{\theta} \vec{p}_{k-1}\|$
- $\forall \vec{p} \in \mathbb{Z}^d \ \|q_k \vec{\theta} \vec{p}_k\| \le \|q_k \vec{\theta} \vec{p}\|$

Informally, it is the "best" sequence which satisfies

$$1 = q_0 < q_1 < \dots < q_{k-1} < q_k < \dots$$
$$\left\| q_0 \vec{\theta} - \vec{p}_0 \right\| > \left\| q_1 \vec{\theta} - \vec{p}_1 \right\| > \dots > \left\| q_{k-1} \vec{\theta} - \vec{p}_{k-1} \right\| > \left\| q_k \vec{\theta} - \vec{p}_k \right\| > \dots$$

<u>Remark:</u> \vec{p}_k not uniquely defined for a finite number of indices.

<u>Remark:</u> d = 1, can "easily" calculate bap via continued fractions. More difficult once $d \ge 2$.

Theorem . Corollary from generalized Dirichlet theorem

1. $(q_k, \vec{p}_k)_{k=0}^{\infty}$ infinite sequence $\iff \vec{\theta} \in \mathbb{R}^d \setminus \mathbb{Q}^d$.

Furthermore, $||q_k\vec{\theta} - \vec{p}_k|| \longrightarrow 0.$

2. $\exists \gamma = \gamma_{\|\cdot\|}$ (MINIMAL) such that for all $\vec{\theta} \in \mathbb{R}^d$ and for all sufficiently large k

$$q_k^{\frac{1}{d}} \left(q_k \vec{\theta} - \vec{p}_k \right) \in B_\gamma.$$

For d = 1, $\gamma = 1$ and this is the usual "corollary from Dirichlet theorem".

More generally, given $\vec{v} = (\vec{p}, q) \in \mathbb{Z}^d \times \mathbb{N}$ define **the displacement** (w.r.t $\vec{\theta}, \vec{v}$) to be

$$disp(\vec{\theta}, \vec{v}) := q^{\frac{1}{d}} (q\vec{\theta} - \vec{p}).$$

For $\varepsilon > 0$, we say that $\vec{w} = (\vec{P}, Q) \in \mathbb{Z}^d \times \mathbb{N}$ is a ε -approximation of $\vec{\theta}$ w.r.t $\|\cdot\|$ if

- $disp(\vec{\theta}, \vec{w}) \in B_{\varepsilon}$
- $gcd(P_1, ..., P_d, Q) = 1$

Let $(\vec{w}_k)_{k=0}$ be the sequence of ε -app of $\vec{\theta}$ ordered by $Q_0 \leq Q_1 \leq Q_2...$

<u>Claim</u>: For Lebesgue a.e $\vec{\theta}$ and all $\varepsilon > 0$ we have that $(\vec{w}_k)_{k=0}^{\infty}$ is infinite $\iff \liminf_{k\to\infty} \|disp(\vec{\theta}, \vec{v}_k)\| = 0$ where \vec{v}_k are bap of $\vec{\theta}$. $\iff \vec{\theta}$ is not **badly approximable**.

Example: d = 2, $\|\cdot\| = \|\cdot\|_2$, $\vec{\theta} = (\pi, e)$, $\gamma = \sqrt{\frac{2}{\sqrt{3}}} \approx 1.07$

q	p	$\ q\vec{\theta} - \vec{p}\ _2$	$disp(\vec{\theta}, \vec{v}) = \sqrt{q} \left(q \vec{\theta} - \vec{p} \right)$	$\ disp(\vec{\theta}, \vec{v})\ _2$
1	(3,3)	0.31	(0.14, -0.28)	0.31
2	(6,5)	0.51	(0.28,0.39)	0.73
3	(9,8)	0.45	(0.42, 0.73)	0.77
4	(13,11)	0.45	(-0.43, -0.87)	0.9
5	(16, 14)	0.5	(-0.29, -0.65)	1.12
6	(19,16)	0.34	(-0.15, -0.37)	0.84
7	(22,19)	0.02	(-0.013, -0.03)	0.07
8	(25,22)	0.2	(0.128, 0.36)	0.8
9	(28,24)	0.53	(0.26,0.8)	1.6

PICTURE

<u>Theorem:</u> (Rogers 1951) $\|\cdot\| = \|\cdot\|_{\max}$, $d \ge 1$, \vec{v}_k bap of $\vec{\theta}$ for some $\vec{\theta}$. Then any two consecutive displacements $disp(\vec{\theta}, \vec{v}_k)$ cannot lie in the same quadrant.

Question: Does this hold for arbitrary norm?

