GEOMETRIC AND ARITHMETIC ASPECTS OF APPROXIMATION VECTORS – Temperedness and lack thereof in Case I

May 6, 2025

Goal 1: explaining why $\mathcal{B} \subset S_{r_0}$ is tempered.

Goal 2: explaining why $S_{\varepsilon} \subset S_{r_0}$ is not tempered.

Goal 3: explaining how to use (and overcome) the above to get the required equidistribution.

Reminders:

"case 1" – Lebesgue typical case (both for best and ε app).

"case 2" – specific θ 's.

Today's talk: we only deal with case 1.

$$S_{r_0} := \{ \Lambda \in \mathcal{X}_n \mid \#(\Lambda_{prim} \cap D_{r_0}) \ge 1 \}$$
$$S_{r_0}^{\#} := \{ \Lambda \in \mathcal{X}_n \mid \#(\Lambda_{prim} \cap D_{r_0}) = 1 \}$$

Recall: S_{r_0} is $m_{\mathcal{X}_n}$ -reasonable (Theorem 8.6, Alon's talk).

Define $\mathcal{B} \subset S_{r_0}$ in the following way:

For $\Lambda \in S_{r_0}^{\#}$ define

$$\psi(\Lambda) := \Lambda \cap D_{r_0} \in \mathbb{R}^n$$

(well defined by definition of $S_{r_0}^{\#}$), and then define (a bit confusing notation)

$$v_{\Lambda} := \pi_{\mathbb{R}^d}(v(\Lambda)) \in \mathbb{R}^d$$

I.e., v_{Λ} is the horizontal component of $\Lambda \cap D_{r_0}$.

Define for $\Lambda \in S_{r_0}^{\#}$

$$r(\Lambda) := \|\vec{v}_{\Lambda}\|,$$

I.e. the distance of $\Lambda \cap D_{r_0}$ from the vertical axis. Now define

 $\mathcal{B} := \left\{ \Lambda \in S_{r_0}^{\#} \, | \, C_{r(\Lambda)} \cap \Lambda_{prim} = \left\{ \, \pm \vec{v}(\Lambda) \right\} \right\}.$

FIGURE 2. If the cylinder $C_{r(\Lambda)}$ defined by the unique vector $v(\Lambda) \in \Lambda \cap D_{r_0}$ contains another lattice point w, then $\Lambda \notin \mathcal{B}$.

- S_{r_0} at least one primitive vector in D_{r_0}
- $S_{r_0}^{\#}$ exactly one primitive vector in D_{r_0}
- \mathcal{B} exactly one primitive vector in D_{r_0} + no primitive vectors in the cylinder below him

The set \mathcal{B} will detect best approximations (v_k) . Note that \mathcal{B} is norm dependent.

Theorem (Lemma 9.1). The set \mathcal{B} is open in S_{r_0} .

We use this Lemma to prove the following:

Theorem (Lemma 9.2). For any norm, the set \mathcal{B} is $\mu_{S_{r_0}} - JM$ and $\mu_{S_{r_0}}(\mathcal{B}) > 0$.

Recall from chapter 5 (Rotem's talk) – if $\mathcal{B} \subset S_{r_0}$ is $\mu_{S_{r_0}}$ -JM with positive measure which is tempered, then if $\Lambda \in \mathcal{X}_n$ is (a_t, μ) -generic then Λ is also $(a_t, \mu_{s_{r_0}}|_{\mathcal{B}})$ -generic. So we want to prove the following:

Theorem (Proposition 9.8). The set \mathcal{B} is tempered.

Recall that \mathcal{B} is tempered if there exists $M \in \mathbb{N}$ such that for $\mu_{S_{r_0}}$ a.e Λ we have that

$$\#\{t \in [0,1] \mid a_t \Lambda \in \mathcal{B}\} < M$$

Proof:

• For r > 0 define $C_r(e) := \{ (\vec{x}, c) \in \mathbb{R}^n \mid ||\vec{x}|| \le r, c \in [-e, e] \}.$

• Choose M large enough such that any r > 0 any M + 1 points in $C_r(e^d)$ contains two points (\vec{x}, c) and (\vec{x}', c') with

$$- \|\vec{x} - \vec{x}'\| < r/3 \\ - |c - c'| < 1$$

Why there exists such M for r = 1 is obvious by compactness. Then apply a linear transformation which dilates the horizontal subspace.

