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∥·∥ arbitrary norm on Rd.

Br = Br(∥·∥) the ball around the origin with radius r w.r.t (∥·∥).

For θ⃗ ∈ Rd, define the best approximation sequence (”bap”) ofthe best approximation sequence (”bap”) ofthe best approximation sequence (”bap”) of θ⃗ w.r.t ∥·∥ be the sequence

v⃗k =
(
p⃗k, qk

)
k=0
⊂ Zd × N

such that:

• q0 = 1

• qk = min {q ∈ N | ∃ p⃗ ∈ Zd such that ∥qv⃗ − p⃗∥< ∥qk−1θ⃗ − p⃗k−1∥

• ∀p⃗ ∈ Zd ∥qkθ⃗ − p⃗k∥≤ ∥qkθ⃗ − p⃗ ∥

Informally, it is the ”best” sequence which satisfies

1 = q0 < q1 < ..... < qk−1 < qk < .....∥∥∥q0θ⃗ − p⃗0

∥∥∥ >
∥∥∥q1θ⃗ − p⃗1

∥∥∥ > ..... >
∥∥∥qk−1θ⃗ − p⃗k−1

∥∥∥ >
∥∥∥qkθ⃗ − p⃗k

∥∥∥ > .....

Remark: p⃗k not uniquely defined for a finite number of indices.

Remark: d = 1, can ”easily” calculate bap via continued fractions. More difficult once d ≥ 2.

Theorem . Corollary from generalized Dirichlet theorem

1. (qk, p⃗k)
∞
k=0 infinite sequence ⇐⇒ θ⃗ ∈ Rd \Qd.

Furthermore, ∥qkθ⃗ − p⃗k∥−→ 0.

2. ∃ γ = γ∥·∥ (MINIMAL) such that for all θ⃗ ∈ Rd and for all sufficiently large k

q
1
d

k (qkθ⃗ − p⃗k) ∈ Bγ .

For d = 1, γ = 1 and this is the usual ”corollary from Dirichlet theorem”.

More generally, given v⃗ = (p⃗, q) ∈ Zd × N define the displacementthe displacementthe displacement (w.r.t θ⃗, v⃗ ) to be

disp (θ⃗, v⃗ )disp (θ⃗, v⃗ )disp (θ⃗, v⃗ ) := q
1
d (qθ⃗ − p⃗ ).

For ε > 0, we say that w⃗ = (P⃗ , Q) ∈ Zd × N is a ε-approximation of θ⃗ε-approximation of θ⃗ε-approximation of θ⃗ w.r.t ∥·∥ if
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• disp (θ⃗, w⃗ ) ∈ Bε

• gcd(P1, ..., Pd, Q) = 1

Let (w⃗k)k=0 be the sequence of ε-app of θ⃗ ordered by Q0 ≤ Q1 ≤ Q2....

Claim: For Lebesgue a.e θ⃗ and all ε > 0 we have that (w⃗k)
∞
k=0 is infinite

⇐⇒ lim infk→∞∥disp(θ⃗, v⃗k)∥= 0 where v⃗k are bap of θ⃗.

⇐⇒ θ⃗ is not badly approximablebadly approximablebadly approximable.

Example: d = 2, ∥·∥ = ∥·∥2 , θ⃗ = (π, e), γ =
√

2√
3
≈ 1.07

q p ∥qθ⃗ − p⃗ ∥2 disp(θ⃗, v⃗) =
√
q (qθ⃗ − p⃗) ∥disp(θ⃗, v⃗)∥2

1 (3,3) 0.31 (0.14 , -0.28) 0.31
2 (6,5) 0.51 (0.28 , 0.39) 0.73
3 (9,8) 0.45 (0.42 , 0.73) 0.77
4 (13,11) 0.45 (-0.43 , -0.87) 0.9
5 (16,14) 0.5 (-0.29 , -0.65) 1.12
6 (19,16) 0.34 (-0.15 , -0.37) 0.84
7 (22,19) 0.02 (-0.013 , -0.03) 0.07
8 (25,22) 0.2 (0.128 , 0.36) 0.8
9 (28,24) 0.53 (0.26 , 0.8) 1.6

**PICTURE**

Theorem: (Rogers 1951) ∥·∥ = ∥·∥max, d ≥ 1, v⃗k bap of θ⃗ for some θ⃗.

Then any two consecutive displacements disp(θ⃗, v⃗k) cannot lie in the same quadrant.

Question: Does this hold for arbitrary norm?