<u>Theorem:</u> (Moschevitin 2000) – No. There exists a norm $\|\cdot\|$ on \mathbb{R}^2 (explicit) and $\vec{\theta}$'s with bap such that $disp(\vec{\theta}, \vec{v}_k)$ always lie on the first quadrant.

<u>Observation</u>: If \vec{p}, q is bap for some θ , then $gcd(p_1, ..., p_d, q) = 1$.

<u>Claim</u>: If $\vec{v}_k = (\vec{p}_k, q_k)$ and $\vec{v}_{k+1} = (\vec{p}_{k+1}, q_{k+1})$ are two consecutive bap for some $\vec{\theta}$, then they are **primitve w.r.t the lattice** \mathbb{Z}^d – there exists $\vec{u}_3, ..., \vec{u}_d$ such that $\vec{v}_k, \vec{v}_{k+1}, \vec{u}_3, ..., \vec{u}_d$ is a basis of \mathbb{Z}^d .

In the example above: there exists \vec{u} such that $\{(1,3,3), (7,22,19), \vec{u}\}$ is a basis of \mathbb{Z}^3 .

Basic question for the paper: What is the typical behavior of the bap (\vec{v}_k) and the ε -app (\vec{w}_k) with respect to their length, direction, arithmetical properties?

Fix $m \in \mathbb{N}$. For $\vec{a} \in \mathbb{Z}_m^{d+1}$ we say that \vec{a} is primitive (mod m) if there are no $c, d_1, ..., d_n$ with $c \neq 1$ such that $a_i = cd_i$. Define

$$N_{m,d+1} := \#\{ \vec{a} \in \mathbb{Z}_m^{d+1} \, | \, \vec{a} \text{ is primitve} \}.$$

Theorem 1.1.a. - arithmetic properties of bap

 $\|\cdot\|$ norm on \mathbb{R}^d . Let $m \in \mathbb{N}$ and let $a_1, a_2, ..., a_d, b \in \mathbb{Z}_m$ such that $(a_1, a_2, ..., a_d, b)$ is primitive (mod m). Then for Lebesgue a.e $\vec{\theta} \in \mathbb{R}^d$

$$\frac{1}{k} \# \left\{ 1 \le i \le k \mid \left\{ \begin{array}{l} p_{i,j} = a_j \ (mod \ m) \\ q_i = b \ (mod \ m) \end{array} \right\} \longrightarrow \frac{1}{N_{m,d+1}}$$

where (\vec{p}_k, q_k) is bap of $\vec{\theta}$ w.r.t $\|\cdot\|$.

Theorem 1.2.a. – arithmetic properties of ε -app

Let $\|\cdot\|$ norm on \mathbb{R}^d . Let $\varepsilon > 0$. Let $m \in \mathbb{N}$ and let $a_1, a_2, ..., a_d, b \in \mathbb{Z}_m$ such that $(a_1, a_2, ..., a_d, b)$ is primitive (mod m). Then for Lebesgue $a.e \ \vec{\theta} \in \mathbb{R}^d$

$$\frac{1}{k} \# \left\{ 1 \le i \le k \mid \left\{ \begin{array}{l} P_{i,j} = a_j \ (mod \ m) \\ Q_i = b \ (mod \ m) \end{array} \right\} \longrightarrow \frac{1}{N_{m,d+1}}$$

where (\vec{P}_k, Q_k) is ε -approximations of $\vec{\theta}$ w.r.t $\|\cdot\|$.

Notice that both 1.1.a and 1.2.a doesn't depend on the norm $\|\cdot\|$.

1.1.a extends Moeckel 1982 for d = 1. 1.1.b extends Szusz for d = 1.

Theorem 1.1.b. - equidistribution of bap displacements

 $\|\cdot\|$ norm on \mathbb{R}^d . Then there exists $\mu_{\|\cdot\|}$ a probability measure on \mathbb{R}^d (boundedly supported, absolutely continuous w.r.t Lebesgue, not restriction of Lebesgue), such that for Lebesgue a.e $\vec{\theta}$ we have

$$\left(disp(\vec{\theta}, \vec{v}_k)\right)_{k=0}^{\infty}$$

equidistribute w.r.t $\mu_{\parallel \cdot \parallel}$, (\vec{v}_k) is bap of $\vec{\theta}$ w.r.t $\parallel \cdot \parallel$

Theorem 1.2.b. – equidistribution of ε -displacements

 $\|\cdot\|$ norm on \mathbb{R}^d , $\varepsilon > 0$. Then for Lebesgue a.e $\vec{\theta}$ we have that

$$\left(disp(\vec{\theta}, \vec{w}_k)\right)_{k=0}^{\infty}$$

equidistribute w.r.t $Vol_{|B_{\varepsilon}}$ normelised, where \vec{w}_k is the ε -app of θ w.r.t $\|\cdot\|$.