- We claim that \mathcal{B} is *M*-tempered (in a stronger sense, where the definition holds for all $\Lambda \in \mathcal{B}$).
- Indeed, suppose by contradiction that there exists $\Lambda \in \mathcal{B}$ and $0 = t_0 < t_1 \dots < t_M \leq 1$ such that $a_{t_j} \in \mathcal{B}$ for all j.
- Define $(w_j, 1) := v(a_{t_j}\Lambda) \in \mathbb{R}^n$. I.e. we have that

$$- (w_j, 1) \in a_{t_j} \Lambda_{prim} \cap D_{r_0} - a_{t_j} \Lambda \cap C_{\|w_j\|} (1)^0 = \{\vec{0}\}.$$

• For each j, apply a_{-t_j} on the above. So for all j there exists $x_j \in \mathbb{R}^d$

$$- (x_j, e^{dt_j}) \in \Lambda_{prim} \cap a_{t_j} D_{r_0} - \Lambda_{prim} \cap C^o_{\parallel \vec{x}_j \parallel}(e^{t_j}) = \{\vec{0}\}, \text{ for some } \vec{x}_j \in \mathbb{R}^d.$$

- So we have $||x_0|| \ge ||x_1|| \ge \dots \ge ||x_m||$ hence $(x_j, e^{dt_j}) \in C_{||x_0||}(e^d)$ for all j.
- So by the properties previously discussed, there exists j < i such that

$$- ||x_i - x_j|| < \frac{||x_0||}{3} - |e^{dt_j} - e^{dt_i}| < 1.$$

• So the difference vector satisfies

$$(x_j, e^{dt_j}) - (x_i, e^{dt_i}) \in \Lambda_{prim} \cap C_{||x_0||/3}(1) \subseteq \Lambda_{prim} \cap C_{r(\Lambda)}(1),$$

contradicting the assumption that $\Lambda \in \mathcal{B}$ (if the difference is not primitive then just shorten it).

remark: Notice that the proof shows that there exists $M \in \mathbb{N}$ such that for *any* $x \in S_{r_0}$ we have that

$$\# \{ t \in [0,1] \, | \, a_t x \in \mathcal{B} \} < M.$$

remark: so the reason why we need to differ between best approximations and ε approximations is that \mathcal{B} is useful for best, but not useful for ε (Chen's talk).

Theorem (Lemma 9.9). For any $0 < r \le r_0$, the sets S_r are $\mu_{S_{r_0}} - JM$.

(weird that this lemma is with S_r but next one is with S_{ε}).

Theorem (Proposition 9.10). For any d > 1, for any $\varepsilon > 0$ and any norm, S_{ε} is not tempered. For d = 1, and any $\varepsilon > 0$, S_{ε} is tempered.

Proof for d > 1:

- Let $\varepsilon > 0$ and let $M \in \mathbb{N}$. Let $\Lambda \in \mathcal{X}_n$ such that
 - $(2M)^{-1} \vec{e}_n \in \Lambda$
 - $-(x,1) \in \Lambda$ such that $||x|| < \varepsilon/2$.

- Then for every $j \in \{0, 1, ..., M\}$ we have that $y_j := (x, 1 + \frac{j}{2M}) \in \Lambda$. (NEEDS TO BE PRIMITIVE. THROUGH THE TALK WE DISCUSSED HOW TO OVERCOME THIS OBSTACLE).
- Let $t_j := \frac{1}{d} \log \left(1 + \frac{j}{2M}\right) \in [0, 1).$
- So we have that $a_{t_j}(y_j) = ((1 + \frac{j}{2m})^{1/d} x, 1) \in a_{t_j} \Lambda$ for all j. (NEEDS TO BE PRIMITVE)
- So $a_{t_i} \Lambda \in S_{\varepsilon}$ for all j.
- As we started with M arbitrary, we get that S_{ε} is not tempered (ONLY IF WE ASSUME THE STRONG DEFINITION OF TEMPERATENESS).

Let $\mathcal{X}_n^{\mathbb{A}}$ be the adelic space, let $\pi : \mathcal{X}_n^{\mathbb{A}} \longrightarrow \mathcal{X}_n$ be the projection, and let $m_{\mathcal{X}_n^{\mathbb{A}}}$ be the Haar measure on the adelic space discussed in chapter 7.