Theorem: (Moschevitin 2000) – No. There exists a norm ∥·∥ on R2 (explicit) and θ⃗’s with

bap such that disp(θ⃗, v⃗k) always lie on the first quadrant.

Observation: If p⃗, q is bap for some θ, then gcd (p1, ..., pd, q) = 1.

Claim: If v⃗k = (p⃗k, qk) and v⃗k+1 = (p⃗k+1, qk+1) are two consecutive bap for some θ⃗, then
they are primitve w.r.t the lattice Zdprimitve w.r.t the lattice Zdprimitve w.r.t the lattice Zd – there exists u⃗3, ..., u⃗d such that v⃗k, v⃗k+1, u⃗3, ..., u⃗d is
a basis of Zd.

In the example above: there exists u⃗ such that { (1, 3, 3), (7, 22, 19), u⃗ } is a basis of Z3.

Basic question for the paper: What is the typical behavior of the bap (v⃗k) and the ε-app
(w⃗k) with respect to their length, direction, arithmetical properties?

————————————————————————————————-

Fix m ∈ N. For a⃗ ∈ Zd+1
m we say that a⃗ is primitive (mod m)a⃗ is primitive (mod m)a⃗ is primitive (mod m) if there are no c, d1, ..., dn

with c ̸= 1 such that ai = cdi. Define

Nm,d+1 := #{a⃗ ∈ Zd+1
m | a⃗ is primitve }.
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Theorem 1.1.a. – arithmetic properties of bap

∥·∥ norm on Rd. Let m ∈ N and let a1, a2, ..., ad, b ∈ Zm such that (a1, a2, ..., ad, b) is

primitive (mod m). Then for Lebesgue a.e θ⃗ ∈ Rd

1

k
#

{
1 ≤ i ≤ k |

{ pi,j = aj (modm)

qi = b (modm)

}
−→ 1

Nm,d+1

where (p⃗k, qk) is bap of θ⃗ w.r.t ∥·∥.

Theorem 1.2.a. – arithmetic properties of ε-app

Let ∥·∥ norm on Rd. Let ε > 0. Let m ∈ N and let a1, a2, ..., ad, b ∈ Zm such that

(a1, a2, ..., ad, b) is primitive (mod m). Then for Lebesgue a.e θ⃗ ∈ Rd

1

k
#

{
1 ≤ i ≤ k |

{Pi,j = aj (modm)

Qi = b (modm)

}
−→ 1

Nm,d+1

where (P⃗k, Qk) is ε-approximations of θ⃗ w.r.t ∥·∥.

Notice that both 1.1.a and 1.2.a doesn’t depend on the norm ∥·∥.

1.1.a extends Moeckel 1982 for d = 1. 1.1.b extends Szusz for d = 1.

Theorem 1.1.b. – equidistribution of bap displacements

∥·∥ norm on Rd. Then there exists µ∥·∥ a probability measure on Rd (boundedly supported,
absolutely continuous w.r.t Lebesgue, not restriction of Lebesgue), such that for Lebesgue a.e

θ⃗ we have (
disp(θ⃗, v⃗k)

)∞
k=0

equidistribute w.r.t µ∥·∥, (v⃗k) is bap of θ⃗ w.r.t ∥·∥

Theorem 1.2.b. – equidistribution of ε-displacements

∥·∥ norm on Rd, ε > 0. Then for Lebesgue a.e θ⃗ we have that(
disp(θ⃗, w⃗k)

)∞
k=0

equidistribute w.r.t V ol|Bε
normelised, where w⃗k is the ε-app of θ w.r.t ∥·∥.

1.2.a extends Bosma Jager and Wiedijk from 1983. The measure µ on R in their work is
the measure given by the density function

F (t) =

{ 1
2log(2) t ∈ [−0.5, 0.5]

1
2log(2) (1/t− 1) t ∈ [−1,−0.5) ∪ (0.5, 1]

1.2.b new, even for d = 1. There had been a little work about direction only.

—————————————————————————————————-
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Short introduction to Lattices:

• L ⊆ Rn is a lattice if there exists linearly-independent v⃗1, v⃗2 ... v⃗n such that
L = spanZ(v⃗1, v⃗2 ... v⃗n) ⇐⇒ L = hZn, where h = (v⃗1, ... v⃗n). In this case, we say that
v⃗1, v⃗2 ... v⃗n (respectively h) is a basis of Lv⃗1, v⃗2 ... v⃗n (respectively h) is a basis of Lv⃗1, v⃗2 ... v⃗n (respectively h) is a basis of L.