1.2.a extends Bosma Jager and Wiedijk from 1983. The measure μ on \mathbb{R} in their work is the measure given by the density function

$$F(t) = \begin{cases} \frac{1}{2log(2)} & t \in [-0.5, 0.5] \\ \frac{1}{2log(2)}(1/t - 1) & t \in [-1, -0.5) \cup (0.5, 1] \end{cases}$$

1.2.b new, even for d = 1. There had been a little work about direction only.

Short introduction to Lattices:

- $L \subseteq \mathbb{R}^n$ is a lattice if there exists linearly-independent $\vec{v}_1, \vec{v}_2 \dots \vec{v}_n$ such that $L = span_{\mathbb{Z}}(\vec{v}_1, \vec{v}_2 \dots \vec{v}_n) \iff L = h\mathbb{Z}^n$, where $h = (\vec{v}_1, \dots \vec{v}_n)$. In this case, we say that $\vec{v}_1, \vec{v}_2 \dots \vec{v}_n$ (respectively h) is a basis of L.
- claim: If $L = h_1 \mathbb{Z}^n = h_2 \mathbb{Z}^n$ then $|\det(h_1)| = |\det(h_2)|$.
- Define the $covol(L) := |\det h|$, where h is any matrix satisfying $L = h\mathbb{Z}^n$
- We have the following one-to-one correspondences

$$X_n := \{Lattices \ in \ \mathbb{R}^n \ covol = 1\} \longleftrightarrow SL_n(\mathbb{R})/SL_n(\mathbb{Z})$$

$$g\mathbb{Z}^n \longleftrightarrow g SL_n(\mathbb{Z}).$$

- endow X_n with the quotient topology.
- Denote by m_{X_n} the **Haar measure on X_n** the unique measure which is
 - Borel
 - Probability
 - Regular for any A borel we have that

 $m_{X_n}(A) = \inf\{m(B) \mid B \text{ open with } A \subset B\} = \sup\{m(K) \mid K \text{ compacy with } K \subset A\}.$

- invariant for left $Sl_n(\mathbb{R})$ multiplication. I.e. for all $A \subset X_n$ Borel and all $g \in Sl_n(\mathbb{R})$ we have that $m_{X_n}(A) = m_{X_n}(gA)$.
- $\vec{u} \in \mathbb{Z}^n$ primitive if the coordinates of \vec{u} are co-prime. Denote \mathbb{Z}_{prim}^n the set of primitive vectors on \mathbb{Z}^n .
- Define n = d + 1.
- Define $\pi_{\vec{u}^{\perp}}^{\vec{u}} : \mathbb{R}^n \longrightarrow \vec{u}^{\perp}$ be the orthogonal projection. In case $\mathbb{R}^n = \mathbb{R}^d \bigoplus span_{\mathbb{R}}(\vec{u})$ (where $\mathbb{R}^d = \{\vec{x} \in \mathbb{R}^n \mid x_n = 0\}$), define $\pi_{\mathbb{R}^d}^{\vec{u}} : \mathbb{R}^n \longrightarrow \mathbb{R}^d$ be the projection to \mathbb{R}^d with kernel $span_{\mathbb{R}}(\vec{u})$.
- <u>Claim</u>: $\pi_{\vec{u}^{\perp}}^{\vec{u}}(\mathbb{Z}^n)$ and $\pi_{\mathbb{R}^d}^{\vec{u}}(\mathbb{Z}^n)$ are *d*-dim lattices.
- <u>Question</u>: Fix a measure on primitive vectors in \mathbb{Z}_{prim}^n . For example, for T > 0, take uniform distribution on $\{ \vec{u} \in \mathbb{Z}_{prim}^n \mid \|\vec{u}\| \leq T \}$. What is the typical behavior of the *d*-dim lattices of the form $\pi_{\vec{u}^{\perp}}^{\vec{u}}(\mathbb{Z}^d)$ or $\pi_{\mathbb{R}^d}^{\vec{u}}(\mathbb{Z}^d)$ as $T \to \infty$?
- No really good answers so far, even in this mild version (can also take primitive sets instead of primitive vectors, can also look at projections of more general lattices than Zⁿ).
- Two ways to simplify:
 1) "simplify the space" (Schmidt)
 2) look at more specific collections (WS).

We say two **lattices** L_1 and L_2 are homothetic if there exists $t \neq 0$ such that $L_1 = tL_2$. The homothaty class of each lattice L contains a unique representative in X_n , which we denote by [L].