For $\theta \in \mathbb{R}^d$ define $\widetilde{\Lambda}_{\theta} := (u(-\theta), e_f) SL_n(\mathbb{Q}) \in \mathcal{X}_n^{\mathbb{A}}$, and define further:

$$\widetilde{S}_{r_0} := \pi^{-1}(S_{r_0}) \quad \widetilde{S}_{\varepsilon} := \pi^{-1}(S_{\varepsilon}) \quad \widetilde{\mathcal{B}} := \pi^{-1}(\mathcal{B})$$

In chapter 13 we will conclude (using results obtained in chapter 5) that

- $\widetilde{\Lambda}_{\theta}$ is $(a_t, \mu_{\widetilde{S}_{r_0}}|_{\widetilde{\mathcal{B}}})$ -generic \longrightarrow equidist best approximations (triples)
- $\widetilde{\Lambda}_{\theta}$ is $(a_t, \mu_{\widetilde{S}_{r_0}}|_{\widetilde{S}_{\varepsilon}})$ -generic \longrightarrow equidist of ε approximations (triples)

So in order to get there, we prove the following:

Theorem (Proposition 12.1). For Lebesgue a.e. θ we have that $\widetilde{\Lambda}_{\theta}$ is $(a_t, \mu_{\widetilde{S}_{r_0}})$ -generic. Moreover, it is $(a_t, \mu_{\widetilde{S}_{r_0}}|_{\widetilde{\mathcal{B}}})$ -generic, as well as $(a_t, \mu_{\widetilde{S}_{r_0}}|_{\widetilde{S}_{\varepsilon}})$ -generic for any $\varepsilon \in (0, r_0)$.

Recall Theorem 5.11 from Chen's talk: If S_{r_0} is a μ -reasonable cross section (Thm 8.6) then we have the following:

- if $\mathcal{B} \subset S_{r_0}$ is $\mu_{S_{r_0}}$ -JM with positive measure (Lemma 9.2) which is tempered (proposition 9.8), then if $\Lambda \in \mathcal{X}_n$ is (a_t, μ) -generic then Λ is also $(a_t, \mu_{s_{r_0}}|_{\mathcal{B}})$ -generic.
- If $\Lambda \notin \Delta_{S_{r_0}}^{\mathbb{R}}$ then if $\Lambda \in \mathcal{X}_n$ is (a_t, μ) -generic then Λ is also $(a_t, \mu_{s_{r_0}}|_{S_{\varepsilon}})$ -generic for any $\varepsilon < r_0$.
- Recall:

$$\begin{split} \Delta_{S_{r_0}}^{\mathbb{R}} &:= \{ a_t \Lambda \,|\, t \in \mathbb{R} \,\&\, \exists \,\delta \,s.t \,\Lambda \in \Delta_{S_{r_0},\delta} \,\} \\ &= \{ a_t \Lambda \,|\, t \in \mathbb{R} \,\&\, \exists \,\delta \,s.t \,\forall \varepsilon > 0 \,\, \limsup_{T \to \infty} \frac{1}{T} \,N(\Lambda,T,S_{r_0,<\varepsilon}) > \delta \,\} \\ &\text{where } S_{r_0,<\varepsilon} := \{ \Lambda \in S_{r_0} \,|\, \min(t > 0 \,|\, a_t \Lambda \in S_{r_0}) < \varepsilon \}. \end{split}$$

With a little work and some famous results about lattices, we have that for Lebesgue a.e Θ we have that Λ_{Θ} is (a_t, m_{χ_n}) -generic.

So by lifting properties + proposition 9.8 the $(a_t, \mu_{\widetilde{S}_{r_0}}|_{\widetilde{\mathcal{B}}})$ -generic case is done.

By proposition 9.10, the difficulty is to prove the $(a_t, \mu_{\widetilde{S}_{r_0}}|_{\widetilde{S}_{\varepsilon}})$ -generic part. I.e, to prove that for $m_{\mathcal{X}_n}$ a.e Λ satisfies that $\Lambda \notin \Delta_{S_{r_0}}^{\mathbb{R}}$. This is done by propositions 12.3, 12.4 and 12.5.