
GEOMETRIC AND ARITHMETIC ASPECTS OF
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May 6, 2025

Goal 1: explaining why B ⊂ Sr0 is tempered.

Goal 2: explaining why Sε ⊂ Sr0 is not tempered.

Goal 3: explaining how to use (and overcome) the above to get the required equidistribution.

—————————————-

Reminders:

”case 1” – Lebesgue typical case (both for best and ε app).

”case 2” – specific θ’s.

Today’s talk: we only deal with case 1.

Sr0 := {Λ ∈ Xn |#(Λprim ∩Dr0) ≥ 1 }

S#
r0 := {Λ ∈ Xn |#(Λprim ∩Dr0) = 1 }

Recall: Sr0 is mXn
-reasonable (Theorem 8.6, Alon’s talk).

Define B ⊂ Sr0 in the following way:

For Λ ∈ S#
r0 define

v (Λ) := Λ ∩Dr0 ∈ Rn

(well defined by definition of S#
r0), and then define (a bit confusing notation)

vΛ := πRd(v(Λ)) ∈ Rd

I.e., vΛ is the horizontal component of Λ ∩Dr0 .

Define for Λ ∈ S#
r0

r(Λ) := ∥v⃗Λ∥ ,

I.e. the distance of Λ ∩Dr0 from the vertical axis. Now define
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B :=
{
Λ ∈ S#

r0 |Cr(Λ) ∩ Λprim = { ±v⃗(Λ)}
}
.

• Sr0 – at least one primitive vector in Dr0

• S#
r0 – exactly one primitive vector in Dr0

• B – exactly one primitive vector in Dr0 + no primitive vectors in the cylinder below
him

The set B will detect best approximations (vk). Note that B is norm dependent.

Theorem (Lemma 9.1). The set B is open in Sr0 .

We use this Lemma to prove the following:

Theorem (Lemma 9.2). For any norm, the set B is µSr0
− JM and µSr0

(B) > 0.

Recall from chapter 5 (Rotem’s talk) – if B ⊂ Sr0 is µSr0
-JM with positive measure which

is tempered, then if Λ ∈ Xn is (at, µ)-generic then Λ is also (at, µsr0
|B)-generic. So we want

to prove the following:

Theorem (Proposition 9.8). The set B is tempered.

Recall that B is tempered if there exists M ∈ N such that for µSr0
a.e Λ we have that

#{ t ∈ [0, 1] | atΛ ∈ B } < M.

Proof:

• For r > 0 define Cr(e) := {(x⃗, c) ∈ Rn | ∥x⃗∥ ≤ r, c ∈ [−e, e] }.
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• Choose M large enough such that any r > 0 any M +1 points in Cr(e
d) contains two

points (x⃗, c) and (x⃗′, c′) with

– ∥x⃗− x⃗′ ∥ < r/3

– |c− c′| < 1

Why there exists such M for r = 1 is obvious by compactness. Then apply a linear
transformation which dilates the horizontal subspace.

• We claim that B is M -tempered (in a stronger sense, where the definition holds for all
Λ ∈ B).

• Indeed, suppose by contradiction that there exists Λ ∈ B and 0 = t0 < t1 ... < tM ≤ 1
such that atj ∈ B for all j.

• Define (wj , 1) := v (atjΛ) ∈ Rn. I.e. we have that

– (wj , 1) ∈ atjΛprim ∩Dr0

– atjΛ ∩ C∥wj∥(1)
0 = {⃗0}.

• For each j, apply a−tj on the above. So for all j there exists xj ∈ Rd

– (xj , e
dtj ) ∈ Λprim ∩ atj Dr0

– Λprim ∩ Co
∥x⃗j∥(e

tj ) = {⃗0 }, for some x⃗j ∈ Rd.

• So we have ∥x0∥ ≥ ∥x1∥ ≥ .... ≥ ∥xm∥ hence (xj , e
dtj ) ∈ C∥x0∥(e

d) for all j.

• So by the properties previously discussed, there exists j < i such that

– ∥xi − xj∥ < ∥x0∥
3

– |edtj − edti | < 1.