We say two lattices L_1 and L_2 are similar if there exists $t \neq 0$ and $P \in SO_d$ such that $L_1 = Pt(L_2)$.

We denote by $\langle L \rangle = \left[SO_d(\mathbb{R})[L] \right]$ the similarity class of a lattice L.

Define $SX_n := SO_n(\mathbb{R}) \setminus \left(SL_n(\mathbb{R}) / SL_n(\mathbb{Z}) \right)$ as the space of Shapes of lattices.

Define $m_{\mathcal{S}X_n}$ as the push-forward of Haar measure from X_n to $\mathcal{S}X_n$. It is the unique X_n -right-inv Haar probability measure on $\mathcal{S}X_n$.

Specifically, for \vec{u} primitive, $\langle \pi_{\mathbb{R}^d}^{\vec{u}}(\mathbb{Z}^n) \rangle$ is the class of *d*-dim lattices which are similar to $\pi_{\mathbb{R}^d}^{\vec{u}}(\mathbb{Z}^n)$.

Theorem (Schmidt 98). The uniform measures on the finite sets

$$\{ < \pi^{\vec{u}}_{\mathbb{R}^d}(\mathbb{Z}^n) > \mid \vec{u} \in \mathbb{Z}^n_{prim} with \ \|\vec{u}\| \le T \}$$

are equidistributed in SX_d w.r.t m_{SX_d} as $T \to \infty$.

Weiss-Shapira: Less simplification of the space, more specific collections.

Theorem 1.1.c equidistribution of bap-projected lattices.

 $\|\cdot\|$ norm on \mathbb{R}^d . Then there exists $\mu(X_d) = \mu(X_d)_{\|\cdot\|}$ a probability measure on X_d (equivalent to m_{X_d} but different [i.e same null sets]), such that for Lebesgue a.e $\vec{\theta}$ we have

$$\left(\left[\pi_{\mathbb{R}^d}^{\vec{v}_k}(\mathbb{Z}^n)\right]\right)_{k=0}^{\infty}$$

equidistribute w.r.t $\mu(X_d)$, where \vec{v}_k is bap of $\vec{\theta}$ w.r.t $\|\cdot\|$.

Theorem 1.2.c equidistribution of ε -projected lattices.

 $\|\cdot\|$ norm on \mathbb{R}^d , $\varepsilon > 0$. Then for Lebesgue a.e $\vec{\theta}$ we have

$$\left(\left[\pi_{\mathbb{R}^d}^{\vec{w}_k}(\mathbb{Z}^n)\right]\right)_{k=0}^{\infty}$$

equidistribute w.r.t m_{X_d} , where \vec{w}_k is ε -app of $\vec{\theta}$ w.r.t $\|\cdot\|$. Note that this results does not depend on ε or on the norm.

To summarize, we have in addition the following:

Theorem Theorem 1.1. Theorems 1.1.a 1.1.b and 1.1.c hold jointly.

Theorem 1.2. Theorems 1.2.a 1.2.b and 1.2.c hold jointly.

<u>Question</u>: Given $\vec{\theta}$ with (\vec{p}_k, q_k) bap, or with $(\vec{P}_k, Q_k) \varepsilon$ -app, what can we know about the rate of growth of the denominators (q_k) and (Q_k) ?

<u>Theorem:</u> (Khinchine, 1935) d = 1 there exists C > 0 such that for Lebesgue almost every θ with (q_k, p_k) bap we have

$$\lim_{k \to \infty} q_k^{1/k} = C$$

(Levy, 1936) $C = e^{\pi^2/(12ln(2))}$. This constant is called the Levy-Khinchine constant.

What happens if d > 1? – there had been some results in recent years.

Theorem (corollary 3.4). $\|\cdot\|$ on \mathbb{R}^d and $\varepsilon > 0$. Then there exists $\delta_{\|\cdot\|}$ and $\delta' = \delta'_{\|\cdot\|,\varepsilon}$ such that for Lebesgue a.e $\vec{\theta}$ with (q_k, \vec{p}_k) bap and $(Q_k, \vec{P}_k) \varepsilon$ -app we have that

$$\lim_{k \to \infty} q_k^{1/k} = \delta$$
$$\lim_{k \to \infty} Q_k^{1/k} = \delta'$$

- For bap improves recent results.
- For ε -app completely new.

Open question: calculate δ and δ' for specific cases.

What about non-typical cases?

A Field K is called a **totally real number field** if $\mathbb{K} = \mathbb{Q}[\beta]$ and all roots of the minimal polynomial of β are real.