• claim: If L = h1Zn = h2Zn then |det(h1)| = |det(h2)|.

• Define the covol(L) := |deth|, where h is any matrix satisfying L = hZn

• We have the following one-to-one correspondences

Xn := {Lattices in Rn covol = 1} ←→ SLn(R)/SLn(Z)

gZn ←→ g SLn(Z).

• endow Xn with the quotient topology.

• Denote by mXn
the Haar measure on XnHaar measure on XnHaar measure on Xn – the unique measure which is

– Borel

– Probability

– Regular – for any A borel we have that

mXn(A) = inf{m(B) |B open with A ⊂ B} = sup{m(K) |K compacy with K ⊂ A}.

– invariant for left Sln(R) multiplication. I.e. for all A ⊂ Xn Borel and all g ∈
Sln(R) we have that mXn

(A) = mXn
(gA).

————————————————————————————-

• u⃗ ∈ Zn primitive if the coordinates of u⃗ are co-prime. Denote Zn
primZn
primZn
prim the set of primitive

vectors on Zn.

• Define n = d+ 1.

• Define πu⃗
u⃗⊥πu⃗
u⃗⊥πu⃗
u⃗⊥ : Rn −→ u⃗⊥ be the orthogonal projection.

In case Rn = Rd
⊕

spanR(u⃗) (where Rd = {x⃗ ∈ Rn |xn = 0}), define πu⃗
Rdπu⃗
Rdπu⃗
Rd : Rn −→ Rd

be the projection to Rd with kernel spanR(u⃗).

• Claim: πu⃗
u⃗⊥(Zn) and πu⃗

Rd(Zn) are d-dim lattices.

• Question: Fix a measure on primitive vectors in Zn
prim. For example, for T > 0, take

uniform distribution on { u⃗ ∈ Zn
prim | ∥u⃗∥ ≤ T}. What is the typical behavior of the

d-dim lattices of the form πu⃗
u⃗⊥(Zd) or πu⃗

Rd(Zd) as T →∞?

• No really good answers so far, even in this mild version (can also take primitive sets
instead of primitive vectors, can also look at projections of more general lattices than
Zn).

• Two ways to simplify:
1) ”simplify the space” (Schmidt) 2) look at more specific collections (WS).

——————————————————————

We say two lattices L1 and L2 are homotheticlattices L1 and L2 are homotheticlattices L1 and L2 are homothetic if there exists t ̸= 0 such that L1 = tL2.
The homothaty class of each lattice L contains a unique representative in Xn, which we
denote by [L].
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We say two lattices L1 and L2 are similartwo lattices L1 and L2 are similartwo lattices L1 and L2 are similar if there exists t ̸= 0 and P ∈ SOd such that
L1 = P t(L2).

We denote by < L >=

[
SOd(R)[L]

]
the similarity class of a lattice L.

Define SXn := SOn(R)\
(
SLn(R)/SLn(Z)

)
as the space of Shapes of latticesthe space of Shapes of latticesthe space of Shapes of lattices.

Define mSXn
as the push-forward of Haar measure from Xn to SXn. It is the unique

Xn-right-inv Haar probability measure on SXn.

Specifically, for u⃗ primitive, < πu⃗
Rd(Zn) > is the class of d-dim lattices which are similar to

πu⃗
Rd(Zn).

Theorem (Schmidt 98). The uniform measures on the finite sets

{< πu⃗
Rd(Zn) > | u⃗ ∈ Zn

prim with ∥u⃗∥ ≤ T }

are equidistributed in SXd w.r.t mSXd
as T →∞.

Weiss-Shapira: Less simplification of the space, more specific collections.

Theorem 1.1.c equidistribution of bap-projected lattices.

∥·∥ norm on Rd. Then there exists µ(Xd) = µ(Xd)∥·∥ a probability measure on Xd (equiva-

lent to mXd
but different [i.e same null sets]), such that for Lebesgue a.e θ⃗ we have([

πv⃗k
Rd(Zn)

])∞

k=0

equidistribute w.r.t µ(Xd), where v⃗k is bap of θ⃗ w.r.t ∥·∥.

Theorem 1.2.c equidistribution of ε-projected lattices.

∥·∥ norm on Rd, ε > 0. Then for Lebesgue a.e θ⃗ we have(
[πw⃗k

Rd (Zn)]

)∞

k=0

equidistribute w.r.t mXd
, where w⃗k is ε-app of θ⃗ w.r.t ∥·∥. Note that this results does not

depend on ε or on the norm.