• So the difference vector satisfies

(xj , e
dtj )− (xi, e

dti) ∈ Λprim ∩ C∥x0∥/3(1) ⊆ Λprim ∩ Cr(Λ)(1),

contradicting the assumption that Λ ∈ B (if the difference is not primitive then just
shorten it).

remark: Notice that the proof shows that there exists M ∈ N such that for *any* x ∈ Sr0

we have that
# {t ∈ [0, 1] | atx ∈ B} < M.

remark: so the reason why we need to differ between best approximations and ε approxi-
mations is that B is useful for best, but not useful for ε (Chen’s talk).

Theorem (Lemma 9.9). For any 0 < r ≤ r0, the sets Sr are µSr0
− JM .

(weird that this lemma is with Sr but next one is with Sε).

Theorem (Proposition 9.10). For any d > 1, for any ε > 0 and any norm, Sε is not
tempered. For d = 1, and any ε > 0, Sε is tempered.

Proof for d > 1:

• Let ε > 0 and let M ∈ N. Let Λ ∈ Xn such that

– (2M)−1 e⃗n ∈ Λ

– (x, 1) ∈ Λ such that ∥x ∥ < ε/2.
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• Then for every j ∈ {0, 1, ...,M} we have that yj := (x, 1 + j
2M ) ∈ Λ. (NEEDS TO

BE PRIMITIVE. THROUGH THE TALK WE DISCUSSED HOW TO OVERCOME
THIS OBSTACLE).

• Let tj :=
1

d
log (1 + j

2M ) ∈ [0, 1).

• So we have that atj (yj) = ((1 + j
2m )1/d x, 1) ∈ atjΛ for all j. (NEEDS TO BE

PRIMITVE)

• So atjΛ ∈ Sε for all j.

• As we started with M arbitrary, we get that Sε is not tempered (ONLY IF WE
ASSUME THE STRONG DEFINITION OF TEMPERATENESS).

————————————————————————————————–

Let XA
n be the adelic space, let π : XA

n −→ Xn be the projection, and let mXA
n

be the
Haar measure on the adelic space discussed in chapter 7.

For θ ∈ Rd define Λ̃θ :=
(
u(−θ), ef )

)
SLn(Q) ∈ XA

n , and define further:

S̃r0 := π−1
(
Sr0

)
S̃ε := π−1

(
Sε

)
B̃ := π−1

(
B
)
.

In chapter 13 we will conclude (using results obtained in chapter 5) that

• Λ̃θ is (at, µS̃r0
|B̃)-generic −→ equidist best approximations (triples)

• Λ̃θ is (at, µS̃r0
|S̃ε

)-generic −→ equidist of ε approximations (triples)

So in order to get there, we prove the following:

Theorem (Proposition 12.1). For Lebesgue a.e. θ we have that Λ̃θ is (at, µS̃r0
)-generic.

Moreover, it is (at, µS̃r0
|B̃)-generic, as well as (at, µS̃r0

|S̃ε
)-generic for any ε ∈ (0, r0).

Recall Theorem 5.11 from Chen’s talk: If Sr0 is a µ-reasonable cross section (Thm
8.6) then we have the following:

• if B ⊂ Sr0 is µSr0
-JM with positive measure (Lemma 9.2) which is tempered (propo-

sition 9.8), then if Λ ∈ Xn is (at, µ)-generic then Λ is also (at, µsr0
|B)-generic.

• If Λ /∈ ∆R
Sr0

then if Λ ∈ Xn is (at, µ)-generic then Λ is also (at, µsr0
|Sε)-generic for any

ε < r0.

• Recall:

∆R
Sr0

:={atΛ | t ∈ R & ∃ δ s.t Λ ∈ ∆Sr0
,δ }

={atΛ | t ∈ R & ∃ δ s.t ∀ε > 0 lim sup
T→∞

1

T
N(Λ, T, Sr0,<ε) > δ }

where Sr0,<ε := {Λ ∈ Sr0 |min(t > 0 | atΛ ∈ Sr0) < ε}.

With a little work and some famous results about lattices, we have that for Lebesgue a.e Θ
we have that ΛΘ is (at,mXn

)-generic.

So by lifting properties + proposition 9.8 the (at, µS̃r0
|B̃)-generic case is done.

By proposition 9.10, the difficulty is to prove the (at, µS̃r0
|S̃ε

)-generic part. I.e, to prove

that for mXn
a.e Λ satisfies that Λ /∈ ∆R

Sr0
. This is done by propositions 12.3, 12.4 and 12.5.
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