Example $\mathbb{Q}[\beta]$ where β is one of the 3 real roots of the polynomial $f(x) = x^3 + x^2 - 2x - 1$. So $\mathbb{Q}[\beta] = span_{\mathbb{Q}}(1, \beta, \beta^2)$ if of degree 3.

<u>Claim</u>: If $\vec{\alpha} = (\alpha_1, ..., \alpha_d) \in \mathbb{R}^d$ such that $span_{\mathbb{Q}}(1, \alpha_1, ..., \alpha_d)$ is a totally real number field, then $\vec{\alpha}$ is Badly-approximable.

Recall: $\vec{\alpha}$ is Badly approximable if there exists a norm $\|\cdot\|$ such that

 $\inf\{ \|disp(\vec{\alpha}, \vec{v})\| \mid \vec{v} \in \mathbb{Z}^d \times \mathbb{N} \} > 0.$

Theorem 1.5. Let $\vec{\alpha} = (\alpha_1, ..., \alpha_d) \in \mathbb{R}^d$ such that $span_{\mathbb{Q}}(1, \alpha_1, ..., \alpha_d)$ is a totally real number field of degree d + 1 with $d \geq 2$.

(For example d = 2 and $\vec{\alpha} = (\beta, \beta^2)$) as above).

Define

$$\varepsilon_0 := \inf \{ \varepsilon' > 0 \, | \, (\vec{w}_k)_{k=0} \, \varepsilon' - app \ are \ infinite \} \\ = \liminf \, \| \, disp \left(\vec{\alpha}, \vec{v}_k \right) \|.$$

Let $\varepsilon > \varepsilon_0$. Let $(\vec{v}_k)_{k=0}^{\infty} = (\vec{p}_k, q_k)$ be the bap of $\vec{\alpha}$ and $(\vec{w}_k)_{k=0}^{\infty} = (\vec{P}_k, Q_k)$ be the ε -app of $\vec{\alpha}$.

Let $m \in \mathbb{N}$ and let $b_1, ..., b_d, B \in \mathbb{Z}_m$ such that $(b_1, b_2, ..., b_d, B)$ is primitive (mod m).

Then the following holds:

• (a.1) Assume that $\|\cdot\|$ is Euclidean or max. Then there exists $c = c(b_1, .., b_d, B) > 0$ such that

$$\frac{1}{k} \# \left\{ 1 \le i \le k \mid \left\{ \begin{array}{l} p_{i,j} = b_j \ (mod \ m) \\ q_i = B \ (mod \ m) \end{array} \right\} \longrightarrow c$$

• (a.2) There exists $c' = c'(b_1, ..., b_d, B) > 0$ such that

$$\frac{1}{k} \# \Biggl\{ 1 \leq i \leq k \, | \, \Bigl\{ \begin{array}{l} P_{i,j} = a_j \, (mod \, m) \\ Q_i = b \, (mod \, m) \end{array} \Bigr\} \longrightarrow c'$$

• (b.1) Assume that $\|\cdot\|$ is Euclidean or max. Then there exists a probability measure $\mu = \mu_{\|\cdot\|}$ on \mathbb{R}^d such that

$$\left(disp(\vec{\alpha}, \vec{v}_k)\right)_{k=0}^{\infty}$$

equidistribute w.r.t $\mu_{\parallel \cdot \parallel}$.

• (b.2) There exists a probability measure $\nu = \nu_{\|\cdot\|}$ on \mathbb{R}^d such that

$$\left(disp(\vec{\alpha}, \vec{w}_k)\right)_{k=0}^{\infty}$$

equidistribute w.r.t $\nu_{\parallel \cdot \parallel}$.

• (c.1) Assume that $\|\cdot\|$ is Euclidean or max. Then there exists a probability measure $\mu(X_d) = \mu(X_d)_{\|\|}$ on X_d such that

$$\left(\left[\pi_{\mathbb{R}^d}^{\vec{v}_k}(\mathbb{Z}^n)\right]\right)_{k=0}^{\infty}$$

equidistribute w.r.t $\mu(X_d)$.

• (c.2) There exists a probability measure $\nu(X_d) = \nu(X_d)_{\parallel\parallel}$ on X_d such that

$$\left(\left[\pi_{\mathbb{R}^d}^{\vec{w}_k}(\mathbb{Z}^n)\right]\right)_{k=0}^{\infty}$$

equidistribute w.r.t $\nu(X_d)$.

Furthermore, the support of the measures above are null sets w.r.t Vol and m_{X_d} and we have that a.1, b.1, c.1 and a.2, b.2, c.2 hold jointly.