To summarize, we have in addition the following:

Theorem Theorem 1.1. Theorems 1.1.a 1.1.b and 1.1.c hold jointly.

Theorem Theorem 1.2. Theorems 1.2.a 1.2.b and 1.2.c hold jointly.

———————————————————————

Question: Given θ⃗ with (p⃗k, qk) bap, or with (P⃗k, Qk) ε-app, what can we know about
the rate of growth of the denominators (qk) and (Qk)?

Theorem: (Khinchine, 1935) d = 1 there exists C > 0 such that for Lebesgue almost every θ
with (qk, pk) bap we have
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lim
k→∞

q
1/k
k = C

(Levy, 1936) C = eπ
2/(12ln(2)). This constant is called the Levy-Khinchine constant.

What happens if d > 1? – there had been some results in recent years.

Theorem (corollary 3.4). ∥·∥ on Rd and ε > 0. Then there exists δ∥·∥ and δ′ = δ′∥·∥,ε

such that for Lebesgue a.e θ⃗ with (qk, p⃗k) bap and (Qk, P⃗k) ε-app we have that

lim
k→∞

q
1/k
k = δ

lim
k→∞

Q
1/k
k = δ′

• For bap – improves recent results.

• For ε-app – completely new.

Open question: calculate δ and δ′ for specific cases.

————————————————————————————————————————

What about non-typical cases?

A Field K is called a totally real number fieldtotally real number fieldtotally real number field if K = Q[β] and all roots of the minimal
polynomial of β are real.

Example Q [β] where β is one of the 3 real roots of the polynomial f(x) = x3 + x2 − 2x− 1.
So Q[β] = spanQ(1, β, β

2) if of degree 3.

Claim: If α⃗ = (α1, ... αd) ∈ Rd such that spanQ(1, α1, ..., αd) is a totally real number field,
then α⃗ is Badly-approximable.

Recall: α⃗ is Badly approximable if there exists a norm ∥·∥ such that

inf{ ∥disp(α⃗, v⃗)∥ | v⃗ ∈ Zd × N } > 0.

Theorem 1.5. Let α⃗ = (α1, ... αd) ∈ Rd such that spanQ(1, α1, ..., αd) is a totally real
number field of degree d+ 1 with d ≥ 2.

(For example d = 2 and α⃗ = (β, β2)) as above).

Define

ε0 : = inf{ε′ > 0 | (w⃗k)k=0 ε′ − app are infinite}
= lim inf

k→∞
∥ disp (α⃗, v⃗k) ∥.

Let ε > ε0. Let (v⃗k)
∞
k=0 = (p⃗k, qk) be the bap of α⃗ and (w⃗k)

∞
k=0 = (P⃗k, Qk) be the ε-app of

α⃗.

Let m ∈ N and let b1, ..., bd, B ∈ Zm such that (b1, b2, ..., bd, B) is primitive (modm).

Then the following holds:
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• (a.1) Assume that ∥·∥ is Euclidean or max. . Then there exists c = c(b1, .., bd, B) > 0
such that

1

k
#

{
1 ≤ i ≤ k |

{ pi,j = bj (modm)

qi = B (modm)

}
−→ c

• (a.2) There exists c′ = c′(b1, ..., bd, B) > 0 such that

1

k
#

{
1 ≤ i ≤ k |

{Pi,j = aj (modm)

Qi = b (modm)

}
−→ c′

• (b.1) Assume that ∥·∥ is Euclidean or max. Then there exists a probability measure
µ = µ∥·∥ on Rd such that (

disp(α⃗, v⃗k)
)∞
k=0

equidistribute w.r.t µ∥·∥.

• (b.2) There exists a probability measure ν = ν∥·∥ on Rd such that(
disp(α⃗, w⃗k)

)∞
k=0

equidistribute w.r.t ν∥·∥.

• (c.1) Assume that ∥·∥ is Euclidean or max. Then there exists a probability measure
µ(Xd) = µ(Xd)∥∥ on Xd such that([

πv⃗k
Rd(Zn)

])∞

k=0

equidistribute w.r.t µ(Xd).

• (c.2) There exists a probability measure ν(Xd) = ν(Xd)∥∥ on Xd such that([
πw⃗k

Rd (Zn)
])∞

k=0

equidistribute w.r.t ν(Xd).

Furthermore, the support of the measures above are null sets w.r.t V ol and mXd
and we

have that a.1, b.1, c.1 and a.2, b.2, c.2 hold jointly.
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