GEOMETRIC AND ARITHMETIC ASPECTS OF
APPROXIMATION VECTORS — Temperedness and

lack thereof in Case 1

May 6, 2025

Goal 1: explaining why B C S, is tempered.
Goal 2: explaining why S. C Sy, is not tempered.

Goal 3: explaining how to use (and overcome) the above to get the required equidistribution.

Reminders:
"case 1”7 — Lebesgue typical case (both for best and € app).
”case 2”7 — specific 0’s.

Today’s talk: we only deal with case 1.

Sr#o = {A e X, | #(Aprim mDTo) = 1}

Sm = {A S Xn | #(Apm'm ﬂDTo) > 1}

Recall: S, is my, -reasonable (Theorem 8.6, Alon’s talk).

Define B C S,, in the following way:

For A € Sff) define
v(A):=AND,, €R"”

(well defined by definition of S¥), and then define (a bit confusing notation)

vp = mga(v(A)) € RY

Le., vp is the horizontal component of AN D, .

Define for A € ij]
r(A) = ||va]l ,

Le. the distance of AN D,, from the vertical axis. Now define



B .= {A S Sfé |Cr(A) N Aprim = { :l:'l_j(A)} }

Re,,

FIGURE 2. If the cylinder C, 5y defined by the unique vector
v(A) € AN D,, contains another lattice point w, then A ¢ B.

e S, — at least one primitive vector in D,
° Sf; — exactly one primitive vector in D,
e B — exactly one primitive vector in D,, + no primitive vectors in the cylinder below

him

The set B will detect best approximations (vg). Note that B is norm dependent.

Theorem (Lemma 9.1). The set B is open in Sy, .
We use this Lemma to prove the following:

Theorem (Lemma 9.2). For any norm, the set B is ps,, —JM and ps, (B) > 0.

Recall from chapter 5 (Rotem’s talk) — if B C Sy, is us, -JM with positive measure which
is tempered, then if A € X, is (ay, pt)-generic then A is also (at, ps,, |5)-generic. So we want
to prove the following:

Theorem (Proposition 9.8). The set B is tempered.

Recall that B is tempered if there exists M € N such that for IS, a.€ A we have that
#{tel0,1]|a;A € B} < M.
Proof:

e For r > 0 define C,(e) := {(Z,c) e R"| ||Z|| < r,c € [—e, €] }.



e Choose M large enough such that any 7 > 0 any M + 1 points in C,.(e?) contains two
points (Z,¢) and (&, ¢') with

—Z-2 | <r/3
—le=dl<1

Why there exists such M for r = 1 is obvious by compactness. Then apply a linear
transformation which dilates the horizontal subspace.

e We claim that B is M-tempered (in a stronger sense, where the definition holds for all

A € B).

e Indeed, suppose by contradiction that there exists A € Band 0 =ty < ty... <ty <1
such that a;; € B for all j.

e Define (wj, 1) := v (a;; A) € R". Le. we have that
— (wy,1) € at, Aprim N Dy,
— ag, AN Cjy, (1)° = {0}.
e For each j, apply a_4; on the above. So for all j there exists z; € R?
— (@j,e) € Appim N ag; Dy,
— Aprim N C’l“’iﬂl(eti) = {0}, for some &; € R%.
e So we have [|zg|| > ||lz1]| = .... = ||z hence (z;,e%) € Cjyy) (e?) for all j.

e So by the properties previously discussed, there exists j < i such that

= i —all < 11

— et —edti| < 1.

e So the difference vector satisfies
(z5,eM) — (24,€") € Aprim O Cllzg)/3(1) € Aprim N Cray (1),

contradicting the assumption that A € B (if the difference is not primitive then just
shorten it).

remark: Notice that the proof shows that there exists M € N such that for *any* = € S,
we have that
#{t€[0,1]|az € B} < M.

remark: so the reason why we need to differ between best approximations and ¢ approxi-
mations is that B is useful for best, but not useful for € (Chen’s talk).
Theorem (Lemma 9.9). For any 0 <1 <o, the sets S, are pus, — JM.

(weird that this lemma is with S, but next one is with S;).

Theorem (Proposition 9.10). For any d > 1, for any ¢ > 0 and any norm, Se is not
tempered. For d =1, and any € > 0, S. is tempered.

Proof for d > 1:
e Let ¢ >0 and let M € N. Let A € X, such that

- (2M)™te, e
— (z,1) € A such that ||z || <e/2.



e Then for every j € {0,1,..., M} we have that y; := (z,1 + QJW) € A. (NEEDS TO
BE PRIMITIVE. THROUGH THE TALK WE DISCUSSED HOW TO OVERCOME
THIS OBSTACLE).
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o Let tj:= y log (1+ 537) € [0,1).

e So we have that a (y;) = ((1 + ﬁ)l/dx,l) € ay A for all j. (NEEDS TO BE
PRIMITVE)

e So ay; A € S. for all j.

e As we started with M arbitrary, we get that S is not tempered (ONLY IF WE
ASSUME THE STRONG DEFINITION OF TEMPERATENESS).

Let XA be the adelic space, let 7 : X* — X, be the projection, and let mys be the
Haar measure on the adelic space discussed in chapter 7.

For 6 € R? define Ay := (u(—0),e5))SLn(Q) € X2, and define further:

§T0 = 7T71(ST0) gg =gt (SE) B:= 71'71(8).

In chapter 13 we will conclude (using results obtained in chapter 5) that

o Ay is (at, 1s,, | 5)-generic — equidist best approximations (triples)

o Ay is (at, 13, | gi)—generic — equidist of ¢ approximations (triples)

So in order to get there, we prove the following:

Theorem (Proposition 12.1). For Lebesque a.e. 6 we have that Aoy is (a¢, pg )-generic.
o

Moreover, it is (at, g |g)-generic, as well as (at,pg |5 )-generic for any € € (0,70).
’7'0 7‘0 €

Recall Theorem 5.11 from Chen’s talk: If S, is a p-reasonable cross section (Thm
8.6) then we have the following:

e if BC Sy, is ps, -JM with positive measure (Lemma 9.2) which is tempered (propo-
sition 9.8), then if A € X, is (at, u)-generic then A is also (ay, pis,, |5)-generic.
o IfA¢ A]Eim then if A € X, is (as, 1)-generic then A is also (ay, s, | 5. )-generic for any
e <rg.
e Recall:
Ag,, ={aA [t eR &I st Ae g, 5}
1
={aA|t eR & Fd 5.t Ve >0 li;nsupTN(A,T, Srg,<e) >0}
—00

where S, <. :={A € S,, |min(t >0|aA € S,,) <e}.

With a little work and some famous results about lattices, we have that for Lebesgue a.e ©
we have that Ag is (at, mx, )-generic.

So by lifting properties 4 proposition 9.8 the (as, ug |z)-generic case is done.
T0

By proposition 9.10, the difficulty is to prove the (a¢, g |z )-generic part. Le, to prove
7‘0 =
that for my, a.e A satisfies that A ¢ A%ro. This is done by propositions 12.3, 12.4 and 12.5.



